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INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES INTHREE DIMENSIONSC. DENSON HILL AND PAWE� NUROWSKIAbstra
t. Starting from the 
lassi
al notion of an oriented 
ongruen
e (i.e.a foliation by oriented 
urves) in R3, we abstra
t the notion of an oriented
ongruen
e stru
ture. This is a 3-dimensional CR manifold (M, H, J) with apreferred splitting of the tangent spa
e TM = V ⊕H. We �nd all lo
al invari-ants of su
h stru
tures using Cartan's equivalen
e method re�ning Cartan's
lassi�
ation of 3-dimensional CR stru
tures. We use these invariants and per-form Fe�erman like 
onstru
tions, to obtain interesting Lorentzian metri
s infour dimensions, whi
h in
lude expli
it Ri

i-�at and Einstein metri
s, as wellas not 
onformally Einstein Ba
h-�at metri
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2 C. DENSON HILL AND PAWE� NUROWSKI11. Appli
ation 2: Algebrai
ally spe
ial spa
etimes 4611.1. Redu
tion of the Einstein equations 4711.2. Examples of solutions 5011.3. Dis
ussion of the redu
ed equations 53Referen
es 551. Introdu
tionWe study the lo
al di�erential geometry of oriented 
ongruen
es in 3-dimensionalmanifolds. This geometry turns out to be very 
losely related to lo
al 3-dimensionalCR geometry. The latter 
an be tra
ed ba
k to Elie Cartan's 1932 papers [3℄, inwhi
h he used his equivalen
e method to determine the full set of lo
al invariantsof lo
ally embedded 3-dimensional stri
tly pseudo
onvex CR manifolds.This paper should be regarded as an extension and re�nement of Cartan's work.This is be
ause a 3-dimensional manifold with an oriented 
ongruen
e on it is an ab-stra
t 3-dimensional CR manifold with an additional stru
ture: a preferred splitting(see Se
tion 3). This leads to a notion of lo
al equivalen
e of su
h stru
tures, whi
his more stri
t that than of Cartan. Hen
e the (
oarse) CR equivalen
e 
lasses ofCartan split into a �ne stru
ture; as a result we produ
e many new lo
al invariants,
orresponding to many more nonequivalent stru
tures than in Cartan's situation.From this perspe
tive, our paper may be also pla
ed in the realm of spe
ialgeometries, i.e. geometries with an additional stru
ture. These kind of geometries,su
h as, for example, spe
ial Riemannian geometries (hermitian, Kähler, G2, et
.),�nd appli
ations in mathemati
al phys
is (e.g. string theory). The starting pointof this paper also 
omes from physi
s: a 
ongruen
e in R3 (i.e. a foliation of R3by 
urves) is a notion that appears in hydrodynami
s (velo
ity �ow), Newtoniangravity and ele
trodynami
s (�eld strength lines). These bran
hes of physi
s havedistinguished the two main invariants of su
h foliations, whi
h are related to the
lassi
al notions of twist and shear. One of the byprodu
ts of our analysis is also are�nement of these physi
al 
on
epts.Contemporary physi
ists, be
ause of the dimension of spa
etime, have beenmu
h more interested in 
ongruen
es in four dimensions. Su
h 
ongruen
es livein Lorentzian manifolds, and as su
h, may be timelike, spa
elike or null. It turnsout that the null 
ongruen
es in spa
etimes, whi
h are tangent to unparametrizedgeodesi
s without shear, lo
ally de�ne a 3-manifold, whi
h has a CR stru
ture on it.One of the out
omes of this paper is that we found 
onne
tions between propertiesof four dimensional spa
etimes admitting null and shearfree 
ongruen
es, with their
orresponding three dimensional CR manifolds, and our new invariants of the 
las-si
al 
ongruen
es in three dimensions. In Se
tions 10 and 11, in parti
ular, we usethese three dimensional invariants, to 
onstru
t interesting families of Lorentzianmetri
s with shearfree 
ongruen
es in four dimensions (in
luding metri
s whi
h areRi

i �at or Einstein, Ba
h �at but not 
onformal to Einstein, et
.).Throughout the paper we will always have a nondegenerate (not ne

essarilyRiemannian) metri
 gij and its inverse gij . This enables us to freely raise andlower indi
es at our 
onvenien
e. We use the Einstein summation 
onvention. Wealso denote by ω1ω2 = 1
2 (ω1 ⊗ ω2 + ω2 ⊗ ω1) the symmetrized tensor produ
t oftwo 1-forms ω1 and ω2. In this paper we shall be working in the smooth 
ategory;



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 3i.e., everything will be assumed to be C∞, without mentioning it expli
itly in whatfollows.A large part of the paper is based on lengthy 
al
ulations, whi
h are requiredby our main tool, namely Cartan's equivalen
e method. These 
al
ulations were
he
ked by the symboli
 
al
ulation program Mathemati
a. The stru
ture of thepaper is re�e
ted in the table of 
ontents.We have been inspired by our 
onta
t with Andrzej Trautman, Ja
ek Tafel andJerzy Lewandowski, whom we thank warmly. We also thank the Mathematis
hesInstitute der Humboldt-Universität zu Berlin, and Ilka Agri
ola and Jürgen Leit-erer, in parti
ular, for their kind hospitality during the preparation of this paper.2. Classi
al twist and shearIn a simply 
onne
ted domain U of Eu
lidean spa
e R3, equipped with the �atmetri
 gij = δij , we 
onsider a smooth foliation by uniformly oriented 
urves. Let vbe a ve
tor �eld v = vi∇i tangent to the foliation, 
onsistent with the orientation.We denote the total symmetrization by round bra
kets on the indi
es, the totalantisymetrization by square bra
kets on the indi
es, and use ǫijk = ǫ[ijk], ǫ123 = 1.We have the following 
lassi
al de
omposition(2.1) ∇ivj = αij + σij + 1
3θgij ,where

αij = ∇[ivj] = 1
2ǫijk(curl v)k,

θ = gij∇ivj = div v,

σij = ∇(ivj) − 1
3θgij .The de
omposition (2.1) de�nes three fun
tions, depending on the 
hoi
e of v, whi
h
an be used to 
hara
terize the foliation. One of these fun
tions is the divergen
e

θ, also 
alled the expansion of the ve
tor �eld v. It merely 
hara
terizes the ve
tor�eld v, hen
e it is not interesting as far the properties of the foliation is 
on
erned.The se
ond fun
tion is
α = |αij | =

√

gikgjlαijαkl,the norm of the antisymmetri
 part αij , 
alled the twist of the ve
tor �eld v.Vanishing of twist, the twist-free 
ondition α = 0, is equivalent to curl v = 0.Although this 
ondition is v-dependent, it has a 
lear geometri
 meaning for thefoliation. Indeed, a ve
tor �eld v with vanishing twist may be represented by agradient: v = ∇f for some fun
tion f : U → R. In su
h a 
ase the level surfa
esof the fun
tion f de�ne a foliation of U with 2-dimensional leaves orthogonal to v.This 
an be rephrased by saying that the distribution V⊥ of 2-planes, perpendi
ularto v, is integrable.The third fun
tion obtained from the de
omposition (2.1) is
σ = |σij | =

√

gikgjlσijσkl,the norm of the tra
e-free symmetri
 part σij , 
alled the shear of the ve
tor �eld v.Regardless of whether or not V⊥ is integrable, the 
ondition of vanishing shear
σ = 0 is equivalent to ∇(ivj) = 1

3θgij . Re
alling that the Lie derivative Lvgij =
∇(ivj), we see that the shear-free 
ondition for v is the 
ondition that this Liederivative be proportional to the metri
. Thus σ = 0 if and only if Lvgij = hgij .This 
ondition again is v dependent. However, it implies the following geometri




4 C. DENSON HILL AND PAWE� NUROWSKIproperty of the foliation: the metri
 g|V⊥ indu
ed by gij on the distribution V⊥is 
onformally preserved when Lie transported along v. To say it di�erently weintrodu
e a 
omplex stru
ture J on ea
h 2-plane of V⊥. This is possible sin
eea
h su
h plane is equipped with a metri
 g|V⊥ and the orientation indu
ed by theorientation of v. Knowing this, we de�ne J on ea
h 2-plane as a rotation by π
2 ,using the right hand rule. Now we 
an rephrase the statement about 
onformalpreservation of the metri
 g|V⊥ during Lie transport along v, by saying that it isequivalent to the 
onstan
y of J under the Lie transport along v.The above notions of expansion, twist and shear are the 
lassi
al notions ofelasti
ity theory. As we have seen, they are not invariants of the foliation by 
urves,be
ause they depend on the 
hoi
e of the ve
tor �eld v. Nonetheless they do 
arrysome invariant information. One of the main purposes of this paper is to �nd all ofthe lo
al invariants of the intrinsi
 geometry asso
iated with su
h foliations. Withthis 
lassi
al motivation we now pass to the subje
t proper of this paper.3. Oriented 
ongruen
esConsider a smooth oriented real 3-dimensional manifold M equipped with aRiemannian metri
 g. Assume that M is smoothly foliated by uniformly oriented
urves. Su
h a foliation is 
alled an oriented 
ongruen
e. Note that we are notassuming that the 
urves in the 
ongruen
e are geodesi
s for the metri
 g.Our �rst observation is that M has the stru
ture of a smooth abstra
t CRmanifold. To see this we introdu
e the oriented line bundle V , a subbundle of

TM , 
onsisting of the tangent lines to the foliation. Using the metri
 we alsohave V⊥, the 2-plane subbundle of TM 
onsisting of the planes orthogonal to the
ongruen
e. These 2-planes are oriented by the right hand rule and are equippedwith the indu
ed metri
 g|V⊥ . Hen
e V⊥ is endowed with the 
omplex stru
tureoperator J as we explained in the previous se
tion. The pair (V⊥, J), by the veryde�nition, equips M with the stru
ture of an abstra
t 3-dimensional CR manifold.This CR manifold has an additional stru
ture 
onsisting in the prefered splitting
TM = V⊥ ⊕ V . It also de�nes an equivalen
e 
lass [g] of adapted Riemannianmetri
s g′ in whi
h g′(V ,V⊥) = 0 and su
h that g′|V⊥ is hermitian for J . Thus,an oriented 
ongruen
e in (M, g) de�nes a whole 
lass of Riemannian manifolds
(M, [g]) whi
h are adapted to it.Conversely, given an oriented abstra
t 3-dimensional CR manifold (M,H, J)with a distinguished line subbundle V su
h that V ∩H = {0}, we may re
onstru
tthe oriented 
ongruen
e. The 
urves of this 
ongruen
e 
onsist of the traje
toriesof V . They are oriented by the right hand rule applied in su
h a way that it agreeswith the orientation of H determined by J . Here J : H → H and J2 = −id.Sin
e TM = H⊕V we re
over also the equivalen
e 
lass [g] of adapted Riemannianmetri
s g′ in whi
h g(V , H) = 0 and su
h that g′|H is hermitian for J .We summarize with: let M be an oriented 3-dimensional manifold, thenProposition 3.1. There is a one to one 
orresponden
e between oriented 
ongru-en
es on M with a distinguished orthogonal distribution V⊥, and CR stru
tures
(H, J) on M with a distinguished line subbundle V su
h that TM = H ⊕ V.We now pass to the dual formulation. Given a CR stru
ture (H, J) with aprefered splitting TM = H ⊕ V , we de�ne H0 to be the anihilator of H and V0 to



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 5be the anihilator of V . Note that H0 is a real line subbundle of T ∗M and V0 is a 2-plane subbundle of T ∗M . This H0 is known as the 
hara
teristi
 bundle asso
iatedwith the CR stru
ture. V0 is equipped with the 
omplex stru
ture J∗, the adjointof J with respe
t to the natural duality pairing. The 
omplexi�
ation CV0 splitsinto CV0 = V0
+ ⊕ V0

−, where V0
± are the ∓i eigenspa
es of J∗. Both spa
es V0

± are
omplex line subbundles of the 
omplexi�
ation CT ∗M of the 
otangent bundle.
V0
− is the 
omplex 
onjugate of V0

+, V0

± = V0
∓.The reason for passing to the dual formulation is that we want to apply Cartan'smethod of equivalen
e to determine the lo
al invariants of an oriented 
ongruen
ein M . For this we need a lo
al nonzero se
tion λ of H0 and a lo
al nonzero se
tion

µ of V0
+. Then λ∧ µ ∧ µ̄ 6= 0. Any other lo
al se
tion λ′ of H0 and any other lo
alse
tion µ′ of V0

