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Preface

The ideas of symmetry and invariance, forming Lie theory, are central in many
applications, in particular in differential geometry and mathematical physics. The
Abel Symposium 2019 brought together leading experts from all around the world.
They presented the state-of-the-art, new trends, and advances in their areas of
research. Among them we mention:

• The equivalence problems of geometric structures
• Classification of invariant differential operators and structures with abundant

symmetries in parabolic geometries
• Description of low-dimensional orbits of the action of Lie groups in tensor spaces

and their projectivizations
• Finite generation of classical and differential invariants of infinite dimensional

transformation groups
• Invariance methods in the integration of equations of mathematical physics
• Classification problems in general relativity
• Application of representation theory to the construction of compatibility com-

plexes of overdetermined systems
• Prolongation of graded nilpotent Lie algebras with application to optimal control

theory
• Integrability techniques in classical mechanics

The Abel Symposium took place on 24–28 June 2019 in Ålesund, which is often
called the Norwegian Venice. The main organisers were:

• José Figueroa-O’Farrill, University of Edinburgh
• Sigbjørn Hervik, University of Stavanger
• Boris Kruglikov, UiT - The Arctic University of Norway
• Irina Markina, University of Bergen
• Jan Slovák, Masaryk University
• Dennis The, UiT - The Arctic University of Norway
• Bent Ørsted, Aarhus University

vii
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Leading researchers from 17 different countries working in these areas were
invited to participate. The symposium hosted 47 participants in total, including six
postdoctoral researchers. The daily program consisted of lectures and discussions
held in an open and encouraging atmosphere.

The following 28 plenary lectures were given:

1. Ilka Agricola (Marburg): Generalizations of 3-Sasakian manifolds and skew
torsion

2. Dmitri Alekseevsky (Moscow): Homogeneous sub-Riemannian manifolds
3. David Calderbank (Bath): GL2 geometry and quaternionic manifolds with

symmetry
4. Andreas Čap (Vienna): The bundle of Weyl structures
5. Michael Cowling (Sydney): Lie groups as metric spaces
6. Boris Doubrov (Minsk): Extrinsic geometries and linear PDEs on filtered

manifolds
7. Maciej Dunajski (Cambridge): Conformally isometric embeddings
8. Michael Eastwood (Adelaide): The parabolic geometry of a flying saucer
9. Eugene Ferapontov (Loughborough): On integrability of dispersionless Hirota

type equations
10. Anna Fino (Torino): Closed G2 structures and Laplacian flow
11. Eduardo Garcia-Rio (Santiago de Compostela): Conformally Einstein metrics

in dimension four
12. Peter Gilkey (Oregon): Geodesic completeness of homogeneous affine surfaces
13. Rod Gover (Auckland): Distinguished curves and integrability in Riemannian,

conformal, and projective geometry
14. Erlend Grong (Paris-Sud & Bergen): Curvature for sub-Riemannian manifolds
15. Jun-Muk Hwang (Seoul): Recognizing symplectic Grassmannians by their

varieties of minimal rational tangents
16. Andreas Juhl (Berlin): On the structure of Branson–Gover and Q-curvature

operators on differential forms
17. Jorge Lauret (Cordoba): Soliton geometric structures on Lie groups
18. Thomas Leistner (Adelaide): Semi-Riemannian cones and their holonomy
19. Valentin Lychagin (Tromsø): On equivalence of linear differential operators
20. Karin Melnick (Maryland): A D’Ambra Theorem in conformal Lorentzian

geometry
21. Hans Munthe-Kaas (Bergen): A survey of Lie–Butcher theory
22. Katharina Neusser (Brno): Projective geometry of Sasaki–Einstein structures

and their compactification
23. Pawel Nurowski (Warsaw): The parabolic geometry of a car
24. Andrea Santi (Bologna): Symmetry superalgebras in geometry and physics
25. Martin Schlichenmaier (Luxembourg): N-point Virsasoro algebras are multi-

point Krichever–Novikov type algebras
26. Vera Serganova (Berkeley): Homological tensor functors for representations of

supergroups and superalgebras
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27. Michael Singer (London): Boundary value problems for Einstein metrics
28. Lode Wylleman (Stavanger): Invariantly-defined curvature properties and

integrability in general relativity

In addition to the above speakers (and organisers), the following invited guests
also attended the symposium:

29. Matthias Hammerl (Vienna)
30. Denson Hill (Stony Brook)
31. Omid Makhmali (Warsaw)
32. David McNutt (Stavanger)
33. Paul de Medeiros (Stavanger)
34. Katja Sagerschnig (Warsaw)
35. Eivind Schneider (Tromsø)
36. Eldar Straume (Trondheim)
37. Cynthia Will (Cordoba)
38. Travis Willse (Vienna)
39. Henrik Winther (Brno)
40. Ilya Zakharevich (Berkeley)

We are grateful to all the participants for their valuable contributions and for
making the symposium a successful event. We would also like to express our
gratitude to the Abel Foundation, Trond Mohn Research Foundation, Tromsø
Research Foundation, and Norwegian Mathematical Society for giving us the
opportunity to arrange the Abel Symposium 2019. Moreover, we would like to thank
the Scandic Parken Hotel in Ålesund for providing us practical assistance related to
the hosting of the symposium.

Stavanger, Norway Sigbjørn Hervik
Tromsø, Norway Boris Kruglikov
Bergen, Norway Irina Markina
Tromsø, Norway Dennis The

30 June 2020



A Car as Parabolic Geometry

C. Denson Hill and Paweł Nurowski

Abstract We show that a car, viewed as a nonholonomic system, provides an
example of a flat parabolic geometry of type (SO(2, 3), P12), where P12 is a
Borel parabolic subgroup in SO(2, 3). We discuss the relations of this geometry
of a car with the geometry of circles in the plane (a low dimensional Lie sphere
geometry), the geometry of 3-dimensional conformal Minkowski spacetime, the
geometry of 3-rd order ODEs, projective contact geometry in three dimensions, and
the corresponding twistor fibrations. We indicate how all these classical geometries
can be interpreted in terms of the nonholonomic kinematics of a car.

1 Car and Engel Distribution

1.1 Configuration Space and Nonholonomic Constraints

In this note we look at a car from the point of view of an observer that is situated in
space over the plane on which the car is moving. We idealize the car as an interval
of length $ in the plane R2. The car has two pairs of wheels; we idealize them
to be attached at both ends of the interval. The rear wheels are always parallel to
the interval, whereas the front wheels can be rotated around the line vertical to the

This work was supported by the Polish National Science Centre (NCN) via the grant number
2018/29/B/ST1/02583 and via the POLONEZ grant 2016/23/P/ST1/04148, which received funding
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odowska-Curie grant agreement No. 665778.
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94 C. Denson Hill and P. Nurowski

plane passing through the point of their attachment to the car. At every moment the
direction of the front wheels can assume any angle with respect to the direction of
the headlights of the car. To describe the position of the car we need four numbers.
One can define these four numbers in many ways; here we choose the setting
depicted in the figure below:

We introduce a Cartesian coordinate system in the plane so that the position of
the rear wheels of the car has coordinates (x, y). Then as a fixed line in the plane we
choose the line y = 0, and to keep track of the orientation of the chassis of the car
we take the angle α that the interval representing the car forms with this line. The
orientation of the front wheels is the angle β, between the direction defined by the
front wheels and the direction of the interval representing the chassis of the car. As
a result we have four numbers (x, y,α,β) describing uniquely the position of the
car as it moves. Thus the configuration space of the car is a 4-dimensional manifold
M , locally diffeomorphic to

R2 × S1 × S1 = { (x, y,α,β) : (x, y) ∈ R2; α,β ∈ S1 }.

1.2 Movement and the Role of the Tires

When the car is moving it traverses a curve q(t) = (x(t), y(t), α(t),β(t))

in its configuration space M . The velocity of the car at time t is q̇(t) =
(ẋ(t), ẏ(t), α̇(t), β̇(t)). It is a vector from the tangent space Tq(t)M .

A safe car has tires. Their role is to prevent the car from skidding. Our car will
have perfect tires. They impose nonholonomic constraints. These are constraints on
positions and velocities, that can not be integrated to constraints on positions only.
Indeed, what is expected from a properly behaving car is that its rear wheels, i.e. the
point (x, y) has its (x, y)-plane velocity parallel to the direction of the body of the
car, and that the front wheels. i.e. the point (x + $ cos α, y + $ sin α), has its (x, y)-
plane velocity in the plane parallel to the orientation of the front wheels. Thus, the
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movement of a car, represented by the curve q(t) = (x(t), y(t),α(t),β(t)) ∈ M , at
every moment of time t , must satisfy

d
dt (x, y) || (cos α, sin α) &

d
dt (x + $ cos α, y + $ sin α) || (cos(α − β), sin(α − β)),

or, what is the same

ẋ sin α − ẏ cos α = 0 &

(ẋ − $α̇ sin α) sin(α − β)− (ẏ + $α̇ cos α) cos(α − β) = 0.

We emphasize that the above constraints are linear in velocities. Solving them we
get the possible velocities as

⎛
⎜⎜⎝

ẋ

ẏ

α̇

β̇

⎞
⎟⎟⎠ = A(t)

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ + B(t)

⎛
⎜⎜⎝

$ cos α cos β

$ sin α cos β

− sin β

0

⎞
⎟⎟⎠ .

where α = α(t), β = β(t), A = A(t) and B = B(t) are arbitrary functions of time.

