Old and new on 'Rolling without slipping or twisting'

Paweł Nurowski

Centrum Fizyki Teoretycznej Polska Akademia Nauk

> CINVESTAV Ciudad de Mexico 3.12.2015

2 Rolling without slipping or twisting

3 Ice dancing: rolling $\mathbb{R}P^2$ on its dual

distributions

Definition

 $X_3 = -\partial_p - q\partial_z, \quad X_4 = \partial_y, \quad X_5 = -\partial_z$

distributions

Definition

Let X_1, X_2 be two vector fields in the neighbourhood \mathcal{U} of the origin in \mathbb{R}^5 .

 $X_3 = -\partial_p - q\partial_z, \quad X_4 = \partial_y, \quad X_5 = -\partial_z$

distributions

Definition

Let X_1, X_2 be two vector fields in the neighbourhood \mathcal{U} of the origin in \mathbb{R}^5 . Then the distribution $\mathcal{D} = \text{Span}(X_1, X_2)$ is (2, 3, 5) iff $[X_1, X_2] = X_3$ & $[X_1, X_3] = X_4$ & $[X_2, X_3] = X_5$,

Then

 $X_3 = -\partial_{\rho} - q\partial_z, \quad X_4 = \partial_y, \quad X_5 = -\partial_z$

 $\begin{array}{c} (2,3,5) \text{ distributions} \\ \text{Rolling without slipping or twisting} \\ \text{Ice dancing: rolling } \mathbb{R}^{P^2} \text{ on its dual} \end{array}$

distributions

Definition

Let X_1, X_2 be two vector fields in the neighbourhood \mathcal{U} of the origin in \mathbb{R}^5 . Then the distribution $\mathcal{D} = \text{Span}(X_1, X_2)$ is (2, 3, 5) iff $[X_1, X_2] = X_3$ & $[X_1, X_3] = X_4$ & $[X_2, X_3] = X_5$, and $X_1 \wedge X_2 \wedge X_3 \wedge X_4 \wedge X_5 \neq 0$ at all points in \mathcal{U} .

$$X_3 = -\partial_p - q\partial_z, \quad X_4 = \partial_y, \quad X_5 = -\partial_z$$

distributions

Definition

Let X_1, X_2 be two vector fields in the neighbourhood \mathcal{U} of the origin in \mathbb{R}^5 . Then the *distribution* $\mathcal{D} = \text{Span}(X_1, X_2)$ is (2,3,5) iff

$$[X_1, X_2] = X_3$$
 & $[X_1, X_3] = X_4$ & $[X_2, X_3] = X_5$,

and $X_1 \wedge X_2 \wedge X_3 \wedge X_4 \wedge X_5 \neq 0$ at all points in \mathcal{U} .

Example

Take \mathcal{U} parameterized by (x, y, p, q, z), and

 $X_1 = \partial_x + p \partial_y + q \partial_p + \frac{1}{2} q^2 \partial_z \quad \& \quad X_2 = \partial_q.$

$$X_3 = -\partial_p - q\partial_z, \quad X_4 = \partial_y, \quad X_5 = -\partial_z$$

distributions

Definition

Let X_1, X_2 be two vector fields in the neighbourhood \mathcal{U} of the origin in \mathbb{R}^5 . Then the *distribution* $\mathcal{D} = \text{Span}(X_1, X_2)$ is (2,3,5) iff

$$[X_1, X_2] = X_3$$
 & $[X_1, X_3] = X_4$ & $[X_2, X_3] = X_5$,

and $X_1 \wedge X_2 \wedge X_3 \wedge X_4 \wedge X_5 \neq 0$ at all points in \mathcal{U} .

Example

Take \mathcal{U} parameterized by (x, y, p, q, z), and

$$X_1 = \partial_x + p \partial_y + q \partial_p + \frac{1}{2} q^2 \partial_z \quad \& \quad X_2 = \partial_q.$$

$$X_3 = -\partial_p - q\partial_z, \quad X_4 = \partial_y, \quad X_5 = -\partial_z$$

distributions

Definition

Let X_1, X_2 be two vector fields in the neighbourhood \mathcal{U} of the origin in \mathbb{R}^5 . Then the *distribution* $\mathcal{D} = \text{Span}(X_1, X_2)$ is (2,3,5) iff

$$[X_1, X_2] = X_3$$
 & $[X_1, X_3] = X_4$ & $[X_2, X_3] = X_5$,

and $X_1 \wedge X_2 \wedge X_3 \wedge X_4 \wedge X_5 \neq 0$ at all points in \mathcal{U} .

Example

Take \mathcal{U} parameterized by (x, y, p, q, z), and

$$X_1 = \partial_x + p \partial_y + q \partial_p + \frac{1}{2} q^2 \partial_z \quad \& \quad X_2 = \partial_q.$$

$$X_3 = -\partial_p - q\partial_z, \quad X_4 = \partial_y, \quad X_5 = -\partial_z$$

- Two distributions: \mathcal{D} on a manifold M and $\overline{\mathcal{D}}$ on a manifold \overline{M} are (locally) *equivalent* iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_* \mathcal{D} = \overline{\mathcal{D}}$.
- Self-equivalences: φ : M → M, φ_{*}D = D, of a distribution D are called symmetries of D.
- Locally self-equivalences are described in terms of vector fields X on M such that [X, D] ⊂ D. They are called *ininitesimal symmetries* of D. Infinitesimal symmetries form a Lie algebra g_D of symmetries of D.

- Two distributions: \mathcal{D} on a manifold M and $\overline{\mathcal{D}}$ on a manifold \overline{M} are (locally) *equivalent* iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_* \mathcal{D} = \overline{\mathcal{D}}$.
- Self-equivalences: φ : M → M, φ_{*}D = D, of a distribution D are called symmetries of D.
- Locally self-equivalences are described in terms of vector fields X on M such that [X, D] ⊂ D. They are called *ininitesimal symmetries* of D. Infinitesimal symmetries form a Lie algebra g_D of symmetries of D.

- Two distributions: \mathcal{D} on a manifold M and $\overline{\mathcal{D}}$ on a manifold \overline{M} are (locally) *equivalent* iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_* \mathcal{D} = \overline{\mathcal{D}}$.
- Self-equivalences: φ : M → M, φ_{*}D = D, of a distribution D are called symmetries of D.
- Locally self-equivalences are described in terms of vector fields X on M such that [X, D] ⊂ D. They are called *ininitesimal symmetries* of D. Infinitesimal symmetries form a Lie algebra g_D of symmetries of D.

- Two distributions: \mathcal{D} on a manifold M and $\overline{\mathcal{D}}$ on a manifold \overline{M} are (locally) *equivalent* iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_* \mathcal{D} = \overline{\mathcal{D}}$.
- Self-equivalences: φ : M → M, φ_{*}D = D, of a distribution D are called symmetries of D.
- Locally self-equivalences are described in terms of vector fields X on M such that [X, D] ⊂ D. They are called *ininitesimal symmetries* of D. Infinitesimal symmetries form a Lie algebra g_D of symmetries of D.

- Two distributions: \mathcal{D} on a manifold M and $\overline{\mathcal{D}}$ on a manifold \overline{M} are (locally) *equivalent* iff there exists a (local) diffeomorphism $\phi : M \to \overline{M}$ such that $\phi_* \mathcal{D} = \overline{\mathcal{D}}$.
- Self-equivalences: φ : M → M, φ_{*}D = D, of a distribution D are called symmetries of D.
- Locally self-equivalences are described in terms of vector fields X on M such that [X, D] ⊂ D. They are called *ininitesimal symmetries* of D. Infinitesimal symmetries form a Lie algebra g_D of symmetries of D.

Symmetries of (2, 3, 5) distributions

Every (2,3,5) distribution is locally equivalent to a distribution D_F = Span(X₁, X₂) on U parameterized by (x, y, p, q, z), with

 $X_1 = \partial_x + p \partial_y + q \partial_p + F \partial_z \quad \& \quad X_2 = \partial_q,$

- The Lie algebra of infinitesimal symmetries of a (2, 3, 5) distribution is at most 14-dimensional.
- It is 14-dimensional if and only if the distribution is locally equivalent to \mathcal{D}_F with $F = \frac{1}{2}q^2$, and in such case $\mathfrak{g}_{\mathcal{D}_F}$ is isomorphic to the split real form of the simple exceptional Lie algebra \mathfrak{g}_2 .

Symmetries of (2, 3, 5) distributions

Every (2,3,5) distribution is locally equivalent to a distribution D_F = Span(X₁, X₂) on U parameterized by (x, y, p, q, z), with

 $X_1 = \partial_x + p \partial_y + q \partial_p + F \partial_z \quad \& \quad X_2 = \partial_q,$

- The Lie algebra of infinitesimal symmetries of a (2,3,5) distribution is at most 14-dimensional.
- It is 14-dimensional if and only if the distribution is locally equivalent to \mathcal{D}_F with $F = \frac{1}{2}q^2$, and in such case $\mathfrak{g}_{\mathcal{D}_F}$ is isomorphic to the split real form of the simple exceptional Lie algebra \mathfrak{g}_2 .

Symmetries of (2, 3, 5) distributions

Every (2,3,5) distribution is locally equivalent to a distribution D_F = Span(X₁, X₂) on U parameterized by (x, y, p, q, z), with

 $X_1 = \partial_x + p \partial_y + q \partial_p + F \partial_z \quad \& \quad X_2 = \partial_q,$

- The Lie algebra of infinitesimal symmetries of a (2, 3, 5) distribution is at most 14-dimensional.
- It is 14-dimensional if and only if the distribution is locally equivalent to \mathcal{D}_F with $F = \frac{1}{2}q^2$, and in such case $\mathfrak{g}_{\mathcal{D}_F}$ is isomorphic to the split real form of the simple exceptional Lie algebra \mathfrak{g}_2 .

Symmetries of (2, 3, 5) distributions

Every (2,3,5) distribution is locally equivalent to a distribution D_F = Span(X₁, X₂) on U parameterized by (x, y, p, q, z), with

 $X_1 = \partial_x + p \partial_y + q \partial_p + F \partial_z \quad \& \quad X_2 = \partial_q,$

- The Lie algebra of infinitesimal symmetries of a (2,3,5) distribution is at most 14-dimensional.
- It is 14-dimensional if and only if the distribution is locally equivalent to \mathcal{D}_F with $F = \frac{1}{2}q^2$, and in such case $\mathfrak{g}_{\mathcal{D}_F}$ is isomorphic to the split real form of the simple exceptional Lie algebra \mathfrak{g}_2 .

Symmetries of (2, 3, 5) distributions

Every (2,3,5) distribution is locally equivalent to a distribution D_F = Span(X₁, X₂) on U parameterized by (x, y, p, q, z), with

 $X_1 = \partial_x + p \partial_y + q \partial_p + F \partial_z \quad \& \quad X_2 = \partial_q,$

- The Lie algebra of infinitesimal symmetries of a (2,3,5) distribution is at most 14-dimensional.
- It is 14-dimensional if and only if the distribution is locally equivalent to \mathcal{D}_F with $F = \frac{1}{2}q^2$, and in such case $\mathfrak{g}_{\mathcal{D}_F}$ is isomorphic to the split real form of the simple exceptional Lie algebra \mathfrak{g}_2 .