+ are related to λ and µ by λ′ = fλ and µ′ = hµ, for some realfun
tion f and some 
omplex fun
tion h. This motivates the following de�nition:De�nition 3.2. A stru
ture (M, [λ, µ]) of an oriented 
ongruen
e on a 3-dimensionalmanifold M is an equivalen
e 
lass of pairs of 1-forms [λ, µ] on M satisfying thefollowing 
onditions:(i) λ is real, µ is 
omplex(ii) λ ∧ µ ∧ µ̄ 6= 0 at ea
h point of M(iii) two pairs (λ, µ) and (λ′, µ′) are equivalent i� there exist nonvanishing fun
-tions f (real) and h (
omplex) on M su
h that(3.1) λ′ = fλ, µ′ = hµ.We say that two su
h stru
tures (M, [λ, µ]) and (M ′, [λ′, µ′]) are (lo
ally) equivalenti� there exists a (lo
al) di�eomorphism φ : M →M ′ su
h that(3.2) φ∗(λ′) = fλ, φ∗(µ′) = hµfor some nonvanishing fun
tions f (real) and h (
omplex) on M . If su
h a di�eo-morphism is from M to M it is 
alled an automorphism of (M, [λ, µ]). The fullset of automorphisms is 
alled the group of automorphisms of (M, [λ, µ]). A ve
tor�eld X on M is 
alled a symmetry of (M, [λ, µ]) i�
LXλ = fλ, LXµ = hµ.Here the fun
tions f (real) and h (
omplex) are not required to be nonvanishing;they may even vanish identi
ally. Observe, that if X and Y are two symmetries of

(M, [λ, µ]) then their 
ommutator [X,Y ] is also a symmetry. Thus, we may speakabout the Lie algebra of symmetries.Remark 3.3. Note that E. Cartan [3℄ would de�ne a 3-dimensional CR manifold asa stru
ture (M, [λ, µ]) as above, with the ex
eption that 
ondition (iii) is weakendto
(iii)CR two pairs (λ, µ) and (λ′, µ′) are equivalent i� there exist nonvanishing fun
-tions f (real) and h (
omplex) and a 
omplex fun
tion p on M su
h that

λ′ = fλ, µ′ = hµ+ pλ.In this sense our stru
ture of an oriented 
ongruen
e (M, [λ, µ]) is a CR manifoldon whi
h there is an additional stru
ture. In parti
ular the di�eomorphisms φ thatprovide an equivalen
e of our stru
tures are spe
ial 
ases of CR di�eomorphisms,whi
h for CR stru
tures de�ned a la Cartan by (iii)CR are φ : M → M ′ su
hthat φ∗(λ′) = fλ, φ∗(µ′) = hµ+ pλ. In terms of the nowadays de�nition of a CR



6 C. DENSON HILL AND PAWE� NUROWSKImanifold as a triple (M,H, J), this last Cartan 
ondition is equivalent to the CRmap requirement: dφ ◦ J = J ◦ dφ and similarly for φ−1.Remark 3.4. Two CR stru
tures whi
h are not equivalent in the sense of Cartan [3℄are also not equivalent, in our sense, as oriented 
ongruen
es; but not vi
e versa.On the other hand, every symmetry of an oriented 
ongruen
e (M, [λ, µ]) is a CRsymmetry of the CR stru
ture determined by [λ, µ] via (iii)CR; and not vi
e versa.We omit the proof of the following easy proposition.Proposition 3.5. A given stru
ture (M, [λ, µ]) determines a CR stru
ture (M,H, J)with the preferred splitting TM = H ⊕ V, where H is the annihilator of SpanR(λ)and CV is the annihilator of SpanC(µ)⊕ SpanC(µ̄). The 
lass of adapted Rieman-nian metri
s [g] is parametrized by two arbitrary nonvanishing fun
tions f (real)and h (
omplex) and given by
g = f2λ2 + 2|h|2µµ̄.4. Elements of Cartan's equivalen
e methodHere we outline the pro
edure we will follow in applying Cartan's method to ourparti
ular situation.4.1. Cartan invariants. Consider two stru
tures (M, [λ, µ]) and (M ′, [λ′, µ′]).Our aim is to determine whether they are equivalent or not, a

ording to De�-nition 3.2, equation (3.2). This question is not easy to answer, sin
e it is equivalentto the problem of the existen
e of a solution φ for a system (3.2) of linear �rstorder PDEs in whi
h the right hand side is undetermined. Elie Cartan asso
iateswith the forms (λ, µ, µ̄) and (λ′, µ′, µ̄′), representing the stru
tures, two systems ofordered 
oframes {Ωi} and {Ω′

i} on manifolds P and P ′ of the same dimension, say
n ≥ 3, whi
h are �ber bundles overM . Then he shows that equations like (3.2) for
φ have a solution if and only if a simpler system(4.1) Φ∗Ω′

i = Ωi, i = 1, 2, ..., nof di�erential equations for a di�eomorphism Φ : P → P ′ has a solution. Note thatderivatives of Φ still o

ur in (4.1), sin
e Φ∗ is the pullba
k of forms from P ′ to P .One famous example is his original solution to the equivalen
e problem for 3-dimensional stri
tly pseudo
onvex CR stru
tures. There P and P ′ are 8-dimensional,and his pro
edure produ
es two systems of eight linearly independent 1-forms {Ωi}and {Ω′
i}.In our situation, provided n < ∞, and if we are able to �nd n well de�nedlinearly independent 1-forms {Ωi} on P , then (P, {Ωi}) provides the full system oflo
al invariants for the original stru
ture (M, [λ, µ]). In parti
ular, using (P, {Ωi})one introdu
es the s
alar invariants, whi
h are the 
oe�
ients {KI} in the de
om-position of {dΩi} with respe
t to the invariant basis of 2-forms {Ωi ∧ Ωj}.Now in order to determine if two stru
tures (M, [λ, µ]) and (M ′, [λ′, µ′]) areequivalent, it is enough to have n fun
tionally independent {KI}. Then the 
ondi-tion (4.1) be
omes(4.2) Φ∗K ′

I = KI , I = 1, 2, ..., n.The advantage of this 
ondition, as 
ompared to (4.1), is that (4.2), being the pullba
k of fun
tions, does not involve derivatives of Φ. In this 
ase the existen
e of Φ



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 7be
omes a question involving the impli
it fun
tion theorem, and the whole problemredu
es to 
he
king whether a 
ertain Ja
obian is non-degenerate.We remark that an immediate appli
ation of the invariants obtained by Car-tan's equivalen
e method is to use them to �nd all the homogeneous examplesof the parti
ular stru
ture under 
onsideration. The pro
edure of enumeratingthese examples is straightforward and algorithmi
 on
e the Cartan invariants havebeen determined. In our situation the homogeneous examples will often have lo
alsymmetry groups of dimension three. The 3-dimensional Lie groups are 
lassi�eda

ording to the Bian
hi 
lassi�
ation of 3-dimensional Lie algebras [1℄. Sin
e wewill use this 
lassi�
ation in subsequent se
tions, we re
all it below.4.2. Bian
hi 
lassi�
ation of 3-dimensional Lie algebras. In this se
tion
X1, X2, X3 denote a basis of a 3-dimensional Lie algebra g with Lie bra
ket [·, ·].All the nonequivalent Lie algebras fall into Bian
hi types I, II, V I0, V II0, V III,
IX , V , IV , V Ih, V IIh. Apart from types V Ih and V IIh, there is always pre
iselyone Lie algebra 
orresponding to a given type. For ea
h value of the real param-eter h < 0 there is also pre
isely one Lie algebra of type V Ih. Likewise for ea
hvalue of the parameter h > 0 there is pre
isely one Lie algebra of type V IIh. The
ommutation relations for ea
h Bian
hi type are given in the following table.Bian
hi type: I II V I0 V II0 V III IX

[X1, X2] = 0 0 0 0 −X3 X3

[X3, X1] = 0 0 −X2 X2 X2 X2

[X2, X3] = 0 X1 X1 X1 X1 X1Bian
hi type: V IV V Ih V IIh
[X1, X2] = 0 0 0 0
[X3, X1] = X1 X1 −X2 + hX1 X2 + hX1

[X2, X3] = −X2 X1 −X2 X1 − hX2 X1 − hX2Note that Bian
hi type I 
orresponds to the abelian Lie group, type II 
or-responds to the Heisenberg group; types VIII and IX 
orrespond to the simplegroups: SO(1, 2), SL(2,R) for type VIII, and SO(3), SU(2) for type IX.5. Basi
 relative invariants of an oriented 
ongruen
eWe make preparations to apply the Cartan method of equivalen
e for �ndingall lo
al invariants of the stru
ture of an oriented 
ongruen
e (M, [λ, µ]) on a 3-manifold M .Given a stru
ture (M, [λ, µ]) we take representatives λ and µ of 1-forms from the
lass [λ, µ]. Sin
e (λ, µ, µ̄) is a basis of 1-forms onM we 
an express the di�erentials
dλ and dµ in terms of the 
orresponding basis of 2-forms (µ ∧ µ̄, µ ∧ λ, µ̄ ∧ λ). Wehave

dλ = iaµ ∧ µ̄+ bµ ∧ λ+ b̄µ̄ ∧ λ
dµ = pµ ∧ µ̄+ qµ ∧ λ+ sµ̄ ∧ λ(5.1)
dµ̄ = −p̄µ ∧ µ̄+ s̄µ ∧ λ+ q̄µ̄ ∧ λ,where a is a real valued fun
tion and b, p, q, s are 
omplex valued fun
tions on M .Given any fun
tion u onM we de�ne �rst order linear partial di�erential operatorsa
ting on u by

du = uλλ+ uµµ+ uµ̄µ̄.



8 C. DENSON HILL AND PAWE� NUROWSKINote that uλ is a real ve
tor �eld a
ting on u, uµ is a 
omplex ve
tor �eld of type(1,0) a
ting on u and uµ̄ is a 
omplex ve
tor �eld of type (0,1) a
ting on u. The
ommutators of these operators, when a
ting on u are
uµ̄µ − uµµ̄ = −iauλ − puµ + p̄uµ̄

uλµ − uµλ = −buλ − quµ − s̄uµ̄(5.2)
uλµ̄ − uµ̄λ = −b̄uλ − suµ − q̄uµ̄.A fun
tion u on a CR manifold (M, [λ, µ]) is 
alled a CR fun
tion if(5.3) du ∧ λ ∧ µ ≡ 0.In terms of the di�erential operators above this is the same as(5.4) uµ̄ ≡ 0.Thus uµ̄ is just the tangential Cau
hy-Riemann operator a
ting on u. The equation(5.3) or (5.4) is 
alled the tangential Cau
hy-Riemann equation.It is easy to see that ea
h of the following two 
onditions(5.5) dλ ∧ λ = 0, dµ ∧ µ = 0,is independent of the 
hoi
e of the respresentatives (λ, µ) from the 
lass [λ, µ].Thus the identi
al vanishing or not of either the 
oe�
ient a, or the 
oe�
ent s, isan invariant property of the stru
ture (M, [λ, µ]). Using Cartan's terminology thefun
tions a and s are the basi
 relative invariants of (M, [λ, µ]). By de�nition they
orrespond to the identi
al vanishing or not of the twist (the fun
tion a) and of theshear (the fun
tion s) of the oriented 
ongruen
e represented by (M, [λ, µ]).They are invariant versions of the 
lassi
al v-dependent notions of twist α andshear σ we 
onsidered in Se
tion 2. Given an oriented 
ongruen
e with vanishingtwist a inM = R3 we 
an always �nd a ve
tor �eld v tangent to the 
ongruen
e su
hthat the twist α for this ve
tor �eld is zero. We also have an analogous statementfor s and σ. Conversely, every ve
tor �eld v in R3 whi
h has vanishing twist α (orshear σ) de�nes an oriented 
ongruen
e with vanishing twist a (or shear s).We note that the twist a is just the Levi form of the CR stru
ture and that theshear s is now 
omplex; its meaning will be explained further in Se
tion 8.In what follows we will often use the following (see e.g. [12℄)Lemma 5.1. Let µ be a smooth 
omplex valued 1-form de�ned lo
ally in R3 su
hthat µ ∧ µ̄ 6= 0. Then
dµ ∧ µ ≡ 0 if and only if µ = hdζwhere ζ is a smooth 
omplex fun
tion su
h that dζ ∧ dζ̄ 6= 0, and h is a smoothnonvanishing 
omplex fun
tion.Proof. Consider an open set U ∈ R

