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1. INTRODUCTION

We study the local differential geometry of oriented congruences in 3-dimensional
manifolds. This geometry turns out to be very closely related to local 3-dimensional
CR geometry. The latter can be traced back to Elie Cartan’s 1932 papers [3], in
which he used his equivalence method to determine the full set of local invariants
of locally embedded 3-dimensional strictly pseudoconvex CR manifolds.

This paper should be regarded as an extension and refinement of Cartan’s work.
This is because a 3-dimensional manifold with an oriented congruence on it is an ab-
stract 3-dimensional CR manifold with an additional structure: a preferred splitting
(see Section[3). This leads to a notion of local equivalence of such structures, which
is more strict that than of Cartan. Hence the (coarse) CR equivalence classes of
Cartan split into a fine structure; as a result we produce many new local invariants,
corresponding to many more nonequivalent structures than in Cartan’s situation.

From this perspective, our paper may be also placed in the realm of special
geometries, i.e. geometries with an additional structure. These kind of geometries,
such as, for example, special Riemannian geometries (hermitian, Kahler, G, etc.),
find applications in mathematical physcis (e.g. string theory). The starting point
of this paper also comes from physics: a congruence in R? (i.e. a foliation of R?
by curves) is a notion that appears in hydrodynamics (velocity flow), Newtonian
gravity and electrodynamics (field strength lines). These branches of physics have
distinguished the two main invariants of such foliations, which are related to the
classical notions of twist and shear. One of the byproducts of our analysis is also a
refinement of these physical concepts.

Contemporary physicists, because of the dimension of spacetime, have been
much more interested in congruences in four dimensions. Such congruences live
in Lorentzian manifolds, and as such, may be timelike, spacelike or null. It turns
out that the null congruences in spacetimes, which are tangent to unparametrized
geodesics without shear, locally define a 3-manifold, which has a CR structure on it.
One of the outcomes of this paper is that we found connections between properties
of four dimensional spacetimes admitting null and shearfree congruences, with their
corresponding three dimensional CR manifolds, and our new invariants of the clas-
sical congruences in three dimensions. In Sections [0 and [}, in particular, we use
these three dimensional invariants, to construct interesting families of Lorentzian
metrics with shearfree congruences in four dimensions (including metrics which are
Ricci flat or Einstein, Bach flat but not conformal to Einstein, etc.).

Throughout the paper we will always have a nondegenerate (not neccessarily
Riemannian) metric g;; and its inverse g*/. This enables us to freely raise and
lower indices at our convenience. We use the Einstein summation convention. We
also denote by wiws = %(wl ® wy + wa ® wy) the symmetrized tensor product of
two 1-forms w; and ws. In this paper we shall be working in the smooth category;
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i.e., everything will be assumed to be C*°, without mentioning it explicitly in what
follows.

A large part of the paper is based on lengthy calculations, which are required
by our main tool, namely Cartan’s equivalence method. These calculations were
checked by the symbolic calculation program Mathematica. The structure of the
paper is reflected in the table of contents.

We have been inspired by our contact with Andrzej Trautman, Jacek Tafel and
Jerzy Lewandowski, whom we thank warmly. We also thank the Mathematisches
Institute der Humboldt-Universitdt zu Berlin, and Ilka Agricola and Jiirgen Leit-
erer, in particular, for their kind hospitality during the preparation of this paper.

2. CLASSICAL TWIST AND SHEAR

In a simply connected domain U of Euclidean space R3, equipped with the flat
metric g;; = d;;, we consider a smooth foliation by uniformly oriented curves. Let v
be a vector field v = v®V; tangent to the foliation, consistent with the orientation.

We denote the total symmetrization by round brackets on the indices, the total
antisymetrization by square brackets on the indices, and use €5 = €[], €123 = 1.
We have the following classical decomposition

(2.1) Vivj = aij + 035 + 50955,
where
aij = Vv = seijr(curl v)F,
0= g"7Vv; =div v,
oij = Vvj) — %Hgij.
The decomposition (21 defines three functions, depending on the choice of v, which
can be used to characterize the foliation. One of these functions is the divergence

0, also called the expansion of the vector field v. It merely characterizes the vector
field v, hence it is not interesting as far the properties of the foliation is concerned.

The second function is
o = |ag| =1/ g% gl aijou,

the norm of the antisymmetric part oy;, called the twist of the vector field v.

Vanishing of twist, the twist-free condition o« = 0, is equivalent to curl v = 0.
Although this condition is v-dependent, it has a clear geometric meaning for the
foliation. Indeed, a vector field v with vanishing twist may be represented by a
gradient: v = V f for some function f : U — R. In such a case the level surfaces
of the function f define a foliation of U with 2-dimensional leaves orthogonal to v.
This can be rephrased by saying that the distribution V* of 2-planes, perpendicular
to v, is integrable.

The third function obtained from the decomposition 21J) is

o = |oij| =/ g*gloijon,

the norm of the trace-free symmetric part o5, called the shear of the vector field v.

Regardless of whether or not V* is integrable, the condition of vanishing shear
o = 0 is equivalent to Vv = %Hgij. Recalling that the Lie derivative L, g;; =
Vv, we see that the shear-free condition for v is the condition that this Lie
derivative be proportional to the metric. Thus ¢ = 0 if and only if Ly g;; = hg;.
This condition again is v dependent. However, it implies the following geometric
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property of the foliation: the metric gy induced by g;; on the distribution yt
is conformally preserved when Lie transported along v. To say it differently we
introduce a complex structure J on each 2-plane of V. This is possible since
each such plane is equipped with a metric g+ and the orientation induced by the
orientation of v. Knowing this, we define J on each 2-plane as a rotation by 7,
using the right hand rule. Now we can rephrase the statement about conformal
preservation of the metric g+ during Lie transport along v, by saying that it is
equivalent to the constancy of J under the Lie transport along v.

The above notions of expansion, twist and shear are the classical notions of
elasticity theory. As we have seen, they are not invariants of the foliation by curves,
because they depend on the choice of the vector field v. Nonetheless they do carry
some invariant information. One of the main purposes of this paper is to find all of
the local invariants of the intrinsic geometry associated with such foliations. With
this classical motivation we now pass to the subject proper of this paper.

3. ORIENTED CONGRUENCES

Consider a smooth oriented real 3-dimensional manifold M equipped with a
Riemannian metric g. Assume that M is smoothly foliated by uniformly oriented
curves. Such a foliation is called an oriented congruence. Note that we are not
assuming that the curves in the congruence are geodesics for the metric g.

Our first observation is that M has the structure of a smooth abstract CR
manifold. To see this we introduce the oriented line bundle V, a subbundle of
TM, consisting of the tangent lines to the foliation. Using the metric we also
have V1, the 2-plane subbundle of T'M consisting of the planes orthogonal to the
congruence. These 2-planes are oriented by the right hand rule and are equipped
with the induced metric g;,.. Hence V1 is endowed with the complex structure
operator .J as we explained in the previous section. The pair (V*,J), by the very
definition, equips M with the structure of an abstract 3-dimensional CR manifold.
This CR manifold has an additional structure consisting in the prefered splitting
TM = V+ @ V. It also defines an equivalence class [g] of adapted Riemannian
metrics ¢’ in which ¢’(V,V+) = 0 and such that gl’vL is hermitian for J. Thus,
an oriented congruence in (M,g) defines a whole class of Riemannian manifolds
(M, [g]) which are adapted to it.

Conversely, given an oriented abstract 3-dimensional CR manifold (M, H,J)
with a distinguished line subbundle V such that V N H = {0}, we may reconstruct
the oriented congruence. The curves of this congruence consist of the trajectories
of V. They are oriented by the right hand rule applied in such a way that it agrees
with the orientation of H determined by J. Here J : H — H and J? = —id.
Since TM = H @V we recover also the equivalence class [g] of adapted Riemannian
metrics g’ in which g(V, H) = 0 and such that g/, is hermitian for J.

We summarize with: let M be an oriented 3-dimensional manifold, then

Proposition 3.1. There is a one to one correspondence between oriented congru-
ences on M with a distinguished orthogonal distribution V*, and CR structures
(H,J) on M with a distinguished line subbundle V such that TM = H @ V.

We now pass to the dual formulation. Given a CR structure (H,.J) with a
prefered splitting TM = H &V, we define H° to be the anihilator of H and V° to
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be the anihilator of V. Note that HY is a real line subbundle of T*M and V' is a 2-
plane subbundle of T*M. This H? is known as the characteristic bundle associated
with the CR structure. V° is equipped with the complex structure J*, the adjoint
of J with respect to the natural duality pairing. The complexification CV° splits
into CV° = Vg_ @ VY, where V{ are the Fi eigenspaces of J*. Both spaces V{ are
complez line subbundles of the complexification CT*M of the cotangent bundle.
V0 is the complex conjugate of V_OH Vi = V%.

The reason for passing to the dual formulation is that we want to apply Cartan’s
method of equivalence to determine the local invariants of an oriented congruence
in M. For this we need a local nonzero section A of H° and a local nonzero section
w of V?r. Then AA A i # 0. Any other local section X' of H® and any other local
section p’ of V{ are related to A and p by N = fX and y/ = hy, for some real
function f and some complex function h. This motivates the following definition:

Definition 3.2. A structure (M, [\, p]) of an oriented congruence on a 3-dimensional
manifold M is an equivalence class of pairs of 1-forms [A, u] on M satisfying the
following conditions:
(i) X is real, p is complex
(i) AN\ p A @ # 0 at each point of M
(iii) two pairs (A, p) and (N, p') are equivalent iff there exist nonvanishing func-
tions f (real) and h (complex) on M such that

(3.1) N o= f\ w = hp.

We say that two such structures (M, [A, u]) and (M, [N, 1]) are (locally) equivalent
iff there exists a (local) diffeomorphism ¢ : M — M’ such that

(3.2) FN) = A ) =ha
for some nonvanishing functions f (real) and h (complex) on M. If such a diffeo-
morphism is from M to M it is called an automorphism of (M, [\, p]). The full

set of automorphisms is called the group of automorphisms of (M, [\, u]). A vector
field X on M is called a symmetry of (M, [\, p]) iff

LxA=fA, Lx = hi.

Here the functions f (real) and h (complex) are not required to be nonvanishing;
they may even vanish identically. Observe, that if X and Y are two symmetries of
(M, [\, p]) then their commutator [X,Y] is also a symmetry. Thus, we may speak
about the Lie algebra of symmetries.

Remark 3.3. Note that E. Cartan [3] would define a 3-dimensional CR manifold as
a structure (M, [\, u]) as above, with the exception that condition (%) is weakend
to

(#ii) o two pairs (A, ) and (N, i') are equivalent iff there exist nonvanishing func-
tions f (real) and h (complex) and a complex function p on M such that

N = f\, i = hp+pA.

In this sense our structure of an oriented congruence (M, [\, u]) is a CR manifold
on which there is an additional structure. In particular the diffeomorphisms ¢ that
provide an equivalence of our structures are special cases of CR diffeomorphisms,
which for CR structures defined a la Cartan by (i#i)cr are ¢ : M — M’ such
that ¢*(N) = fA, ¢* (1) = hu + p\. In terms of the nowadays definition of a CR
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manifold as a triple (M, H, J), this last Cartan condition is equivalent to the CR
map requirement: d¢ o J = J o d¢ and similarly for ¢~ '.

Remark 3.4. Two CR structures which are not equivalent in the sense of Cartan [3]
are also not equivalent, in our sense, as oriented congruences; but not vice versa.
On the other hand, every symmetry of an oriented congruence (M, [\, pu]) is a CR
symmetry of the CR structure determined by [\, p1] via (#ii)p; and not vice versa.

We omit the proof of the following easy proposition.

Proposition 3.5. A given structure (M, [\, u]) determines a CR structure (M, H, J)
with the preferred splitting TM = H &V, where H is the annihilator of Spang(\)
and CV is the annihilator of Spanc(u) & Spanc(i). The class of adapted Rieman-
nian metrics [g] is parametrized by two arbitrary nonvanishing functions f (real)
and h (complex) and given by

9= >N+ 2[hup.
4. ELEMENTS OF CARTAN’S EQUIVALENCE METHOD

Here we outline the procedure we will follow in applying Cartan’s method to our
particular situation.

4.1. Cartan invariants. Consider two structures (M, [\, p]) and (M’ [N, u']).
Our aim is to determine whether they are equivalent or not, according to Defi-
nition 3.2 equation ([B.2). This question is not easy to answer, since it is equivalent
to the problem of the existence of a solution ¢ for a system ([B2) of linear first
order PDEs in which the right hand side is undetermined. Elie Cartan associates
with the forms (\, i, ) and (N, i/, '), representing the structures, two systems of
ordered coframes {;} and {Q}} on manifolds P and P’ of the same dimension, say
n > 3, which are fiber bundles over M. Then he shows that equations like ([B.2) for
¢ have a solution if and only if a simpler system

(4.1) O =0Q;, i=12..n

of differential equations for a diffeomorphism ® : P — P’ has a solution. Note that
derivatives of @ still occur in (1)), since ®* is the pullback of forms from P’ to P.

One famous example is his original solution to the equivalence problem for 3-
dimensional strictly pseudoconvex CR structures. There P and P’ are 8-dimensional,
and his procedure produces two systems of eight linearly independent 1-forms {Q;}
and {2}

In our situation, provided n < oo, and if we are able to find n well defined
linearly independent 1-forms {€2;} on P, then (P, {Q;}) provides the full system of
local invariants for the original structure (M, [\, p]). In particular, using (P, {€;})
one introduces the scalar invariants, which are the coefficients { K;} in the decom-
position of {d€2;} with respect to the invariant basis of 2-forms {Q; A Q,}.

Now in order to determine if two structures (M, [\, u|) and (M’ [N, u']) are
equivalent, it is enough to have n functionally independent {K;}. Then the condi-
tion (AI) becomes

(4.2) K =K;, I=12.n

The advantage of this condition, as compared to (&1, is that (£2), being the pull
back of functions, does not involve derivatives of ®. In this case the existence of ®
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becomes a question involving the implicit function theorem, and the whole problem
reduces to checking whether a certain Jacobian is non-degenerate.

We remark that an immediate application of the invariants obtained by Car-
tan’s equivalence method is to use them to find all the homogeneous examples
of the particular structure under consideration. The procedure of enumerating
these examples is straightforward and algorithmic once the Cartan invariants have
been determined. In our situation the homogeneous examples will often have local
symmetry groups of dimension three. The 3-dimensional Lie groups are classified
according to the Bianchi classification of 3-dimensional Lie algebras [I]. Since we
will use this classification in subsequent sections, we recall it below.

4.2. Bianchi classification of 3-dimensional Lie algebras. In this section
X1, X2, X3 denote a basis of a 3-dimensional Lie algebra g with Lie bracket [, ].
All the nonequivalent Lie algebras fall into Bianchi types I, 11, V Iy, VIIy, VIII,
IX,V, IV VI, VII}. Apart from types VI, and VII, there is always precisely
one Lie algebra corresponding to a given type. For each value of the real param-
eter h < 0 there is also precisely one Lie algebra of type VI;,. Likewise for each
value of the parameter h > 0 there is precisely one Lie algebra of type VII,. The
commutation relations for each Bianchi type are given in the following table.

Bianchi type: I 17 Vi VI VIIT | IX
X, Xa] = | 0 0 0 0 X5 [ Xs
(X3, X1] = 0 0 —Xo Xo Xy | Xo
[Xo, X3] = 0 X1 X1 X1 X, | Xy

Bianchi type: | V 1V Vi VI
X, Xa] = | 0 0 0 0
(X3, X4] = X1 X1 —Xo+hX; | Xo+hXy
(Xo, Xa] = | —Xo | X1 = Xo | X1—hXs | X1 —hXo

Note that Bianchi type I corresponds to the abelian Lie group, type II cor-
responds to the Heisenberg group; types VIII and IX correspond to the simple
groups: SO(1,2), SL(2,R) for type VIII, and SO(3), SU(2) for type IX.

5. BASIC RELATIVE INVARIANTS OF AN ORIENTED CONGRUENCE

We make preparations to apply the Cartan method of equivalence for finding
all local invariants of the structure of an oriented congruence (M, [\, u]) on a 3-
manifold M.

Given a structure (M, [\, u]) we take representatives A and p of 1-forms from the
class [A, p]. Since (A, p, t) is a basis of 1-forms on M we can express the differentials
dX and dgp in terms of the corresponding basis of 2-forms (u A i, u A X, p A X). We
have

d\ = dap AR +buAXN+bIAN
(5.1) dp = puANB+HquAX+SspAN
dit = —puANp+SLAN+GaAN,

where a is a real valued function and b, p, ¢, s are complex valued functions on M.
Given any function w on M we define first order linear partial differential operators
acting on u by

du = urA + uyp + upfi.
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Note that uy is a real vector field acting on u, u, is a complex vector field of type
(1,0) acting on w and uy is a complex vector field of type (0,1) acting on uw. The
commutators of these operators, when acting on u are

Upy — Upp =  —iauy — Py, + pug
(5.2) Ung — Upx = —bux —qu, — 5uy
Ung — Up = —bu,y — SUy — qUj-
A function w on a CR manifold (M, [A, p]) is called a CR function if
(5.3) du ANAA p=0.