- There exists (2,3,5) distributions which are NOT locally equivalent.
- For example, a distribution D_F with F = q^k is locally equivalent to a distribution D_F with F = ½q² if and only if k = −1, ½, ⅔, 2.
- A full set of local differential invariants for (2, 3, 5)distributions, was determined by E. Cartan in 1910. In his celebrated '5variables paper' he associates a g_2 -valued *Cartan connection* ω to any (2, 3, 5) distribution. The *curvature* $\Omega = d\omega + \omega \wedge \omega$ of this connection is the basic object used to detect if two (2, 3, 5) distributions are locally nonequivalent.

- There exists (2,3,5) distributions which are NOT locally equivalent.
- For example, a distribution \mathcal{D}_F with $F = q^k$ is locally equivalent to a distribution \mathcal{D}_F with $F = \frac{1}{2}q^2$ if and only if $k = -1, \frac{1}{3}, \frac{2}{3}, 2$.
- A full set of local differential invariants for (2, 3, 5)distributions, was determined by E. Cartan in 1910. In his celebrated '5variables paper' he associates a g_2 -valued *Cartan connection* ω to any (2, 3, 5) distribution. The *curvature* $\Omega = d\omega + \omega \wedge \omega$ of this connection is the basic object used to detect if two (2, 3, 5) distributions are locally nonequivalent.

- There exists (2,3,5) distributions which are NOT locally equivalent.
- For example, a distribution \mathcal{D}_F with $F = q^k$ is locally equivalent to a distribution \mathcal{D}_F with $F = \frac{1}{2}q^2$ if and only if $k = -1, \frac{1}{3}, \frac{2}{3}, 2$.
- A full set of local differential invariants for (2, 3, 5) distributions, was determined by E. Cartan in 1910. In his celebrated '5variables paper' he associates a g₂-valued *Cartan connection* ω to any (2, 3, 5) distribution. The *curvature* Ω = dω + ω ∧ ω of this connection is the basic object used to detect if two (2, 3, 5) distributions are locally nonequivalent.

- There exists (2,3,5) distributions which are NOT locally equivalent.
- For example, a distribution \mathcal{D}_F with $F = q^k$ is locally equivalent to a distribution \mathcal{D}_F with $F = \frac{1}{2}q^2$ if and only if $k = -1, \frac{1}{3}, \frac{2}{3}, 2$.
- A full set of local differential invariants for (2, 3, 5) distributions, was determined by E. Cartan in 1910. In his celebrated '5variables paper' he associates a g₂-valued *Cartan connection* ω to any (2, 3, 5) distribution. The *curvature* Ω = dω + ω ∧ ω of this connection is the basic object used to detect if two (2, 3, 5) distributions are locally nonequivalent.

- There exists (2,3,5) distributions which are NOT locally equivalent.
- For example, a distribution \mathcal{D}_F with $F = q^k$ is locally equivalent to a distribution \mathcal{D}_F with $F = \frac{1}{2}q^2$ if and only if $k = -1, \frac{1}{3}, \frac{2}{3}, 2$.
- A full set of local differential invariants for (2, 3, 5)distributions, was determined by E. Cartan in 1910. In his celebrated '5variables paper' he associates a g_2 -valued *Cartan connection* ω to any (2, 3, 5) distribution. The *curvature* $\Omega = d\omega + \omega \wedge \omega$ of this connection is the basic object used to detect if two (2, 3, 5) distributions are locally nonequivalent.

Harmonic curvature for (2, 3, 5) distributions

- For example, for a (2,3,5) distribution to be locally equivalent to the maximally symmetric distribution \mathcal{D}_F with $F = \frac{1}{2}q^2$, it is neccessary and sufficient that a part of this curvature, called the *harmonic curvature*, identically vanishes.
- The harmonic curvature of a (2,3,5) distribution \mathcal{D} on M defines a certain quartic

 $\mathcal{C}(\xi) = \Phi_0 + 4\xi \Phi_1 + 6\xi^2 \Phi_2 + 4\xi^3 \Phi_3 + \xi^4 \Phi_4,$

with functions Φ_{μ} , $\mu = 0, 1, 2, 3, 4$ on *M* depending in a specific way on (quite high!) derivatives of the data defining the distribution. For example, if we take a (2, 3, 5) distribution in the Goursat form \mathcal{D}_F , then the functions Φ_{μ} depend on the 6th derivative of the defining function *F*.

Harmonic curvature for (2, 3, 5) distributions

- For example, for a (2,3,5) distribution to be locally equivalent to the maximally symmetric distribution \mathcal{D}_F with $F = \frac{1}{2}q^2$, it is neccessary and sufficient that a part of this curvature, called the *harmonic curvature*, identically vanishes.
- The harmonic curvature of a (2,3,5) distribution \mathcal{D} on M defines a certain quartic

 $\mathcal{C}(\xi) = \Phi_0 + 4\xi \Phi_1 + 6\xi^2 \Phi_2 + 4\xi^3 \Phi_3 + \xi^4 \Phi_4,$

with functions Φ_{μ} , $\mu = 0, 1, 2, 3, 4$ on *M* depending in a specific way on (quite high!) derivatives of the data defining the distribution. For example, if we take a (2, 3, 5) distribution in the Goursat form \mathcal{D}_F , then the functions Φ_{μ} depend on the 6th derivative of the defining function *F*.

Harmonic curvature for (2, 3, 5) distributions

- For example, for a (2,3,5) distribution to be locally equivalent to the maximally symmetric distribution \mathcal{D}_F with $F = \frac{1}{2}q^2$, it is neccessary and sufficient that a part of this curvature, called the *harmonic curvature*, identically vanishes.
- The harmonic curvature of a (2, 3, 5) distribution D on M defines a certain quartic

$$\mathcal{C}(\xi) = \Phi_0 + 4\xi \Phi_1 + 6\xi^2 \Phi_2 + 4\xi^3 \Phi_3 + \xi^4 \Phi_4,$$

with functions Φ_{μ} , $\mu = 0, 1, 2, 3, 4$ on *M* depending in a specific way on (quite high!) derivatives of the data defining the distribution. For example, if we take a (2,3,5) distribution in the Goursat form \mathcal{D}_F , then the functions Φ_{μ} depend on the 6th derivative of the defining function *F*.

Harmonic curvature for (2, 3, 5) distributions

- For example, for a (2,3,5) distribution to be locally equivalent to the maximally symmetric distribution \mathcal{D}_F with $F = \frac{1}{2}q^2$, it is neccessary and sufficient that a part of this curvature, called the *harmonic curvature*, identically vanishes.
- The harmonic curvature of a (2, 3, 5) distribution D on M defines a certain quartic

$$\mathcal{C}(\xi) = \Phi_0 + 4\xi \Phi_1 + 6\xi^2 \Phi_2 + 4\xi^3 \Phi_3 + \xi^4 \Phi_4,$$

with functions Φ_{μ} , $\mu = 0, 1, 2, 3, 4$ on *M* depending in a specific way on (quite high!) derivatives of the data defining the distribution. For example, if we take a (2, 3, 5) distribution in the Goursat form \mathcal{D}_F , then the functions Φ_{μ} depend on the 6th derivative of the defining function *F*.

Harmonic curvature of a (2, 3, 5) distribution

• More specifically: a (2,3,5) distribution in a Goursat form \mathcal{D}_F , with F = f(q), has Cartan quartic $\mathcal{C}(\xi) = \xi^4 \Phi_4$, with

$$\Phi_4 = 10f^{(6)}f''^3 - 80f''^2f^{(3)}f^{(5)} - 51f''^2f^{(4)}^2 + 336f''f^{(3)}f^{(4)} - 224f^{(3)}^4.$$

• As such it is equivalent to $\mathcal{D}_{\frac{1}{2}q^2}$ if and only if $\Phi_4 \equiv 0$, which is a rather nasty 6th order ODE for f(q).

Harmonic curvature of a (2, 3, 5) distribution

• More specifically: a (2,3,5) distribution in a Goursat form \mathcal{D}_F , with F = f(q), has Cartan quartic $\mathcal{C}(\xi) = \xi^4 \Phi_4$, with

$$\Phi_4 = 10f^{(6)}f''^3 - 80f''^2f^{(3)}f^{(5)} - 51f''^2f^{(4)}^2 + 336f''f^{(3)}f^{(4)} - 224f^{(3)}^4.$$

• As such it is equivalent to $\mathcal{D}_{\frac{1}{2}q^2}$ if and only if $\Phi_4 \equiv 0$, which is a rather nasty 6th order ODE for f(q).

A problem and a nice tool

 Problem : Find physical systems whose configuration space is naturally equipped with (2,3,5) distribution;
 Select those whose distribution is maximally symmetric, to have a 'physical' realization of the simple exceptional Lie group/algebra G₂/g₂.

• **Cartan's submaximality result**: If a (2,3,5) distribution \mathcal{D} has the Lie algebra of infinitesimal symmetries $\mathfrak{g}_{\mathcal{D}}$ of dimension dim $g_{\mathcal{D}} > 7$ then \mathcal{D} is maximally symmetric and locally equivalent to $\mathcal{D}_{\frac{1}{2}g^2}$.

A problem and a nice tool

- Problem : Find physical systems whose configuration space is naturally equipped with (2, 3, 5) distribution; Select those whose distribution is maximally symmetric, to have a 'physical' realization of the simple exceptional Lie group/algebra G₂/g₂.
- **Cartan's submaximality result**: If a (2,3,5) distribution \mathcal{D} has the Lie algebra of infinitesimal symmetries $\mathfrak{g}_{\mathcal{D}}$ of dimension dim $g_{\mathcal{D}} > 7$ then \mathcal{D} is maximally symmetric and locally equivalent to $\mathcal{D}_{\frac{1}{2}\sigma^2}$.

A problem and a nice tool

- Problem : Find physical systems whose configuration space is naturally equipped with (2, 3, 5) distribution; Select those whose distribution is maximally symmetric, to have a 'physical' realization of the simple exceptional Lie group/algebra G₂/g₂.
- **Cartan's submaximality result**: If a (2, 3, 5) distribution \mathcal{D} has the Lie algebra of infinitesimal symmetries $\mathfrak{g}_{\mathcal{D}}$ of dimension dim $g_{\mathcal{D}} > 7$ then \mathcal{D} is maximally symmetric and locally equivalent to $\mathcal{D}_{\frac{1}{2}q^2}$.

A problem and a nice tool

- Problem : Find physical systems whose configuration space is naturally equipped with (2, 3, 5) distribution; Select those whose distribution is maximally symmetric, to have a 'physical' realization of the simple exceptional Lie group/algebra G₂/g₂.
- **Cartan's submaximality result**: If a (2,3,5) distribution \mathcal{D} has the Lie algebra of infinitesimal symmetries $\mathfrak{g}_{\mathcal{D}}$ of dimension $\dim \mathfrak{g}_{\mathcal{D}} > 7$ then \mathcal{D} is maximally symmetric and locally equivalent to $\mathcal{D}_{\frac{1}{2}q^2}$.

Configuration space

The configuration space $C(\Sigma_1, \Sigma_2)$ of a system of two rigid bodies, which roll on each other, is a 5-dimensional circle bundle

$$\mathbb{S}^1 o \mathcal{C}(\Sigma_1, \Sigma_2) \stackrel{\pi}{ o} \Sigma_1 imes \Sigma_2.$$

Here we idealized the two bodies, assuming that they are bounded by two surfaces Σ_1 , Σ_2 , equipped with the respective Riemannian metrics g_1 and g_2 .