3 in whi
h we have µ su
h that dµ ∧ µ = 0and µ ∧ µ̄ 6= 0. We de�ne real 1-forms θ1 = Re(µ) and θ2 = Im(µ). They satisfy
θ1∧θ2 6= 0 in U . Sin
e U ⊂ R3 we trivially have dθ1∧θ1∧θ2 ≡ 0 and dθ2∧θ1∧θ2 ≡
0. Now the real Fröbenius theorem implies that there exists a 
oordinate 
hart
(x, y, u) in U su
h that θ1 = t11dx + t12dy and θ2 = t21dx + t22dy, with some realfun
tions tij in U su
h that t11t22 − t12t21 6= 0. Thus in the 
oordinates (x, y, u)the form µ = θ1 + iθ2 
an be written as µ = c1dx + c2dy, where now c1, c2 are
omplex fun
tions su
h that c1c̄2 − c̄1c2 6= 0 on U , so neither c1 nor c2 
an bezero. The dµ ∧ µ ≡ 0 
ondition for µ written in this representation is simply
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c22d( c1c2 )∧dx∧dy ≡ 0. Thus the partial derivative ( c1c2 )u ≡ 0, whi
h means that theratio c1

c2
does not depend on u. This ratio de�nes a nonvanishing 
omplex fun
tion

F (x, y) = c1
c2

of only two real variables x and y. Returning to µ we see that it isof the form µ = c2
(

dy + F (x, y)dx
). Consider the real bilinear symmetri
 form

G = 2µµ̄ = |c2|2
(

dy2 + 2
(

F (x, y) + F̄ (x, y)
)

dxdy + |F (x, y)|2dx2
). Invoking the
lassi
al theorem on the existen
e of isothermal 
oordinates we are able to �ndan open set U ′ ⊂ U with new 
oordinates (ξ, η, u) in whi
h G = h2(dξ2 + dη2),where h = h(ξ, η, u) is a real fun
tion in U ′. This means that in these 
oordinates

µ = hd(ξ + iη) = hdζ. The proof in the other dire
tion is obvious. �6. Vanishing twist and shearLet us assume that the stru
ture (M, [λ, µ]) satis�es both 
onditions (5.5); i.e.,that a ≡ 0 and s ≡ 0. It is easy to see that all su
h stru
tures have no lo
alinvariants, meaning that all of them are lo
ally equivalent. Indeed, if dλ ∧ λ ≡ 0then the real Fröbenius theorem guarantees that lo
ally λ = fdu. Similarly, if
dµ ∧ µ ≡ 0, then the Lemma 5.1 assures that µ = hdζ. Sin
e dζ ∧ λ ∧ µ ≡ 0,we see that the fun
tion ζ is a holomorphi
 
oordinate. Re
alling the fa
t that
λ ∧ µ ∧ µ̄ 6= 0, we 
on
lude that if a ≡ 0 and s ≡ 0 then the CR manifold Mwith the prefered splitting is lo
ally equivalent to R × C, with lo
al 
oordinates
(u, ζ), su
h that u is real. In these 
oordinates the stru
ture may be representedby λ = du and µ = dζ. The lo
al group of automorphisms for su
h stru
tures isin�nite dimensional and given in terms of two fun
tions U = U(u) and Z = Z(ζ)su
h that U is real, Uu 6= 0, Z is holomorphi
 and Zζ 6= 0. The automorphismtransformations are then ũ = U(u), ζ̃ = Z(ζ). Note that from the point of viewof Cartan's method this is the involutive 
ase in whi
h n = ∞. There are no lo
alinvariants in this situation.7. Nonvanishing twist and vanishing shear7.1. The relative invariants K1 and K2. Next let us assume that the stru
ture
(M, [λ, µ]) has some twist, a 6= 0, but has identi
ally vanishing shear, s ≡ 0. Letus interpret this in terms of the 
orresponding CR stru
ture with the preferedsplitting. The nonvanishing twist 
ondition dλ∧λ 6= 0 is the 
ondition that the CRstru
ture has nonvanishing Levi form. This means that the CR manifold is stri
tlypseudo
onvex and hen
e is not lo
ally equivalent to R×C. The no shear 
ondition,
dµ∧µ ≡ 0, by the Lemma 5.1, means that the 
lass [µ] may be represented by a 1-form µ = dζ with a 
omplex fun
tion ζ onM satisfying dζ ∧dζ̄ 6= 0. Note that thisfun
tion trivially satis�es the tangential Cau
hy-Riemann equation dζ∧λ∧µ = 0 forthis CR stru
ture, and hen
e is a CR fun
tion. If Z is any holomorphi
 fun
tion withnonvanishing derivative, then Z = Z(ζ) is again a CR fun
tion with dZ ∧ dZ̄ 6= 0.This gives us a distinguished 
lass of genuinely 
omplex CR fun
tions Z = Z(ζ),whi
h we denote by [ζ]. Conversely if we have a stri
tly pseudo
onvex 3-dimensionalCR stru
ture (M,H, J) with a distinguished 
lass [ζ] of CR fun
tions Z = Z(ζ),su
h that dζ ∧ dζ̄ 6= 0 and Z ′ 6= 0, then this CR stru
ture de�nes a representative
(λ, µ = dZ), with λ being a nonvanishing se
tion of the 
hara
teristi
 bundle H0.This in turn de�nes a stru
ture (M, [λ, µ]) of an oriented 
ongruen
e whi
h has
a 6= 0 and s ≡ 0.Summarizing we have



10 C. DENSON HILL AND PAWE� NUROWSKIProposition 7.1. All lo
al stru
tures of an oriented 
ongruen
e (M, [λ, µ]) withnonvanishing twist, a 6= 0, and vanishing shear, s ≡ 0, are in a one to one 
orre-sponden
e with lo
al CR stru
tures (M,H, J) having nonvanishing Levi form andpossessing a distinguished 
lass [ζ] of genuinely 
omplex CR fun
tions on M .Note that the proposition remains true if we drop the nonvanishing twist 
ondi-tion on the left and drop the nonvanishing Levi form 
ondition on the right.We now pass to the determination of the lo
al invariants of (M, [λ, µ]) withnonvanishing twist and vanishing shear. We take a representative (λ, µ). Be
auseof our assumptions the formulae (5.1) be
ome
dλ = iaµ ∧ µ̄+ bµ ∧ λ+ b̄µ̄ ∧ λ
dµ = pµ ∧ µ̄+ qµ ∧ λ(7.1)
dµ̄ = −p̄µ ∧ µ̄+ q̄µ̄ ∧ λ.For example if we were to 
hoose µ as µ = dζ, where ζ is a parti
ular representativeof the distinguished 
lass [ζ] of CR fun
tions, then dµ would identi
ally vanish, so

p ≡ 0 and q ≡ 0. Although this 
hoi
e of µ is very 
onvenient and quite simpli�esthe determination of the invariants, we will work in the most general representation(7.1) of [λ, µ] to get the formulae for the invariants in their full generality.Given a 
hoi
e (λ, µ) as in (7.1) we take the most general representatives(7.2) ω = fλ, ω1 = hµ, ω̄1 = h̄µ̄,of the 
lass [λ, µ]. Here f 6= 0 (real) and h 6= 0 (
omplex) are arbitrary fun
tions.Then we reexpress the di�erentials dω, dω1 and dω̄1 in terms of the general basis
(ω, ω1, ω̄1). We have:

dω = i
fa

|h|2 ω1 ∧ ω̄1 + [ d log f +
b

h
ω1 +

b̄

h̄
ω̄1 ] ∧ ω(7.3)

dω1 = [ d log h− p

h̄
ω̄1 −

q

f
ω ] ∧ ω1(7.4)

dω̄1 = [ d log h̄− p̄

h
ω1 −

q̄

f
ω ] ∧ ω̄1(7.5)Sin
e a 6= 0 we 
an easily a
hieve(7.6) dω ∧ ω = iω1 ∧ ω̄1 ∧ ωby taking(7.7) f =

|h|2
a
.Thus 
ondition (7.6) `�xes the gauge' in the 
hoi
e of f .Introdu
ing the real fun
tions ρ > 0 and φ via h = ρeiφ and maintaining the
ondition (7.6) we may rewrite equation (7.3) in the form

dω = iω1 ∧ ω̄1 + (Ω + Ω̄) ∧ ω,where the real valued 1-form Ω + Ω̄ is(7.8) Ω + Ω̄ = 2d log ρ+ (b− (log a)µ)µ+ (b̄− (log a)µ̄)µ̄+ tλ.The real fun
tion t appearing in Ω + Ω̄ 
an be determined algebrai
ally from the
ondition that(7.9) (dω1 + dω̄1) ∧ (ω1 − ω̄1) = −ω1 ∧ ω̄1 ∧ (Ω + Ω̄).
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ondition is imposed then(7.10) t = −q − q̄.Now, if t is as in (7.10) and f is as in (7.7) we de�ne Ω − Ω̄ to be an imaginary1-form su
h that(7.11) (dω1 + dω̄1) ∧ (ω1 + ω̄1) = ω1 ∧ ω̄1 ∧ (Ω − Ω̄).This determines Ω − Ω̄ to be
Ω − Ω̄ = 2idφ+ (q̄ − q)λ+ zµ− z̄µ̄,where z is a still undetermined fun
tion. The 
ondition that �xes z in an algebrai
fashion is the requirement that(7.12) dω1 = Ω ∧ ω1, dω̄1 = Ω̄ ∧ ω̄1.If this is imposed we have(7.13) z = 2p̄+ b− (log a)µ, z̄ = 2p+ b̄− (log a)µ̄.Thus given a stru
ture (M, [λ, µ]) with nonvanishing twist and vanishing shear,the four normalization 
onditions (7.6), (7.9), (7.11), (7.12) uniquely spe
ify a5-dimensional manifold P , whi
h is lo
ally M × C, and a well de�ned 
oframe

(ω, ω1, ω̄1,Ω, Ω̄) on it su
h that
ω =

ρ2

a
λ

ω1 = ρeiφµ

ω̄1 = ρe−iφµ̄(7.14)
Ω = d log ρ+ idφ+ (p̄+ b− (log a)µ)µ− pµ̄− qλ

Ω̄ = d log ρ− idφ− p̄µ+ (p+ b̄ − (log a)µ̄)µ̄− q̄λ.Here the 
omplex 
oordinate along the fa
tor C in M ×C is h = ρeiφ. The 
oframe
(ω, ω1, ω̄1,Ω, Ω̄) satis�es

dω = iω1 ∧ ω̄1 + (Ω + Ω̄) ∧ ω
dω1 = Ω ∧ ω1

dω̄1 = Ω̄ ∧ ω̄1(7.15)
dΩ = K1ω1 ∧ ω̄1 +K2ω1 ∧ ω
dΩ̄ = −K1ω1 ∧ ω̄1 +K2ω̄1 ∧ ω,where(7.16) K1 =

1

ρ2
k1, K2 =

e−iφ

ρ3
k2,are fun
tions on P with k1 and k2 given by

k1 = Re
(

(log a)µµ̄ − (log a)µp− iqa− bµ̄ + bp− 2p̄µ̄ + 2|p|2
)

k2 = aµλ − abλ + i(log a)µ(bµ̄ − b̄µ − bp+ b̄p̄) − 2aµq − aqµ − (aq̄)µ − abq̄.Note that the fun
tions k1 and k2 are a
tually de�ned on M . Note also that k1 isreal as a 
onsequen
e of the 
ommutation relations (5.2). The fun
tions K1 and K2are the relative invariants of the stru
ture (M, [λ, µ]), and (7.15) are the stru
turalequations for (M, [λ, µ]).