In terms of the differential operators above this is the same as
(5.4) ug = 0.

Thus uy is just the tangential Cauchy-Riemann operator acting on u. The equation
G3) or (B4) is called the tangential Cauchy-Riemann equation.
It is easy to see that each of the following two conditions

(5.5) dAAXN=0, dp A p =0,

is independent of the choice of the respresentatives (A, u) from the class [A, y.
Thus the identical vanishing or not of either the coefficient a, or the coefficent s, is
an invariant property of the structure (M, [), u]). Using Cartan’s terminology the
functions a and s are the basic relative invariants of (M, [\, u]). By definition they
correspond to the identical vanishing or not of the twist (the function a) and of the
shear (the function s) of the oriented congruence represented by (M, [\, u]).

They are invariant versions of the classical v-dependent notions of twist o and
shear o we considered in Section Pl Given an oriented congruence with vanishing
twist a in M = R? we can always find a vector field v tangent to the congruence such
that the twist « for this vector field is zero. We also have an analogous statement
for s and o. Conversely, every vector field v in R? which has vanishing twist a (or
shear o) defines an oriented congruence with vanishing twist a (or shear s).

We note that the twist a is just the Levi form of the CR structure and that the
shear s is now complex; its meaning will be explained further in Section [8

In what follows we will often use the following (see e.g. [12])

Lemma 5.1. Let 1 be a smooth complex valued 1-form defined locally in R3 such
that i A it # 0. Then

du Ap =0 if and only if = hdC

where ¢ is a smooth complex function such that dC A dC # 0, and h is a smooth
nonvanishing complex function.

Proof. Consider an open set U € R? in which we have p such that du A p = 0
and p A i # 0. We define real 1-forms 0' = Re(u) and 02 = Im(u). They satisfy
' AB? # 0in U. Since U C R? we trivially have d9' A0 A6? = 0 and dO? A0 NO? =
0. Now the real Frobenius theorem implies that there exists a coordinate chart
(x,y,u) in U such that 01 = t11dz + t12dy and 02 = to1da + toody, with some real
functions ¢;; in U such that t11te2 — t12t21 # 0. Thus in the coordinates (z,y, u)
the form p = 0' 4 i6? can be written as u = c;dx + cody, where now ci, co are
complex functions such that ciéa — ¢1co # 0 on U, so neither ¢; nor c¢o can be
zero. The du A p = 0 condition for p written in this representation is simply
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c%d(i—;) Adz Ady = 0. Thus the partial derivative (&), =0, which means that the
ratio 2—; does not depend on u. This ratio defines a nonvanishing complex function
F(z,y) = i—; of only two real variables x and y. Returning to p we see that it is
of the form p = ¢2(dy + F(z,y)dz). Consider the real bilinear symmetric form
G =2ua = |02|2(dy2 + 2(F(2,y) + F(z,y))dady + |F(:E,y)|2dx2). Invoking the
classical theorem on the existence of isothermal coordinates we are able to find
an open set U’ C U with new coordinates (&,n,u) in which G = h?(d¢? + dn?),

where h = h(£,n,u) is a real function in U’. This means that in these coordinates
= hd(§ +in) = hd¢. The proof in the other direction is obvious. O

6. VANISHING TWIST AND SHEAR

Let us assume that the structure (M, [\, p]) satisfies both conditions (EH); i.e.,
that ¢ = 0 and s = 0. It is easy to see that all such structures have no local
invariants, meaning that all of them are locally equivalent. Indeed, if dAA X =0
then the real Frobenius theorem guarantees that locally A = fdu. Similarly, if
du A = 0, then the Lemma [B.1] assures that 4 = hd{. Since dCAXNA u = 0,
we see that the function ¢ is a holomorphic coordinate. Recalling the fact that
AN A # 0, we conclude that if ¢ = 0 and s = 0 then the CR manifold M
with the prefered splitting is locally equivalent to R x C, with local coordinates
(u, ), such that w is real. In these coordinates the structure may be represented
by A = du and g = d{. The local group of automorphisms for such structures is
infinite dimensional and given in terms of two functions U = U(u) and Z = Z(()
such that U is real, U, # 0, Z is holomorphic and Z; # 0. The automorphism
transformations are then @ = U(u), ¢ = Z(¢). Note that from the point of view
of Cartan’s method this is the involutive case in which n = co. There are no local
invariants in this situation.

7. NONVANISHING TWIST AND VANISHING SHEAR

7.1. The relative invariants K; and K>. Next let us assume that the structure
(M, [\, p1]) has some twist, a # 0, but has identically vanishing shear, s = 0. Let
us interpret this in terms of the corresponding CR structure with the prefered
splitting. The nonvanishing twist condition dAA X # 0 is the condition that the CR
structure has nonvanishing Levi form. This means that the CR manifold is strictly
pseudoconver and hence is not locally equivalent to R x C. The no shear condition,
dpu A p =0, by the Lemma [5.1] means that the class [u] may be represented by a 1-
form p = d¢ with a complex function ¢ on M satisfying d¢ Ad¢ # 0. Note that this
function trivially satisfies the tangential Cauchy-Riemann equation dCAXAp = 0 for
this CR structure, and hence is a CR function. If Z is any holomorphic function with
nonvanishing derivative, then Z = Z(() is again a CR function with dZ A dZ # 0.
This gives us a distinguished class of genuinely complex CR functions Z = Z((),
which we denote by [(]. Conversely if we have a strictly pseudoconver 3-dimensional
CR structure (M, H,J) with a distinguished class [¢] of CR functions Z = Z((),
such that d¢ A d{ # 0 and Z’ # 0, then this CR structure defines a representative
(\,p = dZ), with X being a nonvanishing section of the characteristic bundle H°.
This in turn defines a structure (M, [\, u]) of an oriented congruence which has
a# 0 and s =0.
Summarizing we have
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Proposition 7.1. All local structures of an oriented congruence (M, [\, u]) with
nonvanishing twist, a # 0, and vanishing shear, s = 0, are in a one to one corre-
spondence with local CR structures (M, H,J) having nonvanishing Levi form and
possessing a distinguished class [C] of genuinely complex CR functions on M.

Note that the proposition remains true if we drop the nonvanishing twist condi-
tion on the left and drop the nonvanishing Levi form condition on the right.

We now pass to the determination of the local invariants of (M, [\, u]) with
nonvanishing twist and vanishing shear. We take a representative (A, u). Because
of our assumptions the formulae (5.1 become

d\ = dapAG+bu AXN+DIAN
(7.1) dp = ppAf+quA A
dfi = —PuAf+ AN

For example if we were to choose p as = d¢, where ( is a particular representative
of the distinguished class [(] of CR functions, then du would identically vanish, so
p =0 and ¢ = 0. Although this choice of i is very convenient and quite simplifies
the determination of the invariants, we will work in the most general representation
(@) of [\, p] to get the formulae for the invariants in their full generality.

Given a choice (A, p) as in (Z.I) we take the most general representatives

(7.2) w=fA w1 = h, w1 = hji,
of the class [\, u]. Here f # 0 (real) and h # 0 (complex) are arbitrary functions.

Then we reexpress the differentials dw, dw; and diw; in terms of the general basis
(w,w1,w1). We have:

b b
(73) dw = ’Lﬁ w1 Nwp + [dlogf+—w1—|—=@1]/\w
|h|? h h
(7.4) dw; = [dlogh-— %@1 - %w | Awn
(75) do; = [ legB - %wl — % ] N w1
Since a # 0 we can easily achieve
(7.6) dw Aw =iw; Ay Aw
by taking
|h[?
7.7 .
(17) p=

Thus condition (Z.6) ‘fixes the gauge’ in the choice of f.
Introducing the real functions p > 0 and ¢ via h = pe’® and maintaining the
condition (Z.6) we may rewrite equation (T3] in the form
dw =iw A1 + (2 + Q) Aw,
where the real valued 1-form Q + Q is
(7.8) Q+Q=2dlogp+ (b— (loga),)u+ (b — (loga)s)fi + tA.

The real function ¢ appearing in Q + Q can be determined algebraically from the
condition that

(79) (dwl + d@l) A (wl - LT)l) = —Ww1 A @1 A (Q + Q)
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If this condition is imposed then
(7.10) t=—-q—q.

Now, if ¢ is as in (ZI0) and f is as in ([Z7) we define  — Q to be an imaginary
1-form such that

(7].].) (dwl —l—dwl)/\(wl —|—LT)1) = w1 /\u_}l/\(Q—Q).
This determines  — Q to be
Q—Q=2id¢+ (7— g\ + zp — Zii,

where z is a still undetermined function. The condition that fixes z in an algebraic
fashion is the requirement that

(712) dwi = Q A wy, dwq ZQ/\(Dl.
If this is imposed we have
(7.13) z=2p+b— (loga),, z=2p+b— (loga)s.

Thus given a structure (M, [\, pu]) with nonvanishing twist and vanishing shear,

the four normalization conditions (6, (C9), (ZI1I), (ZI2) uniquely specify a
5-dimensional manifold P, which is locally M x C, and a well defined coframe

(w, w1, w1,9,Q) on it such that
2

w = p—/\
a
wi = pey
(7.14) o = pe
Q = dlogp+idg+ (p+b—(loga),)u —pi—gA
Q = dlogp—id¢—pu+ (p+b— (loga)a)i— g\

Here the complex coordinate along the factor Cin M x Cis h = pe'®. The coframe
(w,wr,w1,Q,Q) satisfies

dw = dwi Ao+ (Q+Q) Aw
dwi = QAw;
(7.15) don = QA®,
dQ = Kiw Ao+ Kowi Aw
dQ = —Kiwi Ao+ Ko Aw,
where
(7.16) K=k, K= efj o,
P P
are functions on P with k; and kg given by
ki = Re((loga)us — (1og a)up — iga — by + bp — 25 + 2Ipf?)
ks = aux —abx+i(loga),(by — B;L — bp +bp) — 2a,9 — aqy — (aq), — abg.

Note that the functions k1 and ko are actually defined on M. Note also that ki is
real as a consequence of the commutation relations (5.2). The functions K; and Ko
are the relative invariants of the structure (M, [\, u]), and (ZI3) are the structural
equations for (M, [, u]).
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Theorem 7.2. A given structure (M, [\, u]) of an oriented congruence with nonva-
nishing twist, a # 0, and vanishing shear, s = 0, uniquely defines a 5-dimensional
manifold P, 1-forms w,wy,01,Q,Q and functions K1, Ko, Ko on P such that
- w,wi, w1 are as in (T2,
-wAW AL AQAQ #0 at each point of P,
- the forms and functions Ky (real), Ko (complex) are uniquely determined
by the requirement that on P they satisfy equations ([(13).

In particular the identical vanishing, or not, of either ki or ko are invariant condi-
tions. Also the sign of k1 is an invariant, if k1 # 0.

7.2. Description in terms of the Cartan connection. The above theorem,
stated in modern language, means the following. The manifold P is a Cartan
bundle H, — P — M, with Hy a 2-dimensional abelian subgroup of a certain
5-dimensional Lie group Gs. The group Gy is a subgroup of SU(2,1); i.e., the
8-dimensional Lie group which preserves the (2, 1)-signature hermitian form

S (ZY\ 0 0 2i
hZ,2) = (Zl, Z2, Z3)h gz ,h=1 0 1 0
Z3 -2i 0 0
The forms w, wy, @1, €, Q in the theorem can be collected into a matrix of 1-forms
%(QQ + Q) 0 0
W= w1 %(Q - Q) 0
2w iy —3(204 ),
satisfying o
oh+ hot = 0.
The Lie algebra g5 of the group G5 is then
%(22’2 + 52) 0 0
g5:{ 21 %(22—22) 0 , .IER, Zl,ZQEC},
27 2iz; —2(222 + 22)

and as such is a real 5-dimensional Lie algebra parametrized by the parameters
x,Re(z1),Im(z1), Re(z2), Im(z2). It is naturally contained in su(2, 1). The subgroup
Hy corresponds to the subalgebra hy C g5 given by z = 0,23 = 0. Now, @ can be
interpreted as a Cartan connection on P [7] having values in the Lie algebra g5 C
su(2,1). It follows from equations (ZI5) that the curvature R of this connection is

Ry O 0
Re=dot+onrd=|0 Ry 0 ,
0 0 —Ri—Rs
where
Ry = —%ng/\wl—%?gw/\wl—F%Klwl/\@l
Ry = %ng/\wl—%fzw/\(ﬁl—%lflwl/\(ﬂl

It yields all the invariant information about the corresponding structure (M, [\, u]),
very much in the same way as the Riemann curvature yields all the information
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about a Riemannian structure.

7.3. Conformal Lorentzian metrics. Using the matrix elements @ij of the Car-
tan connection @ it is convenient to consider the bilinear form
G = —id*e).

This form, when written explicitly in terms of w,w;,@1,Q, Q, is given by
2 _
G = 20}10_)1 + 3—w(Q — Q)
i

Introducing the basis of vector fields X, X1, X1, Y, Y, the respective duals of w, wy, 01,
Q, Q, one sees that G is a form of signature (4++—0) with the degenerate direction
tangent to the vector field Y +Y = pd,. We may think of the Cartan bundle P as
being foliated by 1-dimensional leaves tangent to this vector field. Now equations
(CI5) guarantee that the Lie derivative

Liyiv)G=2G,

so that the bilinear form G is preserved up to a scale when Lie transported along
the leaves of the foliation. Therefore the 4-dimensional leaf space N = P/~ of the
foliation is naturally equipped with a conformal class of Lorentzian metrics [g], the
class to which the bilinear form G naturally descends. The Lorentzian metrics

2
(7.17) g = 2wy + gw(Q -Q)

on N are the analogs of the Fefferman metrics [5] known in CR manifold theory.
We note that N is a circle bundle above M with the fiber coordinate ¢.
Interestingly metrics (CI7) belong to a larger conformal family, which is also
well defined on N. It turns out that if we start with a bilinear form

Gt = 2&)10_}1 + 2t1 W(Q — Q)

where ¢ is any function on P constant along the Y + Y direction, then it also well
projects to a conformal Lorentzian class [¢g;] on N with representatives

(7.18) gy = 2wilv; + 2t w(Q - Q)

parametrized by ¢. To see this it is enough to look at the explicit expressions for
the forms (w1, @1, w,, Q) in (I4) and to note that G is of the form G; = p?(...),
where the dotted terms do not depend on the coordinate p which is aligned with
Y +Y on P.

Although ¢ may be an arbitrary function on N, in what follows we will only be
interested in the case when t is a constant parameter.

We return to metrics g; in Section [[0.2) where we discuss their conformal curva-
ture F} and provide some example of the Lorentzian metrics satisfying the so called
Bach condition.

7.4. Basic examples.

Example 7.3. Note that the assumption that K; and Ky are constant on P is
compatible with (ZI3) iff K1 = Ky = 0. In such case the curvature R of the
Cartan connection w vanishes, and it follows that there is only one, modulo local
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equivalence, [\, p] structure with this property. It coincides with the CR structure
of the Heisenberg group

M ={ (z,0) € C?: Im(w) = | }

with the preferred splitting V' generated by the vector field v = 9,, u = Re(w).
We call this the standard splitting on the Heisenberg group. The resulting oriented
congruence has the maximal possible group of symmetries isomorphic to the group
Gs.

Example 7.4. We recall that a 3-dimensional CR manifold M embedded in C?
via
M={(z,w=u+iv)eC® : v=1H(z) },

where H is a real-valued fuction of the variable z € C, is called rigid. It can be given
a structure of an oriented congruence by choosing the splitting to be spanned by
the vector field 9,,. As in the above special case of the Heisenberg group we call this
preferred splitting on M the standard splitting on a rigid CR structure. Intrinsically
this CR-manifold with the preferred splitting may be described in terms of the forms
A and p given by

(7.19) A=du+ i(H:dz — H.dz), p=dz
Via (B3J), these forms define a structure (M, [\, u]) of an oriented congruence on
M. In the following we assume that

H.: #0
at every point of M. It means that M is strictly pseudoconvex.

Definition 7.5. A structure (M, [\, u]) of an oriented congruence with vanishing
shear and nonvanishing twist on a manifold M is called (locally) flat iff (locally) it
has vanishing curvature R for its Cartan connection @. The necessary and sufficient
conditions for that are K7 =0 and K9 = 0.

A short calculation leads to the following proposition.

