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Abstract: We provide an explicit formula for the Fefferman- Graham ambient metric1

of an n-dimensional conformal pp-wave in those cases where it exists. In even dimen-2

sions we calculate the obstruction explicitly. Furthermore, we describe all 4-dimensional3

pp-waves that are Bach-flat, and give a large class of Bach-flat examples which are con-4

formally Cotton-flat, but not conformally Einstein. Finally, as an application, we use5

the obtained ambient metric to show that even-dimensional pp-waves have vanishing6

critical Q-curvature.7

1. Introduction8

Plane fronted gravitational waves, called pp-waves, are Lorentzian 4-manifolds (M, g)9

admitting a covariantly constant null vector field K . In addition, their Ricci tensor Ric10

satisfies11

Ric = � κ ⊗ κ, (1)12

where κ is the 1-form on M defined by κ := K−| g. Physicists require also that the func-13

tion � is nonnegative for a pp-wave. This is because �, via the Einstein field equations,14

is directly related to the energy momentum tensor of its gravitational field.15

pp-waves are important in general relativity theory since they generalize the concept16

of a plane wave of classical electrodynamics [41], as well as because of the fact that17

every 4-dimensional spacetime has a special pp-wave as a well defined limit [40], the18

Penrose limit, as it is called.19

Higher dimensional generalizations of the 4-dimensional pp-waves were studied20

in [42], appeared in Kaluza-Klein theory [28,25,29,9], and later in string theory [5,6,4,21

35,11,36,12,18,3,37]. Their property of possessing a covariantly constant null vector22

� This work was supported in part by the Polish Ministerstwo Nauki i Informatyzacji grant nr: 1 P03B
07529 and by the Sonderforschungsbereich 676 of the German Research Foundation.
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field K , implies that they have reduced Lorentzian holonomy from the full orthogonal23

group SO(1, n − 1) to the subgroup preserving the null vector K . In fact, they can be24

characterised by having Abelian holonomy R
n−2 [30,32]. As such they admit many25

parallel spinors: The dimension of the space of parallel spinors on an n-dimensional26

pp-wave is at least half of the dimension of the spinor module, [30].27

In local coordinates (xi , u, r)i=1,...,n−2 in R
n , the n-dimensional pp-wave metric can28

be written as29

g =
n−2∑

i=1

(dxi )2 + 2du (dr + hdu) .30

Here h is an arbitrary smooth real function of the first (n −1) coordinates, h = h(xi , u).31

The covariantly constant null vector field is K = ∂r . Another property of this metric is32

that it has vanishing scalar curvature. Hence, if it is Einstein then it is Ricci flat. This33

happens if and only if �h = ∑n−2
i=1

∂2h
∂(xi )2 = 0.34

Conformal classes of pp-wave metrics have remarkable properties. One of them has35

been described by their discoverer H. W. Brinkmann already in 1925. In his seminal36

paper [8] Brinkmann not only studied spaces that were later called Brinkmann waves,37

namely Lorentzian manifolds with parallel null vector field, but he also showed the fol-38

lowing [8, Theorems IV and VIII]: A 4-dimensional, not locally conformally flat Einstein39

manifold (M, g) locally admits a function ϒ such that the conformally rescaled metric40

e2ϒg is again Einstein, but not homothetic to g, if and only if (M, g) is a Ricci-flat41

pp-wave (or its counterpart in neutral signature1). In this case, the rescaled metric is42

also Ricci-flat and the gradient of ϒ is a null vector. This occurs because the Weyl tensor43

W of a pp-wave is null and aligned with K , i.e. K−| W = 0, which makes these metrics44

not weakly generic in the terminology of [20].45

In this paper we discuss another remarkable conformal property of n-dimensional46

pp-wave metrics, which is related to the ambient metric construction of Fefferman and47

Graham [15,16], a construction that provides the geometric framework of AdS/CFT cor-48

respondence2. The ambient metric construction mimics the situation in the flat model of49

conformal geometry: Here the n-dimensional sphere equipped with the flat conformal50

structure can be viewed as the projectivisation of the light-cone in (n + 2)-dimensional51

Minkowski space. Letting the spheres wander along the light cone recovers the metrics52

in the conformal class. For a conformal class [g] in signature (p, q) on an n = (p + q)-53

dimensional manifold M the ambient metric is a metric g̃ of signature (p + 1, q + 1)54

on the product of M with two intervals, M̃ := (−ε, ε) × M × (1 − δ, 1 + δ), ε > 0,55

δ > 0, that is compatible with the conformal structure (for details see Definition 1)56

and, moreover, is Ricci flat. The Ricci-flat condition ensures that the the ambient metric57

depends uniquely on the conformal structure and encodes all properties of the conformal58

class [g] but has the downside that the ambient metric does not always exist. Starting59

with a formal power series60

1 Be aware that the coordinates in the relevant Sect. 4.2 of Brinkmann’s paper [8] have to be understood as
complex and complex conjugate in order to obtain Lorentzian metrics. If they are considered as real coordinates
the resulting metric has neutral signature.