1.3 Velocity Distribution as an Engel Distribution

We can rephrase this by saying that at each point q = (x, y,α,β)T in the tangent
space TqM , which is considered as the space of all possible velocities, there is a
distinguished vector subspace
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DDq = SpanR(X3,X4) spanned at each point q ∈ M by the vectors tangent to the
vector fields

X3 = ∂β & X4 = − sin β∂α + $ cos β(cos α∂x + sin α∂y), (1.1)

which is the space of admissible velocities of the car at q . The car with perfect
tires moves always along the curves q(t) = (x(t), y(t),α(t),β(t))T such that its
velocity q̇ in the configuration space satisfies

q̇ = AX3 + BX4.

The arbitrary functions A = A(t) and B = B(t) are called controls of the car.1

Thus onM there is a rank 2 distribution DD onM , describing the space of possible
velocities, given by

DD = SpanF(M)(X3,X4). (1.2)

with F(M) being the ring of all differentiable functions on M . Therefore ‘the
structure of a car with perfect tires’ is up to now

(M,DD),

i.e. a 4-manifoldM with a rank 2 distribution (M,DD).
Now the fundamental question is: Is DD integrable?

The answer is: Obviously not, since everybody knows that a car can be driven
from any position in its configuration space to any other position (Chow-Raszewski
theorem). One can also convince oneself about that by calculating the commutators
of X3 and X4. We have:

[X3,X4] = − cos β∂α − $ sin β(sin α∂y + cos α∂x ) := X2

[X4,X2] = $(cos α∂y − sin α∂x) := X1,
(1.3)

and it is easy to check that

X1 ∧X2 ∧X3 ∧X4 = $2∂x ∧ ∂y ∧ ∂α ∧ ∂β �= 0.

This shows that taking successive commutators of the vectors from the car distri-
bution DD we quickly (in two steps!) produce the entire tangent bundle to M . This,
by the Chow-Raszewski theorem, is a well know condition for curves tangent to the
distribution to be capable reaching any point of the configuration space from any
other point.

1Sometimes the vector fields X3 and X4 are also called controls.
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We summarize this by defining three distributions D−1, D−2 and D−3 on M as
in the table below:

rank
D−1 := DD Span(X4,X3) 2

D−2 := [D−1,D−1] Span(X4,X3,X2) 3
D−3 := [D−1,D−2] Span(X4,X3,X2,X1) = TM 4

Thus given the so far defined structure of the car (M,DD), we have a filtration D−1 ⊂
D−2 ⊂ D−3 = TM of distributions with the constant growth vector (2, 3, 4). These
collective properties of the car distribution DD make it an Engel distribution. Here we
recall that an abstract Engel distribution is a rank 2 distribution on a 4-manifold such
that its derived flag of distributions D−1 = D, D−2 := [D−1,D−1] and D−3 :=
[D−1,D−2] has respective constant ranks 2, 3 and 4.

1.4 Equivalence of Engel Distributions

Our discussion so far shows that the geometric structure associated with a car is
(M,DD) with DD being an Engel distribution on a manifoldM .

A newcomer to this subject has an immediate question: are there nonequivalent
Engel distributions? To answer this we need the notion of equivalence of distribu-
tions.

We say that two distributionsD and D̄ of the same rank on manifoldsM and M̄ of
the same dimension are (locally) equivalent iff there exists a (local) diffeomorphism
φ : M → M̄ such that φ∗D = D̄. (Local) self-equivalence maps φ : M → M , i.e.
maps such that φ∗D = D are called (local) symmetries of D. They form a group

of (local) symmetries of D. This notion has its infinitesimal version: we say that
a vector field X on M is an infinitesimal symmetry of D if and only if LXD ⊂ D.
Since the commutator [X,Y ] of two infinitesimal symmetries X and Y is also an
infinitesimal symmetry, this leads to the notion of the Lie algebra gD of infinitesimal

symmetries of D.
Now, one convinces herself that the distribution

DE = (∂q, ∂x + p∂y + q∂p)

defined on an open set of R4 parametrized by (x, y, p, q) is an Engel distribution.
We have the following classical theorem due to Friedrich Engel.

Theorem Every Engel distribution is locally equivalent to the distribution DE .

One may say that we are in trouble: Since the car structure (M,DD) is a structure
of an Engel distribution, there is no geometry associated to the car. The wrong
argument in this kind of criticisim is that an Engel distribution is not the only
structure that a car with perfect tires has. It turns out that the geometry associated
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with a car is more subtle than just the geometry of an Engel distribution. The car
features equip its Engel distribution with an additional structure.

2 Car and Engel Distribution with a Split

2.1 Two Distinguished Directions

To see this consider the vector field: X4 = − sin β∂α + $ cos β(cos α∂x+ sin α∂y).
When β = 0 it becomes X4 = $(cos α∂x + sin α∂y) and if the car chooses this
direction of its velocity it makes a simple movement by going along a straight line in
the direction (cos α, sin α) in the (x, y) plane. On the other hand, if the car chooses
its velocity in the direction of the vector fild X3 = ∂β , then although it does move
in the configuration space, it does not perform any movement in the physical (x, y)
plane, merely rotating the steering wheel/front wheels with the engine at idle.

Cars owners/producers perfectly know and make use of these two particular
vector fields (X3,X4) in the distribution DD. In particular, car owners alternate
using these two vector fields, each separately at proper instants/intervals of time,
in parallel parking.

Indeed, if one wants to park a car one first approaches the parking spot by having
its velocity aligned with X4 vector field with β = 0. Then the car stops and rotates
its front wheels towards the sidewalk passing from β = 0 to β = β0=const. This
is done by aligning its velocity with the vector field X3. After this, the car velocity
again becomes aligned with X4, which now has β = β0=const, so that the car goes
backwards towards the sidewalk.

When the rear wheels are close to the sidewalk the car stops again, and aligns its
velocity with X3, going back from β = β0 to β = −β0. Again applying backwards
X4 with this constant β = −β0 enables the driver to orient the rear wheels parallely
to the sidewalk. If this happens, the car stops and applies X3 to make β = 0 again.
Finally the car aligns its velocity with X4 having β = 0 to move parallely to the
sidewalk and to take the midlle position between the two cars before and after it.
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Thus the car’s distribution DD has an additional structure, which is its split

DD = Dw ⊕ Dg,

onto rank one subdistributions

Dw = SpanF(M)(X3) and Dg = SpanF(M)(X4).

These subdistributions have a clear physical meaning:
The distribution Dw as spanned by X3 = ∂β , is responsible for the steering

wheel control, and will be called the steering wheel space; on the other hand the
distribution Dg, as spanned by the generator of the forward-backward movement
X4 = − sin β∂α + $ cos β(cos α∂x + sin α∂y) will be called the gas space.

This results in the statement that the car structure is actually (M,DD = Dw⊕Dg),
with DD being an Engel distribution with a split DD = Dw⊕Dg onto rank one, steering
wheel and gas, subdistributions. So considering a car’s geometry more thoroughly
we land in a realm of the subtle geometry of Engel distributions with a split!

2.2 New Geometry: Engel Distributions with a Split

Thus we ultimately established that the geometry of a car with perfect tires, is given
by a structure (M,DD = Dw ⊕ Dg), where DD is an Engel distribution with a (car’s)

split DD = Dw ⊕ Dg.

Abstractly, irrespectively of car’s considerations, let us consider a geometry in
the form (M,D = D1 ⊕ D2), where dimM = 4,D is an Engel distribition on M ,
and both subdistributions D1 and D2 in D have rank one. Let us call this an Engel

structure with a split.
Such structures have their own equivalence problem, related to the following

definitions:
Two Engel structures with a split (M,D = D1 ⊕D2) and (M̄, D̄ = D̄1 ⊕D̄2) are

(locally) equivalent if and only if there exists a (local) diffeomorphism φ : M → M̄

such that φ∗D1 = D̄1 and φ∗D2 = D̄2. Infinitesimally, we consider vector fields
S on M such that LSD1 ⊂ D1 and LSD2 ⊂ D2, and we call such vector fields
infinitesimal symmetries of (M,D = D1 ⊕ D2). This, as usual, leads to a notion
of the Lie algebra gD of infinitesimal symmetries of an Engel structure (M,D =
D1 ⊕ D2) with a split, as the Lie algebra of the vectors fields S as above.

We can now ask about the Lie algebra of infinitesimal symmetries of the Engel
structure with a split (M,DD = Dw ⊕ Dg) of a car. In this case we have D1 = Dw

and D2 = Dg . As an answer we get a bit surprising result as below:

Theorem 2.1 Consider the car structure (M,DD) consisting of its velocity dis-

tribution DD and the split of DD onto rank 1 distributions DD = Dw ⊕ Dg with

Dw = Span(∂β), Dg = Span(− sin β∂α + $ cos β(cos α∂x + sin α∂y).
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The Lie algebra of infinitesimal symmetries of this Engel structure with a split is

10-dimensional, with the following generators

S1 = ∂x

S2 = ∂y

S3 = x∂y − y∂x + ∂α

S4 = $(sin α∂x − cos α∂y )+ sin2 β∂β

S5 = x∂x + y∂y − sin β cos β∂β

S6 = (x2 − y2)∂x + 2xy∂y + 2y∂α − 2 cos β
�
$ cos β sin α + x sin β

�
∂β

S7 = $
�
x(sin α∂x − cos α∂y)− cos α∂α

�
+ sin β

�
$ cos β sin α + x sin β

�
∂β

S8 = $
�
y(sin α∂x − cos α∂y)− sin α∂α

�
− sin β

�
$ cos β cos α − y sin β

�
∂β

S9 = 2xy∂x + (y2 − x2)∂y − 2x∂α + 2 cos β
�
$ cos β cos α − y sin β

�
∂β

S10 = $(x2 + y2)
�

sin α∂x − cos α∂y

�
− 2$

�
x cos α + y sin α

�
∂α+

�
2$ sin β cos β

�
x sin α − y cos α

� + sin2 β(x2 + y2)+ 2$2 cos2 β
�
∂β

It is isomorphic to the simple real Lie algebra so(2, 3) = sp(2,R). Moreover, there

are plenty of locally nonequivalent Engel distributions with a split, but the split

DD = Dw ⊕ Dg on the (Engel) car distribution used by car owners and provided by

cars’ producers is the most symmetric.