12 C. DENSON HILL AND PAWE� NUROWSKITheorem 7.2. A given stru
ture (M, [λ, µ]) of an oriented 
ongruen
e with nonva-nishing twist, a 6= 0, and vanishing shear, s ≡ 0, uniquely de�nes a 5-dimensionalmanifold P , 1-forms ω, ω1, ω̄1,Ω, Ω̄ and fun
tions K1,K2,K2 on P su
h that- ω, ω1, ω̄1 are as in (7.2),- ω ∧ ω1 ∧ ω̄1 ∧ Ω ∧ Ω̄ 6= 0 at ea
h point of P ,- the forms and fun
tions K1 (real), K2 (
omplex) are uniquely determinedby the requirement that on P they satisfy equations (7.15).In parti
ular the identi
al vanishing, or not, of either k1 or k2 are invariant 
ondi-tions. Also the sign of k1 is an invariant, if k1 6= 0.7.2. Des
ription in terms of the Cartan 
onne
tion. The above theorem,stated in modern language, means the following. The manifold P is a Cartanbundle H2 → P → M , with H2 a 2-dimensional abelian subgroup of a 
ertain5-dimensional Lie group G5. The group G5 is a subgroup of SU(2, 1); i.e., the8-dimensional Lie group whi
h preserves the (2, 1)-signature hermitian form
h(Z,Z) =

(

Z1, Z2, Z3
)

ĥ





Z̄1

Z̄2

Z̄3



 , ĥ =





0 0 2i
0 1 0

−2i 0 0



 .The forms ω, ω1, ω̄1,Ω, Ω̄ in the theorem 
an be 
olle
ted into a matrix of 1-forms
ω̃ =













1
3 (2Ω + Ω̄) 0 0

ω1
1
3 (Ω̄ − Ω) 0

2ω 2iω̄1 − 1
3 (2Ω̄ + Ω),











satisfying
ω̃ĥ+ ĥω̃† = 0.The Lie algebra g5 of the group G5 is then

g5 = {













1
3 (2z2 + z̄2) 0 0

z1
1
3 (z̄2 − z2) 0

2x 2iz̄1 − 1
3 (2z̄2 + z2)













, x ∈ R, z1, z2 ∈ C},and as su
h is a real 5-dimensional Lie algebra parametrized by the parameters
x,Re(z1), Im(z1),Re(z2), Im(z2). It is naturally 
ontained in su(2, 1). The subgroup
H2 
orresponds to the subalgebra h2 ⊂ g5 given by x = 0, z1 = 0. Now, ω̃ 
an beinterpreted as a Cartan 
onne
tion on P [7℄ having values in the Lie algebra g5 ⊂
su(2, 1). It follows from equations (7.15) that the 
urvature R of this 
onne
tion is

R = dω̃ + ω̃ ∧ ω̃ =





R1 0 0
0 R2 0
0 0 −R1 −R2



 ,where
R1 = − 2

3K2ω ∧ ω1 − 1
3K2ω ∧ ω̄1 + 1

3K1ω1 ∧ ω̄1

R2 = 1
3K2ω ∧ ω1 − 1

3K2ω ∧ ω̄1 − 2
3K1ω1 ∧ ω̄1It yields all the invariant information about the 
orresponding stru
ture (M, [λ, µ]),very mu
h in the same way as the Riemann 
urvature yields all the information
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ture.7.3. Conformal Lorentzian metri
s. Using the matrix elements ω̃ij of the Car-tan 
onne
tion ω̃ it is 
onvenient to 
onsider the bilinear form
G = −iω̃3

jω̃
j
1.This form, when written expli
itly in terms of ω, ω1, ω̄1,Ω, Ω̄, is given by

G = 2ω1ω̄1 +
2

3i
ω(Ω − Ω̄).Introdu
ing the basis of ve
tor �eldsX,X1, X̄1, Y, Ȳ , the respe
tive duals of ω, ω1, ω̄1,

Ω, Ω̄, one sees that G is a form of signature (+++−0) with the degenerate dire
tiontangent to the ve
tor �eld Y + Ȳ = ρ∂ρ. We may think of the Cartan bundle P asbeing foliated by 1-dimensional leaves tangent to this ve
tor �eld. Now equations(7.15) guarantee that the Lie derivative
L(Y+Ȳ ) G = 2 G,so that the bilinear form G is preserved up to a s
ale when Lie transported alongthe leaves of the foliation. Therefore the 4-dimensional leaf spa
e N = P/∼ of thefoliation is naturally equipped with a 
onformal 
lass of Lorentzian metri
s [g], the
lass to whi
h the bilinear form G naturally des
ends. The Lorentzian metri
s(7.17) g = 2ω1ω̄1 +

2

3i
ω(Ω − Ω̄)on N are the analogs of the Fe�erman metri
s [5℄ known in CR manifold theory.We note that N is a 
ir
le bundle above M with the �ber 
oordinate φ.Interestingly metri
s (7.17) belong to a larger 
onformal family, whi
h is alsowell de�ned on N . It turns out that if we start with a bilinear form

Gt = 2ω1ω̄1 + 2ti ω(Ω̄ − Ω)where t is any fun
tion on P 
onstant along the Y + Ȳ dire
tion, then it also wellproje
ts to a 
onformal Lorentzian 
lass [gt] on N with representatives(7.18) gt = 2ω1ω̄1 + 2ti ω(Ω̄ − Ω)parametrized by t. To see this it is enough to look at the expli
it expressions forthe forms (ω1, ω̄1, ω,Ω, Ω̄) in (7.14) and to note that Gt is of the form Gt = ρ2(...),where the dotted terms do not depend on the 
oordinate ρ whi
h is aligned with
Y + Ȳ on P .Although t may be an arbitrary fun
tion on N , in what follows we will only beinterested in the 
ase when t is a 
onstant parameter.We return to metri
s gt in Se
tion 10.2, where we dis
uss their 
onformal 
urva-ture Ft and provide some example of the Lorentzian metri
s satisfying the so 
alledBa
h 
ondition.7.4. Basi
 examples.Example 7.3. Note that the assumption that K1 and K2 are 
onstant on P is
ompatible with (7.15) i� K1 = K2 = 0. In su
h 
ase the 
urvature R of theCartan 
onne
tion ω̃ vanishes, and it follows that there is only one, modulo lo
al
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e, [λ, µ] stru
ture with this property. It 
oin
ides with the CR stru
tureof the Heisenberg group
M = { (z, w) ∈ C

2 : Im(w) = |z|2 }with the preferred splitting V generated by the ve
tor �eld v = ∂u, u = Re(w).We 
all this the standard splitting on the Heisenberg group. The resulting oriented
ongruen
e has the maximal possible group of symmetries isomorphi
 to the group
G5.Example 7.4. We re
all that a 3-dimensional CR manifold M embedded in C2via

M = { (z, w = u+ iv) ∈ C
2 : v = 1

2H(z) },whereH is a real-valued fu
tion of the variable z ∈ C, is 
alled rigid. It 
an be givena stru
ture of an oriented 
ongruen
e by 
hoosing the splitting to be spanned bythe ve
tor �eld ∂u. As in the above spe
ial 
ase of the Heisenberg group we 
all thispreferred splitting onM the standard splitting on a rigid CR stru
ture. Intrinsi
allythis CR-manifold with the preferred splitting may be des
ribed in terms of the forms
λ and µ given by(7.19) λ = du+ i

2 (Hz̄dz̄ −Hzdz), µ = dz.Via (3.1), these forms de�ne a stru
ture (M, [λ, µ]) of an oriented 
ongruen
e on
M . In the following we assume that

Hzz̄ 6= 0at every point of M . It means that M is stri
tly pseudo
onvex.De�nition 7.5. A stru
ture (M, [λ, µ]) of an oriented 
ongruen
e with vanishingshear and nonvanishing twist on a manifold M is 
alled (lo
ally) �at i� (lo
ally) ithas vanishing 
urvature R for its Cartan 
onne
tion ω̃. The ne
essary and su�
ient
onditions for that are K1 ≡ 0 and K2 ≡ 0.A short 
al
ulation leads to the following proposition.Proposition 7.6. Let (M, [λ, µ]) be a stru
ture of an oriented 
ongruen
e asso
i-ated with the rigid CR-manifold M via the forms λ and µ of (7.19). Then for anyreal-valued fun
tion H = H(z) su
h that Hzz̄ 6= 0 this stru
ture has vanishing shearand non-vanishing twist. Its relative invariant K2 is identi
ally vanishing, K2 ≡ 0;the relative invariant K1 is given by K1 = 1
ρ2 [log(Hzz̄)]zz̄. When it vanishes thestru
ture is �at.Example 7.7. We remark that the Heisenberg group CR stru
ture may have var-ious splittings that endow M with nonequivalent stru
tures of an oriented 
ongru-en
e. To see this we perturb the standard splitting on the Heisenberg group givenby the ve
tor �eld ∂u. This is a

omplished by 
hoosing a 2-parameter family ofCR-fun
tions on M given by(7.20) ζǫ1ǫ2 = ǫ1z + ǫ2(u+ i|z|2),and de�ning the stru
ture of an oriented 
ongruen
e on M via (3.1) with the forms

λ = du+ i(zdz̄ − z̄dz), µǫ1ǫ2 = dζǫ1ǫ2 .Note that sin
e λ is a se
tion of the 
hara
teristi
 bundle H0 of the Heisenberggroup CR-stru
ture, and µǫ1ǫ2 is the di�erential of a CR-fun
tion, the stru
ture
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(M, [λ, µǫ1ǫ2 ]) is twisting and without shear for all values of the real parameters ǫ1and ǫ2. The real ve
tor �eld v whi
h gives the splitting on M is given by

v = ∂u +
ǫ2
ǫ1

[
iǫ1 + 2ǫ2z

−iǫ1 + ǫ2(z̄ − z)
∂z +

−iǫ1 + 2ǫ2z̄

iǫ1 + ǫ2(z − z̄)
∂z̄ ],if ǫ1 6= 0, and

v = i(z∂z − z̄∂z̄)otherwise. A short 
al
ulation shows that the relative invariants K1ǫ1ǫ2 and K2ǫ1ǫ2for this 2-parameter family of stru
tures are
K1ǫ1ǫ2 =

8ǫ22
ρ2|2ǫ2z + iǫ1|4

, K2ǫ1ǫ2 ≡ 0.This proves that the stru
tures with ǫ2 = 0 and ǫ2 6= 0 are not lo
ally equivalent. Toanalyse if the stru
tures with ǫ2 6= 0 are equivalent or not we need to apply furtherthe Cartan equivalen
e method. We will perform it in a more general setting thanthis example.7.5. The 
ase K1 6= 0, K2 ≡ 0. Let (M, [λ, µ]) be an arbitrary stru
ture of anoriented 
ongruen
e whi
h has nonvanishing twist, vanishing shear, and in additionhas the relative invariants K1 and K2 su
h that
K1 6= 0 and K2 ≡ 0.Given su
h a stru
ture, using the system (7.15) and the assumption K2 ≡ 0, weobserve that the 
orresponding stru
tural form Ω has 
losed real part,(7.21) d(Ω + Ω̄) ≡ 0.The assumption that K1 6= 0 enables us to make a further redu
tion of the Cartansystem (7.15) de�ning the invariants. Indeed sin
e K1 = 1

ρ2 k1 6= 0, we may restri
tourselves to a (possibly double-sheeted) hypersurfa
e N0 in P on whi
h
K1 = ±1,where the sign is determined by the sign of the fun
tion k1. Re
all that this sign isan invariant of the stru
ture.Lo
ally N0 is a 
ir
le bundle over M de�ned by the 
ondition
ρ2 = |k1|.Now the system (7.15) when pullba
ked to N0 lo
ally redu
es to

dω = iω1 ∧ ω̄1 + 2dA ∧ ω
dω1 = dA ∧ ω1 + iΣ ∧ ω1

dω̄1 = dA ∧ ω̄1 − iΣ ∧ ω̄1(7.22)
dΣ = ∓iω1 ∧ ω̄1.Here the real 1-formΣ is the pullba
k of the form 1

2i (Ω−Ω̄) from P toN0. A

ordingto our 
hoi
e of Σ, theminus sign in (7.22) 
orresponds toK1 = +1. The di�erential
dA of the real fun
tion A on N0 is determined by the 
ondition that 2dA is lo
allyequal to the pullba
k of the Ω + Ω̄ from P to N0. Note that this pullba
k must be
losed due to (7.21). Looking at the expli
it expression for Ω + Ω̄ in (7.8), (7.10)and the integrability 
onditions for (7.22) we �nd that lo
ally we have(7.23) 2dA = A1ω1 + Ā1ω̄1,
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e−iφ
√

|k1|
((log

|k1|
a

)µ + b).The fun
tion A1 gives a new relative invariant for the stru
tures (M, [λ, µ]) with
K1 6= 0 and K2 ≡ 0. It follows from the 
onstru
tion that two su
h stru
tures
(M, [λ, µ]) and (M ′, [λ′, µ′]) are (lo
ally) equivalent if there exists a (lo
al) di�eo-morphism of the 
orresponding manifolds N0 and N0

′ whi
h transforms the 
or-responding forms (ω, ω1, ω̄1,Σ) to (ω′, ω′
1, ω̄

′
1,Σ

′). This in turn implies that therelative invariant A1 must be transformed to A′
1.Remark 7.8. We note that among all the stru
tures with K1 6= 0 and K2 ≡ 0 thesimplest have A1 ≡ 0. Modulo lo
al equivalen
e there are only two su
h stru
tures,
orresponding to the ∓ sign in (7.22) with A1 ≡ 0. These are the `�at 
ases' forthe subtree in whi
h K1 6= 0 and K2 ≡ 0.The fun
tion A de�ning the relative invariant A1 is de�ned only up to the addi-tion of a 
onstant, A→ A+ t. Given a family of fun
tions A(t) = A+ t we 
onsiderthe family of bilinear forms GA(t) on N0 de�ned by