2 Note that in some papers from the physics literature the term Fefferman-Graham metric has a different
meaning than ours. What physicists call Fefferman-Graham metric, e.g. in [2 or 13], is a related concept that
Fefferman and Graham call the Poincaré-Einstein metric. How to obtain one from another is well known and
we shall explain it in Sect. 7.
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g̃ = 2 (tdρ + ρdt) dt + t2

(
g +

∞∑

k=1

ρkµk

)
(2)61

with ρ ∈ (−ε, ε), t ∈ (1 − δ, 1 + δ) Fefferman and Graham showed that if n is odd, the62

Ricci-flatness of the ambient metric gives equations for µ1, µ2, . . . that can be solved63

in principle, but the calculations have been carried out only for very special conformal64

classes, mainly those that are related to Einstein spaces [34,31,19]. If n = 2s is even,65

there is a conformally invariant obstruction to the existence of a Ricci-flat ambient met-66

ric, called the Fefferman-Graham obstruction. This obstruction is the nonvanishing of67

the obstruction tensor O, given by the term µs . In n = 4 this obstruction tensor is the68

Bach tensor for g. In higher dimensions the leading term of O is �s
g(g), but there are a69

lot of lower order terms, which, again, are determined in principle, but whose calculation70

is very cumbersome.71

One important feature of the ambient metric is that if the metric g is real analytic72

then its corresponding ambient metric g̃ (if it exists) is also real analytic [15,16,27].73

Another feature of the ambient metric is that if the conformal class of g includes an74

Einstein metric gE , then the power series in the ambient metric g̃E truncates at k = 2;75

in particular, for n > 3, even the obstruction tensor vanishes. In such case the metric76

is given as a second order polynomial in each of the variables t and ρ. However, if the77

metric g is not conformally Einstein, then, except for a few examples [19,39], no explicit78

formulae for µk , k > 3 are known.79

In this context our main result is the following remarkable conformal property of80

n-dimensional pp-waves: for them all the coefficients µk in the ambient metric, the81

obstruction tensor in even dimensions, and hence, the condition under which the ambi-82

ent metric truncates at a given order can be calculated explicitly. In Sect. 4 we prove83

Theorem 1. Let g = ∑n−2
i=1 (dxi )2 + 2du (dr + hdu) be an n-dimensional pp-wave84

metric with a real analytic function h = h(x1, . . . ,xn−2, u). Then the Fefferman-85

Graham ambient metric for the conformal class [g] exists if and only if n is odd and h is86

arbitrary, or if n = 2s is even and �sh = 0. In both cases the ambient metric is given87

by a formal power series88

g̃ = 2d (tρ) dt + t2

(
g +

( ∞∑

k=1

�kh

k!pk
ρk

)
du2

)
,89

with pk := ∏k
j=1(2 j − n) and � := ∑n−2

i=1 ∂2
i . In particular, if n = 2s is even, the90

obstruction tensor O is given by O = �sh du2.91

Thus if n = 2s is even, the ambient metric g̃ is a polynomial of order s − 1 in the92

variable ρ. If n is odd, since the metric g is real analytic, the Fefferman-Graham result93

guarantees that the above metric g̃ is also real analytic. This in particular means that the94

power series
∑∞

k=1
�k h
k!pk

ρk converges to a real analytic function in variable ρ.95

Theorem 1 provides us with a variety of examples of conformal structures with explicit96

ambient metrics and which, in general, are not conformally Einstein. For example, every97

polynomial h in the xi ’s of order lower than k, with coefficients being functions of u,98

represents a pp-wave with ambient metric truncated at order lower than k/2. In Sect. 699

we construct more general examples than those defined by h being polynomials in the100

xi s. In particular, in dimension four we find all Bach-flat 4-dimensional pp-waves and101
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we prove that most of them are not conformally Einstein. They are defined by quite gen-102

eral functions h and have ambient metrics which are linear in variable ρ. It is interesting103

to note that these pp-waves, although Bach-flat and conformal to Cotton-flat, are not104

conformally Einstein.105

Theorem 1 implies also another interesting feature of the pp-waves: their obstruction106

tensor O (in even dimensions) involves only the terms of the highest possible order in107

the derivatives of their metric; since all the lower order terms that are usually present in108

the obstruction tensor are vanishing, the pp-waves are, in a sense, the closest cousins109

of the conformally Einstein metrics.110

Using the explicit form of the ambient metric and the main result of [24], in Sect. 7 we111

show that for even-dimensional pp-waves the critical Q-curvature vanishes. This result112

is in correspondence with the fact that for a pp-wave all scalar invariants constructed113

from the curvature tensor vanish (for the proof in arbitrary dimension see [10]). In the114

final Sect. 8 we study the holonomy of the ambient metric of a pp-wave in relation to115

results in [31]. We show that it is contained in the stabiliser of a totally null plane.116

2. The Fefferman-Graham Ambient Metric117

An important tool in order to construct invariants in conformal geometry is the so-called118

Fefferman-Graham ambient metric or ambient space (see [15 and 16]). Let (M, [g]) be119

a a smooth n-dimensional manifold M with conformal structure [g] of signature (p, q)120

with the conformal frame bundle P0. It can also be characterised by a principle R
+-fibre121

bundle π : Q → M defined as the ray sub-bundle in the bundle of metrics of signature122

(p, q) given by metrics in the conformal class c. The action of R
+ on Q shall be denoted123

by ϕ:124

ϕ(t, gx) = t2gx.125

From [16] we adopt the following notation.126

Definition 1. Let (M, [g]) be a conformal structure of signature (p, q) over an n-dimen-127

sional manifold M, and π : Q → M the corresponding ray bundle. A semi-Riemannian128

manifold (M̃, g̃) of signature (p + 1, q + 1) is called pre-ambient space if129

(1) there is a free R
+-action ϕ̃ on M̃, and130

(2) an embedding ι : Q → M̃ is R
+-equivariant.131

(3) If F is the fundamental vector field of ϕ̃, and L denotes the Lie derivative, then132

LF g̃ = 2̃g, i.e. the metric g̃ is homogeneous of degree 2 with respect to the R
+-action.133