Configuration space

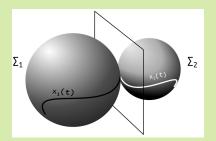
The configuration space $C(\Sigma_1, \Sigma_2)$ of a system of two rigid bodies, which roll on each other, is a 5-dimensional circle bundle

 $\mathbb{S}^1 \to \mathcal{C}(\Sigma_1, \Sigma_2) \stackrel{\pi}{\to} \Sigma_1 \times \Sigma_2.$

Here we idealized the two bodies, assuming that they are bounded by two surfaces Σ_1 , Σ_2 , equipped with the respective Riemannian metrics g_1 and g_2 .

Explicitly:

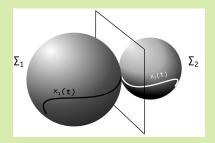
 $\mathcal{C}(\Sigma_1, \Sigma_2) = \{ (x_1, x_2, A_{\phi}) \mid A_{\phi} : T_{x_1} \Sigma_1 \to T_{x_2} \Sigma_2 \},\$



where A_{ϕ} is an **SO**(2) matrix identifying the tangent spaces $T_{x_1}\Sigma_1$ and $T_{x_2}\Sigma_2$ at the respective points $x_1 \in \Sigma_1$ and $x_2 \in \Sigma_2$ at which the two bodies contact each other.

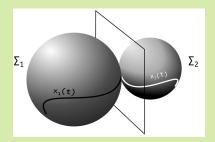
Rolling

- When the two bodies roll on each other, they draw a curve $\gamma(t) = (x_1(t), x_2(t), A_{\phi(t)})$ in $C(\Sigma_1, \Sigma_2)$.
- They also draw two curves: x₁ = x₁(t) in Σ₁, and x₂ = x₂(t) in Σ₂. These are the traces of the point of contact between the bodies, left on each body during the process of rolling.



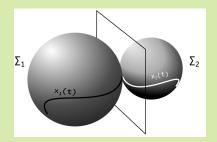
Rolling

- When the two bodies roll on each other, they draw a curve $\gamma(t) = (x_1(t), x_2(t), A_{\phi(t)})$ in $C(\Sigma_1, \Sigma_2)$.
- They also draw two curves: x₁ = x₁(t) in Σ₁, and x₂ = x₂(t) in Σ₂. These are the traces of the point of contact between the bodies, left on each body during the process of rolling.



Rolling

- When the two bodies roll on each other, they draw a curve $\gamma(t) = (x_1(t), x_2(t), A_{\phi(t)})$ in $C(\Sigma_1, \Sigma_2)$.
- They also draw two curves: x₁ = x₁(t) in Σ₁, and x₂ = x₂(t) in Σ₂. These are the traces of the point of contact between the bodies, left on each body during the process of rolling.



Rolling without slipping

• The two bodies roll *without slipping* iff at every moment *t* the tangent vector $\dot{x}_1(t)$ to $x_1(t)$ coincides with the tangent vector $\dot{x}_2(t)$ to $x_2(t)$,

 $\dot{x}_2(t) = A_{\phi(t)}\dot{x}_1(t).$

Rolling without slipping

• The two bodies roll *without slipping* iff at every moment *t* the tangent vector $\dot{x}_1(t)$ to $x_1(t)$ coincides with the tangent vector $\dot{x}_2(t)$ to $x_2(t)$,

$$\dot{x}_2(t) = A_{\phi(t)}\dot{x}_1(t).$$

- To define rolling without slipping or twisting we use the Levi-Civita connections ¹∇ and ²∇ associated with the respective metrics g₁ onΣ₁ and g₂ on Σ₂.
- Two bodies roll without slipping or twisting iff they roll without slipping, $\dot{x}_2(t) = A_{\phi(t)}\dot{x}_1(t)$, and if the following implication holds:

 $\nabla_{\dot{x}_1(t)} Y_{x_1(t)} = 0$ then $^2 \nabla_{\dot{x}_2(t)} (A_{\phi(t)} Y_{x_2(t)}) = 0,$

 This means: if a vector field Y is parallel along x₁(t) then the A_φ-transformed vector field A_φY is parallel along x₂(t).

- To define rolling without slipping or twisting we use the Levi-Civita connections ¹∇ and ²∇ associated with the respective metrics g₁ onΣ₁ and g₂ on Σ₂.
- Two bodies roll without slipping or twisting iff they roll without slipping, $\dot{x}_2(t) = A_{\phi(t)}\dot{x}_1(t)$, and if the following implication holds:

 $^{1}\nabla_{\dot{x}_{1}(t)}Y_{x_{1}(t)} = 0$ then $^{2}\nabla_{\dot{x}_{2}(t)}(A_{\phi(t)}Y_{x_{2}(t)}) = 0,$

 This means: if a vector field Y is parallel along x₁(t) then the A_φ-transformed vector field A_φY is parallel along x₂(t).

- To define rolling without slipping or twisting we use the Levi-Civita connections ¹∇ and ²∇ associated with the respective metrics g₁ onΣ₁ and g₂ on Σ₂.
- Two bodies roll without slipping or twisting iff they roll without slipping, $\dot{x}_2(t) = A_{\phi(t)}\dot{x}_1(t)$, and if the following implication holds:

$$^{1}\nabla_{\dot{x}_{1}(t)}Y_{x_{1}(t)} = 0$$
 then $^{2}\nabla_{\dot{x}_{2}(t)}(A_{\phi(t)}Y_{x_{2}(t)}) = 0,$

 This means: if a vector field Y is parallel along x₁(t) then the A_φ-transformed vector field A_φY is parallel along x₂(t).

- To define rolling without slipping or twisting we use the Levi-Civita connections ¹∇ and ²∇ associated with the respective metrics g₁ onΣ₁ and g₂ on Σ₂.
- Two bodies roll without slipping or twisting iff they roll without slipping, $\dot{x}_2(t) = A_{\phi(t)}\dot{x}_1(t)$, and if the following implication holds:

$$^{1}\nabla_{\dot{x}_{1}(t)}Y_{x_{1}(t)} = 0$$
 then $^{2}\nabla_{\dot{x}_{2}(t)}(A_{\phi(t)}Y_{x_{2}(t)}) = 0,$

 This means: if a vector field Y is parallel along x₁(t) then the A_φ-transformed vector field A_φ Y is parallel along x₂(t).

Rolling distribution

- At each point (x_1, x_2, A_{ϕ}) of the configuration space, the non-slip, $\dot{x}_2(t) = A_{\phi(t)}\dot{x}_1(t)$, and non-twist, ${}^1\nabla_{\dot{x}_1(t)}Y_{x_1(t)} = 0$ then ${}^2\nabla_{\dot{x}_2(t)}(A_{\phi(t)}Y_{x_2(t)}) = 0$, conditions define THREE independent LINEAR constraints on velocities $(\dot{x}_1, \dot{x}_2, \dot{A}_{\phi})$. Thus, if we consider rolling without slipping or twisting, the vector space $\mathcal{D}_{(x_1, x_2, A_{\phi})}$ of possible velocities of the system is TWO-dimensional.
- This defines a rank 2 distribution \mathcal{D} on $\mathcal{C}(\Sigma_1, \Sigma_2)$, which we call the *rolling distribution*.

Rolling distribution

- At each point (x_1, x_2, A_{ϕ}) of the configuration space, the non-slip, $\dot{x}_2(t) = A_{\phi(t)}\dot{x}_1(t)$, and non-twist, ${}^1\nabla_{\dot{x}_1(t)}Y_{x_1(t)} = 0$ then ${}^2\nabla_{\dot{x}_2(t)}(A_{\phi(t)}Y_{x_2(t)}) = 0$, conditions define THREE independent LINEAR constraints on velocities $(\dot{x}_1, \dot{x}_2, \dot{A}_{\phi})$. Thus, if we consider rolling without slipping or twisting, the vector space $\mathcal{D}_{(x_1, x_2, A_{\phi})}$ of possible velocities of the system is TWO-dimensional.
- This defines a rank 2 distribution \mathcal{D} on $\mathcal{C}(\Sigma_1, \Sigma_2)$, which we call the *rolling distribution*.

Rolling distribution

- At each point (x₁, x₂, A_φ) of the configuration space, the non-slip, x₂(t) = A_{φ(t)}x₁(t), and non-twist,
 ¹∇_{x1(t)}Y_{x1(t)} = 0 then ²∇_{x2(t)}(A_{φ(t)}Y_{x2(t)}) = 0, conditions define THREE independent LINEAR constraints on velocities (x₁, x₂, A_φ). Thus, if we consider rolling without slipping or twisting, the vector space D_(x1,x2,Aφ) of possible velocities of the system is TWO-dimensional.
- This defines a rank 2 distribution D on C(Σ₁, Σ₂), which we call the *rolling distribution*.

Our Problem for rolling

- We've just produced a lot of examples of physcial systems, which are naturally 5-dimensional, and which are naturally equipped with a structure of a 2-distribution.
- Find pairs of surfaces ((Σ₁, g₁), (Σ₂, g₂)) for which this distribution is (2, 3, 5). Among them find such for which the symmetry of the rolling distribution is G₂.

Our Problem for rolling

- We've just produced a lot of examples of physcial systems, which are naturally 5-dimensional, and which are naturally equipped with a structure of a 2-distribution.
- Find pairs of surfaces ((Σ₁, g₁), (Σ₂, g₂)) for which this distribution is (2, 3, 5). Among them find such for which the symmetry of the rolling distribution is G₂.

Our Problem for rolling

- We've just produced a lot of examples of physcial systems, which are naturally 5-dimensional, and which are naturally equipped with a structure of a 2-distribution.
- Find pairs of surfaces ((Σ₁, g₁), (Σ₂, g₂)) for which this distribution is (2, 3, 5). Among them find such for which the symmetry of the rolling distribution is G₂.

A bit of thinking

- For the rolling distribution to have G₂ symmetry it is neccessary (and sufficient) that the Cartan quartic C(ξ) vanishes identically.
- These requires that five PDEs Φ_μ = 0, μ = 0, 1, 2, 3, 4, should have a solution, for the unknown metrics g₁ and g₂.
- Recall that g_1 is defined on Σ_1 and g_2 is defined on Σ_2 , and that every metric in 2-dimensions is locally conformally flat, so we can write $g_1 = e^{2h_1}g_0$ and $g_2 = e^{2h_2}g_0$, with g_0 being the flat metric.
- Thus we need to have a solution to FIVE nonlinear PDEs for only TWO unknown functions *h*₁(*x*₁) and *h*₂(*x*₂). Horribly overdetermined system!!!!
- A mathematician would say: no solutions to be expected!

- For the rolling distribution to have G₂ symmetry it is neccessary (and sufficient) that the Cartan quartic C(ξ) vanishes identically.
- These requires that five PDEs Φ_μ = 0, μ = 0, 1, 2, 3, 4, should have a solution, for the unknown metrics g₁ and g₂.
- Recall that g_1 is defined on Σ_1 and g_2 is defined on Σ_2 , and that every metric in 2-dimensions is locally conformally flat, so we can write $g_1 = e^{2h_1}g_0$ and $g_2 = e^{2h_2}g_0$, with g_0 being the flat metric.
- Thus we need to have a solution to FIVE nonlinear PDEs for only TWO unknown functions *h*₁(*x*₁) and *h*₂(*x*₂). Horribly overdetermined system!!!!
- A mathematician would say: no solutions to be expected!