GA(t) = e−2(A+t)ω1ω2.The forms GA(t) are 
learly degenerate on N0. Denoting by (X,X1, X̄1, Y ) the dualve
tor �elds to the basis of 1-forms (ω, ω1, ω̄1,Σ) on N0, we see that the signature of
GA(t) is (+,+, 0, 0) with the degenerate dire
tions aligned with the real ve
tor �elds
X and Y . Next we observe that the system (7.22) implies that [X,Y ] ≡ 0, hen
ethe distribution spanned by X and Y is integrable. Thus N0 is foliated by real 2-dimensional leaves. Lo
ally the leaf spa
e S of this foliation is a 2-dimensional realmanifold, whi
h is a Riemann surfa
e, sin
e the pullba
k to S of the 1-form ω1 givesa basis for the (1, 0) forms. Now the formula (7.23) implies that X(A) = Y (A) ≡ 0.Using this and the system (7.22), a 
al
ulation shows that

LXGA(t) ≡ 0, LYGA(t) ≡ 0.This means that the bilinear formsGA(t) des
end to Riemannian homotheti
 metri
s
gA(t) on the Riemann surfa
e S. We have the following theorem.Theorem 7.9. The Riemann surfa
e S naturally asso
iated with the stru
ture ofan oriented 
ongruen
e having K1 6= 0, K2 ≡ 0 possesses Riemannian homotheti
metri
s gA(t) whose Gaussian 
urvatures κ(t) are related to the relative invariant
A1 via:

κ(t) = ∓e2(A+t), i.e. 2dA = d log κ.Example 7.7 (
ontinued) Cal
ulating A1 for the stru
tures (M, [λ, µǫ1ǫ2 ]) ofExample 7.7, assuming that ǫ2 6= 0, we easily �nd that for all ǫ1, and ǫ2 6= 0,we have A1 ≡ 0. Thus for all nonzero values of ǫ2, and all values of ǫ1, thestru
tures are lo
ally equivalent. Hen
e the apparent 2-parameter family of thestru
tures (M, [λ, µǫ1ǫ2 ]) in
ludes only two nonequivalent 
ases; isomorphi
 to thosewith (ǫ1, ǫ2) = (1, 0), and e.g. to those with (ǫ1, ǫ2) = (0, 1). The �rst 
ase is the�at 
ase K1 ≡ 0, K2 ≡ 0, 
orresponding to the Heisenberg group with the standardsplitting. The se
ond 
ase is 
onsiderably di�erent, being one of the `�at 
ases' forthe subtree K1 6= 0 and K2 ≡ 0, 
orresponding to A1 ≡ 0 and the minus sign in
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ular the (0, 1) 
ase has only a 4-dimensional symmetry group, asopposed to the 5-dimensional symmetry group of the (1, 0) 
ase.We would like to point out that if we were to 
hoose a more 
ompli
ated CRfun
tion than the ζǫ1ǫ2 of (7.20), for example
ζ = ǫ1z + ǫ2(u + i|z|2)m,with m 6= 0 and m 6= 1, we would produ
e an oriented 
ongruen
e (M, [du+i(zdz̄−

z̄dz), dζ]), still twisting and without shear, again based on the Heisenberg group,but not equivalent to either of the two stru
tures above. The reason for this is thatthe 
ondition m 6= 0,m 6= 1 makes (M, [du + i(zdz̄ − z̄dz), dζ]) have the relativeinvariant K2 nonvanishing.We now give a lo
al representation for an arbitrary stru
ture (M, [λ, µ]) withvanishing shear, nonvanishing twist, and with K1 6= 0, K2 ≡ 0. This 
an be doneby integration of the system (7.22). Interestingly this integration 
an be performedexpli
itly, leading to the following theorem.Theorem 7.10. If (M, [λ, µ]) is a stru
ture of an oriented 
ongruen
e with van-ishing shear, nonvanishing twist, and with the relative invariants K1 6= 0, K2 ≡ 0then there exists a 
oordinate system (u, z, z̄) on M su
h that the forms λ and µrepresenting the stru
ture 
an be 
hosen to be
λ = du + i

2 (Hz̄dz̄ −Hzdz), µ = dz,where the real fun
tions A = A(z) and H = H(z) satisfy the system of PDEs
hzz̄ = ∓e2Ae−h(7.25)
Hzz̄ = e−h(7.26)with a real fun
tion h = h(z). The stru
ture 
orresponding to su
h λ and µ satis�esthe system

dω = iω1 ∧ ω̄1 + 2dA ∧ ω
dω1 = dA ∧ ω1 + iΣ ∧ ω1

dω̄1 = dA ∧ ω̄1 − iΣ ∧ ω̄1

dΣ = ∓iω1 ∧ ω̄1with forms
ω = e2Aλ, ω1 = eAe−h/2eiφµ, ω̄1 = eAe−h/2e−iφµ̄

Σ = dφ+ i
2 (hz̄dz̄ − hzdz).The relative invariant A1 of this stru
ture is given by

A1 = 2e−Aeh/2e−iφAz .Note that the system of PDEs (7.25)-(7.26) is underdetermined. To see thatit always has solutions, 
hoose a real fun
tion H = H(z) on the 
omplex plane.De�ne the real fun
tion h = h(z) via equation (7.26), insert it into equation (7.25)and solve this real PDE for a real fun
tion A = A(z). Sin
e the fun
tion H 
an be
hosen arbitrarily, returning to Example 7.4, we see that this theorem 
hara
terizesthe oriented 
ongruen
es whi
h are lo
ally equivalent to those de�ned on rigid CRmanifolds with the standard splitting.



18 C. DENSON HILL AND PAWE� NUROWSKICorollary 7.11. Every stru
ture (M, [λ, µ]) of an oriented 
ongruen
e with van-ishing shear, nonvanishing twist, and with the relative invariants K1 6= 0, K2 ≡ 0admits one symmetry.Proof. To proof this it is enough to 
he
k that in the lo
al representation (7.25)-(7.26) the symmetry is generated by X0 = ∂u. �Starting with a stru
ture (M, [λ, µ]) having K1 6= 0 and K2 ≡ 0 we 
onstru
tedits asso
iated 
ir
le bundle S1 → N0 → M equipped with the invariant forms
(ω, ω1, ω̄1,Σ). Using the dual basis (X,X1, X̄1, Y ) and the system (7.22) we seethat the symmetry X0 lifts to a ve
tor �eld X̃ = e2AX with the property that

LX̃Σ = 0, LX̃ω1 = 2X̃(A)ω1.We now introdu
e a quotient 3-dimensional manifold MΣ whose points are theintegral 
urves of X̃. Then the forms Σ and ω1 des
end from N0 to a 
lass of forms
[Σ, ω1] onMΣ given up to the transformations Σ → Σ, ω1 → hω1. Thus they 
an beused to de�ne a stru
ture of an oriented 
ongruen
e (MΣ, [Σ, ω1]). This stru
turenaturally asso
iated with (M, [λ, µ]) may be lo
ally represented by the 
oordinates
(φ, z, z̄) of Theorem 7.10 with the representatives Σ and ω1 given by

Σ = dφ+ i
2 (hz̄dz̄ − hzdz), ω1 = dz.Here the real fun
tion h = h(z) is related to the original stru
ture (M, [λ, µ]) viaequations (7.25)-(7.26). In parti
ular (MΣ, [Σ, ω1]) is again based on a rigid CRstru
ture with the standard splitting.Now we use Theorem 7.10 to des
ribe all the stru
tures with K1 6= 0 and K2 ≡ 0whi
h have a 4-dimensional transitive symmetry group. It turns out that they mustbe equivalent to those with dA ≡ 0. This is be
ause the existen
e of a 4-dimensionaltransitive symmetry group implies that A1 must be a 
onstant. But sin
e A and

h depend only on z and z̄, and A1 has nontrivial eiφ dependen
e, it is possible i�
Az ≡ 0; hen
e A1 ≡ 0. Thus a

ording to Remark 7.8 there are only two su
hstru
tures. One of them, the one with the upper sign in (7.22), is equivalent to thestru
ture (ǫ1, ǫ2) = (0, 1) of Example 7.7. To �nd the se
ond one we use Theorem7.10 and integrate equations (7.25)-(7.26) for A = 0. Modulo equivalen
e we gettwo solutions

h∓ = 2 log(1 ∓ 1
2zz̄), H∓ = ∓2 log(1 ∓ 1

2zz̄), A = 0whi
h lead to the two nonequivalent `�at models' with K1 = ±1, A1 ≡ 0. Theseare generated by the forms(7.27) λ∓ = du+ i
2

zdz̄ − z̄dz

1 ∓ 1
2zz̄

, µ = dz.Obviously the stru
ture 
orresponding to the upper sign is isomorphi
 to the stru
-ture (ǫ1, ǫ2) = (0, 1) of Example 7.7. Interestingly, in either of the two nonequivalent
ases the forms (λ, µ) 
an be used to intrinsi
ally de�ne a �at CR stru
ture (in thesense of Cartan's paper [3℄) on M parametrized by (u, z, z̄). Another feature ofthese two nonequivalent stru
tures is that their Riemann surfa
e S∓ des
ribed byTheorem 7.9 is equipped with metri
s gA(t) whi
h may be represented by
g∓ =

2dzdz̄

(1 ∓ 1
2zz̄)

2
.
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es are either lo
ally homotheti
 to the Poin
aré dis
 (inthe upper sign 
ase) or to the 2-dimensional sphere S2 (in the lower sign 
ase). Thisleads to the following de�nition.De�nition 7.12. The two stru
tures of an oriented 
ongruen
e (M, [λ∓, µ]) gen-erated by the forms λ∓, µ of (7.27) are 
alled the Poin
aré dis
 stru
ture (in theupper sign 
ase) and the spheri
al stru
ture (in the lower sign 
ase).We further note that the natural stru
tures (MΣ, [Σ∓, ω1]) asso
iated with thestru
tures (7.27) are lo
ally isomorphi
 to the original stru
tures (M, [λ∓, µ]). Fi-nally we note that the forms λ+, µ are identi
al with the forms whi
h appear in the
elebrated va
uum Taub-NUT solution of the Lorentzian Einstein �eld equations(see formulae (11.1)-(11.2) with K − 1 = m = a = 0 and with the 
oordinate z re-pla
ed by 2/z). We summarize the 
onsiderations of this paragraph in the followingTheorem.Theorem 7.13. All stru
tures (M, [λ, µ]) of an oriented 
ongruen
e with vanishingshear, nonvanishing twist, having the relative invariants K1 6= 0, K2 ≡ 0 and pos-sessing a 4-dimensional transitive symmetry group are lo
ally isomorphi
 to eitherthe Poin
aré dis
 stru
ture (M, [λ−, µ]) or the spheri
al stru
ture (M, [λ+, µ]), i.e.they are isomorphi
 to one of the '�at models' for the K1 6= 0 and K2 ≡ 0 
ase.We now pass to the determination of all lo
al invariants for the stru
tures with
A1 6= 0. Let (M, [λ, µ]) be su
h a stru
ture with the 
orresponding 
ir
le bundle
N0 and the system of invariants (7.22). Looking at the expli
it form (7.24) of therelative invariant A1, we see that we may always 
hoose a se
tion of the bundle N0su
h that A1 is real and positive. Lo
ally this 
orresponds to the 
hoi
e of φ as afun
tion on the manifold M su
h that(7.28) e−iφ

√

|k1|
((log

|k1|
a

)µ + b) =
eiφ

√

|k1|
((log

|k1|
a

)µ̄ + b̄) > 0.If φ satis�es (7.28) then
A1 > 0,and all the stru
tural obje
ts de�ned by the system (7.22) may be uniquely pull-ba
ked to M . As the result of this pullba
k the real 1-form Σ be
omes dependenton the pullba
ked forms (ω, ω1, ω̄1). Sin
e these three 1-forms 
onstitute a 
oframeon M we may write Σ = B0ω + B1ω1 + B̄1ω̄1 where B0 (real) and B1 (
omplex)are fun
tions on M . Now using the fa
t that these stru
tures admit a symmetry(Corollary 7.11), we get B0 ≡ 0. Hen
e

Σ = B1ω1 + B̄1ω̄1.With this notation the pullba
ked system (7.22) be
omes
dω = iω1 ∧ ω̄1 + 2A1(ω1 + ω̄1) ∧ ω

dω1 = −(A1 + iB̄1)ω1 ∧ ω̄1(7.29)
dω̄1 = (A1 − iB1)ω1 ∧ ω̄1,with the fourth equation given by(7.30) d(B1ω1 + B̄1ω̄1) = ∓iω1 ∧ ω̄1.