(4) Any gx ∈ Q satisifies the equality (ι∗g̃)gx = gx (dπ(.), dπ(.)) in �2T ∗
gx

Q.134

A pre-ambient space is called ambient space if its Ricci curvature vanishes.135

Under the assumption that the conformal structure is given by a real analytic metric,136

in odd dimensions a Ricci-flat ambient metric always exists and is also real analytic.137

In even dimensions n ≥ 4, the existence of a Ricci-flat ambient metric is obstructed138

by the nonvanishing of the obstruction tensor O, [16, pp. 22]. This is a symmetric trace-139

free and divergence-free (2, 0)-tensor, which is conformally invariant of weight (2−n),140

i.e. if ĝ = e2ϕg ∈ [g], then Ô = e(2−n)ϕO. It is given by141

O = �n/2−2
g

(
�gP − ∇2 J

)
+ lower order terms,142
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where P = 1
n−2

(
Ric − scal

2(n−1)
g
)

is the Schouten tensor, J its trace, and �g denotes143

the Laplacian of g ∈ [g]. For a conformal class in even dimension that is given by a real144

analytic metric with vanishing obstruction tensor, the ambient metric exists and is also145

real analytic.146

Fixing a metric g in the conformal class, in [15,16] it is shown that an ambient space147

near M can be written as148

M̃ = (−ε, ε) × M × (1 − δ, 1 + δ)149

with the ambient metric150

g̃ = 2tdρdt + 2ρdt2 + t2g(ρ),151

in which g(ρ) is a one-paramemter family of metrics on M with g(0) = g. This is152

referred to as g̃ being in normal form. As the ambient metric is analytic, one can write153

the family g(ρ) as a power series in ρ,154

g̃ = 2tdρdt + 2ρdt2 + t2
(

g + ρg′ +
1

2
ρ2g′′ +

1

6
ρ3g′′′ + . . .

)
,155

with g′ = ∂ρg(0). We summarise the results for the ambient metric in156

Theorem 2 ([15,16 and 27]). Let (M, [g]) be a real analytic manifold M of dimension157

n ≥ 2 equipped with a conformal structure defined by a real analytic semi-Riemannian158

metric g.159

(1) If n is odd, or if n is even with O = 0, then there exists an ambient space (M̃, g̃)160

with real analytic Ricci-flat metric g̃.161

(2) If n is odd the ambient space is unique modulo diffeomorphisms that restrict to the162

identity along Q ⊂ M̃ and commute with ϕ̃. If n is even with O = 0, the ambient163

space is unique, modulo the same set of diffeomorphisms and modulo terms of order164

≥ n/2 in ρ, where ρ is the coordinate in the normal form of the ambient metric.165

The Ricci-flat condition then determines symmetric (2, 0)-tensors µk such that166

g̃ = 2tdρdt + 2ρdt2 + t2

(
g +

∞∑

k=1

ρkµk

)
.167

In [16] the first µk are determined explicitly:168

(µ1)ab = 2Pab,

(n − 4)(µ2)ab = −Bab + (n − 4)Pa
cPbc,

3(n−4)(n−6)(µ3)ab = �g Bab−2Wcabd Bcd −4(n−6)Pc(a Bb)
c−4Pc

c Bab

+ 4(n − 4)Pcd∇dC(ab)c − 2(n − 4)Cc
a

dCdbc

+ (n − 4)Ca
cdCbcd + 2(n − 4)∇dPc

cC(ab)
d

− 2(n − 4)WcabdPc
ePed ,

(3)169

where Wabcd is the Weyl tensor, Pab is the Schouten tensor, Cabc := ∇cPab − ∇bPac is170

the Cotton tensor, and Bab = ∇cC c
ab − Pcd W c d

ab is the Bach tensor.171
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3. pp-Waves and Their Curvature172

A pp-wave is a Lorentzian manifold with a parallel null vector field K , i.e. ∇K = 0,173

K �= 0, and g(K , K ) = 0, whose curvature tensor satisfies the trace condition174

R ef
ab Ref cd = 0. (4)175

If we denote by κ the one-form given by κ := K−| g the curvature condition (4) is176

equivalent to each of the following, in which [ab] denotes the skew symmetrisation with177

respect to a and b, [42]:178

(1) κ[a Rbc]de = 0;179

(2) there is a symmetric (2, 0)-tensor � with K−| � = 0, such that Rabcd = κ[a�b][cκd];180

(3) there is a function ϕ, such that Re f
ab Recd f = ϕκaκbκcκd .181

The Ricci tensor of a pp-wave is given by Ric = � κ ⊗ κ , for a smooth function �. In182

dimension n = 4 this is even equivalent to the curvature condition (4).183

In [31] we gave another equivalent definition, without using coordinates or traces,184

but identifying a pp-wave as a Lorentzian manifold with parallel null vector field K ,185

whose curvature satisfies186

Im
(R(U, V )|K ⊥

) ⊂ R · K for all U, V ∈ T M. (5)187

This equivalence allows for several generalisations [32] and for an easy proof of another188

equivalence that is related to holonomy: An n-dimensional Lorentzian manifold is a189

pp-wave if and only if its holonomy group is contained in the Abelian subgroup R
n−2

190

of the stabiliser in SO(1, n − 1) of a null vector [30].191

Locally, an n-dimensional pp-wave admits coordinates (x1, . . . ,xn−2, u, r) such192

that the metric is given by193

g =
n−2∑

i=1

(dxi )2 + 2du (dr + hdu) , (6)194

with h being a smooth real function of the first (n − 1) coordinates, h = h(xi , u), [42].195