Proposition 7.6. Let (M, [\, u]) be a structure of an oriented congruence associ-
ated with the rigid CR-manifold M via the forms A and p of (Z19). Then for any
real-valued function H = H(z) such that H,z # 0 this structure has vanishing shear
and non-vanishing twist. Its relative invariant Ko is tdentically vanishing, Ko = 0;
the relative invariant Ky is given by K, = p%[log(Hzg)]zg. When it vanishes the
structure is flat.

Example 7.7. We remark that the Heisenberg group CR structure may have var-
ious splittings that endow M with nonequivalent structures of an oriented congru-
ence. To see this we perturb the standard splitting on the Heisenberg group given
by the vector field 0,. This is accomplished by choosing a 2-parameter family of
CR-functions on M given by

(7.20) (erer = €12 + €2(u +i[2]%),
and defining the structure of an oriented congruence on M via (B with the forms
A =du+i(2dz — zdz), teyes = ACeyen-

Note that since A is a section of the characteristic bundle H° of the Heisenberg
group CR-structure, and p.,e, is the differential of a CR-function, the structure
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(M, [A, peyes]) 18 twisting and without shear for all values of the real parameters €;
and e5. The real vector field v which gives the splitting on M is given by
1€1 + 2692 —1€1 + 2622

Oy + 2 | ]
v = = s ],
“g t—iagte(z—2) 0 i tel(z—2)

if €1 7£ 0, and

v =1i(20, — 203)
otherwise. A short calculation shows that the relative invariants K., ., and Ko,
for this 2-parameter family of structures are

8e3
p2|2622 + i€1|4 ’
This proves that the structures with e = 0 and ez # 0 are not locally equivalent. To
analyse if the structures with e5 # 0 are equivalent or not we need to apply further

the Cartan equivalence method. We will perform it in a more general setting than
this example.

K16162 - K2€162 = O

7.5. The case K; # 0, Ky = 0. Let (M, [\, ¢1]) be an arbitrary structure of an
oriented congruence which has nonvanishing twist, vanishing shear, and in addition
has the relative invariants K7 and K5 such that

Ki#0 and K, =0.

Given such a structure, using the system (CI3) and the assumption Ko = 0, we
observe that the corresponding structural form €2 has closed real part,

(7.21) d(Q+9Q)=0.

The assumption that K7 # 0 enables us to make a further reduction of the Cartan
system (ZI5)) defining the invariants. Indeed since K1 = p%kl # 0, we may restrict
ourselves to a (possibly double-sheeted) hypersurface Ny in P on which

Ky = +1,
where the sign is determined by the sign of the function k;. Recall that this sign is

an invariant of the structure.
Locally Ny is a circle bundle over M defined by the condition

p* = |kal.
Now the system (.I5) when pullbacked to Ny locally reduces to
dw = dwi ANwy+2dAAwW
dw; = dAANw; +1ZAw;
(7.22) doy = dAAG —iZAw
d¥X = Fiw Awq.

Here the real 1-form ¥ is the pullback of the form - (2—Q) from P to Ny. According
to our choice of X, the minus sign in [Z.22)) corresponds to K; = +1. The differential
dA of the real function A on Ny is determined by the condition that 2dA is locally
equal to the pullback of the Q + Q from P to Ny. Note that this pullback must be
closed due to (Z2I). Looking at the explicit expression for Q + Q in (Z8), (ZI0)

and the integrability conditions for (.22 we find that locally we have
(723) 2dA = Ajwy + Alu_)l,
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with
G k1|

(7.24) Ay = ——((log —),, + b).
V kil a "

The function A; gives a new relative invariant for the structures (M, [\, u]) with
Ky, # 0 and Ky = 0. It follows from the construction that two such structures
(M, [\, pu]) and (M’ [N, 1']) are (locally) equivalent if there exists a (local) diffeo-
morphism of the corresponding manifolds Ny and Ny" which transforms the cor-
responding forms (w,w,1,%) to (w',w],®],X"). This in turn implies that the
relative invariant A; must be transformed to A}.

Remark 7.8. We note that among all the structures with K; # 0 and K5 = 0 the
simplest have A; = 0. Modulo local equivalence there are only two such structures,
corresponding to the F sign in ([22) with A; = 0. These are the ‘flat cases’ for
the subtree in which K7 # 0 and Ko = 0.

The function A defining the relative invariant A; is defined only up to the addi-
tion of a constant, A — A+t¢. Given a family of functions A(t) = A+t we consider
the family of bilinear forms G 4(t) on Ny defined by

= 672(A+t)W1WQ.

Gaw

The forms G 44 are clearly degenerate on Ny. Denoting by (X, X1, X1,Y) the dual
vector fields to the basis of 1-forms (w, w1, w1, X) on Np, we see that the signature of
G Aty is (+,+,0,0) with the degenerate directions aligned with the real vector fields
X and Y. Next we observe that the system (C22) implies that [X,Y] = 0, hence
the distribution spanned by X and Y is integrable. Thus Ny is foliated by real 2-
dimensional leaves. Locally the leaf space S of this foliation is a 2-dimensional real
manifold, which is a Riemann surface, since the pullback to S of the 1-form w; gives
a basis for the (1,0) forms. Now the formula (T23)) implies that X (A) = Y (A) = 0.
Using this and the system (Z.22), a calculation shows that

LXGA(t) = 0, EyGA(t) =0.

This means that the bilinear forms G 4(;) descend to Riemannian homothetic metrics
ga(r) on the Riemann surface S. We have the following theorem.

Theorem 7.9. The Riemann surface S naturally associated with the structure of
an oriented congruence having K1 # 0, Ko = 0 possesses Riemannian homothetic
metrics gan) whose Gaussian curvatures (t) are related to the relative invariant
A1 via:

K(t) = Fe2A+h), ie. 2dA = dlogk.

Example [T.7 (continued) Calculating A; for the structures (M, [\, pie,e,]) of
Example [[77 assuming that es # 0, we easily find that for all €1, and ey # 0,
we have A; = 0. Thus for all nonzero values of €3, and all values of ¢, the
structures are locally equivalent. Hence the apparent 2-parameter family of the
structures (M, [\, fie,c,]) includes only two nonequivalent cases; isomorphic to those
with (e1,€2) = (1,0), and e.g. to those with (e1,€e2) = (0,1). The first case is the
flat case K1 =0, Ko = 0, corresponding to the Heisenberg group with the standard
splitting. The second case is considerably different, being one of the ‘flat cases’ for
the subtree K; # 0 and Ko = 0, corresponding to A; = 0 and the minus sign in
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([C22). In particular the (0,1) case has only a 4-dimensional symmetry group, as
opposed to the 5-dimensional symmetry group of the (1,0) case.

We would like to point out that if we were to choose a more complicated CR
function than the (., of (C20), for example

(=ez+e(ut i|z|2)m,

with m # 0 and m # 1, we would produce an oriented congruence (M, [du+i(zdz—
zdz), d(]), still twisting and without shear, again based on the Heisenberg group,
but not equivalent to either of the two structures above. The reason for this is that
the condition m # 0,m # 1 makes (M, [du + i(2dZ — Zdz),d(]) have the relative
invariant Ky nonvanishing.

We now give a local representation for an arbitrary structure (M, [, p]) with
vanishing shear, nonvanishing twist, and with K3 # 0, Ko = 0. This can be done
by integration of the system (.22]). Interestingly this integration can be performed
explicitly, leading to the following theorem.

Theorem 7.10. If (M, [\, u]) is a structure of an oriented congruence with van-
ishing shear, nonvanishing twist, and with the relative invariants K1 # 0, Ko =0
then there exists a coordinate system (u,z,z) on M such that the forms A and p
representing the structure can be chosen to be

A =du+ 5(H:dz — H.dz), w=dz,
where the real functions A = A(z) and H = H(z) satisfy the system of PDEs
(7.25) h.: = Fe?de™
(7.26) H,. = eh

with a real function h = h(z). The structure corresponding to such \ and p satisfies
the system

dw = dwiAwr+2dAAw
dwi = dAAw+iXAw
do; = dAA@D —iXA@
d¥X = Fiwi Ay
with forms
w = e24), wy = ede M2y, o1 = edeh/2mi0y

¥ =d¢ + 5(hzdz — h.dz).
The relative invariant Ay of this structure is given by
Ay = 2e 4267104,

Note that the system of PDEs (C.20)-(7.26) is underdetermined. To see that
it always has solutions, choose a real function H = H(z) on the complex plane.
Define the real function h = h(z) via equation (Z.26), insert it into equation (23]
and solve this real PDE for a real function A = A(z). Since the function H can be
chosen arbitrarily, returning to Example[[4] we see that this theorem characterizes
the oriented congruences which are locally equivalent to those defined on rigid CR
manifolds with the standard splitting.
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Corollary 7.11. Every structure (M, [\, p]) of an oriented congruence with van-
ishing shear, nonvanishing twist, and with the relative invariants K1 # 0, Ko =0
admits one symmetry.

Proof. To proof this it is enough to check that in the local representation (Z.25)-
([C26) the symmetry is generated by X = 0,,. O

Starting with a structure (M, [\, u]) having K7 # 0 and K9 = 0 we constructed
its associated circle bundle S' — Ny — M equipped with the invariant forms
(w,w1,w1,%). Using the dual basis (X, X1, X1,Y) and the system (T22) we see
that the symmetry X lifts to a vector field X = 24X with the property that

LiX=0, Lgzw =2X(A)wi.

We now introduce a quotient 3-dimensional manifold My whose points are the
integral curves of X. Then the forms ¥ and w1 descend from Ny to a class of forms
[2,w1] on My, given up to the transformations ¥ — 3, w; — hwi. Thus they can be
used to define a structure of an oriented congruence (Ms, [, w1]). This structure
naturally associated with (M, [\, u]) may be locally represented by the coordinates
(¢, 2z, Z) of Theorem [[I0 with the representatives ¥ and w; given by
Y=do+ %(hgdé — h.dz), wy =dz.

Here the real function h = h(z) is related to the original structure (M, [\, u]) via
equations (Z23)-(C28). In particular (Msy, [X,w:]) is again based on a rigid CR
structure with the standard splitting.

Now we use Theorem [.10] to describe all the structures with K7 # 0 and Ko =0
which have a 4-dimensional transitive symmetry group. It turns out that they must
be equivalent to those with dA = 0. This is because the existence of a 4-dimensional
transitive symmetry group implies that A; must be a constant. But since A and
h depend only on z and %, and A; has nontrivial €® dependence, it is possible iff
A, = 0; hence A; = 0. Thus according to Remark there are only two such
structures. One of them, the one with the upper sign in (L22)), is equivalent to the
structure (e1,e2) = (0,1) of Example [[71 To find the second one we use Theorem
[ 10 and integrate equations (Z25)-(Z26) for A = 0. Modulo equivalence we get
two solutions

he = 2log(1 F 32%), Hy = F2log(1 F 322), A=0

which lead to the two nonequivalent ‘flat models’ with K1 = +1, A; = 0. These
are generated by the forms

czdz — zdz

7.27 Ar =du+ L————, =dz.

( ) F 27 - % 27 1%

Obviously the structure corresponding to the upper sign is isomorphic to the struc-
ture (e1,€2) = (0,1) of Example[T.7] Interestingly, in either of the two nonequivalent
cases the forms (A, i) can be used to intrinsically define a flat CR structure (in the
sense of Cartan’s paper [3]) on M parametrized by (u, z,z). Another feature of
these two nonequivalent structures is that their Riemann surface S+ described by
Theorem [L9is equipped with metrics g4(;) which may be represented by

_ 2dadz
RRNTE ey
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Thus these Riemann surfaces are either locally homothetic to the Poincaré disc (in
the upper sign case) or to the 2-dimensional sphere S? (in the lower sign case). This
leads to the following definition.

Definition 7.12. The two structures of an oriented congruence (M, [A+, p1]) gen-
erated by the forms Ay, of (Z21) are called the Poincaré disc structure (in the
upper sign case) and the spherical structure (in the lower sign case).

We further note that the natural structures (Ms, [X+,w;]) associated with the
structures (727 are locally isomorphic to the original structures (M, [A¢, u]). Fi-
nally we note that the forms A\, u are identical with the forms which appear in the
celebrated vacuum Taub-NUT solution of the Lorentzian Einstein field equations
(see formulae (ITI)-(IT2) with K — 1 =m = a = 0 and with the coordinate z re-
placed by 2/z). We summarize the considerations of this paragraph in the following
Theorem.

Theorem 7.13. All structures (M, [\, u]) of an oriented congruence with vanishing
shear, nonvanishing twist, having the relative invariants K1 # 0, Ko =0 and pos-
sessing a 4-dimensional transitive symmetry group are locally isomorphic to either
the Poincaré disc structure (M, [A_, u]) or the spherical structure (M, [y, u)), i.e.
they are isomorphic to one of the ’flat models’ for the K1 # 0 and Ko = 0 case.

We now pass to the determination of all local invariants for the structures with
Ay # 0. Let (M, [\, p]) be such a structure with the corresponding circle bundle
Ny and the system of invariants (Z.22)). Looking at the explicit form (Z24)) of the
relative invariant A, we see that we may always choose a section of the bundle Ny
such that A; is real and positive. Locally this corresponds to the choice of ¢ as a
function on the manifold M such that

e " |1 e'? kaly 5

((log )u+b) = ((log )a+b) > 0.
VIki] a " VIki] a "
If ¢ satisfies (Z28)) then

(7.28)

A1>0,

and all the structural objects defined by the system (Z.22)) may be uniquely pull-
backed to M. As the result of this pullback the real 1-form ¥ becomes dependent
on the pullbacked forms (w,ws,&1). Since these three 1-forms constitute a coframe
on M we may write ¥ = Bow + Biw; + Biw; where By (real) and B; (complex)
are functions on M. Now using the fact that these structures admit a symmetry
(Corollary [T11]), we get By = 0. Hence

Y= B1w1 + Blu_)l.
With this notation the pullbacked system ([22]) becomes

dwv = dwi Awr+2A41(w1 +w1) Aw
(729) dw; = —(Al + iBl)wl VA3
du_)l = (A1 - iBl)wl A LDl,

with the fourth equation given by
(730) d(Blwl + Bl(ﬁl) = Fiwi A\ w1.
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Remark 7.14. Note that since on Ny the complex function A; was constrained
by d(Ajw; + A1) = 0, because of ([Z.23), the equations (Z.29)-(Z.30) should be
supplemented by the equation d[A4;(w; 4+ @1)] = 0 for A4; > 0. This however is
equivalent to

dA; A (w1 + @1) e [iAl(Bl + Bl)]wl N wi,
and turns out to follow from the integrability conditions for (229)-(Z30).

Writing these integrability conditions explicitly we have:

dA; = [an + £41(B1 + Bi)lwi + [a11 — A1 (B1 + By)]wy
(7.31) dB; = Bjiwi+ [b12 + %Al (Bl — Bl) + l(:l:% - |Bl|2)](ﬂ1
dB; = [bi2— 1A1(B1 — By) —i(£1 — |B1|*)|wi + By,

where the real functions a;1, b12 are the scalar invariants of the next higher order
than A1 and Bl.

Theorem 7.15. The functions A1 > 0 and By (complex) constitute the full system
of basic scalar invariants for the structures (M, [\, p]) with Ky # 0, Ko = 0 and
Ay # 0. It follows from the construction that two such structures (M, [\, u]) and
(M’ [N, 1)) are (locally) equivalent iff there exists a (local) diffeomorphism between
M and M’ which transforms the corresponding forms (w,wi,@1) to (W, W}, o).
This in particular implies that the invariants Ay and By must be transformed to A
and Bj.

The system (229)-(Z31) and the above theorem can be used to find all structures
with K7 # 0 and K5 = 0 having a strictly 3-dimensional transitive symmetry group.
These are the structures described by the system ([Z.29)-(Z.31) with constant basic
invariants A; > 0, By. It follows that it is possible only if By = i1, A1 = i12_7272 >0
and 7 # 0 is a real parameter. This leads to only two quite different cases, which

are described by Propositions [Z.16] and [[.17

Proposition 7.16. (i) All locally nonequivalent structures (M, [\, 1)) of oriented
congruences having vanishing shear, nonvanishing twist, K1 # 0, Ko = 0, and
possessing a strictly 3-dimensional transitive group Gy of symmetries of Bianchi
type VI, h <0, may be locally represented by

A = ybdu — y~ldz, p=y t(dz +idy).

Here (u, z, z) with z = x + iy are coordinates on M and

b= —2(1F27%).
The real parameter 7 is related to the invariants By and Ay via
14272
BlziT, Alz—i>0,
2T

and as such enumerates nonequivalent structures.

