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(2,3,5) distributions

Definition

Let X1,X2 be two vector fields in the neighbourhood U of the
origin in R5.
Then the distribution D = Span(X1,X2) is (2,3,5) iff

[X1,X2] = X3 & [X1,X3] = X4 & [X2,X3] = X5,

and X1 ∧ X2 ∧ X3 ∧ X4 ∧ X5 6= 0 at all points in U .

Example

Take U parameterized by (x , y ,p,q, z), and

X1 = ∂x + p∂y + q∂p + 1
2q2∂z & X2 = ∂q.

Then
X3 = −∂p − q∂z , X4 = ∂y , X5 = −∂z .
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Equivalence of distributions

Two distributions: D on a manifold M and D̄ on a manifold
M̄ are (locally) equivalent iff there exists a (local)
diffeomorphism φ : M → M̄ such that φ∗D = D̄.
Self-equivalences: φ : M → M, φ∗D = D, of a distribution
D are called symmetries of D.
Locally self-equivalences are described in terms of vector
fields X on M such that [X ,D] ⊂ D. They are called
ininitesimal symmetries of D. Infinitesimal symmetries form
a Lie algebra gD of symmetries of D.
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Symmetries of (2,3,5) distributions

Every (2,3,5) distribution is locally equivalent to a
distribution DF = Span(X1,X2) on U parameterized by
(x , y ,p,q, z), with

X1 = ∂x + p∂y + q∂p + F∂z & X2 = ∂q,

where X1 is given in terms of a smooth function
F = F (x , y ,p,q, z) such that Fqq 6= 0. A (2,3,5)
distribution represented locally as a distribution DF is
called to be in a Goursat form.
The Lie algebra of infinitesimal symmetries of a (2,3,5)
distribution is at most 14-dimensional.
It is 14-dimensional if and only if the distribution is locally
equivalent to DF with F = 1

2q2, and in such case gDF is
isomorphic to the split real form of the simple exceptional
Lie algebra g2.
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(2,3,5) distributions have local invariants

There exists (2,3,5) distributions which are NOT locally
equivalent.
For example, a distribution DF with F = qk is locally
equivalent to a distribution DF with F = 1

2q2 if and only if
k = −1, 1

3 ,
2
3 ,2.

A full set of local differential invariants for (2,3,5)
distributions, was determined by E. Cartan in 1910. In his
celebrated ‘5variables paper’ he associates a g2-valued
Cartan connection ω to any (2,3,5) distribution. The
curvature Ω = dω + ω ∧ ω of this connection is the basic
object used to detect if two (2,3,5) distributions are locally
nonequivalent.
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Harmonic curvature for (2,3,5) distributions

For example, for a (2,3,5) distribution to be locally
equivalent to the maximally symmetric distribution DF with
F = 1

2q2, it is neccessary and sufficient that a part of this
curvature, called the harmonic curvature, identically
vanishes.
The harmonic curvature of a (2,3,5) distribution D on M
defines a certain quartic

C(ξ) = Φ0 + 4ξΦ1 + 6ξ2Φ2 + 4ξ3Φ3 + ξ4Φ4,

with functions Φµ, µ = 0,1,2,3,4 on M depending in a
specific way on (quite high!) derivatives of the data defining
the distribution. For example, if we take a (2,3,5)
distribution in the Goursat form DF , then the functions Φµ

depend on the 6th derivative of the defining function F .
7/45
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Harmonic curvature of a (2,3,5) distribution

More specifically: a (2,3,5) distribution in a Goursat form
DF , with F = f (q), has Cartan quartic C(ξ) = ξ4Φ4, with

Φ4 = 10f (6)f ′′3 − 80f ′′2f (3)f (5)−51f ′′2f (4)
2
+

336f ′′f (3)
2
f (4) − 224f (3)

4
.