In these coordinates the parallel null vector field K is given by ∂r and, up to symmetries,196

the only non-vanishing curvature terms of a pp-wave are197

R(∂i , ∂u, ∂ j , ∂u) = ∂i∂ j h.198

Here we use the obvious notation ∂r := ∂
∂r , ∂u := ∂

∂u and ∂i := ∂
∂xi , i = 1, . . . , n − 2.199

Hence, the function determining the Ricci-tensor is given by � = −�h with200

�h = ∑n−2
i=1 ∂2

i h, i.e.201

Ric = −�h du2. (7)202

Hence, the image of the Ricci-tensor is totally null, and the scalar curvature vanishes.203

With this at hand, one can easily calculate the tensors related to the conformal geometry204

of a pp-wave. First, there is the Schouten-tensor205

P = 1

n − 2
Ric = − �h

n − 2
du2. (8)206
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Secondly, the Weyl tensor is given by207

W (∂i , ∂u, ∂ j , ∂u) = ∂i∂ j h − δi j
�h

n − 2
, (9)208

and for n > 3 we obtain that ∂i∂ j h = δi j
�h
n−2 as an equivalent condition on h for g being209

conformally flat.210

Next, we calculate the Cotton tensor C . As ∇P = − 1
n−2 d(�h) ⊗ du2 one obtains211

that212

C(∂u, ∂i , ∂u) = −C(∂u, ∂u, ∂i ) = ∂i�h

n − 2
(10)213

are the only non-vanishing components of the Cotton tensor. Hence, ∂i�h = 0 is the214

condition on h for 3-dimensional conformally flat pp-waves.215

Furthermore, we obtain the Bach tensor B,216

B = − �2h

n − 2
du2. (11)217

This enables us to calculate the next terms in the ambient metric expansion in Eqs. (3)218

beyond µ1 = 2P = �h
n−2 du2, namely219

µ2 = − 1
n−4 B = �2h

(n−2)(n−4)
du2,

µ3 = 1
2(n−4)(n−6)

�B = �3h
3(n−2)(n−2)(n−4)

du2.
220

The very simple structure of µ1, µ2, and µ3 above, and in particular the appearance of221

the consecutive powers of the Laplacian, suggests that this pattern may be also present222

in the next terms in the ambient metric expansion. That this is really the case will be223

proven in the next section.224

4. The pp-Wave Ambient Metric225

Looking at the very simple form of the pp-wave metric (6) and the general formula for226

the ambient metrics (2), our ansatz for the ambient metric for this g is227

ḡ = 2d(ρt)dt + t2

(
2du (dr + (h + H)du) +

n−2∑

i=1

(dxi )2

)
, (12)228

where H = H(ρ,xi , u), and229

H(ρ,xi , u)|ρ=0 = 0. (13)230

If we were able to find an analytic function H satisfying (13) and for which the metric231

(12) was Ricci flat then, by the uniqueness of the Fefferman-Graham Theorem 2, we232

would conclude that ḡ with this H is the ambient metric for (6). Thus to check our guess233

it is enough to calculate the Ricci tensor for (12) and to check if its vanishing is possible234

for the function H in the postulated form (13).235
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Lemma 1. The Ricci tensor of the metric (12) is236

Ric(ḡ) = (
(2 − n)Hρ + 2ρHρρ − �H − �h

)
du2.237

Here �H = ∑n−2
i=1

∂2 H
∂(xi )2 , Hρ = ∂ H

∂ρ
, etc.238

Proof. We start with a coframe239

θ0 = d(ρt), θ i = tdxi , θn−1 = t2(dr + (h + H)du), θn = du, θn+1 = dt, (14)240

in which the metric ḡ reads:241

ḡ = ḡµνθ
µθν = 2θ0θn+1 + 2θn−1θn +

n−2∑

i=1

(θ i )2, µ, ν = 0, 1, . . . , n + 1.242

It has the following differentials:243

dθ0 = 0,

dθ i = −t−1θ i ∧ θn+1, ∀i = 1, . . . , n − 2,

dθn−1 = t Hρθ0 ∧ θn + t
n−2∑
i=1

(hi + Hi )θ
i ∧ θn − 2t−1θn−1 ∧ θn+1 + ρt Hρθn ∧ θn+1,

dθn = 0,

dθn+1 = 0.

244

In this coframe the Levi-Civita connection 1-forms, i.e. matrix-valued 1-forms satisfying245

dθµ + �
µ
ν ∧ θν = 0, �µν + �νµ = 0, �µν = ḡµσ �σ

ν , are:246

�0n = −t Hρθn,

�in = −t (hi + Hi )θ
n,

�n−1 n = t−1θn+1

�i n+1 = t−1θ i ,

�n−1 n+1 = t−1θn

�n n+1 = t−1θn−1 − ρt Hρθn .

(15)247

Modulo the symmetry �µν = −�νµ all other connection 1-forms are zero.248

The curvature 2-forms �µν = d�µν + �µρ ∧ �
ρ
ν , have the following nonvanishing249

components:250

�0n = −Hρρθ0 ∧ θn −
n−2∑

i=1

Hiρθ i ∧ θn − ρHρρθn ∧ θn+1,251

�in = −Hiρθ0 ∧ θn −
n−2∑

k=1

(δik Hρ + Hik + hik)θ
k ∧ θn − ρHiρθn ∧ θn+1, (16)252

�nn+1 = −ρHρρθ0 ∧ θn −
n−2∑

i=1

ρHiρθ i ∧ θn − ρ2 Hρρθn ∧ θn+1,253

together with the components that are implied by the symmetry �µν = −�νµ.254

The Riemann tensor Rµνρσ , defined by �µν = 1
2 Rµνρσ θρ ∧θσ , can be read off from255