The fact that there are many locally nonequivalent Engel structures with a split is not
surprising at all. What is surprising here, is that the split on the Engel distribution
provided by the ‘steering-wheel–gas’ control of a car is the most symmetric.
Moreover, the appearence of a simple Lie algebra so(2, 3) = sp(2,R) as the full
algebra of symmetries of car’s DD = Dw⊕Dg is also striking. Especially that so(2, 3)
is the Lie algebra of the group of conformal symmetries of 3-dimensional Minkowski

space. How on earth Minkowski space can be related to a car?

3 Explaining the so(2, 3) = sp(2,R) Symmetry

3.1 A Double Fibration

Consider integral curves of the two distinguished directions X3 and X4 defined by
the split in the car’s distributionDD. Let us call the integral curves ofX3 by q3 and the
integral curves of X4 by q4 respectively. They define two foliations of M , the first
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having q3 as the leaves, and the second consisting of leaves given by q4. Passing
to the space of leaves of these two foliations, which we denote by P and by Q,
respectively, we get a double fibration

with the 4-dimensional configuration space M of a car on top, and the two 3-
dimensional spaces P and Q at the bottom.

We will now analyze the geometry of each of the base spaces of this fibration,
devoting a subsection to each of them.

3.2 Conformal Structure on Q

Points of Q are just the integral curves of X4. What are these curves in M? In an
appropriate parametrization they are:

q4(t) =

⎛
⎜⎜⎝

2$ cot β0 cos(α0 − 1
2 t sin β0) sin( 1

2 t sin β0)+ x0

2$ cot β0 sin(α0 − 1
2 t sin β0) sin( 1

2 t sin β0)+ y0

−t sin β0 + α0

β0

⎞
⎟⎟⎠ when β0 �= 0,

(3.1)

or

q4(t) =

⎛
⎜⎜⎝

t$ cos α0 + x0

t$ sin α0 + y0

α0

0

⎞
⎟⎟⎠ when β0 = 0. (3.2)

Here (x0, y0,α0,β0) are constants, corresponding to the position of the car at t = 0.
These curves q4(t) correspond to the movement of the car, when the β angle is

fixed. Thus in the configuration space M , they are helices (x(t), y(t),α(t)) in the
3-dimensional space β = β0 = const, parametrized by (x, y,α). The axi of these
helices are given by (x0 + $ cot β0 sin α0, y0 − $ cot(β0) cos α0, t), their radii are
R = $ cot β0 and their pitch is 2π , for each choice of initial conditions (x0, y0,α0).
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In the physical 2-dimensional space (x, y), where the car is physically moving,
these curves are either points (when β0 = ±π/2), or circles (when 0 < |β0| < π/2),
or straight lines (when β0 = 0). This corresponds to the simple fact that if one sets
the steering wheel in a given position, or what is the same keeps the constant angle
β = β0 between the front wheels and the axis of the chasis of the car, the rear wheels
of the car will go on a straight line if β = 0, will go on circles if 0 < |β| < π/2, or
will stay at a given point (x0, y0) if the front wheels are perpendicular to the axis of
the car. It is important to note that, by setting the initial conditions (x0, y0,α0,β0)

properly, one can obtain any point, line or a circle in the plane (x, y), as a trajectory
of a physical movement of the car in the plane (x, y).

Thus there is a one-to one correspondence between the points q of the 3-
dimensional space Q of the integral curves of the vector field X4 (the helices at
each plane β = β0 in M) and the 3-dimensional space Q of all points, circles and

lines in R2 coordinatized by (x, y).

3.2.1 Geometry of Oriented Circles on the Plane

Since two circles on the plane can be disjoint, or can intersect, or be tangent,
and since these relations between any two circles are invariant with respect to
diffeomorphisms of the plane, they should be used to further determine the geometry
of the space Q and in turn the geometry of the leaf space Q.

The geometry of circles on the plane is a classical subject first considered by S.
Lie (see e.g. [16]). Consider a set Q of all objects in the plane whose coordinates
(x, y) satisfy

x2 + y2 − 2ax − 2by + c = 0,

with some real constants a, b, c. Introducing

R2 = a2 + b2 − c,

and projective coordinates [ξ : η : ζ : μ : ν] in RP 4 via

a = ξ

ν
, b = η

ν
, c = μ

ν
, R = ζ

ν
, (3.3)
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we see that Q is a projective quadric

Q = { RP 4 $ [ξ : η : ζ : μ : ν] : ξ2 + η2 − ζ 2 − μν = 0 } (3.4)

in RP 4. The objects (the points) of this set are stratified as follows. Generically they
form the set Qc of (all) circles in the plane; this occurs when ξ2 + η2 − μν > 0.
When the radius R is infinite, i.e. when ν = 0, the objects belong to Q$, the set of
(all) lines in the plane; finally, when ζ = 0, the objects belong to Qp, the set of (all)
points on the plane. Thus we have

Q = Qc � Q$ � Qp,

i.e. Q is the set of all circles, lines and points on the plane. In addition we easily
see that the three dimensional set Q, as a null projective quadric in RP 4, acquires a
natural conformal Lorentzian structure [g], coming from the quadratic form

Q(ξ, η, ζ,μ, ν) = ξ2 + η2 − ζ 2 − μν (3.5)

in R5.
It is important to notice that by considering R as in formula (3.3) we doubled

the number of circles in the plane. This is because, depending on the sign of ζ ν, the
radiusR of the circle may be positive or negative. This has an obvious interpretation:
the space Q consists of all oriented circles/lines. We adapt the convention that a
circle/line (x − a)2 + (y − b)2 = R2 is oriented counterclockwise iff R > 0, and it
is oriented clockwise iff R < 0.

Lie has shown that the conformal structure in Q, whose points are generically
oriented circles in the plane, is identical with the structure defined by the incidence

relation between the circles: two circles from Q are incident if and only if they are

tangent to each other in such a way that their orientations coincide when one of the

circles is inside the other and are opposite when they are external to each other.
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Indeed, parametrizing the space of circles on the plane by (a, b,R), where (a, b)
are the coordinates of their center in the plane, and R is their (negative or positive)
radius, we see that close circles corresponding to (a, b,R) and (a+da, b+db,R+
dR) have only one point of intersection iff the equations

(x−a)2 +(y−b)2 −R2 = 0 & (x−a−da)2 +(y−b−db)2 −(R+dR)2 = 0,

have a unique solution for (x, y). It is only possible if and only if

(da)2 + (db)2 − (dR)2 = 0,

i.e. when the circles corresponding to (a, b,R) and (a + da, b + db,R + dR) are
null separated in the Lorentzian metric g = (da)2 + (db)2 − (dR)2 on the space
of all circles Qc. Thus the space of all circles Qc is embedded as an open set in the
projective quadric Q, and moreover this embedding is a conformal embedding with
a flat conformal structure coming from the Minkowski metric g = (da)2 + (db)2 −
(dR)2.

Another, more geometric, way of seeing the conformal metric g = (da)2 +
(db)2 − (dR)2 on the space Qc is to think about (a, b) plane as a R = 0 slice of
R3 with coordinates (a, b,R). This space can be uniquely equipped with the set of
cones, such that each circle with center in (a0, b0) and (positive or negative) radius
R0 on the R = 0 plane is an intersection of this plane with a cone having tip at
(a0, b0, R0). Then one declares R3 with such cones as a conformal 3-dimensional
manifold on which these cones are light cones. By construction these cones are light
cones in the metric g = (da)2 + (db)2 − (dR)2.

3.2.2 Conformal Minkowski Space in 3-Dimensions is SO(2, 3) Symmetric

Since, following Lie, we have shown that the space Q of all circles on the plane has a
natural structure of 3-dimensional conformal Minkowski space which has SO(2, 3)
as a group of symmetries, and since Q is in one to one correspondence with the base
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Q of the fibration M → Q, then also the space Q of all integral curves of the vector
field X4 in M has SO(2, 3) as a symmetry. But this is naturally associated with the
configuration space M of a car equipped with the geometry of an (velocity) Engel
distribution with car’s split. This gives an argument why the Lie algebra so(2, 3) is
the algebra of infinitesimal symmetries of the car structure (M,DD = Dw ⊕ Dg).

3.3 Geometry of 3rd Order ODEs

It turns out that the double fibration of the type

is also associated with the geometry of 3rd order ODEs considered modulo contact

transformations of variables. Indeed, in [7] S.S. Chern studied the geometry of an
ordinary differential equation (ODE)

y ��� = F(x, y, y �, y ��) (3.6)

considered modulo contact transformation of variables, and established that the
space M of second jets of the ODE, i.e. the four-dimensional space coordinatized
by the jet coordinates (x, y, y �, y ��), is naturally equipped with two 1-dimensional
foliations. These are given

• in terms of the integral curves of a vector field X3 = ∂y �� responsible for the
projection (x, y, y �, y ��) → (x, y, y �) from the space M of second jets to space
P of the first jets, and

• in terms of the total differential vector field X4 = ∂x + y �∂y + y ��∂y � + F ∂y �� of
the equation.

He has also shown that these two foliations on M do not change when the ODE
undergoes contact transformation of variables. This led him to the study of a double
fibration Q ← M → P , with the 3-dimensional space Q beeing the leaf space of
the foliation given by X4.

In this section we recall Chern’s considerations, and will show their relation to
the geometry of the car fibration.