As such it is equivalent to D1
2 q2

if and only if Φ4 ≡ 0, which

is a rather nasty 6th order ODE for f (q).
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A problem and a nice tool

Problem : Find physical systems whose configuration
space is naturally equipped with (2,3,5) distribution;
Select those whose distribution is maximally symmetric, to
have a ‘physical’ realization of the simple exceptional Lie
group/algebra G2/g2.
Cartan’s submaximality result: If a (2,3,5) distribution D
has the Lie algebra of infinitesimal symmetries gD of
dimension dimgD > 7 then D is maximally symmetric and
locally equivalent to D1

2 q2
.

9/45



(2, 3, 5) distributions
Rolling without slipping or twisting

Ice dancing: rolling RP2 on its dual

A problem and a nice tool

Problem : Find physical systems whose configuration
space is naturally equipped with (2,3,5) distribution;
Select those whose distribution is maximally symmetric, to
have a ‘physical’ realization of the simple exceptional Lie
group/algebra G2/g2.
Cartan’s submaximality result: If a (2,3,5) distribution D
has the Lie algebra of infinitesimal symmetries gD of
dimension dimgD > 7 then D is maximally symmetric and
locally equivalent to D1

2 q2
.

9/45



(2, 3, 5) distributions
Rolling without slipping or twisting

Ice dancing: rolling RP2 on its dual

A problem and a nice tool

Problem : Find physical systems whose configuration
space is naturally equipped with (2,3,5) distribution;
Select those whose distribution is maximally symmetric, to
have a ‘physical’ realization of the simple exceptional Lie
group/algebra G2/g2.
Cartan’s submaximality result: If a (2,3,5) distribution D
has the Lie algebra of infinitesimal symmetries gD of
dimension dimgD > 7 then D is maximally symmetric and
locally equivalent to D1

2 q2
.

9/45



(2, 3, 5) distributions
Rolling without slipping or twisting

Ice dancing: rolling RP2 on its dual

A problem and a nice tool

Problem : Find physical systems whose configuration
space is naturally equipped with (2,3,5) distribution;
Select those whose distribution is maximally symmetric, to
have a ‘physical’ realization of the simple exceptional Lie
group/algebra G2/g2.
Cartan’s submaximality result: If a (2,3,5) distribution D
has the Lie algebra of infinitesimal symmetries gD of
dimension dimgD > 7 then D is maximally symmetric and
locally equivalent to D1

2 q2
.

9/45



(2, 3, 5) distributions
Rolling without slipping or twisting

Ice dancing: rolling RP2 on its dual

Configuration space

The configuration space C(Σ1,Σ2) of a system of two rigid
bodies, which roll on each other, is a 5-dimensional circle
bundle

S1 → C(Σ1,Σ2)
π→ Σ1 × Σ2.

Here we idealized the two bodies, assuming that they are
bounded by two surfaces Σ1, Σ2, equipped with the respective
Riemannian metrics g1 and g2.

10/45
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Explicitly:

C(Σ1,Σ2) = {(x1, x2,Aφ) | Aφ : Tx1Σ1 → Tx2Σ2},

where Aφ is an SO(2) matrix identifying the tangent spaces
Tx1Σ1 and Tx2Σ2 at the respective points x1 ∈ Σ1 and x2 ∈ Σ2 at
which the two bodies contact each other.

11/45
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Rolling

When the two bodies roll on each other, they draw a curve
γ(t) = (x1(t), x2(t),Aφ(t)) in C(Σ1,Σ2).
They also draw two curves: x1 = x1(t) in Σ1, and x2 = x2(t)
in Σ2. These are the traces of the point of contact between
the bodies, left on each body during the process of rolling.