Eqs. (16). Using this and the inverse of the metric gµν , gµρgρν = δ ν
µ , we calculate the256
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Ricci tensor Rµν = gρσ Rρµσν . It turns out that it has Rnn = −2R0nnn+1 +
∑n−2

i=1 Rinin257

as its only nonvanishing component. Explicitly:258

Rnn = 2ρHρρ − (n − 2)Hρ − �H − �h.259

This finishes the proof of the lemma.260

The lemma shows that the metric ḡ is Ricci flat if and only if the function H satisfies261

the following PDE:262

(2 − n)Hρ + 2ρHρρ − �H = �h. (17)263

For ḡ to be the ambient metric for (6) we in addition require the initial condition (13).264

By looking for the solution of the initial value problem (17), (13) in the form of a power265

series266

H =
∞∑

k=0

akρ
k, (18)267

we immediately get a0 = 0 from the initial condition (13). Then inserting (18) in (17),268

we easily arrive at269

Proposition 1. If n = 2s + 1, s ≥ 1, then the initial value problem (17), (13) has a270

unique power series solution. It is given by:271

H =
∞∑

k=1

�kh

k! ∏k
i=1(2i − n)

ρk . (19)272

If n = 2s the power series solution exists only if �sh = 0. If this is the case, the solution273

is also unique and given by the power series (19), which truncates to a polynomial of274

order (s − 1) in the variable ρ.275

This proposition proves our Theorem 1 of the Introduction. Note that the solution we276

found is a solution to Eq. 3.17 in [16] that was derived for the Taylor expansion of the277

ambient metric, here specified for a pp-wave. In particular, for n = 2s the obstruction278

tensor of an n-dimensional pp-wave is given by279

O = �sh du2.280

With this result at hand, every polynomial h in the xi ’s of order lower than 2k, with281

coefficients being functions of u, gives an example of a pp-wave for which the ambient282

metric truncates to a polynomial of order lower than k. This gives plenty of examples of283

explicit ambient metrics, also in even dimensions. Moreover, choosing h properly, one284

gets examples for which the conformal class does not contain an Einstein metric. This285

will be the aim of Sect. 6. But first we address the issue of convergence of H in odd286

dimensions.287
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5. Convergence in Three Dimensions288

In odd dimensions the solution to the Ricci-flat equation, H in (19), may be given by an289

infinite series. Since H contains only natural powers of ρ, general arguments as in [16]290

ensure that H converges for an analytic function h and is analytic as well, [21]. Here we291

give a simple argument that proves convergence for n = 3:292

Proposition 2. Let h be a function on C × R of variables (z, u) which is an entire holo-293

morphic function in z = x + iy ∈ C, is continuous in u ∈ R, and is real for z = x ∈ R.294

Then the series295

H(x, u, ρ) =
∞∑

k=1

(�kh)(x, u)

k! ∏k
i=1(2i − 3)

ρk (20)296

converges uniformly on compact subsets of R
3.297

Proof. Let R > 1 be a real number and let C = sup{|h(z, u)|} over all values of (z, u)298

such that |z−x| ≤ (R+2ε), |u| ≤ ν > 0, and |x| ≤ ε > 0. Then by the Cauchy-Schwarz299

inequality, the kth derivative of h at every real point (x, u) ∈ [−ε, ε] × [−ν, ν] satisfies300

|h(k)(x, u)| ≤ Ck!
Rk . This provides the following estimate for the values of the powers of301

the Laplacian �kh = d2k h
dz2k :302

∀(x, u) ∈ [−ε, ε] × [−ν, ν] we have |(�kh)(x, u)| ≤ C(2k)!
R2k

. (21)303

Now we rewrite (20) to the equivalent form304

H = ρ�h −
∞∑

k=1

�k+1h

(k + 1)! · 1 · 3 · · · · · (2k − 1)
ρk+1.305

To show that H converges it is enough to show the convergence of the power series306

above. This can be done by using the estimate (21):307

|
∞∑

k=1

�k+1h

(k + 1)! · 1 · 3 · · · · · (2k−1)
ρk+1|≤C

∞∑

k=1

(2k + 2)!
(k + 1)! · 1 · 3 · · · · · (2k−1)

( |ρ|
R2

)k+1

308

= C
∞∑

k=1

(2 · 4 · · · · · 2k) · (2k + 1)(2k + 2)

(k + 1)!
( |ρ|

R2

)k+1

= C
∞∑

k=1

bk

( |ρ|
R2

)k+1

.309

Since310

|bk+1|
|bk | = 2(k + 1)(2k + 3)(2k + 4)

(k + 2)(2k + 1)(2k + 2)
−→ 2 as k → ∞,311

then this series converges for |ρ| ≤ R2

2 . This finishes the proof.312
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6. Bach Flat Metrics that are not Conformally Einstein313

With Eq. (11) it is obvious how to obtain Bach-flat pp-waves. It is more difficult to314

find those that are not conformally Einstein. In this section we want to give examples of315

4-dimensional pp-waves that are both Bach flat and not conformal to Einstein. But first316

we have to review some necessary conditions of being conformal to Einstein given in317

[20] for any dimension. In this section, when we write ‘conformal to’ we mean ‘locally318

conformal to’.319

From the formulae for the transformation of the Schouten tensor under conformal320

changes of the metric one obtains that a metric is conformal to an Einstein metric if and321

only if there exists a scaling function ϒ such that322

P − ∇dϒ + (dϒ)2 is pure trace. (22)323

In the following we write Y for the gradient of ϒ . In [20, Prop. 2.1] the following324

necessary conditions for the metric to be conformal to Einstein were derived from Eq.325