(ii) Regardless of the values of T the structures corresponding to the upper and lower
signs in the expressions above are nonequivalent. In the case of the lower signs the
real parameter T < 0. In the case of the upper signs T < —\% or 0 <1< % or
% <7< %

(iii) The structures are locally CR equivalent to the Heisenberg group CR structure

only in the case of the upper signs with T = %
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(iv) The symmetry group is of Bianchi type VI, with the parameter h < 0 related
to T via

he — (3 Far? ) 2
1F4r2
In the lower sign case the possible values of h are —9 < h < —1, and for each value
of h we always have one structure with the symmetry group G. In the upper sign
case h may assume all values h < 0, h # —1. In this case, we always have

two nonequivalent structures with symmetry group Gy with h < —9;
- one structure with symmetry group Gy with —9 < h < —1; if the parameter

TS T = % then h = —9 and the structure is based on the Heisenberg

group with a particular nonstandard splitting;
two nonequivalent structures with symmetry group G, with —1 < h < 0;
- one structure with symmetry group of Bianchi type V.

Proposition 7.17. Modulo local equivalence there exists only one structure (M, [A, u])
of an oriented congruence having vanishing shear, nonvanishing twist, K1 # 0,
Ky =0, and possessing a strictly 3-dimensional transitive group of symmetries of
Bianchi type I'V. Locally it may be represented by the forms

A =y~ (du + log ydx), p=y (dz +idy).

Here (u,z,z) with z = x + iy are coordinates on M. The structure has the basic

local invariants A, = % and By = 3.

Summarizing we have the following theorem.

Theorem 7.18. All locally nonequivalent structures (M, [\, u]) of oriented congru-
ences having vanishing shear, nonvanishing twist, K1 # 0, Ko = 0, and possessing
a strictly 3-dimensional transitive group of symmetries are locally equivalent to one
of the structures defined in Propositions and [717.

Remark 7.19. Example [[3] Theorem [.13 and Theorem describe all locally
nonequivalent homogeneous structures of an oriented congruence having vanishing
shear, nonvanishing twist and with the invariant Ko = 0. They may have
- maximal symmetry group of dimension 5, and then they are locally isomor-
phic to the Heisenberg group with the standard splitting.
- symmetry group of exact dimension 4, and then they are locally isomorphic
to one of the two nonequivalent structures of Theorem
- symmetry group of exact dimension 3 which must be of either Bianchi type
VI, or IV in this case they are given by Propositions [(.16] and [ 17

7.6. The case K # 0. Looking at the explicit expresion for Ky in (ZI0) we see
that in this case we may fix both p and ¢ by the requirement that

(7.32) Ky =1.
Indeed this normalization forces p and ¢ to be
1
p=lka|3, ¢ = Arg(ks).

This provides an embedding of M into P. Using it (technically speaking, by in-
serting p and ¢ in the definitions of the invariant coframe (C.14)) we pullback the
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forms (wy,@1,w,Q,Q) on P to M. Also K; is pullbacked to M, so that
Ky

K = 7
k2|3

Since M is 3-dimensional the pullbacked forms are no longer linearly independent,
and the pulback of the derived form  decomposes onto the invariant coframe
(w1,@01,w) on M. We denote the coefficients of this decomposition by (Z1, Z2, Zy)
so that:

Q= lel + Z25)1 + Zow
0= Zgwl + 215}1 + Zow.

These coefficients constitute the basic scalar invariants of the structures under con-
sideration. They satisfy the following differential system:

dw = iwl /\LT)l + (Zl + Zg)wl ANw + (ZQ + Zl)u_)l A w
(733) dwi = —Zow1 ANy — Zowi ANw
du_)l = ZQU)l A\ LT)l - Z()Lvl AN w
with
d[lel + Z2(.:)1 + Zow] = Klwl A @1 “+ w1 A w
d[ZQWl + 21@1 + Zow] =-—Kiwi AN + @01 Aw.

Instead of considering the last two equations above, it is convenient to replace them
by the integrability conditions for the system (Z33)). These are:

dZy = Zywi + (=K1 + 12y — Z1 29 + ZoZo + Zo1)iwy + (ZoZa + Zo1 — 1w
dZy = (=K1 —iZy — 2122 + Z2Za + Zo1)w1 + Zuin + (ZoZ2 + Zo1 — V)w
dZy = Zoywy + Zaswr + (Zog + ZoZy + ZoZy — ZoZo)w
(7.34) dZy = Zoowy + Zorwr + (Zog + ZoZ1 + ZoZo — ZoZo)w
dZy = Zp1w1 + Zpow1 + Zoow
dZQ = Zogwl + Zolcfjl + Zoow
dK; = Kjwi + K11o1 + Kiow,
where, in addition to the basic scalar invariants Zy, Z1, Z2, K1, we have introduced
the scalar invariants of the next higher order: Zyo, Zo1, Zo2, Z11, Z21, Z22 (comp-
lex) and Kjo (real). Note that if the basic scalar invariants Zy, Z1, Zo2, K1 were

constants, all the higher order invariants such as Zyo, Zo1, Zoz2, Z11, Z21, Z22, K10
would be identically vanishing.

Theorem 7.20. All locally nonequivalent structures (M, [\, u]) of oriented congru-
ences having vanishing shear, nonvanishing twist, and with Ko # 0 are described
by the invariant system (7.33) with the integrabilty conditions (7.34).

Now we pass to the determination of all nonequivalent structures with Ky # 0
which have a strictly 3-dimensional transitive group of symmetries. They corre-
spond to the structures of Theorem with all the scalar invariants being con-
stants. It turns out that there are two families of such structures. The first family
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is described by the following invariant system:

dw; = e[ (2sina) " Y3w; Aoy — (2sina) 3w Aw),

do; = e7[(2sina) 3wy Awy — (2sina)/30; Aw],

dw = iw; Ay + (2sina) V3 (W Aw + e Aw).
All the nonvanishing scalar invariants here are:
K; = (2sina)2/3
and
Zy =i(2sina)??,  Zy =e(2sina)”V3,  Zy =e(2sina)'/?.

Two different values o and o' of the parameter yield different respective quadru-

ples (K1, 2o, Z1,Z2) and (K1, Z}, Z, Z4), and hence correspond to nonequivalent
structures.

The second family of nonequivalent structures with a strictly 3-dimensional group
of symmetries corresponds to the following invariant system:
dw = iwy Ay + i 'w A (w1 — @)
(7.35) dwy = —i(Bw + B~ @1) Awy
dwy = i(Bw + B wi) A @r.
The nonvanishing scalar invariants here are:
(7.36) K= (8*+3)872, Zi=-2"", Zy=—if"', Zy=—ip.

The corresponding structures of an oriented congruence are parametrized by a real
parameter 8 ## 0. This means that each § # 0 defines a distinct structure.

A further analysis of this system shows that the congruence structures described
by it have a transitive symmetry group of Bianchi type VI, (iff § = —2%), Bianchi
type VIII (iff B > —23), and of Bianchi type IX (iff 8 < —23).

If we parametrize the 3-dimensional manifold M by (u,z,Zz), the structures
(M, \, p) corresponding to the system (Z.35) may be locally represented by:

- 2Be~ B 4 jz 23ePt — iz _

(7.37) A =du+ R 63))dz + 307 2Py 63))dz
B 2ﬁ2671ﬁu d - 2ﬁ2€iﬁu &
Y, T ) R V; 2l R E) ey

Note that the above (A, 1) can be also used to define a CR structure on M. De-
spite the fact that the 3-dimensional CR structures are associated with this (A, u)
by fairly more general transformations, (A, ) — (fA, hu + pA), than the oriented
congruence structures, which are defined by the restricted (A, u) — (f\, hy) trans-
formations, each s # 0 in (Z.37) defines also a distinct CR structure in the sense of
Cartan.

Three particular values of 8 # 0 in (T31) are worthy of mention. These are:

B=pp =25,
when the local symmetry group (both the CR and the oriented congruence symme-

try) changes the structure from Bianchi type X, with § < (p; through Bianchi
type VI, with 8 = §p; to Bianchi type VIII, with 8 > Op.
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Next is:
6 = 6[‘[ = _15
when the lowest order Cartan invariant of the CR structure associated with Ag,,
and pg,, is identically vanishing [I5]; in this case the CR structure becomes locally
equivalent to the Heisenberg group CR structure, and the 3-dimensional transitive
CR symmetry group of Bianchi type I X is extendable, from the local SO(3) group,

to the 8-dimensional local CR symmetry group SU(2,1).
The third distinguished g is:

B =f = -35.
Note that for 8 = Bk our invariant K; of the congruence structure (Mg, pug) van-
ishes, K1 =0, as in (Z36)). This case is of some importance, since it will be shown

in Section [[0.2] that the congruence structures with K7 = 0 and Ko # 0 have very
nice properties.

8. VANISHING TWIST AND NONVANISHING SHEAR

Now we assume the opposite of Section [[ namely that (M, [\, u]) has some
shear, s # 0, but has identically vanishing twist, a = 0. As in Section [@] the
no twist condition d\ A A = 0 yields A\ = fdt for some real function ¢ on M.
Thus in this case we again have a foliation of M by the level surfaces ¢t = const.
Each leaf C of this foliation is a 2-dimensional real submanifold which is equipped
with a complex structure J determined by the requirement that its holomorphic
vector bundle HY = {X —iJX,X € I'(TC)} coincides with the anihilator of
Spanc(\) & Spanc(fi). But the simple situation of M being locally equivalent to
R x C is no longer true. If s # 0 the manifold M gets equipped with the structure of
a fibre bundle C — M — V', with fibres C being 1-dimensional complex manifolds
— the leaves of the foliation given by ¢ = const, and with the base V being 1-
dimensional, and parametrized by ¢. This can be rephrased by saying that we have
a l-parameter family of complex curves C(t), with complex structure tensors Je (),
which are not invariant under Lie transport along the vector field 9;. Recall that
having a complex structure in a real 2-dimensional vector space is equivalent to
having a conformal metric and an orientation in the space. Thus the condition of
having s # 0 means that, under Lie transport along 0y, the metrics on the 2-planes
tangent to the surfaces ¢ = const change in a fashion more general than conformal.
This means that small circles on these two planes do not go to small circles when Lie
transported along 0;. They may, for example, be distorted into small ellipses, which
intuitively means that the congruence generated by d; has shear. This explains the
name of the complex parameter s, as was promised in Section

We now pass to a more explicit description of this situation. We start with an ar-
bitrary structure (M, [\, p]) with dAAAX = 0. This guarantees that the 2-dimensional
distribution anihilating A defines a foliation in M, and M is additionally equipped
with a transversal congruence of curves. Note that a foliation of a 3-space by 2-
surfaces equipped with a congruence locally can either be described in terms of
coordinates (¢,x,y) such that the tangent vector to the congruence is 9; (in such
case the surfaces are in general curved for each value of the parameter t), or in
terms of coordinates (u, z,z) such that locally the surfaces are 2-planes (in such
case the congruence is tangent to a vector field with a more complicated represen-
tation X = 0, + S0, +50:. Regardless of the descriptions the leaves of the foliation
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are given by the level surfaces of the real parameters ¢ = const (in the first case,
as in the begining of this Section) or u = const (as it will be used in this Section
from now on). Having this in mind and recalling the allowed transformations (3.1))
we conclude that our (M, [\, p]) with dA\ A A = 0 may be represented by a pair of
1-forms

A = du, uw=dz+ HdzZ + Gdu,
where H = H(u, z,z) and G = G(u, 2, Z) are complex-valued functions on M, with
coordinates (u, z, %), such that |[H| < 1. The foliation has leaves tangent to the

vector fields 0., Js. Each leaf is equipped with a complex structure, which may be
described by saying that its 719 space is spanned by the vector field

(8.1) Z =0, — Hos;

consequently the 71

space is spanned by the complex conjugate vector field
Z = 85 - H@z

The congruence on M which gives the preferred splitting is tangent to the real
vector field

_ GH-G GH-G
(8.2) X=0,+ 90y GGy

Thus we have the following proposition.

Proposition 8.1. All structures (M, [\, u]) with vanishing twist, a = 0, may be
locally represented by

(8.3) A = du, w=dz+ Hdz 4+ Gdu,

where H = H(u, z,z) and G = G(u, z,2) are complex-valued functions on M, with
coordinates (u, z,zZ), such that |H| < 1. They have nonvanishing shear s # 0 iff

H, — GH, + HG, — G # 0.

The following two cases are of particular interest:

e H = 0. In this case all surfaces u = const are equipped with the standard
complex structure. The coordinate z is the holomorphic coordinate for
it, but the congruence is tangent to a complicated real vector field X =
Oy — GO, — GOs.

e (G = 0. Here each surface u = const has its own complex structure .J, for
which z is not a holomorphic coordinate; J is determined by specifying a
complex function H. A nice feature of this case is that the congruence is
now tangent to the very simple vector field X = 0,, which enables us to
identify coordinates ¢ and wu.

Note that in Proposition we made an assumption about the modulus of the
function H. The modulus equal to one is excluded because it violates the condition
that the forms A, p, i are independent. We excluded also the H > 1 case, since
because of the coordinate transformation z — z followed by H — 1/H, such
structures are in one to one equivalence with those having |[H| < 1. We now turn to
the question about nonequivalent structures among those covered by Proposition

B1



26 C. DENSON HILL AND PAWEL NUROWSKI

8.1. The invariant Tj and the relative invariants 77, Ky, K;. To answer this
we have to go back to the begining of Section [6l and again perform the Cartan
analysis on the system (G5.0)), but now with a =0, s # 0. In this case the formulae

1) become

dX = buAXNFDbIAN
(8.4) dp = puANB+HquAX+SspAN
dit = —puANp+SEAN+GaAN

It is convenient to write the complex shear function s as
5 =|sle™.

Now for a chosen pair (A, pt) representing the structure, using (84), we find that
the differentials of the Cartan frame

(85) (wvwlawl) = (f/\vpeiqb,uﬂ peii(ﬁﬂ)
are:
dw = dlogfAw+ —e "Pw Aw+ —e"P1 ANw
P p
dwi = wdpAws+dlogp Awy + Bei‘bwl AWy + %wl ANw ~+ |fi|ei(2¢+w)w1 Aw
p
dor = —idpAwr +dlogp A — Lemw Ao + %ei(wﬂb)wl Aw + %wl Aw.
P

Because of s # 0, we can gauge the structure so that
(8.6) dwi Awy = wi A Aw.
This requirement defines f modulo sign to be f = +|s|. Writing f as
f=es],
where ¢ = 0, 1, and still requiring the normalization ([80]), we get
¢=—31+ed.

Thus the functions f and ¢ are fixed modulo e.
After this normalization we introduce a real 1-form  such that

(87) (dw1 — d(:)l) A (wl + @1) =2Q A w1 N\ wiy.
This equation defines €2 to be

Q= dlogp+ zwi + 201 + (1 — " EEw,

where z is an auxiliary complex parameter. The condition that fixes z in an alge-
braic fashion is:
(8.8) dwvt Aw=QAw Aw, diog ANw=QA01 Aw.

It uniquely specifies z to be
(i, =2P) , & (Y—em)
‘1,2p 62 €T ,

I\

_ _ (cia=2p) ~ & (p—em)
z = = +pe 2 .

Thus given a structure (M, [\, u]) with vanishing twist and nonvanishing shear, the
three normalization conditions (B.6]), ([81), (B8) uniquely specify a 4-dimensional
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manifold P, which is locally M x R, , and a well defined coframe (w,ws,w1,2) on
it such that

w = e“|s|A
Wi = pem ™),
(89) @ = pe%<¢*€”>g
Q = dlogp+ We%(w*”)wl + %{;me_%(w*”)m +
(1—6“”%)&

Here the positive coordinate along the factor R in the fibration Ry — P — M is
p. The coframe (w,w, w1, 2) satisfies

dw = Tiw /\w—l—Tchl Nw
dwi = QAw+ (w1 +01) Aw+ iTows Aw
(810) du_)l = Q/\@l =+ (wl +LT)1)/\W—iT0(.T)1 N w
dQ = iKowi A1 + Kqw /\W+K1(D1 ANw
where
(G—a) i tq ko k1
811 T — Ya+i(d—q) iemw T — L Ky — 29 K, — 2L
( ) 0 2s] e, 1 p7 0 2p2; 1 2p
and
o3 (W—em)
ti o= (bls|+ MMT
(8-12)k0 = _7/);#1 - 7/);1# +p1/)u +131/1ﬂ + 2i(p# - ﬁﬂ)
ki = 2(t1 — El) +

i _ _ . ) i ) i -
GQEW[(bq—bq—unrquﬁquwu—lwux)62w+l¢ﬂ|8|e 2w]|3| h
Note that functions Tg, 71, Ky and K are invariants of the structure on the bundle

Ry — P — M, with the fiber coordinate p. They are defined modulo the parame-
ter € = 0, 1. Thus two structures which differ only by the value of € are equivalent.