- For the rolling distribution to have G₂ symmetry it is neccessary (and sufficient) that the Cartan quartic C(ξ) vanishes identically.
- These requires that five PDEs Φ_μ = 0, μ = 0, 1, 2, 3, 4, should have a solution, for the unknown metrics g₁ and g₂.
- Recall that g_1 is defined on Σ_1 and g_2 is defined on Σ_2 , and that every metric in 2-dimensions is locally conformally flat, so we can write $g_1 = e^{2h_1}g_0$ and $g_2 = e^{2h_2}g_0$, with g_0 being the flat metric.
- Thus we need to have a solution to FIVE nonlinear PDEs for only TWO unknown functions *h*₁(*x*₁) and *h*₂(*x*₂). Horribly overdetermined system!!!!
- A mathematician would say: no solutions to be expected!

- For the rolling distribution to have G₂ symmetry it is neccessary (and sufficient) that the Cartan quartic C(ξ) vanishes identically.
- These requires that five PDEs Φ_μ = 0, μ = 0, 1, 2, 3, 4, should have a solution, for the unknown metrics g₁ and g₂.
- Recall that g_1 is defined on Σ_1 and g_2 is defined on Σ_2 , and that every metric in 2-dimensions is locally conformally flat, so we can write $g_1 = e^{2h_1}g_0$ and $g_2 = e^{2h_2}g_0$, with g_0 being the flat metric.
- Thus we need to have a solution to FIVE nonlinear PDEs for only TWO unknown functions h₁(x₁) and h₂(x₂). Horribly overdetermined system!!!!
- A mathematician would say: no solutions to be expected!

- For the rolling distribution to have G₂ symmetry it is neccessary (and sufficient) that the Cartan quartic C(ξ) vanishes identically.
- These requires that five PDEs Φ_μ = 0, μ = 0, 1, 2, 3, 4, should have a solution, for the unknown metrics g₁ and g₂.
- Recall that g_1 is defined on Σ_1 and g_2 is defined on Σ_2 , and that every metric in 2-dimensions is locally conformally flat, so we can write $g_1 = e^{2h_1}g_0$ and $g_2 = e^{2h_2}g_0$, with g_0 being the flat metric.
- Thus we need to have a solution to FIVE nonlinear PDEs for only TWO unknown functions *h*₁(*x*₁) and *h*₂(*x*₂). Horribly overdetermined system!!!!
- A mathematician would say: no solutions to be expected!

- For the rolling distribution to have G₂ symmetry it is neccessary (and sufficient) that the Cartan quartic C(ξ) vanishes identically.
- These requires that five PDEs Φ_μ = 0, μ = 0, 1, 2, 3, 4, should have a solution, for the unknown metrics g₁ and g₂.
- Recall that g_1 is defined on Σ_1 and g_2 is defined on Σ_2 , and that every metric in 2-dimensions is locally conformally flat, so we can write $g_1 = e^{2h_1}g_0$ and $g_2 = e^{2h_2}g_0$, with g_0 being the flat metric.
- Thus we need to have a solution to FIVE nonlinear PDEs for only TWO unknown functions *h*₁(*x*₁) and *h*₂(*x*₂). Horribly overdetermined system!!!!
- A mathematician would say: no solutions to be expected!

- For the rolling distribution to have G₂ symmetry it is neccessary (and sufficient) that the Cartan quartic C(ξ) vanishes identically.
- These requires that five PDEs Φ_μ = 0, μ = 0, 1, 2, 3, 4, should have a solution, for the unknown metrics g₁ and g₂.
- Recall that g_1 is defined on Σ_1 and g_2 is defined on Σ_2 , and that every metric in 2-dimensions is locally conformally flat, so we can write $g_1 = e^{2h_1}g_0$ and $g_2 = e^{2h_2}g_0$, with g_0 being the flat metric.
- Thus we need to have a solution to FIVE nonlinear PDEs for only TWO unknown functions *h*₁(*x*₁) and *h*₂(*x*₂). Horribly overdetermined system!!!!
- A mathematician would say: no solutions to be expected!

Kinds of mathematicians

• Clever (e.g.: Robert Bryant):

- Take as Σ₁ a ball of radius *r* with a standard round sphere Riemannina metric g₁ on it, and as Σ₂ a ball of radius *R* with a standard round sphere Riemannian metric g₂ on it.
- Then the rolling distribution of a mechanical system of these balls rolling on each other without slipping or twisting is (2, 3, 5) iff *R* ≠ *r*.
- It has in addition G₂ as a locall group of symmetries iff

$$R: r = 3$$
 or $r: R = 3$.

- Clever (e.g.: Robert Bryant):
- Take as Σ₁ a ball of radius *r* with a standard round sphere Riemannina metric g₁ on it, and as Σ₂ a ball of radius *R* with a standard round sphere Riemannian metric g₂ on it.
- Then the rolling distribution of a mechanical system of these balls rolling on each other without slipping or twisting is (2,3,5) iff R ≠ r.
- It has in addition G₂ as a locall group of symmetries iff

$$R: r = 3$$
 or $r: R = 3$.

Kinds of mathematicians

- Clever (e.g.: Robert Bryant):
- Take as Σ₁ a ball of radius *r* with a standard round sphere Riemannina metric *g*₁ on it, and as Σ₂ a ball of radius *R* with a standard round sphere Riemannian metric *g*₂ on it.
- Then the rolling distribution of a mechanical system of these balls rolling on each other without slipping or twisting is (2,3,5) iff *R* ≠ *r*.
- It has in addition G₂ as a locall group of symmetries iff

R: r = 3 or r: R = 3.

Kinds of mathematicians

- Clever (e.g.: Robert Bryant):
- Take as Σ₁ a ball of radius *r* with a standard round sphere Riemannina metric *g*₁ on it, and as Σ₂ a ball of radius *R* with a standard round sphere Riemannian metric *g*₂ on it.
- Then the rolling distribution of a mechanical system of these balls rolling on each other without slipping or twisting is (2, 3, 5) iff *R* ≠ *r*.
- It has in addition G₂ as a locall group of symmetries iff

R: r = 3 or r: R = 3.

- Diligent ignorants (e.g. me): If one assumes that one of the surfaces surfaces, Say Σ₁, has a Killing symmetry, and that the other has constant Gaussian curvature, then a litle manipulation with the 5 PDEs leads to the following conclusion:
- For the rolling distribution to be (2, 3, 5) it is necessary and sufficient that the respective Gaussian curvatures κ₁ and κ₂ for g₁ and g₂ are unequal, κ₁ ≠ κ₂, and for such (2, 3, 5) distribution to have local symmetry G₂ it is NECESSARY that

$$(9\kappa_1-\kappa_2)(9\kappa_2-\kappa_1)\kappa_2=0.$$

- Diligent ignorants (e.g. me): If one assumes that one of the surfaces surfaces, Say Σ₁, has a Killing symmetry, and that the other has constant Gaussian curvature, then a litle manipulation with the 5 PDEs leads to the following conclusion:
- For the rolling distribution to be (2, 3, 5) it is necessary and sufficient that the respective Gaussian curvatures κ₁ and κ₂ for g₁ and g₂ are unequal, κ₁ ≠ κ₂, and for such (2, 3, 5) distribution to have local symmetry G₂ it is NECESSARY that

$$(9\kappa_1-\kappa_2)(9\kappa_2-\kappa_1)\kappa_2=0.$$

- Diligent ignorants (e.g. me): If one assumes that one of the surfaces surfaces, Say Σ₁, has a Killing symmetry, and that the other has constant Gaussian curvature, then a litle manipulation with the 5 PDEs leads to the following conclusion:
- For the rolling distribution to be (2, 3, 5) it is necessary and sufficient that the respective Gaussian curvatures κ₁ and κ₂ for g₁ and g₂ are unequal, κ₁ ≠ κ₂, and for such (2,3,5) distribution to have local symmetry G₂ it is NECESSARY that

$$(9\kappa_1-\kappa_2)(9\kappa_2-\kappa_1)\kappa_2=0.$$

- Diligent ignorants (e.g. me): If one assumes that one of the surfaces surfaces, Say Σ₁, has a Killing symmetry, and that the other has constant Gaussian curvature, then a litle manipulation with the 5 PDEs leads to the following conclusion:
- For the rolling distribution to be (2, 3, 5) it is necessary and sufficient that the respective Gaussian curvatures κ_1 and κ_2 for g_1 and g_2 are unequal, $\kappa_1 \neq \kappa_2$, and for such (2, 3, 5) distribution to have local symmetry G_2 it is NECESSARY that

$$(9\kappa_1-\kappa_2)(9\kappa_2-\kappa_1)\kappa_2=0.$$

Surprising solution for $\kappa_2 = 0$

- It turns out that taking g₂ = g₀, i.e. the flat metric, there are solutions for g₁ with a Killing symmetry, such that (Σ₁, g₁) when rolling without slipping or twisting on the PLANE, has rolling distribution with G₂ symmetry.
- More precisely:

Surfaces of revolution on the plane with G₂ symmetry

Together with Daniel An we have the following:

Theorem

Modulo homotheties all metrics corresponding to surfaces with a Killing vector, which when rolling 'without slipping or twisting' on the **plane** \mathbb{R}^2 , have the velocity distribution \mathcal{D} with local symmetry G_2 are given by:

$$g_{1o} = \rho^4 d\rho^2 + \rho^2 d\varphi^2,$$

$$g_{1+} = (\rho^2 + 1)^2 d\rho^2 + \rho^2 d\varphi^2,$$

$$g_{1-} = (\rho^2 - 1)^2 d\rho^2 + \rho^2 d\varphi^2,$$

Theorem (continued)

Theorem

or, collectively as:

$$g_1 = (\rho^2 + \epsilon)^2 d\rho^2 + \rho^2 d\varphi^2$$
, where $\epsilon = 0, \pm 1$.

Their curvature is given by

$$\kappa_1 = \frac{2}{(\rho^2 + \epsilon)^3}.$$

Surfaces of revolution on the plane with G₂ symmetry

Theorem

Let \mathcal{U} be a region of one of the Riemann surfaces (Σ_1, g_1) of the previous Theorem, in which the curvature κ_1 is nonnegative. In the case $\epsilon = +1$, such a region can be isometrically embedded in flat \mathbb{R}^3 as a surface of revolution. The embedded surface, when written in the Cartesian coordinates (X, Y, Z) in \mathbb{R}^3 , is algebraic, with the embedding given by

$$(X^2 + Y^2 + 2)^3 - 9Z^2 = 0, \qquad \epsilon = +1.$$

Theorem (continued)

Theorem

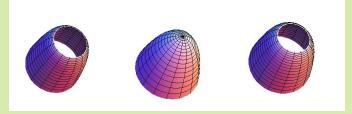
In the case $\epsilon = -1$, one can find an isometric embedding in \mathbb{R}^3 of a portion of \mathcal{U} given by $\varphi \in [0, 2\pi[, \rho \ge \sqrt{2}.$ This embedding gives another surface of revolution which is also algebraic, and in the Cartesian coordinates (X, Y, Z), given by

$$(X^2 + Y^2 - 2)^3 - 9Z^2 = 0, \qquad \epsilon = -1.$$

In the case $\epsilon = 0$, one can embed a portion of \mathcal{U} with $\rho \ge 1$ in \mathbb{R}^3 as a surface of revolution

$$Z = f(\sqrt{X^2 + Y^2})$$
, with $f(t) = \int_{\rho=1}^t \sqrt{\rho^4 - 1} \, \mathrm{d}\rho$.