12/45
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Rolling without slipping

The two bodies roll without slipping iff at every moment t
the tangent vector ẋ1(t) to x1(t) coincides with the tangent
vector ẋ2(t) to x2(t),

ẋ2(t) = Aφ(t)ẋ1(t).
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the tangent vector ẋ1(t) to x1(t) coincides with the tangent
vector ẋ2(t) to x2(t),
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Rolling without slipping or twisting

To define rolling without slipping or twisting we use the
Levi-Civita connections 1∇ and 2∇ associated with the
respective metrics g1 onΣ1 and g2 on Σ2.
Two bodies roll without slipping or twisting iff they roll
without slipping, ẋ2(t) = Aφ(t)ẋ1(t), and if the following
implication holds:

1∇ẋ1(t)Yx1(t) = 0 then 2∇ẋ2(t)(Aφ(t)Yx2(t)) = 0,

This means: if a vector field Y is parallel along x1(t) then
the Aφ-transformed vector field AφY is parallel along x2(t).
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Rolling distribution

At each point (x1, x2,Aφ) of the configuration space, the
non-slip, ẋ2(t) = Aφ(t)ẋ1(t), and non-twist,
1∇ẋ1(t)Yx1(t) = 0 then 2∇ẋ2(t)(Aφ(t)Yx2(t)) = 0, conditions
define THREE independent LINEAR constraints on
velocities (ẋ1, ẋ2, Ȧφ). Thus, if we consider rolling without
slipping or twisting, the vector space D(x1,x2,Aφ) of possible
velocities of the system is TWO-dimensional.
This defines a rank 2 distribution D on C(Σ1,Σ2), which we
call the rolling distribution.
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Our Problem for rolling

We’ve just produced a lot of examples of physcial systems,
which are naturally 5-dimensional, and which are naturally
equipped with a structure of a 2-distribution.
Find pairs of surfaces ((Σ1,g1), (Σ2,g2)) for which this
distribution is (2,3,5). Among them find such for which the
symmetry of the rolling distribution is G2.

16/45



(2, 3, 5) distributions
Rolling without slipping or twisting

Ice dancing: rolling RP2 on its dual

Our Problem for rolling

We’ve just produced a lot of examples of physcial systems,
which are naturally 5-dimensional, and which are naturally
equipped with a structure of a 2-distribution.
Find pairs of surfaces ((Σ1,g1), (Σ2,g2)) for which this
distribution is (2,3,5). Among them find such for which the
symmetry of the rolling distribution is G2.

16/45



(2, 3, 5) distributions
Rolling without slipping or twisting

Ice dancing: rolling RP2 on its dual

Our Problem for rolling

We’ve just produced a lot of examples of physcial systems,
which are naturally 5-dimensional, and which are naturally
equipped with a structure of a 2-distribution.
Find pairs of surfaces ((Σ1,g1), (Σ2,g2)) for which this
distribution is (2,3,5). Among them find such for which the
symmetry of the rolling distribution is G2.

16/45



(2, 3, 5) distributions
Rolling without slipping or twisting

Ice dancing: rolling RP2 on its dual

A bit of thinking

For the rolling distribution to have G2 symmetry it is
neccessary (and sufficient) that the Cartan quartic C(ξ)
vanishes identically.
These requires that five PDEs Φµ = 0, µ = 0,1,2,3,4,
should have a solution, for the unknown metrics g1 and g2.
Recall that g1 is defined on Σ1 and g2 is defined on Σ2,
and that every metric in 2-dimensions is locally conformally
flat, so we can write g1 = e2h1g0 and g2 = e2h2g0, with g0
being the flat metric.
Thus we need to have a solution to FIVE nonlinear PDEs
for only TWO unknown functions h1(x1) and h2(x2).
Horribly overdetermined system!!!!
A mathematician would say: no solutions to be expected!
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Kinds of mathematicians

Clever (e.g.: Robert Bryant):
Take as Σ1 a ball of radius r with a standard round sphere
Riemannina metric g1 on it, and as Σ2 a ball of radius R
with a standard round sphere Riemannian metric g2 on it.
Then the rolling distribution of a mechanical system of
these balls rolling on each other without slipping or twisting
is (2,3,5) iff R 6= r .
It has in addition G2 as a locall group of symmetries iff

R : r = 3 or r : R = 3.