If we want to look for the invariants on the original manifold M we must examine
the fiber coordinate dependence of the structural functions Ty, 77, Ky and K;.
Since the last three functions 77, Ky, K1 have a nontrivial p dependence they do
not project to invariant functions on M. However, since in all these cases this
dependence is just scaling by p we conclude that they lead to the relative invariants
on M. Thus the vanishing or not of any of the functions t1, k; (complex), ko (real)
is an invariant property of the structure on M. The situation is quite different
for the real function Ty. Although originally defined on P it is constant along the
fibers. Thus it projects to a well defined invariant on the original manifold M.
Thus Tj is an invariant of the structure on M. We summarize the above discussion
in the following Theorem.

Theorem 8.2. A given structure (M, [\, u]) of an oriented congruence with vanish-
ing twist, a = 0, and nonvanishing shear, s # 0, uniquely defines a 4-dimensional
manifold P, 1-forms w,w1,01,Q and functions Ty, Ko (real) Ty, K1 (complex) on
P such that
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- w,w1,w1,Q are as in (E3),

- wAwi Awr AQ #£0 at each point of P,

- the forms and functions Ty, Ty, Ko, K1 are uniquely determined by the re-
quirement that on P they satisfy equations (810)).

In particular Ty is an invariant of the structure on M ; the identical vanishing, or
not, of either of the functions t1, ko or ki defined in (812) is an invariant condition
on M.

The structures covered by Theorem [B2] admit symmetry groups of at most four
dimensions. Those for which the symmetry group is strictly 4-dimensional have all
the relative invariants t1, ko, k1 equal to zero and constant invariant T7y. When
finding such structures it is enough to consider 7y = o = const > 0 since, due to
the fact that Tp is defined modulo sign (e™ = +1), each structure with Ty = a < 0
is equivalent to the one with Ty = |a|. Inspecting all the possibilities we get the
following theorem.

Theorem 8.3. All locally nonequivalent structures (M, [\, u]) of oriented con-
gruences having vanishing twist, nonvanishing shear, and possessing a strictly 4-
dimensional transitive group of symmetries are parametrized by a real constant
a > 0 as follows.

o if 0 <« <1 they can be locally represented by
A = du, p=dz + V1% (o +i\/1 = a?)dy
o if a =1 they can be locally represented by
A = du, p=dz + (i + 2u)dy
o if a > 1 they can be locally represented by
A = du,
po= [(i4a)cos(uv/a? —1)—iva?2 -1 sin(ux/ﬁ)]dx +
[(i + @) sin(uv/a2 — 1) + iV a2 — 1cos(ux/ﬁ)]dy.

Here (u,x,y) are coordinates on M. The real parameter o > 0 is just the invariant
To = « and as such enumerates nonequivalent structures.

8.2. Description in terms of the Cartan connection. Equations (8I0) can
be better understood in terms of the matrix w of 1-forms defined by

2(2 —w) 0 0
W= w1 O —w w
1 w Q—w,

where the 1-forms (w1, @1, w, Q) are as in (8I0) or as is (B3).
This matrix has values in the 4-dimensional Lie algebra g4 which is a semidirect
product of two 2-dimensional Abelian Lie algebras

2¢ 0 0

r)0:{ 0 =z Y |Iay€R}

0 vy =«
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and
0 0 0
hbir={|u+iv 0 0| |u,veER},
u—ww 0 0
for which the commutator is the usual commutator of 3 x 3 matrices. Thus
(8.13) g4 = bo ® b1,

as the direct sum of vector spaces hy and b1, with the commutator between hy and
b1 given by

[bOa bl] - bl-

It turns out that due to the relations (8I0), @ is a Cartan connection on the
principal fibre bundle R, — P — M, which has as its structure group a 1-parameter
Lie group generated by the vector field pd, dual to .

Remark 8.4. 1t is worthwile to note that the fibre bundle Ry — P — M has some
additional structure. Indeed, equations (BI0) guarantee that P is foliated by 2-
dimensional leaves of the integrable 2-dimensional real distribution D anihilating
forms wy and @;. Thus, locally, P has also the structure of a fibre bundle over the
leaf space P/D. This is actually a principal fiber bundle Hy — P — P/D, with
the structure group Hy having g as its Lie algebra.

Equations (81I0) imply that the curvature R of the Cartan connection & is

2R; 0 0
R=do+oANbw = 63 R Rs |,
Rs Ry Ry
where
R1 = iKowl /\(.Dl"‘(Kl_Tl)Wl /\w—l—(Kl—Tl)ch A w
RQ = lel Nw + Tl(.«_Jl N w
Rs = iTywi ANw.

In particular the absence of vertical QA terms in the curvature confirms our inter-
pretation of @ as a g4-valued Cartan connection on P over M.

The Cartan connection @ yields all the invariant information about the corre-
sponding structures (M, [\, u]) and can be used in an invariant description of various
examples of such structures. In particular, the invariant decomposition (8I3) may
be used to distinguish two large classes (M, [\, u])o and (M, [, u])1 of nonequiva-
lent structures (M, [\, p]). These are defined by the requirement that the curvature
R of their Cartan connection @ has values in the respective parts o for (M, [\, u)o,
and by for (M, [A, u])1-

8.2.1. Curvature R € ho. The curvature R of the Cartan connection @ resides in
ho iff it is of the form
2Ry 0 0
R=| 0 R Re
0 Ry Ry
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An example of a structure (M, [\, p]) with such R is given by the following forms
(w1, @1, w, Q):

wy = e (dz + ie?“ N dy),

@ = e (dz — ie?Hdy),

w = du,

Q =dr+2du + 2f,dx,
with a real function f = f(x,y) of real variables x and y. These two variables,
supplemented with the real v and r, constitute a coordinate system (u,z,y,r) on
Ry — P — M. The triple (u, z,y) parametrizes M, and r is related to the positive
fiber coordinate p via p =e".

For each choice of a twice differentiable function f = f(z,y) the forms (wy, w1, w, Q)
satisfy the differential system (8I0) with
KlEO, TlEO, T()EO,

and the relative invariant Ky being

KO = —672(T+u+f)f:cy
A special case hereis f;, =0, in particular f = 0. If this happens the corresponding
structures (M, [\, p]) are all equivalent to the structure with 4-dimensional transi-
tive symmetry group having o = 0 in Theorem B3 If f,, # 0, then Ky # 0, and

the corresponding structures have the curvature of the Cartan connection @ in the
form

21wy A 1 0 0
R = —¢ 20rtutf) 0 iwy A @y 0 fay-
0 0 iwl AN @1

As such they are special cases of structures with R € hy. We will retutn to them
in Section B.3.1], where we further analyze the case Ky # 0, 71 = 0 and K; = 0.

8.2.2. Curvature R € hy. The case of R € g is entirely characterized by the re-

quirement that all the relative invariants t1, kg, k1 identically vanish. Examples

of such structures are structures with a 4-dimensional transitive group of symme-

tries given in Theorem However these examples do not exhaust the list of

nonequivalent structures having R € h;. To find them all we proceed as follows.
We want to find all structures with

0 0 O
R=|Rs 0 O],
R; 0 0
i.e. those for which all the relative invariants 71, K;, Ko, as in (8I0), vanish:
(814) Tl = 0, KO = 0, K1 =0.

Assuming (814, equations (8I0) guarantee that real coordinates u and r may be
introduced on P such that

w = du, Q=dr.

Then, taking the exterior derivatives of both sides of equations (81I0), we see that
(BI4) forces Ty to be a real function of u only. Denoting this function by o = «(u)
we have

To = a(u).
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Integrating the system for such T, and denoting the u-derivatives by primes, we
get the following theorem.

Theorem 8.5. A structure (M, [\, u]) of an oriented congruence with vanishing
twist, a = 0, nonvanishing shear, s # 0, and having the curvature of its correspond-
ing Cartan connection & of the pure 1 type, R € b1, can be locally represented
by

' h h
A = du, u:dz—(ﬁ—l—ﬁ—iaﬁ)dz,
where the complex function h = h(u) # 0 satisfies a second order ODE:
(8.15) R + 2k + (a® +ia’)h = 0.

Here the nonequivalent structures are distinguished by the real invariant Ty = a(u).

Note that if a(u) = const we recover the structures from Theorem B3]

8.3. The case T} = 0. Now we pass to the general case 77 = 0. To proceed we
have to distinguish two subcases:

[ Kl =0

o K1 #0.

8.3.1. The case K1 = 0. In this situation we have
dQ = iKowl A @1,

with K given by (&II)-([®I2). Since Ky is not identically equal to zero, because
this correponds to the case t1 =0, kg = 0, k1 = 0 already studied, we use it to fix
p by the requirement

(8.16) Ko = sign(ko) = 1.

We note that this sign is an invariant of the structures under consideration. This
implies that the structures with different signs are nonequivalent.

After the normalization (8I6) the forms (w1, w1,w, Q) are defined as forms on
M. Performing the standard Cartan analysis on the system (8I0), we verified that
after pullback to M it reads:

dw =0,
(817) dwl = (’LB - A)wl A LT)l + iTowl ANw + (.(_)1 A w,
dwy = (iB + A)wy A w1 + w1 Aw — iTpwr Aw,
d[(A +iB)wy + (A —1iB)w; + w] = +iwi A w1.
Here the real functions A, B, Ty are the scalar invariants on M. They satisfy the
following integrability conditions
dA = [A1 + 4(B1 + By £ 1)]wi + [A1 — £(By + By £ 1)]o1 + (A — BTy)w
(8.18) dB = Bywi + Biw; + (ATy — B)w
dIp ANw =0,
with the functions A; (real) and B; (complex) being the scalar invariants of the
next higher order. In principle, we could have written the explicit fotmulae for
all these scalar invariants in terms of the defining variables b, q,p and s of (84).

We refrain from doing this, because the formulae are quite complicated, and not
enlightening.
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We summarize these considerations in the following theorem.

Theorem 8.6. All locally nonequivalent structures (M, [\, u]) of oriented congru-
ences having vanishing twist, nonvanishing shear, with Th = 0 and K, = 0, are
described by the invariant forms (w,w1,®1) satisfying the system (817)-(818) on
M.

Thus having a representative (A, ) of a structure with vanishing twist, non-
vanishing shear and with 77 = 0, we always can gauge it to the invariant forms
satisfying system (B.I7)-([®I]). The other way around: given two 1-forms w and wy
satisfying the system (BI7)-(8I]), we may consider them as a representative pair
(A =w, i = wq) of a certain structure with vanishing twist, nonvanishing shear and

The immediate consequence of the integrabilty conditions (B8I8) is the nonexis-
tence of structures (BI7) with a strictly 3-dimensional transitive group of symme-
tries. This is because, if such structures existed, they would have constant invariants
A, B and Ty. Thus, for such structures the right hand sides of all the equations
([®I]) would be zero. But this is impossible, since in such a situation the second
equation (BIR) implies By = 0 which, when compared with equating to zero the
r.h.s of the first equation (BIF)), gives contradiction.

A family of nonequivalent structures (M, [\, u]) from this branch of the classifi-
cation is given in Section B2l Indeed, consider the examples of this section for
which

fay # 0.

Since this guarantees that K; # 0, and since we have T3 = 0 and K; = 0 (and,
what is less important for us here Ty = 0) for them, we may perform the above
described normalization procedure on the invariant forms (wi,@1,w, Q) defined in
B21l A simple calculation, based on the normalization

(8.19) —e Arrut g =41,
leads to the reduction to M, where the invariant forms read:
w = du,
wi = e D (F £,)7 (da + i D dy),
@ = e (Wt (F fay) : (dz — e+ dy).
They satisfy the system (BI7)-(BI8) with the functions A and B given by:

A= H(F for) F (2t + Fray ) e

B=z(7 wa)_% (2fufzu - fwyy>eiu7f'

These structures can thus be represented on M by

A= d’U,, H = dx + 282(u+f(m’y))dy

The only scalar invariants for them are the functions A and B as above, since as
we already noticed, the scalar invariant Ty identically vanishes, Tp = 0.

Note in particular, that given a function f = f(x,y), two structures (M, [\, u])
with A, ;o as above, corresponding to two different signs of f,, are nonequivalent.
This is because the sign + in (8I9)) is an invariant of such structures.
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Remark 8.7. The structures described above belong to a subclass of structures for
which the curvature R is much more restricted than to hg. Since, in addition to
Ty = 0, we have here 77 = 0, the curvature R is actually contained in the diagonal
1-dimensional subalgebra of hy. Moreover, since also K7 = 0, the curvature R does
not involve wA terms. This means that in this example, similarly as in all examples
with Ty =T} = K7 = 0, the curvature of the Cartan connection w is horizontal from
the point of view of the principal fiber bundle Hy — P — P/D discussed in Remark
B4l Thus here, the Cartan connection @ can be reinterpreted as a g4-valued Cartan
connection on the bundle Hy — P — P/D .

8.3.2. The case K1 # 0. If K; # 0 we can use definition (8TII) to scale it in such
a way that it has values on the unit circle

Kl =e'7.

This fixes p uniquely, and the system (RI0) is again reduced to an invariant system
on M. This reads (with new A and B):

dw =0,

dwy = (iB—A)wl Awr + (1 —C+iT0)w1 Nw~+ w1 Aw,
(8.20)
doy = (iB+ A)wi Ao +wi Aw+ (1 — C —iTh)w1 A w,

d[(A+iB)wi + (A —iB)&; 4+ Cuw] =

1Kowi ANop +e7wi Aw+e o Aw.

Here, all the real invariants are Ty, A, B, C, v and Kq are well defined functions
on M. They are expressible in terms of the original variables defining the structure
and the functions kg, k1 of (812). In particular,

ko

Ko =2—>.
TR

To discuss the integrabilty conditions for the system (820) we have to distinguish
two cases:

e cither Kj = e # 41,
o or ki =e¥ =+1.
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In the first case:

dTy = i(ewy — e wy) + Toow
dA = 3[i(Ee + Ay) + AgJwr + F[—i(52 + A1) + As]wr + Aow

dB =3[ &2 + A +iByJwr + L[ Ee + Ay — iBy)@1 + Bow
(8.21)

dC = [-2A+ AC + Ay + BTy + i(BC — ATy + By) + € |w; +

[-2A + AC + Ao + BTy — i(BC — ATy + By) + ¢ w1 + Cow

dy=[B+ (A+71)coty +ivi)wr + [B+ (A4 1) coty — imr]w1 + yow

dKO = mel =+ KOl(Dl + 2[(14 + ’71) CSC 7y + (1 — C)Ko]w,

and in addition to the the basic scalar invariants Ko, v, A, B, C, we have higher
order scalar invariants Ag, A1, Aa, By, B1,Co, 70,71 (all real) and Koy (complex).

In the second case, when e = +1, one of the integrabilty conditions is the
vanishing of the scalar invariant A of (820,

A=0.
The rest of the integrabilty conditions are

dTy = j:i(wl — @2) + Toow

dB = [-5¢ +iBJwy 4 [~ 52 — iBi]w; 4+ Bow
(8.22)

dC = [BTQ +i(BC + By) £ 1]&]1 +

[BTy — i(BC 4 By) + 1)@ + Cow

dKo = Kpywi + K1 + 2[FB + (1 — C)Ko|w,
with the new higher order scalar invariants By, By, Cy (all real) and Ky (complex).

Theorem 8.8. All locally nonequivalent structures (M, [\, pu]) of oriented congru-
ences having vanishing twist, nonvanishing shear, with Th = 0 and Ky, # 0, are
described by the invariant forms (w, w1, 1) satisfying

o cither the system (820), (821) on M, in which case K1 = e # +1,
e or the system (8.20), (822) on M, in which case K1 = +1 and A= 0.

As it is readily seen fom the integrabilty conditions (B21]), (8B22) neither of
these cases admits structures with a strictly 3-dimensional transitive symmetry
group (look at the equations for d7} in (821), (822]), and observe that Ty = const,
which implies d7; = 0, is forbidden!).
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8.4. The case T1 # 0. To analyze this case we again start with the basic system
(BI0) and we assume that ¢; # 0. This assumption enables us to normalize T} so
that its modulus is equal to one. Thus now we require

|T1| =1,
which uniquely fixes p to be
p=lta.

After such normalization all the forms become forms on M and, depending on the
location of 77 on the unit circle, we have to consider two cases:

e cither Ty = e™ # 41,
e or Ty = +1.
We analyze the T7 # +1 case first. Here we easily reduce the system (8I0) to the
following system on M:
dw = (ei5w1 + e*i‘s@l) Aw,
(823) dwl == (ZB - A)wl A LDl + (1 -C + iTo)wl ANw + LDl A w,
dw; = (iB+ A)wi Aoy +wi Aw+ (1 —C —iTp)or Aw.
It has the following integrability conditions:
do = [01 +i((B — 61) cot 0 — A)]wy + [61 —i((B — 01) cot § — A)]w1 + dow
(8.24)
dTo ANw =
{[Bo+ BC — ATy +2sind + i(2A — AC — BTy, — Ag + C4) —
e’ (TO — iC)]wl +
[Bo + BC — ATy + 2sind — i(2A — AC — BTy — Ag + Cy) —
e (T() + ’LO)]LA_Jl} A w.
Here, the new scalar invariants are: Tp, 0, A, B, C' (real), and the higher order scalar

invariants are: d, d1, By (real) and Cy (complex).
In the Th = 41 case the equations (8.23)) are still valid, provided that we put

B =0.