Equation (3.6) can be equivalently written as a system y � = p, p� = q , q � =
F(x, y, p, q) and as such is defined on the space of second jets M = J 2 over
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the x-axis. This space is parameterized by (x, y, p, q) and every solution to (3.6)
is a curve γ (t) = (x(t), y(t), p(t), q(t)) in J 2 such that its tangent vector γ̇ (t)

annihilates the contact forms

ω1 = dy − pdx, ω2 = dp − qdx, ω3 = dq − F(x, y, p, q)dx. (3.7)

These can be supplemented by

ω4 = dx (3.8)

to a coframe on J 2.
Chern, inspired by the earlier work of E. Cartan’s [5], (see also [6]), established

that an arbitrary contact transformation of variables of Eq. (3.6) is equivalent to the
following transformation of the coframe 1-forms (ω1,ω2,ω3,ω4) in J 2:

⎛
⎜⎜⎝

ω1

ω2

ω3

ω4

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

t1 t2 0 0
t3 t4 0 0
t5 t6 t7 0
t8 t9 0 t10

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ω1

ω2

ω3

ω4

⎞
⎟⎟⎠ . (3.9)

Here the ti are arbitrary functions on J 2 such that (t1t4 − t2t3)t7t10 �= 0. Thus the
local equivalence of 3-rd order ODEs, considered modulo contact transformations,
got reformulated by Chern into the local equivalence of coframes (3.7)–(3.8) given
modulo transformations (3.9).

Looking at the transformation (3.9) defining a contact equivalence class of ODEs
(3.6), we see that the frame vector fields (X1,X2,X3,X4), which on J 2 are dual to
(ω1,ω2,ω3,ω4), Xi −| ωj = δi

j , are given up to the transformations

⎛
⎜⎜⎝

X1

X2

X3

X4

⎞
⎟⎟⎠ →

⎛
⎜⎜⎜⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 1

t7
0

0 0 0 1
t10

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

X1

X2

X3

X4

⎞
⎟⎟⎠ . (3.10)

Thus a 3rd order ODE (3.6) considered modulo contact transformations distin-
guishes two well defined directions on J 2. They are spanned by the respective
vector fields

X3 = ∂q and X4 = ∂x + p∂y + q∂p + F ∂q .

These in turn span a rank 2 distribution DD = SpanF(J 2)(X3,X4) which happens
to be an Engel distribution. Thus we have an Engel distribution DD with a natural split
DD = Dw ⊕ Dg given by Dw = SpanF(J 2)(X3) and Dg = SpanF(J 2)(X4). So the
geometry of the jet space J 2 with a 3rd order ODE considered modulo contact trans-
formations of variables is very much like the geometry of car’s configuration space!
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Can we thus associate a 3rd order ODE to the car? If so, what is the ODE?
It turns out that the car structure geometry is a special case of geometries studied

by N. Tanaka in [21], and by us in the paper [17]. In particular, in our paper [17]
we considered manifolds M of dimension k + n and the geometry of rank n =
r + s distributions D on M which had the split D = Dr ⊕ Ds onto integrable

subdistributions of respective ranks r and s. We called such structures para-CR

structures of type (k, r, s). Since rank 1 distributions are always integrable then, in
this sense, the geometry of car’s structure (M,DD = Dw⊕Dg) is a para-CR structure
of type (2, 1, 1).

Actually, in Ref. [17], Sec. 4, Proposition 4.2, we have shown that the geometry
of para-CR structures of type (2, 1, 1) is the same as the geometry of 3rd order
ODEs considered modulo contact transformation of variables. Thus, according to
this general result, there definitely exists a contact equivalence class of 3rd order
ODEs associated with a car. So what is an ODE representing this class?

The car structure (M,DD = Dw ⊕ Dg) defines a G-structure [11] on M , i.e.
the reduction of the structure group GL(4,R) of the tangent bundle TM to its
subgroup G = {GL(4,R) $ A : AX3 = λ3X3, AX4 = λ4X4}, preserving DD
and its split DD = Dw ⊕ Dg. It is more convenient to think about a G-structure
dually: it is a G-subbundle of the bundle F ∗(M) of GL(4,R)-coframes of M . The
requirement that the G-structure is given by the car structure (M,DD = Dw ⊕ Dg)

is reflected in the G transformation of coframes as follows. We first consider the
coframe (ω1,ω2,ω3,ω4) dual to the car frame (X1,X2,X3,X4) on M given in
(1.1), (1.3). We have:

ω1 = $−1(cos αdy − sin αdx)

ω2 = − cos βdα − $−1 sin β
�

cos αdx + sin αdy
�

ω3 = dβ

ω4 = − sin βdα + $−1 cos β
�

cos αdx + sin αdy
�
,

(3.11)

and Xi −| ωj = δi
j . Now, the coframe (ωi ), i = 1, 2, 3, 4, is given by the geometry

of the car up to the transformation

ωi → ω̄i = Ai jω
j , (3.12)

with

A = (Ai j ) =

⎛
⎜⎜⎝

t1 t2 0 0
t3 t4 0 0
t5 t6 t7 0
t8 t9 0 t10

⎞
⎟⎟⎠ with tB ∈ F(M), and detA �= 0.

(3.13)
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The G-structure group G of the car structure is therefore

G = {A ∈ M4×4(R) : A =

⎛
⎜⎜⎝

t1 t2 0 0
t3 t4 0 0
t5 t6 t7 0
t8 t9 0 t10

⎞
⎟⎟⎠ with tB ∈ R, and detA �= 0}.

We now use transformations (3.12)–(3.13) to bring the coframe forms (3.11) to a
form which is convenient to see a 3rd order ODE related to the car’s geometry.

Taking

A1 =

⎛
⎜⎜⎝

$ sec α 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (3.14)

we bring ω1 into the form

ω1 = dy − tan αdx. (3.15)

Now we observe that

ω2 = − cos β cos2 α
�

d tan α + $−1 tan β sec3 αdx
�

− $−1 sin β sin αω1,

where we have used the new ω1 given by (3.15). This means that by taking

A2 =

⎛
⎜⎜⎝

1 0 0 0
−$−1 tan β tan α sec α − sec β sec2 α 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (3.16)

we can bring the coframe 1-form ω2 into the form

ω2 = d tan α + $−1 tan β sec3 αdx. (3.17)

We further observe that

ω3 = −$−1 sec3 α sec2 β
�
−d

�
$−1 sec3 α tan β

�−3$−2 sec5 α sin α tan2 βdx
�
− 3

4 sin 2α sin 2βω2,
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where we have used the new ω2 given by (3.17). This means that by means of the
matrix

A3 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 −3$−1 sec α tan α tan β −$−1 sec3 α sec2 β 0
0 0 0 1

⎞
⎟⎟⎠ (3.18)

we can bring the 1-form ω3 into the form

ω3 = −d
�
$−1 sec3 α tan β

� − 3$−2 sec5 α sin α tan2 βdx. (3.19)

Finally, we also see that

ω4 = $−1 sec α sec βdx − cos2 α sin βω2 + $−1 cos β sin αω1,

with ω1 and ω2 as in (3.15), (3.17), which shows that the matrix

A4 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

− 1
2 cos2 β sin 2α 1

2$ cos3 α sin 2β 0 $ cos α cos β

⎞
⎟⎟⎠ (3.20)

brings the form ω4 into

ω4 = dx. (3.21)

Summarizing what we have obtained so far we note that by a linear transformation

A = A4A3A2A1,

with Ai as in (3.14), (3.16), (3.18), (3.20), which is of the form of (3.13), we can
bring the car coframe (3.11) to the G-equivalent coframe

ω1 = dy − tan αdx

ω2 = d tan α + $−1 tan β sec3 αdx

ω3 = −d
�
$−1 sec3 α tan β

� − 3$−2 sec5 α sin α tan2 βdx

ω4 = dx.

(3.22)

Now we introduce the new coordinates (x, y, p, q) on M related to the coordinates
(x, y,α,β) via

p = tan α, q = −$−1 tan β sec3 α.
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In these new coordinates the coframe 1-forms (3.22) read:

ω1 = dy − pdx

ω2 = dp − qdx

ω3 = dq − F(x, y, p, q)dx

ω4 = dx,

with

F = 3$−2 sec5 α sin α tan2 β = 3pq2

1 + p2
.

Thus the car structure can equivalently be described in terms of coordinates
(x, y, p, q) with the adapted coframe 1-forms

ω1 = dy − pdx

ω2 = dp − qdx

ω3 = dq − 3pq2

1 + p2
dx

ω4 = dx.

(3.23)

The car velocity distribution

DD = SpanF(M)(X3,X4)

is in these coordinates spanned by the vector fields

X3 = ∂q and X4 = ∂x + p∂y + q∂p + 3pq2

1 + p2
∂q . (3.24)

They form a part of a frame (X1,X2,X3,X4) dual to (ω1,ω2,ω3,ω4) given by
(3.23). The ‘steering wheel’-‘gas’ split,

DD = Dw ⊕ Dg,

is given by

Dw = SpanF(M)(X3) and Dg = SpanF(M)(X4).
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Since the coframe 1-forms (3.23) are just the standard contact forms on the bundle of

second jets J 2 with the standard jet coordinates (x, y, p = y �, q = y ��) as in (3.7)–

(3.8), we recognize here the third ODE y ��� = F(x, y, y �, y ��), with F = 3pq2

1+p2 . The
possible transformations (3.12)–(3.13) of these forms, are equivalent to the contact

transformations of variables for this equation (see [17], Sec. 4). Thus, the geometry
of the car structure (M,DD = Dw ⊕ Dg) is locally diffeomorphically equivalent to
the local differential geometry of the 3rd order ODE

y ��� = 3y �y ��2

1 + y �2 (3.25)

considered modulo contact transformation of variables.
What is this equation? This is the equation whose graphs of general solutions

(x, y(x)) describe all circles on the plane (x, y). Indeed one can easilly check that
the general solution to (3.25) is given by

ν(x2 + y2)− 2ξx − 2ηy + μ = 0,

where ν, ξ, η,μ are real constants. Since this formula is projective, the space of
solutions Q is 3-dimensional. Taking ν = 1 we get the space Qc of all circles on the
plane (with radius R =

�
η2 + ξ2 − μ, centered at x = a = ξ and y = b = η),

taking ν = 0 we get the space Q$ of all lines in the plane, and taking ν = 1 and
η2 + ξ2 = μ we get the space Qp of all points in the plane.