20 C. DENSON HILL AND PAWE� NUROWSKIRemark 7.14. Note that sin
e on N0 the 
omplex fun
tion A1 was 
onstrainedby d(A1ω1 + Ā1ω̄1) = 0, be
ause of (7.23), the equations (7.29)-(7.30) should besupplemented by the equation d[A1(ω1 + ω̄1)] = 0 for A1 > 0. This however isequivalent to
dA1 ∧ (ω1 + ω̄1) = [iA1(B1 + B̄1)]ω1 ∧ ω̄1,and turns out to follow from the integrability 
onditions for (7.29)-(7.30).Writing these integrability 
onditions expli
itly we have:

dA1 = [a11 + i
2A1(B1 + B̄1)]ω1 + [a11 − i

2A1(B1 + B̄1)]ω̄1

dB1 = B11ω1 + [b12 + 1
2A1(B̄1 −B1) + i(± 1

2 − |B1|2)]ω̄1(7.31)
dB̄1 = [b12 − 1

2A1(B̄1 −B1) − i(± 1
2 − |B1|2)]ω1 + B̄11ω̄1,where the real fun
tions a11, b12 are the s
alar invariants of the next higher orderthan A1 and B1.Theorem 7.15. The fun
tions A1 > 0 and B1 (
omplex) 
onstitute the full systemof basi
 s
alar invariants for the stru
tures (M, [λ, µ]) with K1 6= 0, K2 ≡ 0 and

A1 6= 0. It follows from the 
onstru
tion that two su
h stru
tures (M, [λ, µ]) and
(M ′, [λ′, µ′]) are (lo
ally) equivalent i� there exists a (lo
al) di�eomorphism between
M and M ′ whi
h transforms the 
orresponding forms (ω, ω1, ω̄1) to (ω′, ω′

1, ω̄
′
1).This in parti
ular implies that the invariants A1 and B1 must be transformed to A′

1and B′
1.The system (7.29)-(7.31) and the above theorem 
an be used to �nd all stru
tureswithK1 6= 0 andK2 ≡ 0 having a stri
tly 3-dimensional transitive symmetry group.These are the stru
tures des
ribed by the system (7.29)-(7.31) with 
onstant basi
invariantsA1 > 0, B1. It follows that it is possible only if B1 = iτ , A1 = ±1−2τ2

2τ > 0and τ 6= 0 is a real parameter. This leads to only two quite di�erent 
ases, whi
hare des
ribed by Propositions 7.16 and 7.17.Proposition 7.16. (i) All lo
ally nonequivalent stru
tures (M, [λ, µ]) of oriented
ongruen
es having vanishing shear, nonvanishing twist, K1 6= 0, K2 ≡ 0, andpossessing a stri
tly 3-dimensional transitive group Gh of symmetries of Bian
hitype V Ih, h ≤ 0, may be lo
ally represented by
λ = ybdu− y−1dx, µ = y−1(dx + idy).Here (u, z, z̄) with z = x+ iy are 
oordinates on M and

b = −2(1 ∓ 2τ2).The real parameter τ is related to the invariants B1 and A1 via
B1 = iτ, A1 = −∓1 + 2τ2

2τ
> 0,and as su
h enumerates nonequivalent stru
tures.(ii) Regardless of the values of τ the stru
tures 
orresponding to the upper and lowersigns in the expressions above are nonequivalent. In the 
ase of the lower signs thereal parameter τ < 0. In the 
ase of the upper signs τ < − 1√

2
or 0 < τ < 1

2 or
1
2 < τ < 1√

2
.(iii) The stru
tures are lo
ally CR equivalent to the Heisenberg group CR stru
tureonly in the 
ase of the upper signs with τ =

√
3

2
√

2
.



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 21(iv) The symmetry group is of Bian
hi type V Ih, with the parameter h ≤ 0 relatedto τ via
h = −

(3 ∓ 4τ2

1 ∓ 4τ2

)2

.In the lower sign 
ase the possible values of h are −9 < h < −1, and for ea
h valueof h we always have one stru
ture with the symmetry group Gh. In the upper sign
ase h may assume all values h ≤ 0, h 6= −1. In this 
ase, we always have- two nonequivalent stru
tures with symmetry group Gh with h < −9;- one stru
ture with symmetry group Gh with −9 ≤ h < −1; if the parameter
τ is τ =

√
3

2
√

2
then h = −9 and the stru
ture is based on the Heisenberggroup with a parti
ular nonstandard splitting;- two nonequivalent stru
tures with symmetry group Gh with −1 < h < 0;- one stru
ture with symmetry group of Bian
hi type V I0.Proposition 7.17. Modulo lo
al equivalen
e there exists only one stru
ture (M, [λ, µ])of an oriented 
ongruen
e having vanishing shear, nonvanishing twist, K1 6= 0,

K2 ≡ 0, and possessing a stri
tly 3-dimensional transitive group of symmetries ofBian
hi type IV . Lo
ally it may be represented by the forms
λ = y−1(du + log ydx), µ = y−1(dx+ idy).Here (u, z, z̄) with z = x + iy are 
oordinates on M . The stru
ture has the basi
lo
al invariants A1 = 1

2 and B1 = i
2 .Summarizing we have the following theorem.Theorem 7.18. All lo
ally nonequivalent stru
tures (M, [λ, µ]) of oriented 
ongru-en
es having vanishing shear, nonvanishing twist, K1 6= 0, K2 ≡ 0, and possessinga stri
tly 3-dimensional transitive group of symmetries are lo
ally equivalent to oneof the stru
tures de�ned in Propositions 7.16 and 7.17.Remark 7.19. Example 7.3, Theorem 7.13 and Theorem 7.18 des
ribe all lo
allynonequivalent homogeneous stru
tures of an oriented 
ongruen
e having vanishingshear, nonvanishing twist and with the invariant K2 ≡ 0. They may have- maximal symmetry group of dimension 5, and then they are lo
ally isomor-phi
 to the Heisenberg group with the standard splitting.- symmetry group of exa
t dimension 4, and then they are lo
ally isomorphi
to one of the two nonequivalent stru
tures of Theorem 7.13.- symmetry group of exa
t dimension 3 whi
h must be of either Bian
hi type

V Ih or IV ; in this 
ase they are given by Propositions 7.16 and 7.17.7.6. The 
ase K2 6= 0. Looking at the expli
it expresion for K2 in (7.16) we seethat in this 
ase we may �x both ρ and φ by the requirement that(7.32) K2 = 1.Indeed this normalization for
es ρ and φ to be
ρ = |k2|

1
3 , φ = Arg(k2).This provides an embedding of M into P . Using it (te
hni
ally speaking, by in-serting ρ and φ in the de�nitions of the invariant 
oframe (7.14)) we pullba
k the



22 C. DENSON HILL AND PAWE� NUROWSKIforms (ω1, ω̄1, ω,Ω, Ω̄) on P to M . Also K1 is pullba
ked to M , so that
K1 =

k1

|k2|
2
3

.Sin
e M is 3-dimensional the pullba
ked forms are no longer linearly independent,and the pulba
k of the derived form Ω de
omposes onto the invariant 
oframe
(ω1, ω̄1, ω) on M . We denote the 
oe�
ients of this de
omposition by (Z1, Z2, Z0)so that:

Ω = Z1ω1 + Z2ω̄1 + Z0ω

Ω̄ = Z̄2ω1 + Z̄1ω̄1 + Z̄0ω.These 
oe�
ients 
onstitute the basi
 s
alar invariants of the stru
tures under 
on-sideration. They satisfy the following di�erential system:
dω = iω1 ∧ ω̄1 + (Z1 + Z̄2)ω1 ∧ ω + (Z2 + Z̄1)ω̄1 ∧ ω
dω1 = −Z2ω1 ∧ ω̄1 − Z0ω1 ∧ ω(7.33)
dω̄1 = Z̄2ω1 ∧ ω̄1 − Z̄0ω̄1 ∧ ωwith

d[Z1ω1 + Z2ω̄1 + Z0ω] = K1ω1 ∧ ω̄1 + ω1 ∧ ω
d[Z̄2ω1 + Z̄1ω̄1 + Z̄0ω] = −K1ω1 ∧ ω̄1 + ω̄1 ∧ ω.Instead of 
onsidering the last two equations above, it is 
onvenient to repla
e themby the integrability 
onditions for the system (7.33). These are:

dZ1 = Z11ω1 + (−K1 + iZ0 − Z1Z2 + Z2Z̄2 + Z21)ω̄1 + (Z0Z̄2 + Z01 − 1)ω

dZ̄1 = (−K1 − iZ̄0 − Z̄1Z̄2 + Z2Z̄2 + Z̄21)ω1 + Z̄11ω̄1 + (Z̄0Z2 + Z̄01 − 1)ω

dZ2 = Z21ω1 + Z22ω̄1 + (Z02 + Z0Z̄1 + Z0Z2 − Z̄0Z2)ω

dZ̄2 = Z̄22ω1 + Z̄21ω̄1 + (Z̄02 + Z̄0Z1 + Z̄0Z̄2 − Z0Z̄2)ω(7.34)
dZ0 = Z01ω1 + Z02ω̄1 + Z00ω

dZ̄0 = Z̄02ω1 + Z̄01ω̄1 + Z̄00ω

dK1 = K11ω1 + K̄11ω̄1 +K10ω,where, in addition to the basi
 s
alar invariants Z0, Z1, Z2,K1, we have introdu
edthe s
alar invariants of the next higher order: Z00, Z01, Z02, Z11, Z21, Z22 (
omp-lex) and K10 (real). Note that if the basi
 s
alar invariants Z0, Z1, Z2,K1 were
onstants, all the higher order invariants su
h as Z00, Z01, Z02, Z11, Z21, Z22,K10would be identi
ally vanishing.Theorem 7.20. All lo
ally nonequivalent stru
tures (M, [λ, µ]) of oriented 
ongru-en
es having vanishing shear, nonvanishing twist, and with K2 6= 0 are des
ribedby the invariant system (7.33) with the integrabilty 
onditions (7.34).Now we pass to the determination of all nonequivalent stru
tures with K2 6= 0whi
h have a stri
tly 3-dimensional transitive group of symmetries. They 
orre-spond to the stru
tures of Theorem 7.20 with all the s
alar invariants being 
on-stants. It turns out that there are two families of su
h stru
tures. The �rst family
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ribed by the following invariant system:
dω1 = eiα[−(2 sinα)−1/3ω1 ∧ ω̄1 − (2 sinα)1/3ω1 ∧ ω],

dω̄1 = e−iα[(2 sinα)−1/3ω1 ∧ ω̄1 − (2 sinα)1/3ω̄1 ∧ ω],

dω = iω1 ∧ ω̄1 + (2 sinα)−1/3(eiαω1 ∧ ω + e−iαω̄1 ∧ ω).All the nonvanishing s
alar invariants here are:
K1 = (2 sinα)−2/3and

Z1 = i(2 sinα)2/3, Z2 = eiα(2 sinα)−1/3, Z0 = eiα(2 sinα)1/3.Two di�erent values α and α′ of the parameter yield di�erent respe
tive quadru-ples (K1, Z0, Z1, Z2) and (K ′
1, Z

′
0, Z

′
1, Z

′
2), and hen
e 
orrespond to nonequivalentstru
tures.The se
ond family of nonequivalent stru
tures with a stri
tly 3-dimensional groupof symmetries 
orresponds to the following invariant system:

dω = iω1 ∧ ω̄1 + iβ−1ω ∧ (ω1 − ω̄1)

dω1 = −i(βω + β−1ω̄1) ∧ ω1(7.35)
dω̄1 = i(βω + β−1ω1) ∧ ω̄1.The nonvanishing s
alar invariants here are:(7.36) K1 = (β3 + 3)β−2, Z1 = −2iβ−1, Z2 = −iβ−1, Z0 = −iβ.The 
orresponding stru
tures of an oriented 
ongruen
e are parametrized by a realparameter β 6= 0. This means that ea
h β 6= 0 de�nes a distin
t stru
ture.A further analysis of this system shows that the 
ongruen
e stru
tures des
ribedby it have a transitive symmetry group of Bian
hi type V II0 (i� β = −2

1
3 ), Bian
hitype V III (i� β > −2

1
3 ), and of Bian
hi type IX (i� β < −2

1
3 ).If we parametrize the 3-dimensional manifold M by (u, z, z̄), the stru
tures

(M,λ, µ) 
orresponding to the system (7.35) may be lo
ally represented by:
λ = du+

2βe−iβu + iz̄

β(zz̄ − 2β2(2 + β3))
dz +

2βeiβu − iz

β(zz̄ − 2β2(2 + β3))
dz̄(7.37)

µ = − 2β2e−iβu

zz̄ − 2β2(2 + β3)
dz, µ̄ = − 2β2eiβu

zz̄ − 2β2(2 + β3)
dz̄.Note that the above (λ, µ) 
an be also used to de�ne a CR stru
ture on M . De-spite the fa
t that the 3-dimensional CR stru
tures are asso
iated with this (λ, µ)by fairly more general transformations, (λ, µ) → (fλ, hµ + pλ), than the oriented
ongruen
e stru
tures, whi
h are de�ned by the restri
ted (λ, µ) → (fλ, hµ) trans-formations, ea
h s 6= 0 in (7.37) de�nes also a distin
t CR stru
ture in the sense ofCartan.Three parti
ular values of β 6= 0 in (7.37) are worthy of mention. These are:

β = βB = −2
1
3 ,when the lo
al symmetry group (both the CR and the oriented 
ongruen
e symme-try) 
hanges the stru
ture from Bian
hi type IX , with β < βB; through Bian
hitype V II0, with β = βB; to Bian
hi type V III, with β > βB .