This condition is implied by 77 = +1. Thus in this case the invariant forms satisfy

dw = +(w1 +@1) A w,
(8.25) dw = —Awy A1 + (1 = C + iTp)wr Aw + @1 A w,

dwoy = Awy Aoy +wi Aw+ (1= C — iy A w.
The integrability conditions for this system are:

dTy = Toow +
(8.26) (F1 - ATy +i(2A— AC — Ag+ C1 £ C))wy +

(F1— ATy —i(2A — AC — Ag + C1 £ C)) wy,

with the invariant sign equal to £1, the new scalar invariants being: Ty, A, C' (real),
and the higher order scalar invariants being: By, Ty (real) and C; (complex).
We summarize with the following theorem.
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Theorem 8.9. All locally nonequivalent structures (M, [\, 1)) of oriented congru-
ences having vanishing twist, nonvanishing shear, with Ty # 0, are described by the
invariant forms (w,w1,w1) satisfying

e cither the system (823), (824) on M, in which case Ty = e # +1,

e or the system (8.29), (828) on M, in which case Ty = +£1.

We pass to the determination of the structures with strictly 3-dimensional tran-
sitive group of symmetries.

Using the system ([823), (824) we easily establish that in the case 77 # +1 the
structures are governed by the following system of invariant forms:

dw = (ePw; + e D)) Aw,
1—-C —cos2d _;

(827) dW1:—me w1 /\@1+(1—C+ZSID25)011 Nw + w1 /\(AJ,
1—-C —cos2 ,
dw; = TZ:%ewwl ANy +wi Aw+ (1 —C —isin20)o; Aw.

In a similar way, if 73 = 41, using the system (&23), [B28), we see that the
structures with 3-dimensional symmetry groups are governed by the following sys-
tem:

dw = £(w1 + 1) Aw,
(828) dw = Fwi Ay + iTow ANw + 01 Aw,

dio] = Fug A1 + w1 Aw — iTpwr A w.

9. NONVANISHING TWIST AND NONVANISHING SHEAR

The Cartan procedure applied to this case is very similar to the one in Section
concerned with @ = 0 and s # 0. There, before the final reduction to three
dimensions, the procedure stopped at the intermediate 4-dimensional manifold M x
R, parametrized by the points of M and the positive coordinate p. In the present
case, in addition to s # 0, we also have a # 0, which enables us to make an
immediate reduction to three dimensions and thus to produce invariants on M.
Explicitly this reduction is achieved as follows.

We start with the general system (5.1 of Section Bl We have

a#0, s#0
and we again write the complex shear function s as
5 = |s]e™.
Now, for a chosen pair (), 1) representing the structure, we impose the conditions
(9.1) dwoANw = iw Ao Aw
(92) doi Awr = WA Aw
on the Cartan frame
w=f\  wi=peu, @ =pe L

Note that ([@1]) is possible because of a # 0 and (0-2)) is possible because of s # 0. It
is a matter of straightforward calculation to show that these two conditions uniquely
specify the choice of f, p and ¢. To write the relevant formulae for f, p and ¢ we
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e e

denote the sign of a by e
formualae are:

, where ¢ = 0 or 1. Then having e**™ = sign(a), these

f=cs], pei® = /Jaly/Jsle” 2

and the forms (w,ws,®1) satisfy

dw = iwl /\(Dl—l—klwl /\w—l—lglu_)l A w
(93) dwl = kgwl A LT)l + kgwl ANw + LDl A w
doy = —ngl Nwi +wi Aw + /%3(:]1 A w.

Here the complex functions ki, ko, k3 are defined on M and:

_ (Ols[+sly) Ep-em
.7V
hy = —(loglal)ﬁ+2p—(logISI)ﬂHwﬁe—%’(w—m)
2y/lal\/Ts]
ibg — ib, — ibp + ibp + e """ |a|(q — § — (log|s|)x + it)x)
2|al|s|

ks =

These functions constitute the full system of invariants of (M, [\, u]) for a # 0,
s # 0.

Theorem 9.1. A given structure (M, [\, u]) of an oriented congruence with nonva-
nishing twist, a # 0, and nonvanishing shear, s # 0, uniquely defines the frame of
invariant 1-forms w, w1,y and invariant complex functions ki, ke, ks on M. The
forms and the functions are determined by the requirement that they satisfy the
system (.3). Starting with an arbitrary representative (\, 1) of the structure [\, u],
the forms are given by

w=es, wr = V]alVsle 2@ oy = /a]V/sle2 @M g,

where the shear function is s = |s|e’¥. Here '™, ¢ = 0,1, denotes the sign of
the twist function a. The system ([9.3) encodes all the invariant information of the
structure (M, [\, u]).

We pass to the determination of all homogeneous examples with a # 0, s # 0.
Now the maximal dimension of a group of transitive symmetries is three. The
structures with 3-dimensional groups of symmetries correspond to those satisfying
system (@.3) with all the functions k1, ko, ks being constants. Applying the exterior
differential to the system (@3]) with ki, ko, k3 constants we arrive at the following
Theorem.

Theorem 9.2. All homogeneous structures (M, [\, u]) with nonvanishing twist,
a # 0, and nonvanishing shear, s # 0, have a strictly 3-dimensional symmetry
group and fall into four main types characterized by:

I: ks = 1. In this case there is a 2-real parameter family of nonequivalent
structures distinguished by real constants x and y related to the invariants
k1 and ko via:

kl =, kz = iy.
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II: ks = e, 0 < ¢ < 2n. In this case there is a 2-real parameter family of
nonequivalent structures distinguished by real constants x,y which together
with the parameter ¢ are constrained by the equation

cos p(1 — 2zy + cos ¢) = 0.
The invariants ki, ko, ks are then given by
k1 Zx(cotg +1), ko = —iy(cot% + 1), ks = cos ¢ + isin ¢.

III: ks + ks = 0, ks # +i. In this case there is a 3-real parameter family
of nonequivalent structures distinguished by real constants y' # +1, x, y
related to the invariants ki, ko, k3 via:

k1 =z + 1y, ky =k = x — iy, ks =iy,

IV: |ks| # 1, ks + ks # 0. In this case there is a 3-real parameter family of
nonequivalent structures distinguished by real constants ¥’ # 0, v, =, y
constrained by the equation

2%+ y’2 + 2y (2% + y?) — 4wy = 1.
The invariants k1, ko, ks are then given by
]%1(1 + k%) — kl(kg + ]%3)
1— |ks|? '

Among all the structures covered by the above theorem, the simplest have k; =
ko = ks = 0. This unique structure belongs to the case III above and is the flat
case for the branch a # 0, s # 0. We describe it in the following proposition.

k1:x+iy7 k3:$1+iyl7 k2:

Proposition 9.3. A structure of an oriented congruence (M, [\, 1)) with nonvan-
ishing twist, a # 0, nonvanishing shear s # 0 and having k1 = ko = ks = 0, may be
locally represented by forms

2 w5 2 —iu - 2 U
\/_e szz—i—\/_e +sz2 e dz—\/g)\,

) = —

(9.4) A=du+

zZz—1 zZz—1 zZz—1
where (u, z,Z) are coordinates on M. This structure has the local symmetry group

of Bianchi type VIII, locally isomorphic to the group SL(2,R).

Remark 9.4. There are more structures with a # 0, s # 0, which have a 3-
dimensional transitive symmetry group of Bianchi type VIIL. It is quite complicated
to write them all here. For example, among them, there is a 1-parameter family of
nonequivalent structures with k1 = k; = 0. They may be represented by

kel — iz ke~ + iz 2etv
9.5) A=d d dz =K -1 dz — kA
(9:5) vt 2z2—1 ar zo1 = )zé—lz e
where kK > 0,k # 1. The only nonvanishing invariant for this 1-parameter family
is k3 = —i(1 — %). It may be considered as a deformation of the flat case above,

which corresponds to kK = V2.

Remark 9.5. In a similar way, among all the structures with a # 0, s # 0, which
have a 3-dimensional transitive symmetry group of Bianchi type IX, we may easily
characterize those with k; = ks = 0. They may be represented by

kel — iz ke M 4z u
. =d d dz = (k2 +1
(9:6) A ut zz+1 S zz+1 o p=(n )z2+

2e

1dz — R,

where xk > 0. Here the only nonvanishing invariant is ks = —i(1 + %)
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Remark 9.6. It is interesting to remark which of the structures ([@3]), (@8] cor-
respond to the flat CR-structure in the sense of Cartan. According to [15], they
correspond to £ = 0,v/2 in the ([@3) case, and x = 0 in the ([@8) case. Thus in
these cases the corresponding structures of an oriented congruence are locally CR-
equivalent to the hyperquadric CR structure of Example [[.3] with a nonstandard
splitting, which causes the shear s # 0.

It is a rather complicated matter to describe which Bianchi types having a 3-
dimensional transitive symmetry group correspond to a given homogeneous struc-
ture with a # 0, s # 0. We remark that the groups of Bianchi types I and V are
excluded for such structures. We also fully describe the situation for Bianchi types
IT and IV. This is summarized in the following theorem.

Theorem 9.7.

There are only two nonequivalent structures of an oriented congruence (M, [\, u])
with a # 0, s # 0, which have a local transitive symmetry group of Bianchi type II.
They may be locally represented by

/\:du—|—%(zd2—2dz), p=dz+V2(1 — i)\,
where (u, z, Z) are coordinates on M. The constant invariants are
1—1 1+1
= k =+ — )

V2 ’ V2

and the sign +1 distinguishes between the nonequivalent structures.

ki =+ ks = —i,

There are also only two 2-parameter families of nonequivalent structures of an
oriented congruence (M, [\, u]) with a # 0, s # 0, which have a local transitive
symmetry group of Bianchi type IV. They may be locally represented by

A=y Ydu — logydz), p=y td(z +iy) £ V2(1 — i)w,

where (u,x,y) are coordinates on M and w = Re(w) + ilm(w) # 0 is a complex
parameter. The constant invariants are
1—14 i 144 1 147 1—4
—_— 4 —, ko =+—— 4+ —, ks = —i+ ,

NIRRT : N s =ik ()
and the two real parameters Re(w) and Im(w), together with the sign +1 distinguish
between the nonequivalent structures.

ki ==+

Remark 9.8. We remark that the structures with a symmetry group of Bianchi type
IT are in a sense the limiting case of the two families of structures with Bianchi type
IV. They correspond to the limit |w| — oc.

10. APPLICATION 1: LORENTZIAN METRICS IN FOUR DIMENSIONS

In this section we use our results about oriented congruence structures to con-
struct Lorentzian metrics in 4-dimensions.

10.1. Vanishing twist — nonvanishing shear case and pp-waves. Since our
oriented congruence structures are 3-dimensional objects, we concentrate only on
those structures, which in some natural manner define an associated 4-dimensional
manifold. As we noted in the sections devoted to the Cartan analysis of the oriented
congruence structures, in some cases, such as those described in Section B the
Cartan bundle P encoding the basic invariants of the structures is 4-dimensional.
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So in this case, i.e. when the twist ¢ = 0 and the shear s # 0, we have a 4-
dimensional manifold naturally associated with the oriented congruence structure.
Moreover, in such case the Cartan procedure provides us also with a rigid coframe
of invariant forms (wy,@1,w,2) on P. Using these forms we may define

(10.1) g = 2w + 2w,
or, as suggested by the form of the associated Cartan connection,
(10.2) g =2wiw; + 2w(2 —w).

These both are well defined Lorentzian metrics on P, which are built only from the
objects naturally and invariantly associated with the oriented congruence structure.

To be more specific, let us consider the structures with the curvature of the
Cartan connection R € by, as described in Theorem B35l In this case the bundle P
is parametrized by (z,Z,u,r) and the invariant forms are:

Q =dr, w=du
w; =¢e" (hdz — (W +h— iaﬁ)di)
Gy =e" (Edz — (W +h+ iah)dz),

with functions @ = «(u) (real) and h = h(u) (complex) satisfying the ordinary
differential equation BI85l Inserting these forms in the formulae (I0.1)-([I02), we
get the respective 4-dimensional Lorentzian metrics

go = 2% (hdz — (W +h- mﬁ)dz) (Edz — (W +h+ iah)dz) + 2dudr,
and
g1 = 2" (hdz — (W +h— mﬁ)dz) (Edz — (W +h+ iah)dz) + 2du(dr — du).

It turns out that both these metrics have quite nice properties.
Actually, introducing a still bigger class of metrics

e = 2027 (hdz (W +h— iaﬁ)dé) (ﬁdz (W +h+ iah)dz) + 2du(dr — edu),

with ¢ = const € R, one checks that they all are of type N in the Petrov classifi-
cation of 4-dimensional Lorentzian metrics. This means that their Weyl tensor is
expressed in terms of only one nonvanishing complex function ¥y, called the Weyl
spin coefficient, which reads

Uy =2(iac —c—1).

All the other Weyl coefficients (¥, ¥y, ¥y, ¥3), which together with U, totally
encode the Weyl tensor of g., are identically zero.

Looking at the spin coefficient ¥, we see that there is a distinguished metric
in the class g.. This corresponds to ¢ = —1. In such case the Weyl tensor of g
is just proportional to ¥4 = 2ia and we have a Lorentz-geometric interpretation
of the invariant o = a(u) of the corresponding structure of the oriented congru-
ence. Confronting these considerations with the results of Section we get the
following
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Theorem 10.1. Every structure of an oriented congruence (M, \, i) with vanish-
ing twist, a = 0, nonvanishing shear s # 0, and having the curvature R of its
corresponding Cartan connection in by, defines a Lorentzian metric

g-1 = 2wy + 2w(Q — w),

which is of Petrov type N or conformally flat. The nonequivalent metrics correspond
to different structures of the oriented congruence, and the metric is conformally flat
if and only if R = 0.

Interestingly metrics g_1 are conformal to Ricci flat metrics. The Ricci flat
metric in the conformal class of g_; is given by

2 4y _ _ _ _

G_1= (t—i—eT)z ((hdz—(h’—l—h—iah)d%) (hd%—(h/—kh-l—iah)dz)—I—efQTdu(dr—du)),
where ¢ is a real constant. For each a = a(u) and for each solution h = h(u) of
[BI3), the corresponding Ricci flat metric is the so called linearly polarized pp-wave
from General Relativity Theory (see [10], p. 385).

10.2. Nonvanishing twist — vanishing shear case and the Bach metrics.
Another example of 4-dimensional Lorentzian manifolds naturally associated with
the structures of oriented congruences appears in the nonvanishing twist — vanishing
shear case, as we explained in Section Actually in Section we defined
conformal Lorentzian 4-manifolds equipped with the conformal class of Lorentzian
metrics [g¢], which are naturally associated with a congruence structure with twist
and without shear. Here we study the conformal properties of these metrics.

10.2.1. The Cotton and Bach conditions for conformal metrics. We recall [4] that a
Lorentzian metric g on a manifold M is called conformal to Einstein iff there exists
a real function Y on M such that the rescaled metric § = e ¢ satisfies the Einstein
equations Ric(g) = Ag. In the case of an oriented M with dimM = 4 there are two
necessary conditions [2} 8] for g to be conformal to Einstein (in algebraically generic
cases [4] these necessary conditions are sufficient). To describe these conditions we
denote by F' the curvature 2-form of the Cartan normal conformal connection wjg
associated with a conformal class [g] (see 7] for definitions). The curvature F' is
horizontal. Thus, choosing a representative g of the conformal class [g], we can
calculate its Hodge dual «F and calculate the 6 x 6 matrix of 3-forms

(10.3) D+ F=dxF+wygA*F —xF Aw
for the connection wy,. This matrix has a remarkably simple form
0 *x5# 0
DxF=10 0 xj,],
0 O 0

where xj# is a vector-valued 3-form, the Hodge dual of the so called Yang-Mills
current j# for the conformal connection wy,. Having said this we introduce the
vacuum Yang-Mills equation for the conformal connection wyy

(10.4) DxF =0

i.e. the condition that the Yang-Mills current j# vanishes. It turns out that in
dimM = 4 equations (I04)) are conformally invariant. They are equivalent to the
requirement that the Bach tensor of g identically vanishes [2 [4]. This condition is
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known [9] to constitute a first system of equations which a 4-dimensional metric g
must satisfy to be conformal to Einstein.