(22):326

C + W (Y, ., ., .) = 0, (23)327

B + (n − 4)W (Y, ., ., Y ) = 0. (24)328

Note that the first condition is satisfied for a gradient Y if and only if the metric is329

conformally equivalent to a metric with vanishing Cotton tensor, i.e. if it is conformally330

Cotton-flat. We further mention that the property of being conformally Cotton-flat is331

also neccessary for the metric to be conformally Einstein [20].332

For a pp-wave conditions (23) and (24) are equivalent to the following:333

Proposition 1. If the pp-wave (6) is conformally Einstein but not conformally flat334

and n > 3, then there is a vector field Y on M, whose components Y i := dxi (Y ),335

i = 1, . . . , n − 2, and Y n−1 := du(Y ) satisfy the equations336

∂i�h − Y i�h + (n − 2)

n−2∑

k=1

Y k∂k∂i h = 0, (25)337

�2h − (n − 4)�h
n−2∑

k=1

(
Y k

)2
+ (n − 2)(n − 4)

n−2∑

k,l=1

Y kY l∂k∂l h = 0, (26)338

for i = 1, . . . , n − 2, and339

Y n−1 = 0. (27)340

Proof. Writing Y = Y k∂k + Y n−1∂u + dr(Y )∂r , Eq. (23) and the formulae in Sect. 3 give341

0 = Y n−1W (∂u, ∂i , ∂u, ∂ j ),342

0 = ∂i�h

n − 2
+ Y k

(
∂k∂i h − δki

�h

n − 2

)
.343

These, when n > 3, imply both Y n−1 = 0 and Eq. (25). Equation (24) gives that344

0 = − �2h

n − 2
− (n − 4)Y kY l

(
∂k∂l h − δkl

�h

n − 2

)
,345

which implies Eq. (26). ��346
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Writing Y as the gradient of ϒ ,347

Y =
n−2∑

k=1

∂kϒ∂k + ∂rϒ∂u + (∂uϒ − h∂rϒ) ∂r ,348

the proposition implies that du(Y ) = ∂rϒ = 0. Hence,349

∂r (dr(Y )) = ∂r (∂uϒ − h∂rϒ) = 0,350

and we obtain351

Corollary 1. Let g be a pp-wave that is conformally Einstein but not conformally flat352

in dimension n > 3, and let Y be the gradient of the scaling function ϒ satisfying Eq.353

(22). Then the function Y n = dr(Y ) does not depend on the r-variable.354

Example 1. For n = 3 a third order polynomial h in x with coefficients being functions355

of u defines a pp-wave with non-vanishing Cotton tensor. Hence, it is not conformally356

flat and therefore not conformally Einstein.357

Example 2. Set M = R
n and h = (x1)4 + · · · + (xn−2)4. Then, ∂i∂ j h �= δi j

�h
n−2 on358

open sets in M and hence, g is not conformally flat. On the other hand, Eq. (26) can359

never be satisfied in 0 ∈ M , because here all second order derivatives of h vanish, but360

�2h = 24(n − 2). Thus, the pp-wave defined by h = (x1)4 + · · · + (xn−2)4 is not361

conformally Einstein.362

Now we turn to dimension n = 2s = 4. Here the formula (19) makes sense only if363

�2h = 0. In such case the formula truncates to H = 1
2ρ�h. Thus it is clear that for the364

4-dimensional pp-waves the Fefferman-Graham obstruction is precisely �2h, which is365

a multiple of the Bach tensor, and does not involve any lower order terms in the deriva-366

tives of the metric functions. In order to write down all such metrics, it is convenient to367

pass to the complex notation by introducing coordinates z = x1+ix2√
2

, z̄ = x1−ix2√
2

. In this368

notation the most general 4-dimensional pp-wave metric satisfying �2h = 0 is given369

by370

g4 = 2du
(
dr +

(
z̄α + zᾱ + β + β̄

)
du

)
+ 2dzdz̄.371

Here α = α(z, u), β = β(z, u) are holomorphic functions of z. This metric is Bach-flat,372

and in some cases, such as when az + ᾱz̄ = const , is conformal to an Einstein metric.373

Its ambient metric is given by374

g̃4 = 2d(ρt)dt + t2 (
2du[dr +

(
z̄α + zᾱ + β + β̄ − ρ(az + ᾱz̄)

)
du] + 2dzdz̄

)
,375

and by construction is Ricci flat. We get376

Proposition 2. A 4-dimensional pp-wave g4 is Bach flat if and only if377

g4 = 2du
(
dr +

(
z̄α + zᾱ + β + β̄

)
du

)
+ 2dzdz̄,378

with α = α(z, u), β = β(z, u) functions of a complex variable z and a real variable u379

which are holomorphic in z.380

In general, this Bach-flat metric is not conformally Einstein:381
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Theorem 3. A 4-dimensional Bach-flat pp-wave382

g4 = 2du (dr + (z̄α + zᾱ) du) + 2dzdz̄ (28)383

with β ≡ 0 is conformally equivalent to a metric with vanishing Cotton tensor. Moreover,384

the following three properties are equivalent:385

(1) ∂2
z α ≡ 0,386

(2) g4 is conformally flat,387

(3) g4 is conformally Einstein.388

In particular, any such metric with ∂2
z α �≡ 0 is not conformally Einstein.389

Proof. First, in the complex coordinates (z, z̄) we have: �h = 2 (∂zα + ∂z̄ ᾱ). Next,390

using391

∂1 = 1√
2

(∂z + ∂z̄) , ∂2 = i√
2

(∂z − ∂z̄) ,392

in the formula (9) we see that the Weyl tensor vanishes if and only if ∂2
z α = 0. This393

proves the equivalence of (1) and (2).394

For the remaining statements we try to find a vector field Y that solves the necessary395

condition (23) for g to be conformally Einstein. We use this equation in the form (25),396

as in Proposition 1. Recall that in this proposition we proved that such a vector does not397

have a ∂u-component. Thus we look for Y of the form398

Y = F∂z + F∂z̄ + f ∂r ,399

where F = F(z, z̄, r, u) is a complex and f = f (z, z̄, r, u) is a real function. Equation400