18/45
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Kinds of mathematicians

Diligent ignorants (e.g. me): If one assumes that one of the
surfaces surfaces, Say Σ1, has a Killing symmetry, and that
the other has constant Gaussian curvature, then a litle
manipulation with the 5 PDEs leads to the following
conclusion:
For the rolling distribution to be (2,3,5) it is necessary and
sufficient that the respective Gaussian curvatures κ1 and
κ2 for g1 and g2 are unequal, κ1 6= κ2, and for such (2,3,5)
distribution to have local symmetry G2 it is NECESSARY
that

(9κ1 − κ2)(9κ2 − κ1)κ2 = 0.

19/45
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Surprising solution for κ2 = 0

It turns out that taking g2 = g0, i.e. the flat metric, there are
solutions for g1 with a Killing symmetry, such that (Σ1,g1)
when rolling without slipping or twisting on the PLANE, has
rolling distribution with G2 symmetry.
More precisely:
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Surfaces of revolution on the plane with G2 symmetry

Together with Daniel An we have the following:

Theorem
Modulo homotheties all metrics corresponding to surfaces with
a Killing vector, which when rolling ‘without slipping or twisting’
on the plane R2, have the velocity distribution D with local
symmetry G2 are given by:

g1o =ρ4dρ2 + ρ2dϕ2,

g1+ =(ρ2 + 1)2dρ2 + ρ2dϕ2,

g1− =(ρ2 − 1)2dρ2 + ρ2dϕ2,
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Theorem (continued)

Theorem
or, collectively as:

g1 = (ρ2 + ε)2dρ2 + ρ2dϕ2, where ε = 0,±1.

Their curvature is given by

κ1 =
2

(ρ2 + ε)3 .

22/45



(2, 3, 5) distributions
Rolling without slipping or twisting

Ice dancing: rolling RP2 on its dual

Surfaces of revolution on the plane with G2 symmetry

Theorem
Let U be a region of one of the Riemann surfaces (Σ1,g1) of the
previous Theorem, in which the curvature κ1 is nonnegative. In
the case ε = +1, such a region can be isometrically embedded
in flat R3 as a surface of revolution. The embedded surface,
when written in the Cartesian coordinates (X ,Y ,Z ) in R3, is
algebraic, with the embedding given by

(X 2 + Y 2 + 2)3 − 9Z 2 = 0, ε = +1.
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Theorem (continued)

Theorem

In the case ε = −1, one can find an isometric embedding in R3

of a portion of U given by ϕ ∈ [0,2π[, ρ ≥
√

2. This embedding
gives another surface of revolution which is also algebraic, and
in the Cartesian coordinates (X ,Y ,Z ), given by

(X 2 + Y 2 − 2)3 − 9Z 2 = 0, ε = −1.

In the case ε = 0, one can embed a portion of U with ρ ≥ 1 in
R3 as a surface of revolution

Z = f (
√

X 2 + Y 2), with f (t) =

∫ t

ρ=1

√
ρ4 − 1 dρ.
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How do they look?

Rysunek: The Mathematica print of the three surfaces of revolution,
whose induced metric from R3 is given, from left to right, by
respective metrics g1−, g1+ and g1o. The middle figure embeds all
(Σ1,g1+). In the left figure only the portion of (Σ1,g1−) with positive
curvature is embedded, and in the right figure only points of (Σ1,g1o)
with ρ > 1 are embedded. It is why the left and right figures have
holes on the top. All three surface, when rolling on a plane ‘without
twisting or slipping’ have the rolling distribution with symmetry G2.
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Twistor interpretation of rolling

Given the surfaces (Σ1,g2) and (Σ2,g2) which we want roll
on each other, we now consider a 4-manifold M = Σ1 × Σ2
and equipe it with the split signature metric g = g1 	 g2.
This defines a circle twistor bundle

S1 → T(Σ1 × Σ2)
π→ Σ1 × Σ2,

of real selfdual 2-planes over M.
Chosing an orthonormal frame (e1, f1) for g1 and an
orthonormal frame (e2, f2) for g2 the fibers of this bundle
over a point (x1, x2) ∈ M are planes

Nφ = Span(e1 + e2 cosφ+ f2 sinφ, f1 − e2 sinφ+ f2 cosφ).