24 C. DENSON HILL AND PAWE� NUROWSKINext is:
β = βH = −1,when the lowest order Cartan invariant of the CR stru
ture asso
iated with λβHand µβH

is identi
ally vanishing [15℄; in this 
ase the CR stru
ture be
omes lo
allyequivalent to the Heisenberg group CR stru
ture, and the 3-dimensional transitiveCR symmetry group of Bian
hi type IX is extendable, from the lo
al SO(3) group,to the 8-dimensional lo
al CR symmetry group SU(2, 1).The third distinguished β is:
β = βK = −3

1
3 .Note that for β = βK our invariant K1 of the 
ongruen
e stru
ture (λβ , µβ) van-ishes, K1 ≡ 0, as in (7.36). This 
ase is of some importan
e, sin
e it will be shownin Se
tion 10.2 that the 
ongruen
e stru
tures with K1 ≡ 0 and K2 6= 0 have veryni
e properties. 8. Vanishing twist and nonvanishing shearNow we assume the opposite of Se
tion 7, namely that (M, [λ, µ]) has someshear, s 6= 0, but has identi
ally vanishing twist, a ≡ 0. As in Se
tion 6 theno twist 
ondition dλ ∧ λ ≡ 0 yields λ = fdt for some real fun
tion t on M .Thus in this 
ase we again have a foliation of M by the level surfa
es t = const.Ea
h leaf C of this foliation is a 2-dimensional real submanifold whi
h is equippedwith a 
omplex stru
ture J determined by the requirement that its holomorphi
ve
tor bundle H1,0 = {X − iJX,X ∈ Γ(TC)} 
oin
ides with the anihilator of

SpanC(λ) ⊕ SpanC(µ̄). But the simple situation of M being lo
ally equivalent to
R×C is no longer true. If s 6= 0 the manifoldM gets equipped with the stru
ture ofa �bre bundle C → M → V , with �bres C being 1-dimensional 
omplex manifolds� the leaves of the foliation given by t = const, and with the base V being 1-dimensional, and parametrized by t. This 
an be rephrased by saying that we havea 1-parameter family of 
omplex 
urves C(t), with 
omplex stru
ture tensors JC(t),whi
h are not invariant under Lie transport along the ve
tor �eld ∂t. Re
all thathaving a 
omplex stru
ture in a real 2-dimensional ve
tor spa
e is equivalent tohaving a 
onformal metri
 and an orientation in the spa
e. Thus the 
ondition ofhaving s 6= 0 means that, under Lie transport along ∂t, the metri
s on the 2-planestangent to the surfa
es t = const 
hange in a fashion more general than 
onformal.This means that small 
ir
les on these two planes do not go to small 
ir
les when Lietransported along ∂t. They may, for example, be distorted into small ellipses, whi
hintuitively means that the 
ongruen
e generated by ∂t has shear. This explains thename of the 
omplex parameter s, as was promised in Se
tion 5.We now pass to a more expli
it des
ription of this situation. We start with an ar-bitrary stru
ture (M, [λ, µ]) with dλ∧λ = 0. This guarantees that the 2-dimensionaldistribution anihilating λ de�nes a foliation in M , and M is additionally equippedwith a transversal 
ongruen
e of 
urves. Note that a foliation of a 3-spa
e by 2-surfa
es equipped with a 
ongruen
e lo
ally 
an either be des
ribed in terms of
oordinates (t, x, y) su
h that the tangent ve
tor to the 
ongruen
e is ∂t (in su
h
ase the surfa
es are in general 
urved for ea
h value of the parameter t), or interms of 
oordinates (u, z, z̄) su
h that lo
ally the surfa
es are 2-planes (in su
h
ase the 
ongruen
e is tangent to a ve
tor �eld with a more 
ompli
ated represen-tation X = ∂u+S∂z+ S̄∂z̄. Regardless of the des
riptions the leaves of the foliation
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es of the real parameters t = const (in the �rst 
ase,as in the begining of this Se
tion) or u = const (as it will be used in this Se
tionfrom now on). Having this in mind and re
alling the allowed transformations (3.1)we 
on
lude that our (M, [λ, µ]) with dλ ∧ λ = 0 may be represented by a pair of1-forms
λ = du, µ = dz +Hdz̄ +Gdu,where H = H(u, z, z̄) and G = G(u, z, z̄) are 
omplex-valued fun
tions on M , with
oordinates (u, z, z̄), su
h that |H | < 1. The foliation has leaves tangent to theve
tor �elds ∂z , ∂z̄. Ea
h leaf is equipped with a 
omplex stru
ture, whi
h may bedes
ribed by saying that its T (1,0) spa
e is spanned by the ve
tor �eld(8.1) Z = ∂z − H̄∂z̄;
onsequently the T (0,1) spa
e is spanned by the 
omplex 
onjugate ve
tor �eld

Z̄ = ∂z̄ −H∂z.The 
ongruen
e on M whi
h gives the preferred splitting is tangent to the realve
tor �eld(8.2) X = ∂u + ḠH−G
1−HH̄ ∂z + GH̄−Ḡ

1−HH̄ ∂z̄.Thus we have the following proposition.Proposition 8.1. All stru
tures (M, [λ, µ]) with vanishing twist, a ≡ 0, may belo
ally represented by(8.3) λ = du, µ = dz +Hdz̄ +Gdu,where H = H(u, z, z̄) and G = G(u, z, z̄) are 
omplex-valued fun
tions on M , with
oordinates (u, z, z̄), su
h that |H | < 1. They have nonvanishing shear s 6= 0 i�
Hu −GHz +HGz −Gz̄ 6= 0.The following two 
ases are of parti
ular interest:

• H ≡ 0. In this 
ase all surfa
es u = const are equipped with the standard
omplex stru
ture. The 
oordinate z is the holomorphi
 
oordinate forit, but the 
ongruen
e is tangent to a 
ompli
ated real ve
tor �eld X =
∂u −G∂z − Ḡ∂z̄.

• G ≡ 0. Here ea
h surfa
e u = const has its own 
omplex stru
ture J , forwhi
h z is not a holomorphi
 
oordinate; J is determined by spe
ifying a
omplex fun
tion H . A ni
e feature of this 
ase is that the 
ongruen
e isnow tangent to the very simple ve
tor �eld X = ∂u, whi
h enables us toidentify 
oordinates t and u.Note that in Proposition 8.1 we made an assumption about the modulus of thefun
tion H . The modulus equal to one is ex
luded be
ause it violates the 
onditionthat the forms λ, µ, µ̄ are independent. We ex
luded also the H > 1 
ase, sin
ebe
ause of the 
oordinate transformation z → z̄ followed by H → 1/H , su
hstru
tures are in one to one equivalen
e with those having |H | < 1. We now turn tothe question about nonequivalent stru
tures among those 
overed by Proposition8.1.



26 C. DENSON HILL AND PAWE� NUROWSKI8.1. The invariant T0 and the relative invariants T1, K0, K1. To answer thiswe have to go ba
k to the begining of Se
tion 5 and again perform the Cartananalysis on the system (5.1), but now with a ≡ 0, s 6= 0. In this 
ase the formulae(5.1) be
ome
dλ = bµ ∧ λ+ b̄µ̄ ∧ λ
dµ = pµ ∧ µ̄+ qµ ∧ λ+ sµ̄ ∧ λ(8.4)
dµ̄ = −p̄µ ∧ µ̄+ s̄µ ∧ λ+ q̄µ̄ ∧ λ.It is 
onvenient to write the 
omplex shear fun
tion s as

s = |s|eiψ .Now for a 
hosen pair (λ, µ) representing the stru
ture, using (8.4), we �nd thatthe di�erentials of the Cartan frame(8.5) (ω, ω1, ω̄1) = (fλ, ρeiφµ, ρe−iφµ̄)are:
dω = d log f ∧ ω +

b

ρ
e−iφω1 ∧ ω +

b̄

ρ
eiφω̄1 ∧ ω

dω1 = idφ ∧ ω1 + d log ρ ∧ ω1 +
p

ρ
eiφω1 ∧ ω̄1 +

q

f
ω1 ∧ ω +

|s|
f

ei(2φ+ψ)ω̄1 ∧ ω

dω̄1 = −idφ ∧ ω̄1 + d log ρ ∧ ω̄1 −
p̄

ρ
e−iφω1 ∧ ω̄1 +

|s|
f

e−i(2φ+ψ)ω1 ∧ ω +
q̄

f
ω̄1 ∧ ω.Be
ause of s 6= 0, we 
an gauge the stru
ture so that(8.6) dω1 ∧ ω1 = ω1 ∧ ω̄1 ∧ ω.This requirement de�nes f modulo sign to be f = ±|s|. Writing f as

f = eiǫπ|s|,where ǫ = 0, 1, and still requiring the normalization (8.6), we get
φ = − 1

2ψ + ǫπ2 .Thus the fun
tions f and φ are �xed modulo ǫ.After this normalization we introdu
e a real 1-form Ω su
h that(8.7) (dω1 − dω̄1) ∧ (ω1 + ω̄1) = 2Ω ∧ ω1 ∧ ω̄1.This equation de�nes Ω to be
Ω = d log ρ+ zω1 + z̄ω̄1 + (1 − eiǫπ q+q̄2|s| )ω,where z is an auxiliary 
omplex parameter. The 
ondition that �xes z in an alge-brai
 fashion is:(8.8) dω1 ∧ ω = Ω ∧ ω1 ∧ ω, dω̄1 ∧ ω = Ω ∧ ω̄1 ∧ ω.It uniquely spe
i�es z to be

z =
(iψµ−2p̄)

2ρ e
i
2 (ψ−ǫπ), z̄ =

(−iψµ̄−2p)
2ρ e−

i
2 (ψ−ǫπ).Thus given a stru
ture (M, [λ, µ]) with vanishing twist and nonvanishing shear, thethree normalization 
onditions (8.6), (8.7), (8.8) uniquely spe
ify a 4-dimensional
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h is lo
ally M × R+, and a well de�ned 
oframe (ω, ω1, ω̄1,Ω) onit su
h that
ω = eiǫπ |s|λ

ω1 = ρe−
i
2 (ψ−ǫπ)µ

ω̄1 = ρe
i
2 (ψ−ǫπ)µ̄(8.9)

Ω = d log ρ+
(iψµ−2p̄)

2ρ e
i
2 (ψ−ǫπ)ω1 +

(−iψµ̄−2p)
2ρ e−

i
2 (ψ−ǫπ)ω̄1 +

(1 − eiǫπ q+q̄2|s| )ω.Here the positive 
oordinate along the fa
tor R+ in the �bration R+ → P →M is
ρ. The 
oframe (ω, ω1, ω̄1,Ω) satis�es

dω = T1ω1 ∧ ω + T̄1ω̄1 ∧ ω
dω1 = Ω ∧ ω1 + (ω1 + ω̄1) ∧ ω + iT0ω1 ∧ ω
dω̄1 = Ω ∧ ω̄1 + (ω1 + ω̄1) ∧ ω − iT0ω̄1 ∧ ω(8.10)
dΩ = iK0ω1 ∧ ω̄1 +K1ω1 ∧ ω + K̄1ω̄1 ∧ ωwhere(8.11) T0 = ψλ+i(q̄−q)

2|s| eiǫπ, T1 =
t1
ρ
, K0 =

k0

2ρ2
, K1 =

k1

2ρand
t1 = (b|s| + |s|µ)

e
i
2 (ψ−ǫπ)

|s|
k0 = −ψµµ̄ − ψµ̄µ + pψµ + p̄ψµ̄ + 2i(pµ − p̄µ̄)(8.12)
k1 = 2(t1 − t̄1) +

e
i
2 ǫπ[(bq̄ − bq − qµ + q̄µ + iqψµ − iψµλ)e

i
2ψ + iψµ̄|s|e−

i
2ψ]|s|−1.Note that fun
tions T0, T1, K0 and K1 are invariants of the stru
ture on the bundle