(25) gives401

0 = ∂2
z α (1 + z̄F) + ∂2

z̄ ᾱ
(
1 + zF

)
, (29)402

0 = ∂2
z α (1 + z̄F) − ∂2

z̄ ᾱ
(
1 + zF

)
, (30)403

which immediately implies404

∂2
z α (1 + z̄F) = 0.405

Assuming that g4 is not conformally flat, i.e. ∂2
z α �≡ 0 we get406

F(z) = −1/z̄.407

Thus we found that the vector Y solves (23) if and only if Y = − 1
z̄ ∂z − 1

z ∂z̄ + f ∂r . Now,408

g4 is conformally Cotton-flat if we find f such that this Y is a gradient. Setting409

Y � = g4(Y, .) = −1

z
dz − 1

z̄
dz̄ + f du,410

we see that Y is locally a gradient, i.e. dY � = 0, if and only if f is a function of variable411

u alone. Every f = f (u) gives a solution to the conformally Cotton equation.412

To prove that (3) implies (2), assume that g4 is not conformally flat but conformally413

Einstein. Then we plug in the vector Y � we have obtained as a solution of Eq. (25), and414

its corresponding415

∇Y � = d f ⊗ du −
(

α + z∂z̄ ᾱ

z̄
+

ᾱ + z̄∂zα

z

)
du2 +

1

z2 dz2 +
1

z̄2 dz̄2
416
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into417

P − ∇Y � + (Y �)2.418

According to Eq. (22) this must be a pure trace, if the metric g4 is conformally Einstein.419

But this can not happen since P − ∇Y � + (Y �)2 has a nowhere vanishing dzdz̄-term420

given by 2
zz̄ dzdz̄, and an identically vanishing drdu-term. Thus P − ∇Y � + (Y �)2 is421

never proportional to g4, which in turn, can not be conformally Einstein.422

In the light of discussions in [20], the metrics (28) provide interesting examples because,423

apart from being Bach-flat, they are conformally Cotton-flat, but not conformally Ein-424

stein even though the necessary conditions (23) and (24) are both satisfied for a gradient.425

This phenomenon is special to Lorentzian and probably to other indefinite signature met-426

rics.427

We strongly believe that a similar argument works in any dimension, even though one428

might not be able to describe the functions with �sh = 0. But under certain assumptions429

it might be possible to deduce a contradiction between Eq.’s (25) – (26) and the fact that430

the function dr(Y ) is independent of the r -coordinate as it occurs for n = 4.431

We want to conclude this section by returning to the result of Brinkmann in [8] men-432

tioned in the Introduction. If a 4-dimensional pp-wave is Einstein, and hence Ricci-flat,433

the function h is given by α + α for a holomorphic function α. Again, this metric is434

conformally flat if and only if ∂2
z α = 0. If it is not conformally flat but conformally435

Einstein, then the vector field Y is null and a multiple of ∂r , namely Y = f ∂r with436

a function f = f (u) that depends on the variable u only. As P = 0, Eq. (22) then437

is equivalent to f ′ = f 2. Hence, any such function yields a conformal rescaling of a438

Ricci-flat pp-wave to another Einstein metric that is in fact Ricci-flat. The new metric439

may be isometric to the original one but in general this is not the case (see also [14]).440

Finally, note that a non-trivial solution of f ′ = f 2 is not defined on all of R, and thus,441

in general, f does not yield a global rescaling to another Einstein metric.442

7. The Critical Q-Curvature of a pp-Wave443

For a semi-Riemannian manifold of (M, g) even dimension n = 2s, in [7] T. Branson444

introduced a series {Q2k}k=1...s of scalar invariants constructed from the curvature tensor445

involving 2k derivatives of the metric3. As such, for a pp-wave all Q2k are zero. This446

follows from the general fact that all scalar invariants constructed from the Riemannian447

curvature tensor of a pp-wave vanish (for a proof in arbitrary dimension see [10]). How-448

ever, as an application of Theorem 1, in this section we will use the pp-wave ambient449

metric in order to show that the critical Q-curvature Qn of a pp-wave vanishes. The450

so-called subcritical Q-curvatures Q2, . . . , Qn−2 are defined by the inhomogeneous451

part of the GJMS-operators P2k , namely452

Pg
2k(1) = (s − k)Q2k .453

The GJMS-operators P2k introduced in [23] are conformally covariant operators. We454

will not give a definition of the critical Q-curvature Qn here (please refer to [17], for455

example). Instead we will explain a formula for the critical Q-curvature given in [24]456

that expresses it in terms of the volume of the Poincaré metric.457

3 Regarding this section, we would like to thank Andreas Juhl for explaining to us some facts about Q-cur-
vature.
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Let (M, [g]) be a smooth manifold of even dimension n = 2s with conformal class458

[g]. To this manifold one can assign a Poincaré metric g+. g+ is a metric on M+ =459