What is the relation of the circles (x2 + y2) − 2ξx − 2ηy + μ = 0 and the

lines 2ξx + 2ηy − μ = 0 to the car movement? By construction, the vector field
X4 in (3.24) differs from the vector field X4 in (1.1) by rescaling. Thus, modulo

a reparametrization, both of them have the same integral curves in M . We know
that the curves defined by X4 from (1.1) are helixes (β0 �= 0) or straight lines

(β0 = 0), which when projected on the (x, y) plane, are circles or straight lines

there. Likewise the integral curves of X4 from (3.24) are helixes or straight lines
which project to the circles or straight lines in the (x, y) plane. To see this one
considers a curve q4(t) = (x(t), y(t), p(t), q(t)) in M such that q̇4 is tangent to X4

from (3.24). It satisfies the system of ODEs (ẋ, ẏ, ṗ, q̇) = (1, p, q, 3pq2

1+p2 ). This

means that x = t , p = ẏ, q = ṗ = ÿ, and finally q̇ = ...
y = 3ẏÿ2

1+ẏ2 . Thus, the graphs

of solutions y = y(t) of the last equation in the plane (x = t, y), which are circles

or straight lines, are just the circles or straight lines which the rear wheels of the car
are performing in the plane (x, y) when the driver of a car applies a primitive ‘gas
control’ only.
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3.4 Contact Projective Geometry on P

We now pass to analyse the geometry of P , i.e. the base of the fibration M →
P , whose fibers are the steering wheel trajectories generated by the steering wheel
vector field X3 on the car’s configuration space M . So what is the geometry on P ?

To answer this question let us start with the interpretation of the configuration

space M of the car as the second jet space for the car’s ODE y ��� = 3y �y ��2
1+y �2 . In this

interpretation, the unparametrized integral curves of X3 = ∂β are the same as the
unparametrized integral curves of X3 = ∂q , and they constitute natural fibres of the
fibration π : M = J 2 → P = J 1 of the second jet space J 2 with coordinates
(x, y, p, q) over the first jet space J 1 with coordinates (x, y, p). Consider now
the trajectories of X4, which in the second jet interpretation of M , are just curves
(x, y, p, q) = (x, y(x), y �(x), y ��(x)) in J 2 corresponding to solutions y = y(x)

of the ODE (3.25). There is a natural projection π((x, y(x), y �(x), y ��(x))) =
(x, y(x), y �(x)) of these curves to the 3-dimensional space J 1 of the first jets. The

important observation is that these projected curves (x, y, p) = (x, y(x), y �(x)) in
J 1, as curves corresponding to the solutions of (3.25), are always tangent to the

contact distribution C = {X ∈  (TJ 1) : X−| (dy − pdx) = 0}, which is a natural

structure on J 1. Moreover, since we have a solution to (3.25) for every choice of
initial conditions y(x0) = y0, y �(x0) = p0, then at every point (x0, y0, p0) in J 1 the
projection π((x, y(x), y �(x), y ��(x))) defines a curve tangent to C in every direction
of C. It follows that the projections π((x, y(x), y �(x), y ��(x))) of solution curves
from J 2 to J 1 can be considered as geodesics of a certain class of torsion free

connections on P = J 1.
Indeed, consider a curve γ (t) = x(t)∂x+y(t)∂y+p(t)∂p tangent to a distribution

C in J 1, and a frame (Z1, Z2, Z3) in J 1 with

Z1 = ∂y, Z2 = ∂x + ∂y, Z3 = ∂p.

Since C = SpanF(J 1)(Z2, Z3), the velocity of this curve,

γ̇ = ẋ∂x + ẏ∂y + ṗ∂p = γ̇ 1Z1 + γ̇ 2Z2 + γ̇ 3Z3 = (ẏ − pẋ)∂y + ẋZ2 + ṗZ3,

has the following components in the frame (Z1, Z2, Z3):

γ̇ 1 = ẏ − pẋ = 0, γ̇ 2 = ẋ, γ̇ 3 = ṗ. (3.26)

If the curve γ (t) is a geodesic of a torsion free connection, there should exist
functional coefficients  ijk =  ikj—the connection coefficients in the frame
(Z1, Z2, Z3)—such that

γ̇ i +  ijkγ
jγ k = 0.
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Thus, to interprete γ (t) as a geodesic it is enough to find  ijk =  ikj such that

ẍ+ 2
22ẋ

2 +2 2
23ẋṗ+ 2

33ṗ
2 = 0 & p̈+ 3

22ẋ
2 +2 3

23ẋṗ+ 3
33ṗ

2 = 0.
(3.27)

For this we eliminate t from both of these equations, by parametrizing y = y(t)

and p = p(t) by x. Because of the first equation in (3.26) we have

p = ẏ

ẋ
= dy

dx
= y �, ṗ = ẋy ��, p̈ = ẍy �� + ẋ2y ���,

and the last two of these equations compared with the second equation in (3.27)
shows that

−( 3
22ẋ

2+2 3
23ẋ

2y ��+ 3
33ẋ

2y ��2) = −y ��( 2
22ẋ

2+2 2
23ẋ

2y ��+ 2
33ẋ

2y ��2)+ẋ2y ���.

Simplifying, we get:

y ��� =  2
33y

��3 + (2 2
23 −  3

33)y
��2 + ( 2

22 − 2 3
23)y

�� −  3
22,

where  ijk are functions of x, y and p = y �(x) only.
Thus, for an equation y ��� = F(x, y, y �, y ��) to define on the space of first jets J 1

a structure of a contact manifold with geodesics passing through every point in every
direction and such that they are tangent to the contact distribution, it is neccessary
that the function F = F(x, y, y �, y ��) is a polynomial of at most 3rd order in the
variable y ��. It follows that this condition for F is also sufficient for getting such a
structure on J 1.

Since the car’s structure equation y ��� = 3y �y ��2
1+y �2 depends on y �� quadratically, this

implies that its 3-dimensional space P i.e. its space of first jets J 1 is naturally
equipped with the structure as in the following definition [12].

Definition 3.1 A contact projective structure on the first jet space J 1 is given by
the following data.

• The contact distribution C, that is the distribution annihilated by ω1 = dy−pdx.
• A family of unparameterized curves everywhere tangent to C and such that:

– for a given point and a direction in C there is exactly one curve passing through
that point and tangent to that direction,

– curves of the family are among unparameterized geodesics for some linear
connection on J 1.

To make the statement above the definition more explicit, we argue as follows:
We have the fibrationM → P , which on the one hand is a fibration of the second

jet space M = J 2 of a contact equivalence class of ODEs y ��� = 3y �y"2

1+y �2 over the

space P = J 1, and on the other hand the car fibration M → P of the configuration
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space M of a car and the space P of the possible movements of the car modulo the
moves of a steering wheel. As we explained in Sect. 3.3 there is a natural bundle
isomorphism between the car configuration space and the space of second jets of

the contact equivalence classes of ODEs represented by y ��� = 3y �y ��2
1+y �2 , making an

equivalence between the car’s Engel geometry with a split and the contact geometry

of this ODE. Since the ODE y ��� = 3y �y ��2
1+y �2 has only quadratic dependence on y ��

it belongs to the class of ODEs y ��� = A3y
��3 + A2y

��2 + A1y
�� + A0. Thus the

car’s ODE first jet space J 1 has a natural contact projective structure. This, via the
bundle isomorphism J 2 → P , induced by the isomorphism between geometries
on the car’s configuration space and the bundle of the second jets, shows that the
car’s 3-dimensional space P of leaves generated by X3 = ∂β has a natural contact

projective structure. Such structures were in particular studied in [12–14]. Since

the car’s ODE y ��� = 3y �y"2

1+y �2 is contact equivalent to y ��� = 0, it follows from these
studies that this contact projective structure is Cartan flat. More precisely we have
the following theorem:

Theorem 3.2 The car’s Engel structure with a split (M,DD = Dw ⊕ Dg) induces

a natural contact projective structure on the car’s space P of all possible positions

of a car considered modulo orientation of the front wheels. This contact projective

structure has a 10-dimensional Lie algebra of symmetries, which is isomorphic to

the simple Lie algebra sp(2,R). It is flat in the sense of having vanishing curvature

of the natural normal sp(2,R)-valued Cartan connection uniquely defined by this

contact projective structure.

Since sp(2,R) is isomorphic to so(2, 3) (see Sect. 4.1.1) we again have an
indication why the geometry of car’s configuration space M has so(2, 3) as its local
symmetry.