How do they look?



Rysunek: The Mathematica print of the three surfaces of revolution, whose induced metric from \mathbb{R}^3 is given, from left to right, by respective metrics g_{1-} , g_{1+} and g_{1o} . The middle figure embeds all (Σ_1, g_{1+}) . In the left figure only the portion of (Σ_1, g_{1-}) with *positive* curvature is embedded, and in the right figure only points of (Σ_1, g_{1o}) with $\rho > 1$ are embedded. It is why the left and right figures have holes on the top. All three surface, when rolling on a plane 'without twisting or slipping' have the rolling distribution with symmetry G_2 .

Twistor interpretation of rolling

- Given the surfaces (Σ₁, g₂) and (Σ₂, g₂) which we want roll on each other, we now consider a 4-manifold M = Σ₁ × Σ₂ and equipe it with the split signature metric g = g₁ ⊖ g₂.
- This defines a circle twistor bundle

$\mathbb{S}^1 o \mathbb{T}(\Sigma_1 imes \Sigma_2) \stackrel{\pi}{ o} \Sigma_1 imes \Sigma_2,$

of real selfdual 2-planes over M.

Chosing an orthonormal frame (e₁, f₁) for g₁ and an orthonormal frame (e₂, f₂) for g₂ the fibers of this bundle over a point (x₁, x₂) ∈ M are planes

 $N_{\phi} = \operatorname{Span}(e_1 + e_2 \cos \phi + f_2 \sin \phi, f_1 - e_2 \sin \phi + f_2 \cos \phi).$

Here ϕ is a fiber coordiante $\phi \in [0, 2\pi]$.

Since g_i(e_i, f_i) = 0, g_i(e_i, e_i) = g_i(f_i, f_i) = 1, i = 1, 2, the planes N_φ are *real totally null*. Hence self-dual with a proper choice of orientation in M.

Twistor interpretation of rolling

- Given the surfaces (Σ₁, g₂) and (Σ₂, g₂) which we want roll on each other, we now consider a 4-manifold M = Σ₁ × Σ₂ and equipe it with the split signature metric g = g₁ ⊖ g₂.
- This defines a circle twistor bundle

 $\mathbb{S}^1 \to \mathbb{T}(\Sigma_1 \times \Sigma_2) \stackrel{\pi}{\to} \Sigma_1 \times \Sigma_2,$

of real selfdual 2-planes over M.

Chosing an orthonormal frame (e₁, f₁) for g₁ and an orthonormal frame (e₂, f₂) for g₂ the fibers of this bundle over a point (x₁, x₂) ∈ M are planes

 $N_{\phi} = \operatorname{Span}(e_1 + e_2 \cos \phi + f_2 \sin \phi, f_1 - e_2 \sin \phi + f_2 \cos \phi).$

Here ϕ is a fiber coordiante $\phi \in [0, 2\pi]$.

Since g_i(e_i, f_i) = 0, g_i(e_i, e_i) = g_i(f_i, f_i) = 1, i = 1, 2, the planes N_φ are *real totally null*. Hence self-dual with a proper choice of orientation in M.

Twistor interpretation of rolling

- Given the surfaces (Σ₁, g₂) and (Σ₂, g₂) which we want roll on each other, we now consider a 4-manifold M = Σ₁ × Σ₂ and equipe it with the split signature metric g = g₁ ⊖ g₂.
- This defines a circle twistor bundle

 $\mathbb{S}^1 \to \mathbb{T}(\Sigma_1 \times \Sigma_2) \stackrel{\pi}{\to} \Sigma_1 \times \Sigma_2,$

of real selfdual 2-planes over M.

Chosing an orthonormal frame (e₁, f₁) for g₁ and an orthonormal frame (e₂, f₂) for g₂ the fibers of this bundle over a point (x₁, x₂) ∈ M are planes

 $N_{\phi} = \operatorname{Span}(e_1 + e_2 \cos \phi + f_2 \sin \phi, f_1 - e_2 \sin \phi + f_2 \cos \phi).$

Here ϕ is a fiber coordiante $\phi \in [0, 2\pi]$.

Since g_i(e_i, f_i) = 0, g_i(e_i, e_i) = g_i(f_i, f_i) = 1, i = 1, 2, the planes N_φ are *real totally null*. Hence self-dual with a proper choice of orientation in M.

Twistor interpretation of rolling

- Given the surfaces (Σ₁, g₂) and (Σ₂, g₂) which we want roll on each other, we now consider a 4-manifold M = Σ₁ × Σ₂ and equipe it with the split signature metric g = g₁ ⊖ g₂.
- This defines a circle twistor bundle

 $\mathbb{S}^1 \to \mathbb{T}(\Sigma_1 \times \Sigma_2) \stackrel{\pi}{\to} \Sigma_1 \times \Sigma_2,$

of real selfdual 2-planes over M.

• Chosing an orthonormal frame (e_1, f_1) for g_1 and an orthonormal frame (e_2, f_2) for g_2 the fibers of this bundle over a point $(x_1, x_2) \in M$ are planes

 $N_{\phi} = \operatorname{Span}(e_1 + e_2 \cos \phi + f_2 \sin \phi, f_1 - e_2 \sin \phi + f_2 \cos \phi).$

Here ϕ is a fiber coordiante $\phi \in [0, 2\pi]$.

• Since $g_i(e_i, f_i) = 0$, $g_i(e_i, e_i) = g_i(f_i, f_i) = 1$, i = 1, 2, the planes N_{ϕ} are *real totally null*. Hence self-dual with a proper choice of orientation in M.

Twistor interpretation of rolling

• There is a bundle isomorphism

 $\Phi \ : \ \mathbb{T}(\Sigma_1 \times \Sigma_2) \to \textit{C}(\Sigma_1, \Sigma_2)$

given by $\Phi(x_1, x_2, N_{\phi}) = (x_1, x_2, A_{\phi})$, with

$$A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}.$$

- This defines a rank 2-distribution $\mathcal{D}_{\mathbb{T}} = \Phi_*^{-1}\mathcal{D}$ on the circle twistor bundle, which we call *twistor distribution*.
- In this way we have a *twistorial interpretation* of rolling without slipping or twisting: curves in the circle twistor bundle tangent to the twistor distribution are trajectories of such rolling.

Twistor interpretation of rolling

• There is a bundle isomorphism

 $\Phi \ : \ \mathbb{T}(\Sigma_1 \times \Sigma_2) \to \textit{C}(\Sigma_1, \Sigma_2)$

given by $\Phi(x_1, x_2, N_{\phi}) = (x_1, x_2, A_{\phi})$, with

$$A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}.$$

- This defines a rank 2-distribution $\mathcal{D}_{\mathbb{T}} = \Phi_*^{-1}\mathcal{D}$ on the circle twistor bundle, which we call *twistor distribution*.
- In this way we have a *twistorial interpretation* of rolling without slipping or twisting: curves in the circle twistor bundle tangent to the twistor distribution are trajectories of such rolling.

Twistor interpretation of rolling

• There is a bundle isomorphism

 $\Phi \ : \ \mathbb{T}(\Sigma_1 \times \Sigma_2) \to \textit{C}(\Sigma_1, \Sigma_2)$

given by $\Phi(x_1, x_2, N_{\phi}) = (x_1, x_2, A_{\phi})$, with

$$A_{\phi} = egin{pmatrix} \cos \phi & -\sin \phi \ \sin \phi & \cos \phi \end{pmatrix}.$$

- This defines a rank 2-distribution $\mathcal{D}_{\mathbb{T}} = \Phi_*^{-1}\mathcal{D}$ on the circle twistor bundle, which we call *twistor distribution*.
- In this way we have a *twistorial interpretation* of rolling without slipping or twisting: curves in the circle twistor bundle tangent to the twistor distribution are trajectories of such rolling.

Twistor circle bundle may have non-product base

- Twistor circle bundle can be defined over ANY 4-manifold *M* equipped with a split signature metric *g*. We do NOT need either *M* = Σ₁ × Σ₂ or *g* = *g*₁ ⇔ *g*₂.
- Given any split signature metric g in dimension 4, we can always find an orthonormal frame (e_1, f_1, e_2, f_2) in which $g(e_1, e_1) = g(f_1, f_1) = 1 = -g(e_2, e_2) = -g(f_2, f_2)$ with all other products zero.
- In such frame

 $N_{\phi} = \operatorname{Span}(e_1 + e_2 \cos \phi + f_2 \sin \phi, f_1 - e_2 \sin \phi + f_2 \cos \phi),$

Twistor circle bundle may have non-product base

- Twistor circle bundle can be defined over ANY 4-manifold *M* equipped with a split signature metric *g*. We do NOT need either *M* = Σ₁ × Σ₂ or *g* = *g*₁ ⊖ *g*₂.
- Given any split signature metric g in dimension 4, we can always find an orthonormal frame (e_1, f_1, e_2, f_2) in which $g(e_1, e_1) = g(f_1, f_1) = 1 = -g(e_2, e_2) = -g(f_2, f_2)$ with all other products zero.

• In such frame

 $N_{\phi} = \operatorname{Span}(e_1 + e_2 \cos \phi + f_2 \sin \phi, f_1 - e_2 \sin \phi + f_2 \cos \phi),$

Twistor circle bundle may have non-product base

- Twistor circle bundle can be defined over ANY 4-manifold *M* equipped with a split signature metric *g*. We do NOT need either *M* = Σ₁ × Σ₂ or *g* = *g*₁ ⊖ *g*₂.
- Given any split signature metric g in dimension 4, we can always find an orthonormal frame (e_1, f_1, e_2, f_2) in which $g(e_1, e_1) = g(f_1, f_1) = 1 = -g(e_2, e_2) = -g(f_2, f_2)$ with all other products zero.

In such frame

 $N_{\phi} = \operatorname{Span}(e_1 + e_2 \cos \phi + f_2 \sin \phi, f_1 - e_2 \sin \phi + f_2 \cos \phi),$

Twistor circle bundle may have non-product base

- Twistor circle bundle can be defined over ANY 4-manifold *M* equipped with a split signature metric *g*. We do NOT need either *M* = Σ₁ × Σ₂ or *g* = *g*₁ ⊖ *g*₂.
- Given any split signature metric g in dimension 4, we can always find an orthonormal frame (e_1, f_1, e_2, f_2) in which $g(e_1, e_1) = g(f_1, f_1) = 1 = -g(e_2, e_2) = -g(f_2, f_2)$ with all other products zero.
- In such frame

 $N_{\phi} = \operatorname{Span}(e_1 + e_2 \cos \phi + f_2 \sin \phi, f_1 - e_2 \sin \phi + f_2 \cos \phi),$

Twistor circle bundle may have non-product base

- Twistor circle bundle can be defined over ANY 4-manifold *M* equipped with a split signature metric *g*. We do NOT need either *M* = Σ₁ × Σ₂ or *g* = *g*₁ ⊖ *g*₂.
- Given any split signature metric g in dimension 4, we can always find an orthonormal frame (e_1, f_1, e_2, f_2) in which $g(e_1, e_1) = g(f_1, f_1) = 1 = -g(e_2, e_2) = -g(f_2, f_2)$ with all other products zero.
- In such frame

 $N_{\phi} = \operatorname{Span}(e_1 + e_2 \cos \phi + f_2 \sin \phi, f_1 - e_2 \sin \phi + f_2 \cos \phi),$

Twistor circle bundle have twistor distribution

- Let S¹ → T(M) [#]→ M be a twistor circle bundle of totally null selfdual planes over a 4-dimensional manifold M equipped with the split signature metric g.
- There is a natural rank three distribution \mathcal{D}^2 defined an $\mathbb{T}(M)$.
- The 3-plane D²_(x,N_φ) at a point N_φ in the fiber over x ∈ M is defined by the property π_{*}(D²_(x,N_φ)) = N_φ.