Another independent condition can be obtained by decomposing F' into F' =
FT @ F~, where xF* = +iF* are its selfdual and antiselfdual parts (note that 4
appears here as a consequence of the assumed Lorentzian signature). Decomposing
the curvatures F'* onto a basis of 2-forms {#" A 67} associated with a coframe {67}
in which g takes the form g = ¢;;0°67, we recall that the second necessary condition
for a 4-metric g to be conformal to Einstein is

(10.5) [FL F,l=0  Vijkil=1,234.

lj’

Here [,] is the commutator of the 6 x 6 matrices F;; and F,;. We term (I0.4) the
Bach condition and ([I0.5) the Cotton condition [4].

10.2.2. Conformal curvature of the associated metrics. Now we calculate the Car-
tan normal conformal connection and its curvature for the conformal metrics (ZI8]).
We recall the setting from Sections [[2] [[3]l The structure of an oriented congru-
ence (M, \, u) with vanishing shear and nonvanishing twist defines a 5-dimensional
principal fiber bundle Ho — P — M, on which the invariant forms (wy, &1, w, 2, Q),
satisfying the system (Z.I3) reside. There is another fiber bundle associated with
such a situation. This is the bundle P — N with a 4-dimensional base N and
with 1-dimensional fibers. The manifold N is in addition fibered over M also with
1-dimensional fibers. The forms

{91,6‘2,93,94} = {wl,cﬂl,w,ti(ﬁ - Q)}

on P are used to define a bilinear form Gy = 2(016% 4+ 636*) on P. Although this
is degenerate on P, it projects to a well defined conformal class [¢;] of Lorentzian
metrics

(10.6) ge = 2(0'0* + 6°0%)

on N, see (TIS).

One can try to calculate the Cartan normal conformal connection for the metrics
gt on N itself, but we prefer to do this on the 5-dimensional bundle P instead.
This is more convenient, since in such an approach we can directly use the coframe
derivatives (ZI5) of the forms (wi,@:,w,Q,Q) on P, without the neccessity of
projecting them from P to N.

Thus, in the following, we associate the dual set of vector fields (Fy, Ey, Ey, Es, Eg)
to (w1, w1, w, 2, Q), and we will use them to denote the derivatives of the functions,
such as the invariants K;, K5 and K5. The conventions will be as follows: the
symbols K1; = F;(K;) and K1 = E1(K;) will denote the directional derivatives
of K in the respective directions of the vector fields E; and E;. In particular Kyig
will denote Eo(E(K32)).



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 43

A (rather tedious) calculation gives the following expressions for the Cartan
normal conformal connection w; for the metrics g; on P:

%(Q +Q) 7t 72 73 T4 0
6‘1 —in 0 —Qg %6‘1 T2
92 0 ZQl —QQ —%92 7'1
(107) Wt = ) ) B
63 %92 —%91 —%(Q +Q) 0 T4
6* Qo Q9 0 3(Q+Q) 7
0 62 0! 04 3 -3(Q+Q)

Here the 1-forms Q (real) and Q5 (complex) are
O =K 07 + 340% Qo = itK 0" +itKy0°,  Qy = —itKq 6% — it Ko6°

and the 1-forms {71, 72,73, 74} are:

Tho= L5t - 2)K10° + L2tk + Ka(1 - 1)6°

™ = =15t —2)K\0" + 1(—2itK 1 + K»(1 —1))6?

= 20Ky — Kyt +1))0" — $(20tK 1 + Kot +1))0% — P K76 + $ (4t — 1)K16"
o= Gt - 1)K — 10

The next step, namely the calculation of the curvature F} = dw; + wy A wy of
wy, is really tedious, but achievable with the help of symbolic calculation programs
such as, e.g. Mathematica. The resulting formulae are too complicated to display
here, but the so(1, 3)-part of the curvature, which is just the Weyl tensor of ¢, is
worth quoting. We present it in terms of the (lifted to P) Weyl spinors ¥q, ¥y,
Wy, U3 and V4. These read:

Py =0, vy =0,
Uy = %(1 — 4t) K,
(10.8) Uy = 1(2itK 1 + (3t — 1)K>),
Uy = —itKo.
We have the following
Proposition 10.2. Every metric g; with K1 =0 ort = % is of Petrov type 111

or its specializations. If t = % and Ky = 0, then the conformal class [g1/3] of the
metric gy /3 is of Petrov type N.

Calculation of the Yang-Mills current j = j,0" for w; is also possible. Since the
covariant derivative of the Hodge dual of the curvature F; is horizontal with repect
to the bundle P — N, the current components j,, as viewed on P or on N, differ
only by nonvanishing scales. The result of our calculation on P reads:

iU =11 a)[K 0" — 2iK0,0Y + 1362 — L6
3= =30t — £536% — §4560° — §4a0"

' o= R4t — 1)[K10' 4 iK' —iK160%] — 536,
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where
ja = (1—4t)(1 —120)K7 + (7t — 1)(Ky11 + Ki11)
ja = 16it(4t — 1)K Ky —2(1 —2t)(1 — 4t) K1 Ko + (1 — 4t) Kopy +
3it(Kyi11 + K1)
g3 = 16t3(1 — 4t)K; — 361° K11 Kq1 + 3(1 — t)(1 4 3t) | Ka|* + 2(t + 2) Ko15 —

2412 K1 (K111 + Ki1q) + 2it(4 — Tt) (K1 Ky — K11 K>).

We have also calculated the Cotton matrices [F;-rj,Fm_-j] for each value of the
real parameter ¢. We obtained formulae which are too complicated to write here.
However we observed, that among all the parameter values for ¢, there are a few
preferred ones for which the formulae simplify significantly. These special parameter

values are:

1 1
3’ 4’
1

Here we focus on ¢t = —35 and ¢ = 1, for which we have the following theorem.

Theorem 10.3. Ift = —% or t = 1 and the relative invariant K, = 0, then
the conformal metrics [g:] satisfy the Bach condition. If in addition the relative
invariant Ko # 0, the metrics are not conformally flat and do not satisfy the Cotton
condition. If K1 = Ko = 0 the conformal metrics 9-1/3 and g1 have Fy = 0, i.e.
they are conformally flat.

The theorem can be verified by using the explicit formulae for the Yang-Mills
current 7#, the matrices [Ft‘:j, Fy;;], and the integrability conditions for the system
(CI3) with K1 = 0. These integrability conditions, in particular, imply that Ko; =
0.

We shall return to the other two interesting values t = 1/4 and ¢t = 1/3 for g,

below, where we consider examples.

10.2.3. Ezamples. As noted above a particularly interesting class of structures
(M, \, 1) corresponds to K1 = 0 and Ks # 0. Looking at the list of our examples
presented in Section [ we find such a structure in Section This corresponds to
a special value of the parameter S = —33% in the family of structures described by
the invariant system (Z35)), and is locally represented by forms A, p as in ([(37) with
Ok = —33, Actually it is worthwhile to write the metrics g; for all the structures
covered by (Z337). These metrics read:

2 —ifu = 2 iBu

_ﬂe R dz + — be = dé) X

B2z —26%(2 + 7)) B2z —26%(2 + 7))
59 22 31)2 2 —ifu _ ;3 2 iBu :
(222 CA PN (o, W i) | A vin)
234 2z —203%(2+ 33) 2z —203%(2+ 33)

and in addition to the real parameter ¢, they are parametrized by the real parameter
B3 # 0 which enumerates nonequivalent structures (M, A, p1).

These are quite interesting conformal Lorentzian metrics for the following rea-

sons.
First, if

t(du +

6:61(:_3%5
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we have Ky = 0, and according to Theorem [I0.3] the metrics
g1/3(—33) = 2dzdz —

1 1.

2:35e3% 1 _ iz 2:35e 3% 4 i _

(du ; —dz + — S dz) X
33(2Z2 4 2-33) 33(2z2 4 2:33)

2 z 2
27+ 2:33 2%+ 2:33

5 22)\2 L 3%iu | s 1 73%m_-
(22 + 2-33) (2dr— 2(33e +zz)d 2(3se zz)dz),

and

dz + dz

)

1. 1
2.353%iu _ ;7 2.35¢ 3% 4 7)
3 35 (22 + 2:3%)

= 222 1 3% - 1o3% _
(22 +2:33) (2dr— 2(33e —Hz)dz_ 2(33e zz)d2)7

27+ 233 2%+ 2-33

are Bach flat. Since the invariant Ks of the corresponding structures (M, A, p)
is nonvanishing, they are also not conformal to any Einstein metric. Note that,

again because of K1 = 0 and K2 # 0, both metrics gl(—3%) and g,l/g(—?)%) are
of general Petrov type II1 (see Proposition [[0.2). As far as we know, they both
provide the first ezplicit examples of conformally non Einstein Bach metrics which
are of this Petrov type (compare e.g. with [16]).

Second, note also that, since K1 = 0 for fx = —3%, the metric g,,3(8Kk), with
now t = +1/3, is also quite interesting. According to Proposition [[0.2]this metric is
of Petrov type N. In gravitation theory it would be also termed twisting type N (see
[I0]). It is not conformal to any Einstein metric, since for all metrics g¢(8x) the
Bach tensor B;(f1), when expressed in terms of the coframe (61,62, 03,6%), reads

By(—35) = 2°.34 -0 +3H t?’t) 0> © 6.

(224 2:35)6
This obviously does not vanish, when ¢ = 1/3, hence the metrics g,/3(8x) are
examples of twisting type N metrics, which are not conformally Einstein.

Third, suggested by the structure of the Weyl tensor (I0.8) for all the metrics
gt we specialize the metrics g¢(5) to the case when ¢ = ;. The Yang-Mills current
for this special case may be read off from the general formulae from the previous
section. Here however we prefer to give the explicit formulae for the Bach tensor
for g1 ,4(83). Here again the Bach tensor By 4(3) for these metrics has a very simple
form

. B%(B% +3683° + 36)
Bl =8 = 5ma e 00

As is readily seen this vanishes for the following two real values of 3:

b= (6B +2VD), s, = —(6(3- 23",

Thus the two corresponding metrics gy,4(3s, ), and g1/4(8s,) are further examples
of Bach Lorentzian metrics, which are again of Petrov type III. One can check by
direct calculation that they are also not conformal to any Einstein metric.
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Motivated by this last example we calculated the Bach tensor for all the metrics
g1/4 (not neccessarily those associated with the 3-parametrized-structures (Z.37)).
This calculation leads to the following

Theorem 10.4. If t = % and a structure (M, \, u) with nonvanishing twist and

vanishing shear has the relative invariant K satisfying
K1+ K1, =0,
then the Bach tensor By of the metrics g; corresponding to the structure (M, \, u),
as defined in (I0.6), has a very simple form
3 . - - -
By, = = (4K11K11 +2i(K11 Ky — K 1K2) — TKo Koy — 4(Ko1g + K210)) 6% © 63,
in which nine out of the apriori ten components, identically vanish.

Apart from the structures with s, and (s, we do not know examples of struc-
tures satisfying condition K1 + K;1; = 0.

11. APPLICATION 2: ALGEBRAICALLY SPECIAL SPACETIMES

All the metrics discussed in Section[I0lare examples of algebraically special space-
times. These are 4-dimensional Lorentzian metrics, whose Weyl tensor is degenerate
in an open region of the spacetime. The algebraically special vacuum (or in other
words: Ricci flat) metrics have the interesting property that they define a congru-
ence of shearfree and null geodesics in the underlying spacetime. At this stage we
must emphasize that the congruence associated with such metrics lives in four di-
mensions and the vanishing shear and the geodesic condition is a four dimensional
notion here. Nevertheless we observe that the 3-dimensional oriented congruences
in our sense are related, at least at the level of the Lorentzian metrics discussed so
far, to an analogous notion in 341 dimensions, where the metric is of Lorentzian
signature. In this section we discuss this relationship more closely. Note that in
all the examples of Section the four-dimensional congruence of shearfree null
geodesics was always tangent to the vector field k = 9,.

Before passing to the subject proper of this section we remark that the alge-
braically special Lorentzian metrics are very important in physics. To be more
specific we consider the metric

(11.1) g= 2(’P2uﬂ+)\(dr+Wu+V_\7u+HA)>,
where
i(2M + (a+ M)zZ i(2M + (a+ M)zz
/\:du—|— ( K .\2 )d— ( — K. o2 ) , ‘u:dz,
2(1 4 52%) Z(1+ 522)
ol (KM —a+ (KM +a)X2z)°
1+ Kzz)2 (14 K2z) ’
iKaz
11.2 W= ——
(11.2) 1+ %22)2
1—522
mr+ KM? —aM —%
1+7zi
H=- + K 29
2 (KM—at(KMta)k 22)

(1+522)2
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and m,a, M, K are real constants.

This scary-looking metric has very interesting properties. First, it admits a 4-
dimensional congruence of null and shearfree geodesics, which is tangent to the
vector field k = 0,. Second, if K =1, it is algebraically special, actually of Petrov
type D, and more importantly, it is Ricci flat. The parameter values K—1 = M = 0,
correspond to the celebrated Kerr metric, describing a gravitational field outside a
rotating black hole, with mass m and angular momentum parameter a. In this case
the angular momentum parameter a measures the twist of the congruence tangent
to k. If in addition a = 0, the twist of the congruence vanishes, and the metric
becomes the Schwarzschild metric. Third, in the K —1 = a = m = 0 case the metric
is the Taub-NUT vacuuwm metric, which is important in Relativity Theory because
its serves as a ‘counterexample for almost everything’ [I3]. Fourth, it should be
also noted that if M = 0 and the other parameters, including K, are arbitrary, the
metric is again type D and Ricci flat. Finally, we should mention that for general
values of K # 1 and M # 0 the metric is algebraically general and neither Ricci
flat nor Einstein.

From the point of view of our paper the relevance of the metric (ITI)-({IL2) is
self evident. The four dimensional spacetime M on which the metric is defined,
locally parametrized by (u, z,Z,r), is locally a product M = M x R, with M
being parametrized by (u, z,2). The 3-dimensional manifold M is then naturally
equipped with the oriented congruence structure (M, A, ), defined in terms of the
1-forms A, u from ([II2). Note that these forms, although defined on M, do not
depend on the r coordinate, and as such project to M. Note also that the oriented
congruence structure defined by these forms has always vanishing shear s = 0. It
has nonvanishing twist, with the exception of the Schwarzschild metric a = M = 0,
or the case when K = 0 and M + a = 0. In this last case the metric is of Petrov
type D, but is neither Ricci flat nor Einstein.

Since in the case of Ricci flat metrics (ITI)-(TT2) only the Schwarzschild metric
has the corresponding structure of an oriented congruence with vanishing twist, in
the next sections we decided to make a systematic study of the Lorentzian metrics
(II1I) (not necessarily of the form (I1.2)), with forms A, p defining an oriented
congruence structure in three dimensions which have vanishing shear, but nonvan-
ishing twist, only. Actually, for the sake of brevity, we only discuss the case when
the structural invariants K; and Ko of the congruence structures, as defined in
Section [T.1] satisfy Ky # 0, Ko = 0.

11.1. Reduction of the Einstein equations. As we know from Section [Z.5] every
structure (M, [\, p]) having K7 # 0, Ko = 0 defines an invariant coframe (w, w1, 1)
on M which satisfies the system (7.29), (Z.31). Given such a structure we consider
a 4-manifold M =R x M with a distinguished class of Lorentzian metrics. These
metrics can be written using any representative of a class [\, u]. Since the invariant
forms (w,w1) provide us with such a representative it is natural to use them, rather
than a randomly chosen pair (A, ). Thus, given a structure (M, [\, u]) having
K, #0, Ks =0, we write a metric on

(11.3) M=RxM
as

(11.4) g = P? [ 2w + 2w(dr + Wwy + Way + Hw) |.
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Here the forms (w,ws, 1) satisfy the system (C29), (Z31), r is a coordinate along
the R factor in M, and P # 0, H (real) and W (complex) are arbitrary functions
on M.

The null vector field k = 9, is tangent to a congruence of twisting and shear-free
null geodesics in M. This is a distinguished geometric structure on M.

Now we pass to the question if the metrics (IT.4) may be Einstein. To discuss
this we need to specify what is the interesting energy momentum tensor that will
constitute the r.h.s. of the Einstein equations. Since the only geometrically dis-
tinguished structure on M is the shear-free congruence generated by k& = 0, it is
natural to consider the Einstein equations in the form

(11.5) Ric(g) = Pk O k.

If the real function ® satisfies & > 0 the above equations have the physical inter-
pretation of a gravitational field of ‘pure radiation’ type in which the gravitational
energy is propagated with the speed of light along the congruence k. If ® = 0 we
have just Ricci-flat metrics, which correspond to vacuum gravitational fields. This
last possibility is not excluded by our Einstein equations. In the following analysis
we will not insist on the condition ® = 0.