3.5 Chern’s Double Fibration Q ← M → P , the Geometries
on Q and P and a Problem About a Car on a Curved
Terrain

If somebody inspired by this article would like to curve the geometry of a car, she
will find useful the following information about the geometry of general third order
ODEs, y ��� = F(x, y, y �, y ��), considered modulo contact transformations.
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As we mentioned in Sect. 3.3 Chern in 1940 noticed the above double fibration
Q ← M → P for any contact equivalence class of third order ODEs. If the
class is defined by the equation y ��� = F(x, y, y �, y ��), and if the general solution
of the defining the equation is written as y = y(x, a1, a2, a3), where a1, a2, a3

are the three constants of integration, then the base space Q is the leaf space of
the total differential X4 = ∂x + y �∂y + y ��∂y � + F ∂y �� , which is parameterized by
(a1, a2, a3), and the base space P is the space of first jets—the leaf space of the
integral curves of the vector field X3 = ∂y �� , which is parameterized by (x, y, y �).
We emphasize that this double fibration exists for any choice of the function F , and
in turn is associated with any contact equivalence class of 3rd order ODEs. However,
and this is the main observation of S.S. Chern in [7], the space of solutions Q has
a natural conformal Lorentzian geometry on it, and/or the first jet space P has a
natural contact projective structure on it, if and only if the functionF satisfies certain
conditions, which are invariant with respect to contact change of the variables of the
equation.

We have the following theorem [7, 13, 14].

Theorem 3.3 The space Q in Chern’s double fibration Q ← M → P associated

with a contact equivalence class of ODEs y ��� = F(x, y, y �, y ��) has a natural

conformal Lorentzian structure on it, if and only if the Wünschmann invariant

W [F ] = 9X4(X4( X3( F ))−27X4( Fy� )−18X3( F )X4(X3( F ) )+18X3( F )Fy� +4X3( F )
3+54Fy

identically vanishes for F .
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Similarly, the space P in the Chern’s double fibrationQ ← M → P associated

with a contact equivalence class of ODEs y ��� = F(x, y, y �, y ��) has a natural

contact projective structure on it, if and only if the Chern invariant

C[F ] = X3(X3(X3(X3( F ) ) ) )

identically vanishes for F .

Here, X3 = ∂y �� , X4 = ∂x + y �∂y + y ��∂y � + F ∂y �� , Fy = ∂F
∂y

and Fy � = ∂F
∂y � .

In the car’s fibration we have F = 3y �y"2

1+y �2 . This function has W [F ] ≡ C[F ] ≡ 0.
Thus the car fibration has a (flat) conformal structure on Q and a (flat) contact
projective structure on P . This provoks the following (open) problem.

Problem Generalize the car setting enabling the car to move on a curved terrain.

This should lead to a nonflat Engel structure with a split (M,DD = Dw ⊕ Dg) on

the car’s configuration space. Characterize, in terms of Chern’s invariants W [F ],
C[F ], and possibly their derivatives, those Engel structures with a split, which

are configuration space structures of cars on curved terrains. Which of the two

geometries: the conformal Lorentzian one, or the contact projective one will survive

for a car on a general terrain? Perhaps none?

4 Lie’s Correspondence

4.1 Lagrangian Planes in R4 and Oriented Circles in the Plane

It was S. Lie who understood the geometry of the projective quadric Q, as in (3.4),
in terms of the geometry of Lagrangian planes in a real 4-dimensional vector space.
(see [2, 16] for more details). To talk about Lagrangian planes we need to have a real

4-dimensional vector space V and a symplectic form in V , i.e. a 2-form ω ∈ $2
V ∗

such that ω ∧ ω �= 0. Now, a 2-plane q = Span(Y1, Y2), with Y1, Y2 ∈ V and
Y1 ∧ Y2 �= 0, is Lagrangian in V if and only if ω(Y1, Y2) = 0.

Given a symplectic form ω in V we consider the 5-dimensional vector space
ω⊥ ⊂ $2

V consisting of elements Y ∈ $2
V annihilating ω:

ω⊥ = {$2V $ Y : Y −| ω = 0}.

It is now convenient to introduce a basis (e1, e2, e3, e4) in V , such that the
symplectic form ω reads as

ω = e1 ∧ e4 + e2 ∧ e3, (4.1)
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in its dual cobasis (e1, e2, e3, e4), ei −| ej = δi
j , in V ∗. Then the most general

element Y ∈ ω⊥ is:

Y = (η + ζ ) e1 ∧ e2 +μ e1 ∧ e3 + ν e4 ∧ e2 + (η − ζ ) e4 ∧ e3 + ξ (e1 ∧ e4 − e2 ∧ e3),

(4.2)

where (ξ, η, ζ,μ, ν) ∈ R5.
We now ask the question as to when such Y is a simple bivector. Recall that an

element 0 �= Y of
$2

V is simple if and only if Y ∧ Y = 0. In such case there exist
vectors Y1 and Y2 in V such that Y = Y1 ∧ Y2. Thus such Y defines a 2-plane

q = SpanR(Y1, Y2),

in V . If in addition, a simple Y belongs to the 5-dimensional subspace ω⊥, then its
direction,

dir(Y ) := {λY, λ ∈ R},

defines a 2-plane which is Lagrangian. It turns out that every Lagrangian 2-plane in
V is defined in terms of 0 �= Y ∈ ω⊥ such that Y ∧ Y = 0.

Simple algebra applied to a generic Y ∈ ω⊥ as in (4.2) gives:

Y ∧Y = 2(ζ 2−η2+μν−ξ2)e1∧e2 ∧e3∧e4 = − 1
2Q(ξ, η, ζ,μ, ν)e1 ∧e2 ∧e3 ∧e4.

(4.3)

Note the appearence of the quadratic form (3.5) in this formula! Thus such an Y is
simple, Y ∧ Y = 0, if and only if the quintuple [ξ : η : ζ : μ : ν] belongs to the
projective quadric Q considered in Sect. 3.2. Now, let us define

Q� = {P($2
V ) $ dir(Y ) : Y −| ω = 0 & Y ∧ Y = 0},

where, as it is customary, we denoted the projectivization of
$2

V by P(
$2

V ).
Since Y ∧ Y = 0 for Y ∈ ω⊥ is equivalent to ζ 2 − η2 + μν − ξ2 = 0 for

[ξ : η : ζ : μ : ν] ∈ RP 4, then

Q� = {dir(Y ) : Y as in (4.2) with [ξ : η : ζ : μ : ν] ∈ Q}.

This in turn establishes a diffeomorphism between Q and the space of all Lagrangian
2-planes in V . With some abuse of notation we will denote this space also by Q�,

Q� = {set of all Lagrangian 2 − planes in (V ,ω)}.

Let us now parametrize those dir(Y ) in Q� that correspond to all circles with a
finite radius in the plane. Since such circles are points of the set Qc ⊂ Q, with
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ν �= 0, we can conveniently parametrize them by ν = 1, μ = ξ2 + η2 − ζ 2. Thus,
the corresponding bivectors dir(Y ) in Q� may be represented by

Y = (η+ζ ) e1∧e2+(ξ2+η2−ζ 2) e1∧e3+e4∧e2+(η−ζ ) e4∧e3+ξ (e1∧e4−e2∧e3),

(4.4)

or what is the same by Y =
�
(η + ζ ) e1 + e4 + ξ e3

�
∧

�
− ξ e1 + e2 + (η − ζ ) e3

�
.

Thus in the 3-dimensional space Q� there is an open set Q�
c of bivectors Y given by

(4.4). This set, in turn, is diffeomorphic to the space of all Lagrangian 2-planes

q(ξ, η, ζ ) = SpanR
�
Y1, Y2

�
, (4.5)

spanned by

Y1 = (η + ζ ) e1 + e4 + ξ e3 & Y2 = −ξ e1 + e2 + (η − ζ ) e3. (4.6)

Again, with some abuse, we denote this space by Q�
c.

In Qc we had a nice interpretation of the incidence between two points (circles):
two close circles in Qc were incident if they were tangent to each other. The natural
incidence between the points of Q�

c, i.e. between two close Lagrangian 2-planes in
V , is their intersection along a line. Let us see what such an incidence means:

If we take a Lagrangian 2-plane q(ξ, η, ζ ) and its close neighbour q(ξ + dξ, η +
dη, ζ + dζ ), then they intersect in a line iff their corresponding bivectors

Y =
�
(η + ζ ) e1 + e4 + ξ e3

�
∧

�
− ξ e1 + e2 + (η − ζ ) e3

�

and

Y+dY =
�
(η+ζ+dη+dζ ) e1+e4+(ξ+dξ) e3

�
∧

�
−(ξ+dξ) e1+ e2+(η−ζ+dη−dζ ) e3

�

Y ∧ (Y + dY ) = 0.

A short algebra shows that

Y ∧ (Y + dY ) = �
(dη)2 + (dξ)2 − (dζ )2

�
e1 ∧ e2 ∧ e3 ∧ e4.

Hence the two Lagrangian planes from Q�
c intersect in a line if and only if the

connecting vector (dξ, dη, dζ ) between the points (ξ, η, ζ ) and (ξ +dξ, η+dη, ζ +
dζ ) in Q�

c is null in the 3-dimensional Minkowski metric g = (dη)2+(dξ)2 −(dζ )2.
Comparing with (3.3) we see that in the present parametrization of Qc, we have

ξ = a, η = b and ζ = R.
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Hence g = (da)2 + (db)2 − (dR)2, and the condition that two neighbouring
Lagrangian planes from Q�

c intersect in a line in V is then equivalent to the condition
that the corresponding neighbouring circles from Qc are kissing each other in the
plane (x, y). This is the essence of Lie’s observation :

Tangent circles in R2 with orientations as in moving gears correspond to

Lagrangian planes in R4 intersecting in a line.

4.1.1 Double Cover of SO(2, 3) by Sp(2,R)

It was Lie who established the isomorphism between the simple Lie algebras
so(2, 3) and sp(2,R). This is, for example, very nicely explained in [2]. Here we
argue for this as follows:

The symplectic group Sp(2,R) is defined as

Sp(2,R) = {GL(V ) $ A | ω(Av,Aw) = ω(v,w), v,w ∈ V },

where as before V is a real 4-dimensional vector space, and ω is a symplectic form
on V . Note that Z2 = {I,−I }, where I is the identity in GL(V ), is a subgroup of
Sp(2,R), Z2 ⊂ Sp(2,R).