Here φ is a fiber coordiante φ ∈ [0,2π].
Since gi(ei , fi) = 0 , gi(ei ,ei) = gi(fi , fi) = 1, i = 1,2, the
planes Nφ are real totally null. Hence self-dual with a
proper choice of orientation in M.
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Twistor interpretation of rolling

There is a bundle isomorphism

Φ : T(Σ1 × Σ2)→ C(Σ1,Σ2)

given by Φ(x1, x2,Nφ) = (x1, x2,Aφ), with

Aφ =

(
cosφ − sinφ
sinφ cosφ

)
.

This defines a rank 2-distribution DT = Φ−1
∗ D on the circle

twistor bundle, which we call twistor distribution.
In this way we have a twistorial interpretation of rolling
without slipping or twisting: curves in the circle twistor
bundle tangent to the twistor distribution are trajectories of
such rolling.
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Twistor circle bundle may have non-product base

Twistor circle bundle can be defined over ANY 4-manifold
M equipped with a split signature metric g. We do NOT
need either M = Σ1 × Σ2 or g = g1 	 g2.
Given any split signature metric g in dimension 4, we can
always find an orthonormal frame (e1, f1,e2, f2) in which
g(e1,e1) = g(f1, f1) = 1 = −g(e2,e2) = −g(f2, f2) with all
other products zero.
In such frame

Nφ = Span(e1 + e2 cosφ+ f2 sinφ, f1 − e2 sinφ+ f2 cosφ),

is totally null as before, and the circles of Nφ, φ ∈ [0,2π]
constitute fibers of the circle twistor bundle T(M) over the
neighbourhood of M where the frame (e1, f1,e2, f2) is
defined.
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Twistor circle bundle have twistor distribution

Let S1 → T(M)
π→ M be a twistor circle bundle of totally null

selfdual planes over a 4-dimensional manifold M equipped
with the split signature metric g.
There is a natural rank three distribution D2 defined an
T(M).
The 3-plane D2

(x ,Nφ)
at a point Nφ in the fiber over x ∈ M is

defined by the property π∗(D2
(x ,Nφ)

) = Nφ.
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Twistor circle bundle have twistor distribution

Again with Daniel An we have:

Theorem
If the Weyl tensor of metric g on M has nonvanishing self-dual
part, then the distribution D2 on T(M) satisfies

D2 = [D,D],

almost everywhere, with uniquely defined distribution D, which
is (2,3,5).

Here, the term ‘almost everywhere’ means: ‘everywhere except
at maximally four points in each fiber π−1(x)’.
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Twistor distribution D on T(M)

The rank 2 distribution D on T(M) as defined on the
previous slide is called twistor distribution on T(M).
Fact: In case when M = Σ1 × Σ2 and g = g1 	 g2 the so
defined twistor distribution on T(M) ' Φ−1(C(Σ1,Σ2))
coincides with the rolling distribution Φ−1

∗ D.
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Returning question

Can we find all 4-manifolds M with split signature metric g for
which the twistor distribution D on T(M) has G2 symmetry?
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Ice dancing

On an ice ring consider a one leg skater ` and a spectator
p. The pair (p, `) is going to perform a certain movement on
the ring. The rules of the movement (dance) are as follows.
Idealization: We have a pair (p, `) of a point p ∈ R2 and a
line ` ∈ R2.