At this point it is worthwhile to mentioned that a similar problem was studied
by one of us some years ago in [I4]; see also the more modern treatment in [6].
Using the results of [0 [14] and the symbolic calculation program Mathematica, we
reduced the Einstein equations (IT.3) to the following form:

First, it turns out that the Einstein equations (IT.H) can be fully integrated along
k, so that the r dependence of the functions P, H, W is explicitly determined.
Actually we have:

p =
COS 5
(11.6) W = iae "+
m i m_ _oir ooar —ir
H = —EeQ —Ee 2 +%¢e —i—%(be —l—%x,

where the functions p, x (real) and «, 3, m (complex) do not depend on the r co-
ordinate. Thus, using some of the Einstein equations (II.5]), one quickly reduces
the problem from M to a system of equations on the CR-manifold with preferred
splitting (M, [\, p]).

Now we introduce a preferred set of vector fields (dy,d,09) on M defined as
the respective duals of the preferred forms (w,w;,w1). Note that this notation
is in agreement with the notation of CR-structure theory. In particular 0 is the
tangential CR-operator on M, so that the equation for a CR-function £ on M is
06 =0.

With this notation the remaining Einstein equations (TL3)) for ds? give first:

a = 2(dlogp—c)
(11.7) 8 = 2i(0logp —2c— Ay)
¢ = (5+A1+¢Bl+2'5)a—4]%
X = 3aa+2i(0+ A —iB1)B —2i(0+ Ay +iB1)B3F 1,

where we have introduced a new unknown complex function ¢ on M and used the
Cartan invariants A; > 0, By and £1 of the system (Z29), (Z31)).
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Finally the differential equations for the unknown functions ¢, m and p equivalent
to the Einstein equations (I1.3]) are:

(].]..8) (8 — 34 + iBl)C — 202 + a1 — A% + %A1(3B1 + Bl) =0
(11.9) ((9 — 6E)m =0

(04341 —iB1)dp+ (0 +3A1 +iB1)dp +

=3[(0+3A; —iB1)é+ (0 + 341 + iBy)c + 2cec +

(11.10) SAT+3a1+3A1(Bi—By) £ tlp=
m—+m
p

We thus have the following theorem.

Theorem 11.1. Let (M, [\, u]) be a structure of an oriented congruence having
vanishing shear, nonvanishing twist and the invariants K1 # 0, Ko = 0. Then a
Lorentzian metric associated with (M, [\, p]) via (IL3)-({I17) satsifies the Einstein
equations (I17) if and only if the metric functions are given by means of (I1.6))-
(L) with the unknown functions c,m (complex), p (real) on M satsifying the

differential equations (I1.8)-(I110).

Remark 11.2. Note that contrary to the invariants (w,w:,w1) the coordinate r,
and in turn the differential dr, has no geometric meaning. Actually the coordinate
freedom in choosing r is » — r + f, where f is any real function f on M. This
induces some gauge transformations on the variables 3 and x. Nevertherless the
equations (II.8)-(ITI0) are not affected by these transformations.

Remark 11.3. Equations (IT.8)-({ITT.I0) should be understood in the following way.
Start with a structure of an oriented congruence (M, [\, u]) having vanishing shear,
nonvanishing twist and the invariants Ky # 0, Ko = 0. Calculate its invariants
(w,w1,@1), (80,0,0), A1, By, ayy of (29), (Z31). Having this data write down
equations (IL.8)-([IT.I0) for the unknowns ¢, m,p. As a hint for solving these equa-
tions observe that the equation ([II.8)) involves only the unknown ¢. Thus solve it
first. Once having the general solution for ¢ insert it to the equation (I1.9). Then
this equation becomes an equation for the unknown m. In particular m = 0 is
always a solution of (IT.9). Once this equation for m is solved, insert ¢ and m
to the equation (III0), which becomes a real, second order equation for the real
unknown p. In particular, if it happens that you are only interested in solutions for
which m 4+ m = 0, this equation is a linear second order PDE on M. For particular
choices of (M, [\, pu]) it can be reduced to well known equations of mathematical
physics, such as for example the hypergeometric equation [14].

Remark 11.4. The unknown variable m is related to a notion known to physicists
as complex mass. For physically interesting solutions, such as for example the Kerr
black hole, the imaginary part of m is related to the mass of the gravitational
source. The real part of m is related to the so called NUT parameter. Moreover
m is responsible for algebraical specialization of the Weyl tensor of the metric. If
m = 0 the metric is of type III, or its specializations, in the Cartan-Petrov-Penrose
algebraic classification of gravitational fields.
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11.2. Examples of solutions. Here we give examples of metrics (IT4)) satisfying
the Einstein equations (ILH). In all these examples the structures of oriented
congruences (M, [A, u]) will be isomorphic to the structures with a 3-dimensional
group of symmetries described by Proposition[Z.16l The invariant forms (w,wq,w1)
for these structures are:

27’2 2 2
— —200F27%) 4y — 4~ 1d
1 :F 47_2 (y u y fI;),
(11.11) wy = +ity H(dx + idy),

w1 = Fity Hdx — idy).

We recall that the real parameter 7 is related to the invariants A;, B; of the
structures (ILIT) via:

2
A1=—7$1+2T 5 BlziT.
2T

Since these invariants are constant, all the higher order invariants for these struc-
tures, such as for example the aqq in (Z31)), are identically vanishing. Although
Propsition excludes the values 72 = % in the upper sign case, we include it
in the discussion below. This value corresponds to A; = 0 and therefore must
describe one of the two nonequivalent structures (M, [, u]) of Example [[77l From
the two structures of this example, the one corresponding to 72 = % is defined by
(e1,€2) = (0,1). In particular, it has a strictly 4-dimensional symmetry group.

First we assume that the metric (IT.4)) has the same conformal symmetries as
the structures (IT.I1). This assumption, together with Einstein’s equations (1.5,
which are equivalent to the equations (IL6)-({I17), (IL8)-{II0), implies that
all the metric functions p, m,c must be constant. Then the system ([T8)-(IT.10)

reduces to the following algebraic equations for m, p, c:

(11.12) (=341 4+ iB1)c—2¢* — A} + £A1(3B1+ B1) =0
(11.13) em =0
(11.14) 3[(341 —iB1)c + (3A1 +iB1)c + 2cc +
i _ m—+m
%A%-F%Al(Bl —Bl)ﬂ:%]pz p3 .

Thus we have two cases.
e Either c=0
e or m=0.
Strangely enough in both cases equations (II.12)-(I1.14) admit solutions only for

the upper sign in ([ITI14]).
If ¢ = 0 then we have only one solution corresponding to 7 = :I:% with arbitrary

constant p # 0 and m = % + ¢M, where M is real constant. The corresponding
metric
p?  da? + dy? dz 9 dx
c032§[ 7 +2(? — du)(dr — 2 cos %(cosr—i—élMsinr)(? — du)]
is vacuum i.e. it satisfies equations (IT3) with ® = 0.
If m = 0 then p # 0 is an arbitrary constant, and we have the following solutions:

ds® =
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o T = Il\/5+€2\/17
5-’1—6
2
o 7=/ (T+eVIT), c=Ly/2 7—|—62 V(3 4+ e2v17

Here €2 = €3 = 1. Sadly, irrespectively of the signs of €1, €2, all these solutions have
® = const < 0, and as such do not correspond to physically meaningful sources.
As the next example we still consider structures (M, [\, u]) with the invariants
({I111), and assume that the metrics have only two conformal symmetries 9, and
0. For simplicity we consider only solutions with m = 0 in (IT.9). Under these
assumptions we find that the general solution of (IL8)-(ITI0) includes a free real
parameter ¢ and is given by
—2447% 1 —472 1
4t * 41 1 —tyWr?-1)7

with the real function p = p(y) satisfying a linear 2nd order ODE:
ayly —ty*™ ) [yp” + (4 — 2) 1+

(11.16) [(=327% 42072 — 1)y? + 42 (47* — 772 + 2)y%7 —
16t(87* — 572 + l)y(‘” p=0.

(11.15) c=

If this equation is satisfied, the only a’priori nonvanishing component of the Ricci

tensor is
cos(%) 4
Ry =1 (B
S \r(y —ty*)p

(((872 — 3)(1287° — 1607* + 9272 — 21)y +

8t472(3270 + 874 — 2872 4 9)y 07 +

44(872 — 3)(2567° — 24874 + 5872 + 3BT +

3612 (47t + 72 — 1)(327% — 1272 — 1)y?+57 4

166372 (1287° — 1847% 4 12272 — 27)y ' +1277) % —

dy(y — ty* ) (872 — 3)(167* — 3)y? + 48372 (167 — 3)y'>™ +
6E(872 — 3)y> ™47 + 961272 (1 — 27%) 2y ) pp' +

4y (y — ty* )2 (872 — B)y + atryT )Qp’2)-

It follows that this Rss, with p satisfying (ITI6), may identically vanish for some
values of parameter 7. This happens only when the parameter t = 0. If

t=20

the values of 7 for which R33 may be identically zero and for which the function

p = p(y) satisfies (II.I6) are:
3 5
T=%3V2, T_i%\/;’ T=% \/;’ T=x1V3,

T =+4/1(11 - V13), e = £1\/L(11 4+ V13).

Of these distinguished values the most interesting (modulo sign) are the last two,
7_ and 74, since for them the corresponding metrics (I1.4) may be vacuum and

SIS
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not conformally flat. Actually, restricting our attention to the plus signs above and
assuming ¢ = 0, we have the following possibilities:

o 7. = 31/%(11+¢eV13), £ = £1; for these two values of 7 the general

solution of (ITT6) is
1
ps = y 12
and the only potentially nonvanishing component of the Ricci tensor is

1 cos L \4
R — _ 4 7 13 2 —6(1—6\/ﬁ) (72> )
33 5(T+eV13) s5 y prprapy

(A==V13) (5, 4 51y),

This vanishes when sy = 0. If s = 0 the corresponding metrics g., as

defined in (IT4), read

_ T 3+(9—2072
g. = 2P? (w1w1 +w(dr + Wy + W + %w)),
with
2(1-72) .2(2072 —9)+ (872 —9)e "
_ S1Yy M/ . £ e
pP== cos = ’ =1 2473 ’
2 £

and w,wr,w; given by (IILII). For both values of ¢ = +1 the metric is
Ricci flat and of Petrov type I1I. In particular it is neither flat, nor of
type N.
In all other cases of the distinguished Ts the corresponding vacuum metrics are the
flat Minkowski metrics. In fact,

o if 7 =1,/2, the general solution to (III6) is

p= Sl\/ﬂ + s2y,
and the corresponding metric (II4) is flat.
o if 7= %\/g, the general solution to (IT.I0) is

2
p=1y3(s1+s2logy),
and the potentially nonvanishing Ricci component Rs3 is

8 oS 5 4

R33 = —5£52(251 + 52 + 259 logy)(—l

(51 + s2logy)y3
This vanishes when s, = 0. In such case the metric is flat.

o if 7= %\/5, the general solution of (II.16) is

P = y(s1 + s2logy),

and
2

25 cos = 4
Rg3 = ——2 (72 ) ;
y \s1+s2logy
this vanishes when s = 0; in such case the metric is flat.

o if 7= %\/g, the general solution of (II.16) is
p=s1y+say

and

cos = 4
Rag = —3252y> (72) ;
33 2Y 53+ 5192
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this vanishes when s, = 0; in such case the metric is the flat Minkowski
metric.

We close this section with an example of a metric that goes a bit beyond the
formulation of the Einstein equations presented here. Remaining with the structures
of an oriented congruence with the upper sign in (III1), we take ¢ as in (III5)
with ¢ = 0, and consider the metric (IT4), (IT6), (IT0) with a constant function
p given by

V3
— Y2 Je(—1 5 2072 — 3279).
P 457\/6( + 2072 — 327%)

Here the ¢ is +1, and is chosen to be such that the value e(—1 + 2072 — 327%) is
positive; s is a nonzero constant. A short calculation shows that the Ricci tensor
for this metric has the following form

16A (472 + 1) cos* L

2 k@ k+ Ag.
372(1 — 2072 4 3270y O NN

Ric= (1% —1)(87% = 5)

Thus, this metric is Einstein, with cosmological constant equal to A = £s2, provided
that
5

_ _ 41
T==I1, or T=+3 5"

It is remarkable that the Einstein metric

_ 3 ~ i(2e”'"+5) (20" 45) ~ 7
9—‘m(wm+w(d¢+ oo — LA+ (34 2c0s 7)) ).

corresponding to 7 = :I:%\/g , is of Petrov type N with the quadruple principal null

direction of the Weyl tensor being twisting. It was first obtained by Leroy [11] and
recently discussed in [I7]. The Einstein metric

39
8A cos? §

corresponding to 7 = £1 is of Petrov type I11.

g= (wlwl + w(dr + i(e*;r+4)wl _ i(ei;+4)@1 + %(3 + 2 cos T‘)(AJ)>,

11.3. Discussion of the reduced equations. Here we discuss the integration
procedures for equations (IL8)-(I1I0) along the lines indicated in Remark
We start with equation (IT.8)). This is an equation for the unknown c. Remarkably,
the existence of a function ¢ satisfying this equation is equivalent to an existence
of a certain CR function 7 on M. To see this we proceed as follows. We consider a
1-form IT on M given by

(11.17) IT =w; +2i(A1 + C)w,
where c is an arbitrary complex function on M. Of course
(11.18) I ATI# 0,

since otherwise the forms w; and @w; would not be independent. Now using the
differentials dw, dwy, dA; given in (C29), (C31]), we easily find that

dITATIL = 24 [ (5— 34, —iBl)E— 26° +a —A% — %Al(?)Bl + B») ]wl ANwp Aw.

Thus our equation (IT.8) is satisfied for ¢ if and ounly if dIT A II = 0. Due to our
Lemma BT}, 1T satisfying dII ATl = 0 defines a complex valued function 7 on M
such that IT = hdn. Because of (I1.I8) we have hhdn A dij # 0. Furthermore, since
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IT is given by (III7) then II A w A w; = 0, which after factoring out by h gives
dn Aw Awyp = 0. Thus n is a CR-function on M.
Conversely, suppose that we have a CR-function n on M such that

(11.19) dn A di # 0.

Then the three one forms wy, w and dn are linearly dependent at each point. Thus
there exist complex functions x, y on M such that

(11.20) dn = 2wy + yw.

Due to the nondegenarcy condition (ILI9) we must have zZwi A @1 + 2w Aw —
Zywn Aw # 0, so that the complex function  must be nonvanishing. In such case
we may rewrite (IT20) in the more convenient form hdn = wy + Zw, where h = 1/x
and z = y/x. Now, defining ¢ to be ¢ = % — A1, we see that the trivially satisfied
equation (hdn)Ad(hdn) = 0 implies that the function ¢ must satisfy equation (IT.g).

Summarizing we have the following proposition.

Proposition 11.5. Every solution 1 of the tangential CR equation On = 0 satis-
fying dn A dn # 0 defines a solution ¢ of equation (IL8). Given n, the function c
satisfying equation (I1.8) is defined by

(11.21) c=

where dn = xwy +yw. Also the converse is true: every solution ¢ of equation (I1.8)
defines a CR function n such that dn A dn #£ 0.

Remark 11.6. Recall that the structures (M, [\, u]) satisfying the system (7.29),
([C31) admit at least one CR-function ¢, since they have zero shear s = 0. Asso-
ciated to ¢, by the above Proposition, there should be a solution c¢ of the Einstein
equation ([IT.8). One checks by direct calculation that

C:—Al

automatically satisfies (TT.8). And this is the solution ¢ asociated with ¢. This is
consistent with formula (I1.21]), since y = 0 means that dn Ad¢ = 0 (compare with

([@L.20)).

We now pass to the discussion of the second Einstein equation (IT.9). Equa-
tion (IT9), the equation for the function m, has a principal part resembling the
tangential CR-equation. Remarkably its solutions m are also expressible in terms
of CR-functions. To see this consider an arbitrary complex valued function £ and
define m to be

(11.22) m = [ 0o& — 2i(Ay + €)IE + 2i(A; + ¢)O¢ .

Here ¢ is supposed to be a solution to the first Einstein equation (IT.8). Observe,
that since the vector field 9y — 2i(A; + €)0 + 2i(A; + ¢)0 is real, then given m one
can always locally solve for £. Our goal now is to show that if £ is a CR-function
on M, then m given by ([1.22)) satisfies equation (I1.9). To prove this one inserts
(II22) into equation (ITJ) and commutes the operators dy and 09. After this is
performed the equation (IT.9) for m becomes the following equation for &:

(80 + 225(/11 + C) + 22(141 + C)g — 22(141 + 5)8 — 4iE(A1 + C) + Ay — 231)56 =0.

This, in particular, means that if ¢ is a CR-function then this equation is satisfied
automatically. Thus given a CR~function ¢, via ([I1.22)), we constructed m which
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satisfies equation (IT.9). To see that all solutions m of (IL9) can be constructed
in this way is a bit more subtle (see [6]).
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