Twistor circle bundle have twistor distribution

- Let S¹ → T(M) [#]→ M be a twistor circle bundle of totally null selfdual planes over a 4-dimensional manifold M equipped with the split signature metric g.
- There is a natural rank three distribution \mathcal{D}^2 defined an $\mathbb{T}(M)$.
- The 3-plane D²_(x,N_φ) at a point N_φ in the fiber over x ∈ M is defined by the property π_{*}(D²_(x,N_φ)) = N_φ.

Twistor circle bundle have twistor distribution

- Let S¹ → T(M) ^π→ M be a twistor circle bundle of totally null selfdual planes over a 4-dimensional manifold M equipped with the split signature metric g.
- There is a natural rank three distribution \mathcal{D}^2 defined an $\mathbb{T}(M)$.
- The 3-plane D²_(x,N_φ) at a point N_φ in the fiber over x ∈ M is defined by the property π_{*}(D²_(x,N_φ)) = N_φ.

Twistor circle bundle have twistor distribution

Again with Daniel An we have:

Theorem

If the Weyl tensor of metric g on M has nonvanishing self-dual part, then the distribution \mathcal{D}^2 on $\mathbb{T}(M)$ satisfies

 $\mathcal{D}^2 = [\mathcal{D}, \mathcal{D}],$

almost everywhere, with uniquely defined distribution \mathcal{D} , which is (2,3,5).

Here, the term 'almost everywhere' means: 'everywhere except at maximally four points in each fiber $\pi^{-1}(x)$ '.

Twistor circle bundle have twistor distribution

Again with Daniel An we have:

Theorem

If the Weyl tensor of metric g on M has nonvanishing self-dual part, then the distribution \mathcal{D}^2 on $\mathbb{T}(M)$ satisfies

 $\mathcal{D}^2 = [\mathcal{D}, \mathcal{D}],$

almost everywhere, with uniquely defined distribution \mathcal{D} , which is (2,3,5).

Here, the term 'almost everywhere' means: 'everywhere except at maximally four points in each fiber $\pi^{-1}(x)$ '.

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$

- The rank 2 distribution D on T(M) as defined on the previous slide is called twistor distribution on T(M).
- Fact: In case when M = Σ₁ × Σ₂ and g = g₁ ⊖ g₂ the so defined twistor distribution on T(M) ≃ Φ⁻¹(C(Σ₁, Σ₂)) coincides with the rolling distribution Φ⁻¹_{*}D.

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$

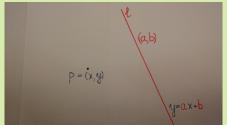
- The rank 2 distribution D on T(M) as defined on the previous slide is called twistor distribution on T(M).
- Fact: In case when M = Σ₁ × Σ₂ and g = g₁ ⊖ g₂ the so defined twistor distribution on T(M) ≃ Φ⁻¹(C(Σ₁, Σ₂)) coincides with the rolling distribution Φ_{*}⁻¹D.

Returning question

Can we find all 4-manifolds *M* with split signature metric *g* for which the twistor distribution \mathcal{D} on $\mathbb{T}(M)$ has **G**₂ symmetry?

Ice dancing

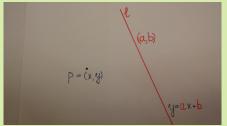
- On an ice ring consider a one leg skater ℓ and a spectator
 - **p**. The pair (p, ℓ) is going to perform a certain movement on the ring. The rules of the movement (dance) are as follows.
- Idealization: We have a pair (p, ℓ) of a point p ∈ ℝ² and a line ℓ ∈ ℝ².



<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回</p>

Ice dancing

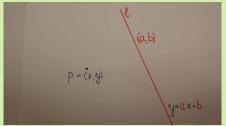
- On an ice ring consider a one leg skater l and a spectator
 p. The pair (p, l) is going to perform a certain movement on the ring. The rules of the movement (dance) are as follows.
- Idealization: We have a pair (p, ℓ) of a point p ∈ ℝ² and a line ℓ ∈ ℝ².



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ice dancing

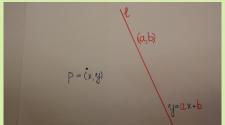
- On an ice ring consider a one leg skater l and a spectator
 p. The pair (p, l) is going to perform a certain movement on the ring. The rules of the movement (dance) are as follows.
- Idealization: We have a pair (p, ℓ) of a point p ∈ ℝ² and a line ℓ ∈ ℝ².



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ice dancing

- On an ice ring consider a one leg skater *l* and a spectator
 p. The pair (*p*, *l*) is going to perform a certain movement on the ring. The rules of the movement (dance) are as follows.
- Idealization: We have a pair (p, ℓ) of a point p ∈ ℝ² and a line ℓ ∈ ℝ².

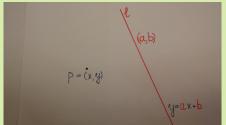


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

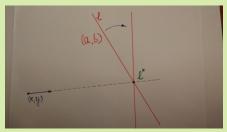
 $\begin{array}{c} (2,3,5) \text{ distributions} \\ \text{Rolling without slipping or twisting} \\ \text{Ice dancing: rolling } \mathbb{R}^{P^2} \text{ on its dual} \end{array}$

Ice dancing

- On an ice ring consider a one leg skater l and a spectator
 p. The pair (p, l) is going to perform a certain movement on the ring. The rules of the movement (dance) are as follows.
- Idealization: We have a pair (p, ℓ) of a point p ∈ ℝ² and a line ℓ ∈ ℝ².

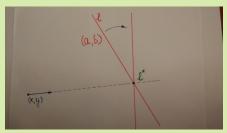


- Our configuration space is then 4-dimensional manifold
 M = (ℝP² × (ℝP²)*) \ I, where I is the singular locus consisting of pairs (p, ℓ) such that p ∈ ℓ.
- A movement of a pair (p, ℓ) draws a curve $\gamma(t) = (p(t), \ell(t))$ in *M*.
- What does it mean that a line l(t) is moving at the moment t? It means that it is *rotating* around some point l*(t) on it.

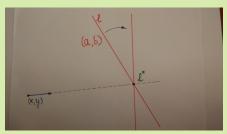


- Our configuration space is then 4-dimensional manifold
 M = (ℝP² × (ℝP²)*) \ I, where I is the singular locus
 consisting of pairs (p, ℓ) such that p ∈ ℓ.
- A movement of a pair (p, ℓ) draws a curve $\gamma(t) = (p(t), \ell(t))$ in *M*.
- What does it mean that a line l(t) is moving at the moment t? It means that it is *rotating* around some point l*(t) on it.

- Our configuration space is then 4-dimensional manifold
 M = (ℝP² × (ℝP²)*) \ I, where I is the singular locus
 consisting of pairs (p, ℓ) such that p ∈ ℓ.
- A movement of a pair (p, ℓ) draws a curve $\gamma(t) = (p(t), \ell(t))$ in *M*.
- What does it mean that a line l(t) is moving at the moment t? It means that it is *rotating* around some point l*(t) on it.

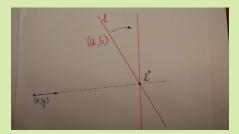


- Our configuration space is then 4-dimensional manifold
 M = (ℝP² × (ℝP²)*) \ I, where I is the singular locus
 consisting of pairs (p, ℓ) such that p ∈ ℓ.
- A movement of a pair (p, ℓ) draws a curve $\gamma(t) = (p(t), \ell(t))$ in *M*.
- What does it mean that a line ℓ(t) is moving at the moment t? It means that it is *rotating* around some point ℓ^{*}(t) on it.



Dancing condition

The rule for the coordinated movement of a pair (p, ℓ) - the 'dancing condition' - is as follows: at every moment t the point p(t) goes in the direction of the rotation point $\ell^*(t)$ of the line $\ell(t)$.



- The dancing condition singles out a unique conformal class [g] of split signature metrics on M. Indeed in the parametrization (x, y, a, b) of a point (x, y) and a line y = ax + b we have :
- The rotation point $\ell^*(t) = (x^*(t), y^*(t))$ satisfies $y^* = ax^* + b$ and $y^* = (a + adt)x^* + b + bdt$. This gives: $(x^*, y^*) = (-\frac{b}{a}, -a\frac{b}{a} + b)$.
- Dancing condition: $\begin{pmatrix} x x^* \\ y y^* \end{pmatrix} \parallel \begin{pmatrix} dx \\ dy \end{pmatrix}$ gives: $(x - x^*)\dot{y} - (y - y^*)\dot{x} = 0.$
- Inserting and grouping the terms we get:

$$(x\dot{a}+\dot{b})\dot{y}-(a\dot{b}+(y-b)\dot{a})\dot{x}=0.$$

 $\begin{array}{c} (2,3,5) \text{ distributions} \\ \text{Rolling without slipping or twisting} \\ \text{Ice dancing: rolling } \mathbb{R}^{P^2} \text{ on its dual} \end{array}$

- The dancing condition singles out a unique conformal class [g] of split signature metrics on M. Indeed in the parametrization (x, y, a, b) of a point (x, y) and a line y = ax + b we have :
- The rotation point $\ell^*(t) = (x^*(t), y^*(t))$ satisfies $y^* = ax^* + b$ and $y^* = (a + \dot{a}dt)x^* + b + \dot{b}dt$. This gives: $(x^*, y^*) = (-\frac{\dot{b}}{\dot{a}}, -a\frac{\dot{b}}{\dot{a}} + b)$.
- Dancing condition: $\begin{pmatrix} x x^* \\ y y^* \end{pmatrix} \parallel \begin{pmatrix} dx \\ dy \end{pmatrix}$ gives: $(x - x^*)\dot{y} - (y - y^*)\dot{x} = 0.$
- Inserting and grouping the terms we get:

$$(x\dot{a}+\dot{b})\dot{y}-(a\dot{b}+(y-b)\dot{a})\dot{x}=0.$$

- The dancing condition singles out a unique conformal class [g] of split signature metrics on *M*. Indeed in the parametrization (x, y, a, b) of a point (x, y) and a line y = ax + b we have :
- The rotation point $\ell^*(t) = (x^*(t), y^*(t))$ satisfies $y^* = ax^* + b$ and $y^* = (a + \dot{a}dt)x^* + b + \dot{b}dt$. This gives: $(x^*, y^*) = (-\frac{\dot{b}}{\dot{a}}, -a\frac{\dot{b}}{\dot{a}} + b)$.
- Dancing condition: $\begin{pmatrix} x x \\ y y^* \end{pmatrix} \parallel \begin{pmatrix} dx \\ dy \end{pmatrix}$ gives $(x x^*)\dot{y} (y y^*)\dot{x} = 0.$
- Inserting and grouping the terms we get:

$$(x\dot{a}+\dot{b})\dot{y}-(a\dot{b}+(y-b)\dot{a})\dot{x}=0.$$

- The dancing condition singles out a unique conformal class [g] of split signature metrics on *M*. Indeed in the parametrization (x, y, a, b) of a point (x, y) and a line y = ax + b we have :
- The rotation point $\ell^*(t) = (x^*(t), y^*(t))$ satisfies $y^* = ax^* + b$ and $y^* = (a + \dot{a}dt)x^* + b + \dot{b}dt$. This gives: $(x^*, y^*) = (-\frac{\dot{b}}{\dot{a}}, -a\frac{\dot{b}}{\dot{a}} + b)$.
- Dancing condition: $\begin{pmatrix} x x^* \\ y y^* \end{pmatrix} \parallel \begin{pmatrix} dx \\ dy \end{pmatrix}$ gives: $(x - x^*)\dot{y} - (y - y^*)\dot{x} = 0.$
- Inserting and grouping the terms we get:

$$(x\dot{a}+\dot{b})\dot{y}-(a\dot{b}+(y-b)\dot{a})\dot{x}=0.$$

- The dancing condition singles out a unique conformal class [g] of split signature metrics on *M*. Indeed in the parametrization (x, y, a, b) of a point (x, y) and a line y = ax + b we have :
- The rotation point $\ell^*(t) = (x^*(t), y^*(t))$ satisfies $y^* = ax^* + b$ and $y^* = (a + \dot{a}dt)x^* + b + \dot{b}dt$. This gives: $(x^*, y^*) = (-\frac{\dot{b}}{\dot{a}}, -a\frac{\dot{b}}{\dot{a}} + b)$.
- Dancing condition: $\begin{pmatrix} x x^* \\ y y^* \end{pmatrix} \parallel \begin{pmatrix} dx \\ dy \end{pmatrix}$ gives: $(x x^*)\dot{y} (y y^*)\dot{x} = 0.$
- Inserting and grouping the terms we get:

$$(x\dot{a}+\dot{b})\dot{y}-(a\dot{b}+(y-b)\dot{a})\dot{x}=0.$$

 $\begin{array}{c} (2,3,5) \text{ distributions} \\ \text{Rolling without slipping or twisting} \\ \text{Ice dancing: rolling } \mathbb{R}^{P^2} \text{ on its dual} \end{array}$

Dancing metric

 Thus, every curve (x(t), y(t), a(t), b(t)) ⊂ M satisfying dancing condition is a *null* curve in the (2, 2) signature metric

$$g = (x da + db) dy - (a db + (y - b) da) dx.$$

- Since the conformal class [g] with the metric representative g as above was defined only in terms of points, lines and their incidences in RP², by construction it is SL(3, R) invariant. Thus the conformal class [g] has at least 8-dimensional Lie algebra of conformal symmetries.
- It follows that [g] contains precisely one metric g_E ∈ [g] which has SL(3, ℝ) as the group of *isometries*. We call g_E the *dancing metric* on M.

Dancing metric

 Thus, every curve (x(t), y(t), a(t), b(t)) ⊂ M satisfying dancing condition is a *null* curve in the (2, 2) signature metric

$$g = (x \mathrm{d}a + \mathrm{d}b)\mathrm{d}y - (a\mathrm{d}b + (y - b)\mathrm{d}a)\mathrm{d}x.$$

 Since the conformal class [g] with the metric representative g as above was defined only in terms of points, lines and their incidences in RP², by construction it is SL(3, R) invariant. Thus the conformal class [g] has at least 8-dimensional Lie algebra of conformal symmetries.

It follows that [g] contains precisely one metric g_E ∈ [g] which has SL(3, ℝ) as the group of *isometries*. We call g_E the *dancing metric* on M.

 $\begin{array}{c} (2,3,5) \text{ distributions} \\ \text{Rolling without slipping or twisting} \\ \text{Ice dancing: rolling } \mathbb{R}^{P^2} \text{ on its dual} \end{array}$

Dancing metric

 Thus, every curve (x(t), y(t), a(t), b(t)) ⊂ M satisfying dancing condition is a *null* curve in the (2, 2) signature metric

$$g = (x da + db) dy - (a db + (y - b) da) dx$$

- Since the conformal class [g] with the metric representative g as above was defined only in terms of points, lines and their incidences in RP², by construction it is SL(3, R) invariant. Thus the conformal class [g] has at least 8-dimensional Lie algebra of conformal symmetries.
- It follows that [g] contains precisely one metric g_E ∈ [g] which has SL(3, ℝ) as the group of *isometries*. We call g_E the *dancing metric* on M.

- The dancing metric is Einstein, and has has nonvanishing selfdual Weyl tensor.
- In the local coordinates (x, y, a, b) on *M* it reads:

$$g_E = \frac{(x da + db)dy - (a db + (y - b)da)dx}{(y - ax - b)^2}$$

- Considering the circle twistor bundle T(M) over (M, g_E), we have the twistor distribution D in T(M) which is (2,3,5).
- Moreover, since the eight infinitesimal isometries, by the functoriality of the construction, give rise to eight infinitesimal symetries of \mathcal{D} , we conclude that the twistor distribution associated with (M, g_E) has at least 8-dimensional Lie algebra of infinitesimal symetries, hence it has 14 symetries by Cartan's submaximality result.

- The dancing metric is Einstein, and has has nonvanishing selfdual Weyl tensor.
- In the local coordinates (*x*, *y*, *a*, *b*) on *M* it reads:

$$g_E = \frac{(x \mathrm{d}a + \mathrm{d}b)\mathrm{d}y - (a\mathrm{d}b + (y - b)\mathrm{d}a)\mathrm{d}x}{(y - ax - b)^2}$$

- Considering the circle twistor bundle T(M) over (M, g_E), we have the twistor distribution D in T(M) which is (2,3,5).
- Moreover, since the eight infinitesimal isometries, by the functoriality of the construction, give rise to eight infinitesimal symetries of \mathcal{D} , we conclude that the twistor distribution associated with (M, g_E) has at least 8-dimensional Lie algebra of infinitesimal symetries, hence it has 14 symetries by Cartan's submaximality result.

- The dancing metric is Einstein, and has has nonvanishing selfdual Weyl tensor.
- In the local coordinates (*x*, *y*, *a*, *b*) on *M* it reads:

$$g_E = \frac{(x \mathrm{d}a + \mathrm{d}b) \mathrm{d}y - (a \mathrm{d}b + (y - b) \mathrm{d}a) \mathrm{d}x}{(y - ax - b)^2}$$

- Considering the circle twistor bundle T(M) over (M, g_E), we have the twistor distribution D in T(M) which is (2,3,5).
- Moreover, since the eight infinitesimal isometries, by the functoriality of the construction, give rise to eight infinitesimal symetries of D, we conclude that the twistor distribution associated with (M, g_E) has at least 8-dimensional Lie algebra of infinitesimal symetries, hence it has 14 symetries by Cartan's submaximality result.

- The dancing metric is Einstein, and has has nonvanishing selfdual Weyl tensor.
- In the local coordinates (*x*, *y*, *a*, *b*) on *M* it reads:

$$g_E = \frac{(x \mathrm{d}a + \mathrm{d}b)\mathrm{d}y - (a \mathrm{d}b + (y - b)\mathrm{d}a)\mathrm{d}x}{(y - ax - b)^2}$$

- Considering the circle twistor bundle T(M) over (M, g_E), we have the twistor distribution D in T(M) which is (2,3,5).
- Moreover, since the eight infinitesimal isometries, by the functoriality of the construction, give rise to eight infinitesimal symetries of \mathcal{D} , we conclude that the twistor distribution associated with (M, g_E) has at least 8-dimensional Lie algebra of infinitesimal symetries, hence it has 14 symetries by Cartan's submaximality result.

Dancing metric and C

With Gil Bor we have the following:

Theorem

The twistor distribution \mathcal{D} on the circle twistor bundle $\mathbb{T}(M)$ over the manifold $M = (\mathbb{R}P^2 \times (\mathbb{R}P^2)^*) \setminus I$ equipped with the dancing metric g_E has the split real form of the simple exceptional Lie group G_2 as a group of its symmetries.

Remark Note that we've found a geometric realization of the group G_2 using only projective notions in \mathbb{R}^2 .

Dancing metric and C

With Gil Bor we have the following:

Theorem

The twistor distribution \mathcal{D} on the circle twistor bundle $\mathbb{T}(M)$ over the manifold $M = (\mathbb{R}P^2 \times (\mathbb{R}P^2)^*) \setminus I$ equipped with the dancing metric g_E has the split real form of the simple exceptional Lie group G_2 as a group of its symmetries.

Remark Note that we've found a geometric realization of the group G_2 using only projective notions in \mathbb{R}^2 .

Rolling \mathbb{R}^{P2} on $(\mathbb{R}^{P2})^*$ without slipping or twisting

• Note that for (M, g_E) we have well defined projections $\alpha : \mathbb{T}(M) \to \mathbb{R}P^2$ and $\beta : \mathbb{T}(M) \to (\mathbb{R}P^2)^*$. In coordinates (x, y, a, b, N_{ϕ}) on $\mathbb{T}(M)$ we have:

 $lpha(x, y, a, b, N_{\phi}) = (x, y) \in \mathbb{R}P^2$, and $eta(x, y, a, b, N_{\phi}) = (a, b) \in (\mathbb{R}P^2)^*.$

- Thus, a curve $\tilde{\gamma}(t) = (x(t), y(t), a(t), b(t), N_{\phi(t)})$ in $\mathbb{T}(M)$ tangent to the twistor distribution $\mathcal{D}, \dot{\tilde{\gamma}}(t) \in \mathcal{D}$, defines curves p(t) = (x(t), y(t)) and $\ell(t) = (a(t), b(t))$, respectively in $\mathbb{R}P^2$ and $(\mathbb{R}P^2)^*$.
- By analogy with the usual rolling of surfaces, we may think of these p(t) and ℓ(t) as traces of a process of rolling without slipping or twisting of ℝP² on (ℝP²)*.

Rolling \mathbb{R}^{P2} on $(\mathbb{R}^{P2})^*$ without slipping or twisting

• Note that for (M, g_E) we have well defined projections $\alpha : \mathbb{T}(M) \to \mathbb{R}P^2$ and $\beta : \mathbb{T}(M) \to (\mathbb{R}P^2)^*$. In coordinates (x, y, a, b, N_{ϕ}) on $\mathbb{T}(M)$ we have:

 $lpha(x, y, a, b, N_{\phi}) = (x, y) \in \mathbb{R}P^2$, and $\beta(x, y, a, b, N_{\phi}) = (a, b) \in (\mathbb{R}P^2)^*.$

- Thus, a curve γ˜(t) = (x(t), y(t), a(t), b(t), N_{φ(t)}) in T(M) tangent to the twistor distribution D, γ˜(t) ∈ D, defines curves p(t) = (x(t), y(t)) and ℓ(t) = (a(t), b(t)), respectively in ℝP² and (ℝP²)*.
- By analogy with the usual rolling of surfaces, we may think of these p(t) and ℓ(t) as traces of a process of rolling without slipping or twisting of ℝP² on (ℝP²)*.

Rolling \mathbb{R}^{P2} on $(\mathbb{R}^{P2})^*$ without slipping or twisting

• Note that for (M, g_E) we have well defined projections $\alpha : \mathbb{T}(M) \to \mathbb{R}P^2$ and $\beta : \mathbb{T}(M) \to (\mathbb{R}P^2)^*$. In coordinates (x, y, a, b, N_{ϕ}) on $\mathbb{T}(M)$ we have:

 $lpha(x, y, a, b, N_{\phi}) = (x, y) \in \mathbb{R}P^2$, and $\beta(x, y, a, b, N_{\phi}) = (a, b) \in (\mathbb{R}P^2)^*.$

Thus, a curve γ(t) = (x(t), y(t), a(t), b(t), N_{φ(t)}) in T(M) tangent to the twistor distribution D, γ(t) ∈ D, defines curves p(t) = (x(t), y(t)) and ℓ(t) = (a(t), b(t)), respectively in ℝP² and (ℝP²)*.