Introducing, Aμ
ν via A(eμ) = Aν

μeν , and ωμν = ω(eμ, eν), we obtain that the
matrix elements of those A ∈ GL(V ) that are in Sp(2,R) satisfy

Aμ
αA

ν
βωμν = ωαβ . (4.7)

Since dimV = 4 we have

1
4ωμνωρσ e

μ∧eν ∧eρ ∧eσ = ω∧ω = 2e1∧e2∧e2∧e4 = 1
12�μνρσ e

μ∧eν ∧eρ ∧eσ ,

and hence

ω[μνωρσ ] = 1
3�μνρσ . (4.8)

Here �μνρσ denotes the totally skew Levi-Civita symbol in R4.
Let us now take an element Y from ω⊥. We have Y = 1

2Y
μνeμ ∧ eν . Then,

according to (4.3) we have

− 1
2Q(Y)e1∧e2∧e3∧e4 = Y∧Y = 1

4Y
μνY ρσ eμ∧eν ∧eρ ∧eσ = 1

4Y
μνY ρσ �μνρσ e1∧e2∧e3∧e4,

so the quadratic form Q(Y) written in terms of the components Yμν = Y [μν] of the
bivector Y is

Q(Y) = − 1
2Y

μνY ρσ �μνρσ .
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There is a natural action of Sp(2,R) on the space ω⊥ induced by the action of
Sp(2,R) in V . In components it reads

Sp(2,R)× ω⊥ $ (A, Yμν) −→ (AY )μν = A−1μ
αA

−1ν
βY

αβ ∈ ω⊥.

If we now apply the form Q on the Sp(2,R) transformed bivectorAY we get

Q(AY) = − 1
2A

−1μ
αA

−1ν
βA

−1ρ
γA

−1σ
δY

αβY γ δ�μνρσ =
− 3

2A
−1μ

αA
−1ν

βA
−1ρ

γA
−1σ

δY
αβY γ δω[μνωρσ ] =

− 3
2Y

αβY γ δω[μνωρσ ] = − 1
2Y

αβY γ δ�μνρσ = Q(Y),

where the expressions after the second and the fourth equality sign follow from
(4.8), and the expression after the third equality sign follows from (4.7). Thus the
symplectic transformation v �→ Av in V induces a linear transformation Y �→ AY

in ω⊥ which preserves the real quadratic form Q of signature (2, 3). This gives a
homomorphism of Sp(2,R) onto SO(2, 3). Its kernel is Z2, since

(Sp(2,R) ⊃ Z2)× ω⊥ $ (A = ±I, Yμν) −→ (±δμ
α)(±δν

β )Y
αβ = Yμν ∈ ω⊥.

@ This gives the Lie’s double cover of SO(2, 3) by Sp(2,R),

Z2 → Sp(2,R) → SO(2, 3),

which has its local version in the isomorphism of the Lie algebras sp(2,R) and
so(2, 3).

4.2 Lie’s Twistor Fibration

The relation between the groups Sp(2,R) and SO(3, 2) recalled in the previous
section is the basis for Lie’s correspondence [2], Section 3. This can be described in
yet another incarnation of the car’s fibration Q ← M → P , which is Lie’s twistor

fibration; see Section 4.4 in [3] for a general theory of these things.
To explain this we start with the spaceQ of all Lagrangian planes in V as before.

This 3-dimensional space can be locally parameterized by (ξ, η, ζ ) as in (4.5)–(4.6),
with a Lagrangian plane dir(Y ) spanned by

Y1 = (η + ζ ) e1 + e4 + ξ e3 & Y2 = −ξ e1 + e2 + (η − ζ ) e3.

There is also another 3-dimensional space associated with V . This is

P := P(V ) = {dir(v) | λv, v ∈ V, λ ∈ R},
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the projectivization of V . This can be locally parametetrized by (x1, x2, x3), where
a generic element of P is $ = dir(x1e1 + x2e2 + x3e3 + e4).

There is a third space, M , associated with our pair (V ,ω). This is

M = {P ×Q $ ( $, dir(Y ) ) | $ ∈ dir(Y )},

i.e. the space of all pairs (line $, Lagrangian plane associated with Y ) passing
through zero in V with an incidence relation such that a line $ is in the plane

dir(Y ). This space is four dimensional, as a generic such pair can be parametrized
by (ξ, η, ζ, s), where (ξ, η, ζ ) parametrizes the plane spanned by Y1 and Y2, and the
parameter s comes from $ = dir(Y1+sY2) and specifies a given line from the wealth
of lines passing through zero in dir(Y ).

We again have a natural fibration Q ← M → P :

where the map M → Q is given by ($, Y ) → Y , and the map M → P is given by
($, Y ) → $. It is the Lie’s twistor fibration.

In it the fiber over a point q ∈ Q, i.e. over a Lagrangian plane dir(Y ) in V , consists
of all lines $ passing through zero in this plane. Therefore the topology of such a
fiber is the same as RP 1. Likewise, the fiber over a point p ∈ P , i.e. over a line $
passing through zero in V , consists of all Lagrangian planes dir(Y ) containing the
line $. Such a fiber also has topology of RP 1.
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The group Sp(2,R) naturally acts on Q and P . These actions are given by

(A, dir(Y )) → dir(AY ) = dir( 1
2 A

−1μ
αA

−1ν
βY

αβ eμ ∧ eν) (4.9)

and

(A, dir(v)) → dir( Av), (4.10)

where Y = 1
2Y

μνeμ ∧ eν ∈ ω⊥, v ∈ V and A ∈ Sp(2,R). It also has an induced
action on the elements ($, Y ) ∈ M , via

(A, (dir(v), dir(Y )) → (dir(Av), dir(AY )). (4.11)

It is a matter of checking that the isotropy of the action (4.9) of Sp(2,R) on Q is a
certain 7-dimensional group P1, the isotropy of the action (4.10) of Sp(2,R) on P
is also a certain 7-dimensional group P2, and that the isotropy of the action (4.11)
of Sp(2,R) on M is a 6-dimensional group P12 = P1 ∩ P2.

Thus Lie’s twistor fibration can be considered to be a double fibration of three
Sp(2,R) homogeneous spaces: M = Sp(2,R)/P12, Q = Sp(2,R)/P1 and P =
Sp(2,R)/P2.

M = Sp(2, R)/P12

Q = Sp(2, R)/P1 P = Sp(2, R)/P2 .

(4.12)

Due to Lie’s double cover of SO(2, 3) by Sp(2,R), and due to the proper
dimensions of the spaces in the above fibration, it is clear that this gives a global
version of the car’s configuration space fibration

(M,DD = Dw ⊕ Dg)

Q P .

considered in Sect. 3.1. Now, the overall Sp(2,R) symmetry of all the ingredients
of the fibration is obvious.
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4.3 The Picture in Terms of Parabolic Subgroups in Sp(2,R)

The double fibration (4.12) is a low dimensional example of the twistor correspon-
dences discussed in [3], Section 4.4.6. The crucial point here is that the subgroups
P1, P2 and P12 considered in the previous section are parabolic subgroups of a
simple Lie group Sp(2,R); moreover they are such that P1 and P2 contain the same
Borel subgroup, which happens to be P12. To comment about this we need some
preparations.

4.3.1 Car’s Gradation in sp(2,R)

The elements E of the Lie algebra sp(2,R) of Sp(2,R) can be considered as 4 × 4
real matrices E = (Eα

β ) that preserve the symplectic form ω = 1
2ωμνe

μ ∧ eν , i.e.

Eγ
αωγβ + Eγ

βωαγ = 0.

With our choice of a basis (eμ) in V , in which the symplectic form ω is as in (4.1),
the matrix E giving the generic element of the Lie algebra sp(2,R) is given by

E = (Eα
β) =

⎛
⎜⎜⎝

a5 a7 a9 2a10

−a4 a6 a8 a9

a2 a3 −a6 −a7

−2a1 a2 a4 −a5

⎞
⎟⎟⎠ ,

where the coefficients aI , I = 1, 2, . . . 10, are real constants.
Now, viewing sp(2,R) as a Lie algebra consisting of all 4 × 4 real matrices E

as above, with the commutator in sp(2,R) being the usual commutator [E,E�] =
E ·E� −E� ·E of two matricesE and E�, we get a convenient basis (EI ) in sp(2,R)
by

EI = ∂E

∂aI
, I = 1, 2, . . . 10.

In this basis, modulo the antisymmetry, we have the following nonvanishing com-
mutators: [E1, E5] = 2E1, [E1, E7] = −2E2, [E1, E9] = −2E4, [E1, E10] = 4E5,
[E2, E4] = E1, [E2, E5] = E2, [E2, E6] = E2, [E2, E7] = 2E3, [E2, E8] = E4,
[E2, E9] = −E5 − E6, [E2, E10] = −2E7, [E3, E4] = −E2, [E3, E6] = 2E3,
[E3, E8] = −E6, [E3, E9] = −E7, [E4, E5] = E4, [E4, E6] = −E4, [E4, E7] =
E5 − E6, [E4, E9] = −2E8, [E4, E10] = −2E9, [E5, E7] = E7, [E5, E9] = E9,
[E5, E10] = 2E10, [E6, E7] = −E7, [E6, E8] = 2E8, [E6, E9] = E9, [E7, E8] =
E9, [E7, E9] = E10.
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What can be seen from this colorful mess?
First, it is useful to note that our choice of the basis EI in sp(2,R) is related to

the following root diagram of the Lie algebra sp(2,R):

This gives a mnemonic technique on how to get the directions of the vectors
representing the commutators: a commutator of two vectors EI and EK in sp(2,R)
either vanishes or is along the direction of EI +EK , where the sum is the usual sum
of the vectorsEI andEK in the plane of the diagram. The commutators are nonzero
if and only if the sum EI + EK of vectors in the diagram belongs to the diagram.