M × (0, a) given by460

g+ = 1

x2

(
dx2 + gx

)
,461

where gx is a 1-parameter family of metrics with the same signature as g and with initial462

condition g0 = g such that g+ is asymptotically Einstein, which means that Ric(g+)+ ng+463

vanishes up to terms of order (n − 2) in x. The Poincaré-metric is unique up to addition464

of terms of the form xn Sx, where Sx is a 1-parameter family of symmetric (2, 0)-tensors465

such that S0 is trace-free (for details see [15,16]). For a Poincaré metric one can show,466

see [22] for details, that
√

det(gx)/ det(g) has the Taylor expansion467

√
det(gx)

det(g)
= 1 + v(2)x2 + v(4)x4 + · · · + v(n−2)xn−2 + v(n)xn + · · · , (31)468

defining smooth functions v(2k). Then in [24] it is shown that the critical Q-curvature469

Qn of (M, [g]) is given as470

2nc n
2

Qn = nv(n) +
s−1∑

k=1

(n − 2k)A∗
2kv

(n−2k). (32)471

Here A2k are the linear differential operators that appear in the expansion of a harmonic472

function for a Poincaré-metric, the star denotes the formal adjoint, and c n
2

is a constant.473

Furthermore, one has to recall how the Poincaré-metric can be obtained by the ambi-474

ent metric. Assume that475

g̃ = 2d(ρt)dt + t2g(ρ)476

is a pre-ambient metric for [g] that is Ricci-flat up to terms of order s and higher. Such477

a metric always exists and is unique up to terms of order n/2 in ρ. Now, on478

M+ = {(ρ, p, t) ∈ M̃ | p ∈ M, t2ρ = −1},479

the Poincaré-metric is given by480

g+ = 1

x2

(
dx2 +

1

2
g(x2)

)
.481

Note that if the pre-ambient metric is Ricci-flat, then the Poincaré-metric obtained in482

this way is Einstein. We can use the ambient metric of a pp-wave to prove483

Theorem 4. The critical Q-curvature of an even-dimensional pp-wave vanishes.484

Proof. Let (M, g) be a pp-wave of even dimension n = 2s. In Sect. 4 we have also485

shown that its pre-ambient metric that is Ricci-flat up to terms of order n/2 is given by486

formula (12) with H as in (19). Using the coframe in (14) we can write down the volume487

form ω(ρ) of the ρ-dependent family of pp-waves,488

g(ρ) = 2du (dr + (h + H)du) +
n−2∑

i=1

(dxi )2,489
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namely490

ω(ρ) = dx1 ∧ . . . ∧ dxn−2 ∧ (dr + (h + H)du) ∧ du = ω(0).491

For the family gx = 1
2g(x2) defining the Poincaré metric this implies that det(gx) =492

det(g0). Hence, all the v(2k) in (31) are zero and so is the critical Q-curvature by the493

result of [24] given in formulae (32). ��494

Recall that for a pp-wave (M, g) the vanishing of the scalar curvature implies that the495

Laplacian �g is conformally covariant. Calculations using formulae in [26] show that496

the first GJMS-operators P2, P4 and P6 are equal to the corresponding powers of the497

Laplacian �g , �2
g and �3

g . We conjecture that for pp-waves this is also the case for the498

higher P2k .499

8. Conformal and Ambient Holonomy500

We conclude with a brief remark about the holonomy of the ambient metric and the501

holonomy of the normal conformal Cartan connection, also called the conformal hol-502

onomy, of a pp-wave. Holonomy groups describe the reduction of generic structures503

down to more special structures, in the semi-Riemannian, the conformal, and in other504

geometric settings. For a conformal manifold of signature (r, s) the conformal holonomy505

is contained in SO(r + 1, s + 1). If it is a proper subgroup, then the conformal structure is506

reduced to a more special structure. Examples are Lorentzian Fefferman spaces, for an507

overview see [1], where the conformal holonomy reduces to the special unitary group,508

or conformal structures in signature (2, 3) with non-compact G2 as structure group,509

[38,39].510

In [31] it is proven that the conformal holonomy of an n-dimensional Lorentzian511

conformal class that is given by a metric with parallel null line and totally null Ricci512

tensor is contained in the stabiliser in SO(2, n) of a totally null plane N . Of course,513

pp-waves are special examples of such metrics and hence, their conformal holonomy514

reduces to this stabiliser. But we get the same result also for the holonomy of the ambient515

metric of a pp-wave.516

Proposition 3. The metric g defined in Eq. (12) admits a holonomy invariant distribu-517

tion of totally null planes N spanned by ∂r and ∂ρ . In particular, all curvature operators518

R̄(V, W ), V, W ∈ T M̄, leave invariant the fibres of N and of N⊥, which is spanned519

by ∂r , ∂ρ , and ∂i .520

Proof. The easiest way to see this is to consider the dual frame to the co-frame in (14)521

given by522

E0 = 1

t
∂ρ, Ei = 1

t
∂i , En−1 = 1

t2 ∂r , En = ∂u − (h + H)∂r , En+1 = ∂t − ρ

t
∂ρ.523

Using the relation ḡ(∇̄Eµ, Eν) = �µν one can read off from the formulae for the524

connection 1-forms in (15) that525

N = span(E0, En−1) = (span(E0, Ei , En−1))
⊥

526

is invariant under the Levi-Civita connection. ��527
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Corollary 2. Let G be the holonomy group of the ambient metric of a pp-wave in odd528

dimension or in dimension 2s with �sh = 0. Then G is contained in the stabiliser in529

SO(2, n) of a totally null plane in R
2,n.530

In general, it is possible to show that the conformal holonomy is always contained in531

the ambient holonomy [33]. For a conformal class with an Einstein-metric or a Ricci-532

flat metric both holonomy groups are the same [31,34]. For a pp-wave, not necessarily533

conformal Einstein, we have just seen that both are contained in the isotropy group of a534

totally null plane. Hence, it is very likely that the conformal holonomy is actually equal535

to the ambient holonomy. But to give a proof of this is beyond the scope of this paper.536
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