 By analogy with the usual rolling of surfaces, we may think of these p(t) and ℓ(t) as traces of a process of rolling without slipping or twisting of ℝP² on (ℝP²)*.

Rolling \mathbb{R}^{P2} on $(\mathbb{R}^{P2})^*$ without slipping or twisting

• Note that for (M, g_E) we have well defined projections $\alpha : \mathbb{T}(M) \to \mathbb{R}P^2$ and $\beta : \mathbb{T}(M) \to (\mathbb{R}P^2)^*$. In coordinates (x, y, a, b, N_{ϕ}) on $\mathbb{T}(M)$ we have:

 $lpha(x, y, a, b, N_{\phi}) = (x, y) \in \mathbb{R}P^2$, and $\beta(x, y, a, b, N_{\phi}) = (a, b) \in (\mathbb{R}P^2)^*.$

- Thus, a curve γ(t) = (x(t), y(t), a(t), b(t), N_{φ(t)}) in T(M) tangent to the twistor distribution D, γ(t) ∈ D, defines curves p(t) = (x(t), y(t)) and ℓ(t) = (a(t), b(t)), respectively in ℝP² and (ℝP²)*.
- By analogy with the usual rolling of surfaces, we may think of these p(t) and ℓ(t) as traces of a process of rolling without slipping or twisting of ℝP² on (ℝP²)*.

on

Rolling

P²)* without slipping or twisting

- In particular, one may think of conditions on curves *p(t)* and *l(t)*, respectively in RP² and (RP²)*, that are analogs of **a)** rolling without slipping, and **b)** rolling without slipping or twisting, expressed only in terms of projective terms in R².
- Obviously, the condition which is an analog of rolling without slipping is that the curves p(t) ⊂ ℝP² and ℓ(t) ⊂ (ℝP²)* are such that at every moment the pair (p(t), ℓ(t)) satisfies the *dancing condition*.

on

Rolling

P²)* without slipping or twisting

- In particular, one may think of conditions on curves *p*(*t*) and *ℓ*(*t*), respectively in ℝ*P*² and (ℝ*P*²)*, that are analogs of **a**) rolling without slipping, and **b**) rolling without slipping or twisting, expressed only in terms of projective terms in ℝ².
- Obviously, the condition which is an analog of rolling without slipping is that the curves p(t) ⊂ ℝP² and ℓ(t) ⊂ (ℝP²)* are such that at every moment the pair (p(t), ℓ(t)) satisfies the *dancing condition*.

on

Rolling

RP²)* without slipping or twisting

- Rolling without slipping or twisting is more tricky to express in purely projective terms.
- I only say that the condition to make the rolling also 'without twisting' is a rather demanding one: the dancers the point *p* and a line ℓ - should be aware of the 5th order derivative of their motions to comply with it.

on

Rolling

(P²)* without slipping or twisting

- Rolling without slipping or twisting is more tricky to express in purely projective terms.
- I only say that the condition to make the rolling also 'without twisting' is a rather demanding one: the dancers the point p and a line l - should be aware of the 5th order derivative of their motions to comply with it.

on

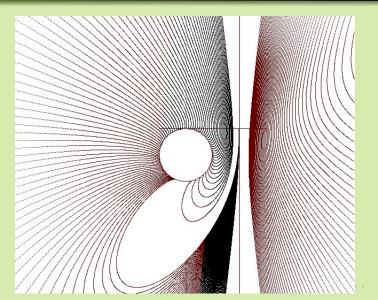
Rolling

(P²)* without slipping or twisting

- Rolling without slipping or twisting is more tricky to express in purely projective terms.
- I only say that the condition to make the rolling also 'without twisting' is a rather demanding one: the dancers the point *p* and a line ℓ - should be aware of the 5th order derivative of their motions to comply with it.

Dancing curves

t) when p(t) is on a circle



- Introduction and more: "Differential equations and conformal structures" *J. Geom. Phys.*, **55**, 19-49 (2005), available at: http://www.fuw.edu.pl/~nurowski/prace/confode.pdf
- Rolling of surfaces with a surprising example: "Twistor space for rolling bodies", Commun. Math. Phys., 326, 393-414 (2014), coauthor D. An, avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/daniel_pawel.pdf
- Rolling of RP² on its dual: "The dancing metric, G₂-symmetry and projective rolling", arXiv:1506.00104, coauthors: G. Bor, L. H. Lamoneda, avaliable at: http://arxiv.org/pdf/1506.00104.pdf
- More at: http://www.fuw.edu.pl/~nurowski/

- Introduction and more: "Differential equations and conformal structures" J. Geom. Phys., 55, 19-49 (2005), available at: http://www.fuw.edu.pl/~nurowski/ prace/confode.pdf
- Rolling of surfaces with a surprising example: "Twistor space for rolling bodies", *Commun. Math. Phys.*, 326, 393-414 (2014), coauthor D. An, avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/daniel_pawel.pdf
- Rolling of RP² on its dual: "The dancing metric, G₂-symmetry and projective rolling", arXiv:1506.00104, coauthors: G. Bor, L. H. Lamoneda, avaliable at: http://arxiv.org/pdf/1506.00104.pdf
- More at: http://www.fuw.edu.pl/~nurowski/

- Introduction and more: "Differential equations and conformal structures" J. Geom. Phys., 55, 19-49 (2005), avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/confode.pdf
- Rolling of surfaces with a surprising example: "Twistor space for rolling bodies", *Commun. Math. Phys.*, 326, 393-414 (2014), coauthor D. An, avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/daniel_pawel.pdf
- Rolling of RP² on its dual: "The dancing metric, G₂-symmetry and projective rolling", arXiv:1506.00104, coauthors: G. Bor, L. H. Lamoneda, avaliable at: http://arxiv.org/pdf/1506.00104.pdf
- More at: http://www.fuw.edu.pl/~nurowski/

- Introduction and more: "Differential equations and conformal structures" J. Geom. Phys., 55, 19-49 (2005), avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/confode.pdf
- Rolling of surfaces with a surprising example: "Twistor space for rolling bodies", Commun. Math. Phys., 326, 393-414 (2014), coauthor D. An, avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/daniel_pawel.pdf
- Rolling of RP² on its dual: "The dancing metric, G₂-symmetry and projective rolling", arXiv:1506.00104, coauthors: G. Bor, L. H. Lamoneda, avaliable at: http://arxiv.org/pdf/1506.00104.pdf
- More at: http://www.fuw.edu.pl/~nurowski/

Relevant references

- Introduction and more: "Differential equations and conformal structures" J. Geom. Phys., 55, 19-49 (2005), avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/confode.pdf
- Rolling of surfaces with a surprising example: "Twistor space for rolling bodies", *Commun. Math. Phys.*, **326**, 393-414 (2014), coauthor D. An,

avaliable at: http://www.fuw.edu.pl/~nurowski/
prace/daniel_pawel.pdf

- Rolling of RP² on its dual: "The dancing metric, G₂-symmetry and projective rolling", arXiv:1506.00104, coauthors: G. Bor, L. H. Lamoneda, avaliable at: http://arxiv.org/pdf/1506.00104.pdf
- More at: http://www.fuw.edu.pl/~nurowski/

- Introduction and more: "Differential equations and conformal structures" J. Geom. Phys., 55, 19-49 (2005), avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/confode.pdf
- Rolling of surfaces with a surprising example: "Twistor space for rolling bodies", *Commun. Math. Phys.*, 326, 393-414 (2014), coauthor D. An, avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/daniel_pawel.pdf
- Rolling of RP² on its dual: "The dancing metric, G₂-symmetry and projective rolling", arXiv:1506.00104, coauthors: G. Bor, L. H. Lamoneda, available at: http://arxiv.org/pdf/1506.00104.pdf
- More at: http://www.fuw.edu.pl/~nurowski/____

- Introduction and more: "Differential equations and conformal structures" J. Geom. Phys., 55, 19-49 (2005), avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/confode.pdf
- Rolling of surfaces with a surprising example: "Twistor space for rolling bodies", *Commun. Math. Phys.*, 326, 393-414 (2014), coauthor D. An, avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/daniel_pawel.pdf
- Rolling of RP² on its dual: "The dancing metric, G₂-symmetry and projective rolling", arXiv:1506.00104, coauthors: G. Bor, L. H. Lamoneda, avaliable at: http://arxiv.org/pdf/1506.00104.pdf
- More at: http://www.fuw.edu.pl/~nurowski/____

- Introduction and more: "Differential equations and conformal structures" J. Geom. Phys., 55, 19-49 (2005), avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/confode.pdf
- Rolling of surfaces with a surprising example: "Twistor space for rolling bodies", *Commun. Math. Phys.*, 326, 393-414 (2014), coauthor D. An, avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/daniel_pawel.pdf
- Rolling of ℝP² on its dual: "The dancing metric, G₂-symmetry and projective rolling", arXiv:1506.00104, coauthors: G. Bor, L. H. Lamoneda, available at: http://arxiv.org/pdf/1506.00104.pdf
 More at: http://www.fuw.edu.pl/~nurowski/

- Introduction and more: "Differential equations and conformal structures" J. Geom. Phys., 55, 19-49 (2005), avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/confode.pdf
- Rolling of surfaces with a surprising example: "Twistor space for rolling bodies", *Commun. Math. Phys.*, 326, 393-414 (2014), coauthor D. An, avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/daniel_pawel.pdf
- Rolling of RP² on its dual: "The dancing metric, G₂-symmetry and projective rolling", arXiv:1506.00104, coauthors: G. Bor, L. H. Lamoneda, avaliable at: http://arxiv.org/pdf/1506.00104.pdf
- More at: http://www.fuw.edu.pl/~nurowski/

- Introduction and more: "Differential equations and conformal structures" J. Geom. Phys., 55, 19-49 (2005), avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/confode.pdf
- Rolling of surfaces with a surprising example: "Twistor space for rolling bodies", *Commun. Math. Phys.*, 326, 393-414 (2014), coauthor D. An, avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/daniel_pawel.pdf
- Rolling of RP² on its dual: "The dancing metric, G₂-symmetry and projective rolling", arXiv:1506.00104, coauthors: G. Bor, L. H. Lamoneda, avaliable at: http://arxiv.org/pdf/1506.00104.pdf
- More at: http://www.fuw.edu.pl/~nurowski/

- Introduction and more: "Differential equations and conformal structures" J. Geom. Phys., 55, 19-49 (2005), avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/confode.pdf
- Rolling of surfaces with a surprising example: "Twistor space for rolling bodies", *Commun. Math. Phys.*, 326, 393-414 (2014), coauthor D. An, avaliable at: http://www.fuw.edu.pl/~nurowski/ prace/daniel_pawel.pdf
- Rolling of RP² on its dual: "The dancing metric, G₂-symmetry and projective rolling", arXiv:1506.00104, coauthors: G. Bor, L. H. Lamoneda, avaliable at: http://arxiv.org/pdf/1506.00104.pdf
- More at: http://www.fuw.edu.pl/~nurowski/

Thank you for your attention!