Morever, the commutation realtions above show, in particular, a certain gradation

in sp(2,R). Indeed, define

g−3 = SpanR(E1)

g−2 = SpanR(E2)

g−1g−1 = SpanR(E3, E4)

g0 = SpanR(E5, E6)

g1g1 = SpanR(E7, E8)

g2 = SpanR(E9)

g3 = SpanR(E10),

and observe that due to the above commutation relations of the basis vectors EI ,
these vector subspaces in sp(2,R) satisfy

[gi , gj ] ⊂ gi+j ,

when |i + j | ≤ 3, or

[gi , gj ] = {0},
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otherwise. This observation decomposes sp(2,R) onto

sp(2,R) = g−3 ⊕ g−2 ⊕ g−1g−1 ⊕ g0 ⊕ g1g1 ⊕ g2 ⊕ g3,

and makes it into a 3-step graded Lie algebra.
We further make a decomposition of g−1g−1 and g1g1 onto

g−1g−1 = g−1w ⊕ g−1g and g1g1 = g1g ⊕ g1w

with

g−1w = SpanR(E3), g−1g = SpanR(E4), g1g = SpanR(E7), and g1w = SpanR(E8).

The commutation relations above show also that the following vector subspaces in
sp(2,R) are Lie subalgebras:

p1 = g−1w ⊕ g0 ⊕ g1g1 ⊕ g2 ⊕ g3

p2 = g−1g ⊕ g0 ⊕ g1g1 ⊕ g2 ⊕ g3

p12 = p1 ∩ p2 = g0 ⊕ g1g1 ⊕ g2 ⊕ g3

n12 = g1g1 ⊕ g2 ⊕ g3

n1 = g1g ⊕ g2 ⊕ g3

n2 = g1w ⊕ g2 ⊕ g3

m =g−3 ⊕ g−2 ⊕ g−1g−1

q =g−3 ⊕ g−2 ⊕ g−1g

p =g−3 ⊕ g−2 ⊕ g−1w.

(4.13)

4.3.2 Parabolic Subalgebras in sp(2,R)

We recall that a Lie subalgebra h in the Lie algebra g is (k-step) nilpotent if and
only if the following sequence

g−1 = h, g−$−1 = [g−1, g−$], $ = 1, 2, . . . ,

of vector subspaces in g terminates at step k + 1. Here the term ‘terminates at step
k + 1’ means that g−k �= {0}, and g−k−1 = {0}, for some finite k ≥ 1. Note, that
according to this definition, the Lie subalgebras n12, n1, n2, m, p and q, of respective
dimensions 4,3,3,4,3,3, are nilpotent in sp(2,R).
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Using the structure constants cI JK , defined in our basis EI of sp(2,R) by
[EI ,EJ ] = cKIJEK , we find that the Killing form K of sp(2,R) is

K = 1
12KIJE

I#EJ = −4E1#E10+2E2#E9+E3#E8−2E4#E7+E5#E5+E6#E6,

where the coefficients KIJ are calculated using KIJ = cKILc
L
JK . Here EI , I =

1, 2, . . . , 10, is the dual basis in sp(2,R)∗ to the basis EI in sp(2,R), EI −| EJ =
δJ I .

Denoting by h⊥ the subspace in sp(2,R), which is Killing-form-orthogonal to h,

h⊥ = {sp(2,R) $ E | K(H,E) = 0, ∀H ∈ h},

we can now easily see that the nilpotent subalgebras n1, n2 and n12 are Killing
orthogonals to the respective Lie subalgebras p1, p2 and p12,

p1
⊥ = n1, p2

⊥ = n2, and p12
⊥ = n12.

Now we recall the following definition:

Definition 4.1 A Lie subalgebra p is a parabolic subalgebra of a (semi)simple Lie
algebra g if and only if its Killing orthogonal p⊥ is a nilpotent subalgebra in g.

Thus according to this definition, we found three parabolic subalgebras, p1, p2 and
p12, in the simple Lie algebra sp(2,R).2

4.3.3 Twistor Fibration and Three Flat Parabolic Geometries Associated
with a Car

Consider now the simple Lie groupG = Sp(2,R) and its three parabolic subgroups
P1, P2 and P12 = P1∩P2 corresponding to the parabolic subalgebrasp1, p2 and p12

is sp(2,R). Accordingly we have three corresponding homogeneous spaces M =
G/P12, Q = G/P1 and P = G/P2. By construction all these three spaces are
Sp(2,R) symmetric. Moreover, their tangent spaces at each point have the structure
of the corresponding quotient vectors spaces m = sp(2,R)/p12, q = sp(2,R)/p1

and p = sp(2,R)/p2. In particular, m, which can be identified with m = g−3 ⊕
g−2 ⊕ g−1g−1, has a well defined 2-dimensional vector space g−1g−1 with a well defined
split g−1g−1 = g−1w ⊕ g−1g. This, point by point on M = sp(2,R), defines an Engel

distribution with a split DD = Dw ⊕ Dg on M , which by construction is Sp(2,R)
symmetric. Therefore this M must be locally equivalent to the configuration space
M of a car.

2It further follows that the 6-dimensional parabolic algebra p12 = p1 ∩ p2 is a Borel subalgebra in
sp(2,R).
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We leave to the reader to figure out, directly from the algebraic properties of
sp(2,R) and p1 and p2, how the spaces Q = Sp(2,R)/P1 and P = Sp(2,R)/P2

get equipped with the respective conformal Lorentzian structure, and the contact
projective structure.

Anyhow, we can now write the global version of the car’s double fibration as a
parabolic twistor fibration

M = Sp(2, R)/P12

Q = Sp(2, R)/P1 P = Sp(2, R)/P2
(4.14)

invoked in (4.12). Each space in this fibration is now a (Cartan) flat model for a
parabolic geometry of the type (Sp(2,R), P ), where P is one of P1, P2 or P12. In
this sense the car’s geometry falls in the realm of parabolic geometries [3].

Another simpler form of this fibration, can be obtained by taking the simply

connected nilpotent Lie groups M , Q and P whose corresponding Lie algebras
are m, q and p as in (4.13). These are Carnot groups [19] with additional structure,
such as the Engel structure with a split on M . This enables us to interpret the car’s
double fibration as the following double fibration of Carnot groups:

M

Q P . (4.15)

Although this fibration is made only in terms of Lie groups, and although it is, in a
sense, a minimal fibration locally equivalent to the car’s fibration, its disadvantage
with comparison to the twistor parabolic fibration is that, similar to the cars fibration,
the overall so(2, 3) = sp(2,R) symmetry is not immediately visible in it.

4.4 Outlook: Parabolic Twistor Fibrations in Physics and in
Nonholonomic Mechanics

The geometry of a car, which we discussed in this paper, is a baby version of the
well known Penrose’s twistor fibration [20]

M

Q P , (4.16)
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in which Q is a 4-dimensional conformal Minkowski spacetime, P is a 5-
dimensional space of all null rays in Q, and M is the 6-dimensional bundle of null
directions over Q (see [20]). Penrose’s fibration is also known as a basis for the
Klein correspondence (see [22], Part 1, Section 1). To explain this we again need
some preparations:

The determination of how many different parabolic subgroups is in a given
simple Lie algebra g, is obtained in terms of the Dynkin diagram of g: if g is
considered over the complex numbers, then the choice of a parabolic subgroup in
g is in one-to-one corespondence with the choice of a decoration of its Dynkin
diagram with crosses marked at the nodes of the diagram. In this sense, in the
Klein’s-Penrose’s case where the symmetry algebra is so(2, 4) = su(2, 2), the
twistor parabolic fibration looks like:

Note that the symmetry Lie algebra here is a simple Lie algebra of rank 3—there
are three nodes in each of the manifolds of the diagram.

The car’s geometry is related to the symmetry algebra so(2, 3) = sp(2,R), which
is a simple Lie algebra of rank 2. The corresponding twistor fibration, in terms of
the Dynkin diagrams, looks like this:

R. Bryant in the beautiful article [2] describes mathematically all the twistor
parabolic fibrations associated with simple Lie algebras of rank 2. Since we
interpreted the nonholonomic geometry of a car in terms of the twistor parabolic



A Car as Parabolic Geometry 129

fibration related to the simple Lie algebra of Cartan-Killing type B2, one can
ask if there are similar physical—possibly related to nonholonomic mechanics—
interpretations of the twistor parabolic fibrations related to the simple Lie algebras
of type A2 and G2? The answer to this question is yes. It turns out that the A2

fibration

corresponds to the nonholonomic movement of a skate on an ice ring [15, 18]. And
this case, due to the dimension of M being equal to three, and dimQ=dimP=2, is
really the simplest to describe. It is also very similar to the car’s B2 case, since M
is really the configuration space of the physical object (a car, a skate) subject to the
nonholonomic constraints.

The G2 case [4, 10], corresponding to the twistor diagram

is quite different. Here the dimension of M is 6, and the dimensions of Q and P
are both 5. In this case however, the physical objects subjected to the nonholonomic
constraints (rolling surfaces, a flying saucer) have their configuration spaces as Q
and P [1, 8, 9] and M is merely the correspondence space enabling to translate
nonholonomic movements between Q and P . If in this, G2 case, an interpretation
ofM as a configuration space of some nonholonomic system exists we do not know.
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