We assume that the point is never on a line, p /∈ `.
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Configuration space

Our configuration space is then 4-dimensional manifold
M = (RP2 × (RP2)∗) \ I, where I is the singular locus
consisting of pairs (p, `) such that p ∈ `.
A movement of a pair (p, `) draws a curve
γ(t) = (p(t), `(t)) in M.
What does it mean that a line `(t) is moving at the moment
t? It means that it is rotating around some point `∗(t) on it.
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Dancing condition

The rule for the coordinated movement of a pair (p, `) - the
‘dancing condition’ - is as follows:
at every moment t the point p(t) goes in the direction of the
rotation point `∗(t) of the line `(t).
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Conformal class

The dancing condition singles out a unique conformal
class [g] of split signature metrics on M. Indeed in the
parametrization (x , y ,a,b) of a point (x , y) and a line
y = ax + b we have :
The rotation point `∗(t) = (x∗(t), y∗(t)) satisfies
y∗ = ax∗ + b and y∗ = (a + ȧdt)x∗ + b + ḃdt .
This gives: (x∗, y∗) = (− ḃ

ȧ ,−a ḃ
ȧ + b).

Dancing condition:
(

x − x∗

y − y∗

)
‖
(

dx
dy

)
gives:

(x − x∗)ẏ − (y − y∗)ẋ = 0.
Inserting and grouping the terms we get:

(xȧ + ḃ)ẏ − (aḃ + (y − b)ȧ)ẋ = 0.
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This gives: (x∗, y∗) = (− ḃ
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36/45



(2, 3, 5) distributions
Rolling without slipping or twisting

Ice dancing: rolling RP2 on its dual

Conformal class

The dancing condition singles out a unique conformal
class [g] of split signature metrics on M. Indeed in the
parametrization (x , y ,a,b) of a point (x , y) and a line
y = ax + b we have :
The rotation point `∗(t) = (x∗(t), y∗(t)) satisfies
y∗ = ax∗ + b and y∗ = (a + ȧdt)x∗ + b + ḃdt .
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Dancing metric

Thus, every curve (x(t), y(t),a(t),b(t)) ⊂ M satisfying
dancing condition is a null curve in the (2,2) signature
metric

g = (xda + db)dy −
(
adb + (y − b)da

)
dx .

Since the conformal class [g] with the metric
representative g as above was defined only in terms of
points, lines and their incidences in RP2, by construction it
is SL(3,R) invariant.Thus the conformal class [g] has at
least 8-dimensional Lie algebra of conformal symmetries.
It follows that [g] contains precisely one metric gE ∈ [g]
which has SL(3,R) as the group of isometries. We call gE
the dancing metric on M.
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Properties of the dancing metric

The dancing metric is Einstein, and has has nonvanishing
selfdual Weyl tensor.
In the local coordinates (x , y ,a,b) on M it reads:

gE =
(xda + db)dy −

(
adb + (y − b)da

)
dx

(y − ax − b)2 .

Considering the circle twistor bundle T(M) over (M,gE ),
we have the twistor distribution D in T(M) which is (2,3,5).
Moreover, since the eight infinitesimal isometries, by the
functoriality of the construction, give rise to eight
infinitesimal symetries of D, we conclude that the twistor
distribution associated with (M,gE ) has at least
8-dimensional Lie algebra of infinitesimal symetries, hence
it has 14 symetries by Cartan’s submaximality result.

38/45



(2, 3, 5) distributions
Rolling without slipping or twisting

Ice dancing: rolling RP2 on its dual

Properties of the dancing metric

The dancing metric is Einstein, and has has nonvanishing
selfdual Weyl tensor.
In the local coordinates (x , y ,a,b) on M it reads:

gE =
(xda + db)dy −

(
adb + (y − b)da

)
dx

(y − ax − b)2 .

Considering the circle twistor bundle T(M) over (M,gE ),
we have the twistor distribution D in T(M) which is (2,3,5).
Moreover, since the eight infinitesimal isometries, by the
functoriality of the construction, give rise to eight
infinitesimal symetries of D, we conclude that the twistor
distribution associated with (M,gE ) has at least
8-dimensional Lie algebra of infinitesimal symetries, hence
it has 14 symetries by Cartan’s submaximality result.

38/45



(2, 3, 5) distributions
Rolling without slipping or twisting

Ice dancing: rolling RP2 on its dual

Properties of the dancing metric

The dancing metric is Einstein, and has has nonvanishing
selfdual Weyl tensor.
In the local coordinates (x , y ,a,b) on M it reads:

gE =
(xda + db)dy −

(
adb + (y − b)da

)
dx

(y − ax − b)2 .

Considering the circle twistor bundle T(M) over (M,gE ),
we have the twistor distribution D in T(M) which is (2,3,5).
Moreover, since the eight infinitesimal isometries, by the
functoriality of the construction, give rise to eight
infinitesimal symetries of D, we conclude that the twistor
distribution associated with (M,gE ) has at least
8-dimensional Lie algebra of infinitesimal symetries, hence
it has 14 symetries by Cartan’s submaximality result.

38/45



(2, 3, 5) distributions
Rolling without slipping or twisting

Ice dancing: rolling RP2 on its dual

Properties of the dancing metric

The dancing metric is Einstein, and has has nonvanishing
selfdual Weyl tensor.
In the local coordinates (x , y ,a,b) on M it reads:

gE =
(xda + db)dy −

(
adb + (y − b)da

)
dx

(y − ax − b)2 .

Considering the circle twistor bundle T(M) over (M,gE ),
we have the twistor distribution D in T(M) which is (2,3,5).
Moreover, since the eight infinitesimal isometries, by the
functoriality of the construction, give rise to eight
infinitesimal symetries of D, we conclude that the twistor
distribution associated with (M,gE ) has at least
8-dimensional Lie algebra of infinitesimal symetries, hence
it has 14 symetries by Cartan’s submaximality result.

38/45



(2, 3, 5) distributions
Rolling without slipping or twisting

Ice dancing: rolling RP2 on its dual

Dancing metric and G2

With Gil Bor we have the following:

Theorem
The twistor distribution D on the circle twistor bundle T(M) over
the manifold M = (RP2 × (RP2)∗) \ I equipped with the dancing
metric gE has the split real form of the simple exceptional Lie
group G2 as a group of its symmetries.

Remark Note that we’ve found a geometric realization of the
group G2 using only projective notions in R2.
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Rolling RP2 on (RP2)∗ without slipping or twisting

Note that for (M,gE ) we have well defined projections
α : T(M)→ RP2 and β : T(M)→ (RP2)∗. In coordinates
(x , y ,a,b,Nφ) on T(M) we have:

α(x , y ,a,b,Nφ) = (x , y) ∈ RP2, and

β(x , y ,a,b,Nφ) = (a,b) ∈ (RP2)∗.

Thus, a curve γ̃(t) = (x(t), y(t),a(t),b(t),Nφ(t)) in T(M)

tangent to the twistor distribution D, ˙̃γ(t) ∈ D, defines
curves p(t) = (x(t), y(t)) and `(t) = (a(t),b(t)),
respectively in RP2 and (RP2)∗.
By analogy with the usual rolling of surfaces, we may think
of these p(t) and `(t) as traces of a process of rolling
without slipping or twisting of RP2 on (RP2)∗.
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Rolling RP2 on (RP2)∗ without slipping or twisting

In particular, one may think of conditions on curves p(t)
and `(t), respectively in RP2 and (RP2)∗, that are analogs
of a) rolling without slipping, and b) rolling without slipping
or twisting, expressed only in terms of projective terms in
R2.
Obviously, the condition which is an analog of rolling
without slipping is that the curves p(t) ⊂ RP2 and
`(t) ⊂ (RP2)∗ are such that at every moment the pair
(p(t), `(t)) satisfies the dancing condition.
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Rolling without slipping or twisting is more tricky to express
in purely projective terms.
I only say that the condition to make the rolling also
‘without twisting’ is a rather demanding one: the dancers -
the point p and a line ` - should be aware of the 5th order
derivative of their motions to comply with it.
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Dancing curves `(t) when p(t) is on a circle
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Thank you for your attention!
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