R+ → P →M , with the �ber 
oordinate ρ. They are de�ned modulo the parame-ter ǫ = 0, 1. Thus two stru
tures whi
h di�er only by the value of ǫ are equivalent.If we want to look for the invariants on the original manifoldM we must examinethe �ber 
oordinate dependen
e of the stru
tural fun
tions T0, T1, K0 and K1.Sin
e the last three fun
tions T1, K0, K1 have a nontrivial ρ dependen
e they donot proje
t to invariant fun
tions on M . However, sin
e in all these 
ases thisdependen
e is just s
aling by ρ we 
on
lude that they lead to the relative invariantson M . Thus the vanishing or not of any of the fun
tions t1, k1 (
omplex), k0 (real)is an invariant property of the stru
ture on M . The situation is quite di�erentfor the real fun
tion T0. Although originally de�ned on P it is 
onstant along the�bers. Thus it proje
ts to a well de�ned invariant on the original manifold M .Thus T0 is an invariant of the stru
ture onM . We summarize the above dis
ussionin the following Theorem.Theorem 8.2. A given stru
ture (M, [λ, µ]) of an oriented 
ongruen
e with vanish-ing twist, a ≡ 0, and nonvanishing shear, s 6= 0, uniquely de�nes a 4-dimensionalmanifold P , 1-forms ω, ω1, ω̄1,Ω and fun
tions T0,K0 (real) T1,K1 (
omplex) on
P su
h that



28 C. DENSON HILL AND PAWE� NUROWSKI- ω, ω1, ω̄1,Ω are as in (8.9),- ω ∧ ω1 ∧ ω̄1 ∧ Ω 6= 0 at ea
h point of P ,- the forms and fun
tions T0, T1,K0,K1 are uniquely determined by the re-quirement that on P they satisfy equations (8.10).In parti
ular T0 is an invariant of the stru
ture on M ; the identi
al vanishing, ornot, of either of the fun
tions t1, k0 or k1 de�ned in (8.12) is an invariant 
onditionon M .The stru
tures 
overed by Theorem 8.2 admit symmetry groups of at most fourdimensions. Those for whi
h the symmetry group is stri
tly 4-dimensional have allthe relative invariants t1, k0, k1 equal to zero and 
onstant invariant T0. When�nding su
h stru
tures it is enough to 
onsider T0 = α = const ≥ 0 sin
e, due tothe fa
t that T0 is de�ned modulo sign (eiǫπ = ±1), ea
h stru
ture with T0 = α < 0is equivalent to the one with T0 = |α|. Inspe
ting all the possibilities we get thefollowing theorem.Theorem 8.3. All lo
ally nonequivalent stru
tures (M, [λ, µ]) of oriented 
on-gruen
es having vanishing twist, nonvanishing shear, and possessing a stri
tly 4-dimensional transitive group of symmetries are parametrized by a real 
onstant
α ≥ 0 as follows.

• if 0 ≤ α < 1 they 
an be lo
ally represented by
λ = du, µ = dx+ e2u

√
1−α2

(α+ i
√

1 − α2)dy

• if α = 1 they 
an be lo
ally represented by
λ = du, µ = dx+ (i+ 2u)dy

• if α > 1 they 
an be lo
ally represented by
λ = du,

µ = [(i+ α) cos(u
√

α2 − 1) − i
√

α2 − 1 sin(u
√

α2 − 1)]dx+

[(i+ α) sin(u
√

α2 − 1) + i
√

α2 − 1 cos(u
√

α2 − 1)]dy.Here (u, x, y) are 
oordinates on M . The real parameter α ≥ 0 is just the invariant
T0 = α and as su
h enumerates nonequivalent stru
tures.8.2. Des
ription in terms of the Cartan 
onne
tion. Equations (8.10) 
anbe better understood in terms of the matrix ω̃ of 1-forms de�ned by

ω̃ =













2(Ω − ω) 0 0

ω1 Ω − ω ω

ω̄1 ω Ω − ω,











where the 1-forms (ω1, ω̄1, ω,Ω) are as in (8.10) or as is (8.9).This matrix has values in the 4-dimensional Lie algebra g4 whi
h is a semidire
tprodu
t of two 2-dimensional Abelian Lie algebras
h0 = {













2x 0 0

0 x y

0 y x













| x, y ∈ R }
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h1 = {













0 0 0

u+ iv 0 0

u− iv 0 0













| u, v ∈ R },for whi
h the 
ommutator is the usual 
ommutator of 3 × 3 matri
es. Thus(8.13) g4 = h0 ⊕ h1,as the dire
t sum of ve
tor spa
es h0 and h1, with the 
ommutator between h0 and
h1 given by

[h0, h1] ⊂ h1.It turns out that due to the relations (8.10), ω̃ is a Cartan 
onne
tion on theprin
ipal �bre bundle R+ → P →M , whi
h has as its stru
ture group a 1-parameterLie group generated by the ve
tor �eld ρ∂ρ dual to Ω.Remark 8.4. It is worthwile to note that the �bre bundle R+ → P →M has someadditional stru
ture. Indeed, equations (8.10) guarantee that P is foliated by 2-dimensional leaves of the integrable 2-dimensional real distribution D anihilatingforms ω1 and ω̄1. Thus, lo
ally, P has also the stru
ture of a �bre bundle over theleaf spa
e P/D. This is a
tually a prin
ipal �ber bundle H0 → P → P/D, withthe stru
ture group H0 having h0 as its Lie algebra.Equations (8.10) imply that the 
urvature R of the Cartan 
onne
tion ω̃ is
R = dω̃ + ω̃ ∧ ω̃ =





2R1 0 0
R3 R1 R2

R̄3 R2 R1



 ,where
R1 = iK0ω1 ∧ ω̄1 + (K1 − T1)ω1 ∧ ω + (K̄1 − T̄1)ω̄1 ∧ ω
R2 = T1ω1 ∧ ω + T̄1ω̄1 ∧ ω
R3 = iT0ω1 ∧ ω.In parti
ular the absen
e of verti
al Ω∧ terms in the 
urvature 
on�rms our inter-pretation of ω̃ as a g4-valued Cartan 
onne
tion on P over M .The Cartan 
onne
tion ω̃ yields all the invariant information about the 
orre-sponding stru
tures (M, [λ, µ]) and 
an be used in an invariant des
ription of variousexamples of su
h stru
tures. In parti
ular, the invariant de
omposition (8.13) maybe used to distinguish two large 
lasses (M, [λ, µ])0 and (M, [λ, µ])1 of nonequiva-lent stru
tures (M, [λ, µ]). These are de�ned by the requirement that the 
urvature

R of their Cartan 
onne
tion ω̃ has values in the respe
tive parts h0 for (M, [λ, µ])0,and h1 for (M, [λ, µ])1.8.2.1. Curvature R ∈ h0. The 
urvature R of the Cartan 
onne
tion ω̃ resides in
h0 i� it is of the form

R =





2R1 0 0
0 R1 R2

0 R2 R1



 .
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ture (M, [λ, µ]) with su
h R is given by the following forms
(ω1, ω̄1, ω,Ω):

ω1 = er(dx+ ie2(u+f)dy),

ω̄1 = er(dx− ie2(u+f)dy),

ω = du,

Ω = dr + 2du+ 2fxdx,with a real fun
tion f = f(x, y) of real variables x and y. These two variables,supplemented with the real u and r, 
onstitute a 
oordinate system (u, x, y, r) on
R+ → P →M . The triple (u, x, y) parametrizesM , and r is related to the positive�ber 
oordinate ρ via ρ = er.For ea
h 
hoi
e of a twi
e di�erentiable fun
tion f = f(x, y) the forms (ω1, ω̄1, ω,Ω)satisfy the di�erential system (8.10) with

K1 ≡ 0, T1 ≡ 0, T0 ≡ 0,and the relative invariant K0 being
K0 = −e−2(r+u+f)fxy.A spe
ial 
ase here is fxy ≡ 0, in parti
ular f ≡ 0. If this happens the 
orrespondingstru
tures (M, [λ, µ]) are all equivalent to the stru
ture with 4-dimensional transi-tive symmetry group having α = 0 in Theorem 8.3. If fxy 6= 0, then K0 6= 0, andthe 
orresponding stru
tures have the 
urvature of the Cartan 
onne
tion ω̃ in theform

R = −e−2(r+u+f)





2iω1 ∧ ω̄1 0 0
0 iω1 ∧ ω̄1 0
0 0 iω1 ∧ ω̄1



 fxy.As su
h they are spe
ial 
ases of stru
tures with R ∈ h0. We will retutn to themin Se
tion 8.3.1, where we further analyze the 
ase K0 6= 0, T1 = 0 and K1 = 0.8.2.2. Curvature R ∈ h1. The 
ase of R ∈ h0 is entirely 
hara
terized by the re-quirement that all the relative invariants t1, k0, k1 identi
ally vanish. Examplesof su
h stru
tures are stru
tures with a 4-dimensional transitive group of symme-tries given in Theorem 8.3. However these examples do not exhaust the list ofnonequivalent stru
tures having R ∈ h1. To �nd them all we pro
eed as follows.We want to �nd all stru
tures with
R =





0 0 0
R3 0 0
R̄3 0 0



 ,i.e. those for whi
h all the relative invariants T1, K1, K0, as in (8.10), vanish:(8.14) T1 ≡ 0, K0 ≡ 0, K1 ≡ 0.Assuming (8.14), equations (8.10) guarantee that real 
oordinates u and r may beintrodu
ed on P su
h that
ω = du, Ω = dr.Then, taking the exterior derivatives of both sides of equations (8.10), we see that(8.14) for
es T0 to be a real fun
tion of u only. Denoting this fun
tion by α = α(u)we have

T0 = α(u).
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h T0, and denoting the u-derivatives by primes, weget the following theorem.Theorem 8.5. A stru
ture (M, [λ, µ]) of an oriented 
ongruen
e with vanishingtwist, a ≡ 0, nonvanishing shear, s 6= 0, and having the 
urvature of its 
orrespond-ing Cartan 
onne
tion ω̃ of the pure h1 type, R ∈ h1, 
an be lo
ally representedby
λ = du, µ = dz − (

h̄′

h
+
h̄

h
− iα

h̄

h
)dz̄,where the 
omplex fun
tion h = h(u) 6= 0 satis�es a se
ond order ODE:(8.15) h′′ + 2h′ + (α2 + iα′)h = 0.Here the nonequivalent stru
tures are distinguished by the real invariant T0 = α(u).Note that if α(u) = const we re
over the stru
tures from Theorem 8.3.8.3. The 
ase T1 ≡ 0. Now we pass to the general 
ase T1 ≡ 0. To pro
eed wehave to distinguish two sub
ases:

• K1 ≡ 0
• K1 6= 0.8.3.1. The 
ase K1 ≡ 0. In this situation we have

dΩ = iK0ω1 ∧ ω̄1,with K0 given by (8.11)-(8.12). Sin
e K0 is not identi
ally equal to zero, be
ausethis 
orreponds to the 
ase t1 ≡ 0, k0 ≡ 0, k1 ≡ 0 already studied, we use it to �x
ρ by the requirement(8.16) K0 = sign(k0) = ±1.We note that this sign is an invariant of the stru
tures under 
onsideration. Thisimplies that the stru
tures with di�erent signs are nonequivalent.After the normalization (8.16) the forms (ω1, ω̄1, ω,Ω) are de�ned as forms on
M . Performing the standard Cartan analysis on the system (8.10), we veri�ed thatafter pullba
k to M it reads:

dω = 0,

dω1 = (iB −A)ω1 ∧ ω̄1 + iT0ω1 ∧ ω + ω̄1 ∧ ω,(8.17)
dω̄1 = (iB +A)ω1 ∧ ω̄1 + ω1 ∧ ω − iT0ω̄1 ∧ ω,
d[(A+ iB)ω1 + (A− iB)ω̄1 + ω] = ±iω1 ∧ ω̄1.Here the real fun
tions A,B, T0 are the s
alar invariants on M . They satisfy thefollowing integrability 
onditions

dA = [A1 + i
2 (B1 + B̄1 ± 1)]ω1 + [A1 − i

2 (B1 + B̄1 ± 1)]ω̄1 + (A−BT0)ω

dB = B1ω1 + B̄1ω̄1 + (AT0 −B)ω(8.18)
dT0 ∧ ω = 0,with the fun
tions A1 (real) and B1 (
omplex) being the s
alar invariants of thenext higher order. In prin
iple, we 
ould have written the expli
it fotmulae forall these s
alar invariants in terms of the de�ning variables b, q, p and s of (8.4).We refrain from doing this, be
ause the formulae are quite 
ompli
ated, and notenlightening.



32 C. DENSON HILL AND PAWE� NUROWSKIWe summarize these 
onsiderations in the following theorem.Theorem 8.6. All lo
ally nonequivalent stru
tures (M, [λ, µ]) of oriented 
ongru-en
es having vanishing twist, nonvanishing shear, with T1 ≡ 0 and K1 ≡ 0, aredes
ribed by the invariant forms (ω, ω1, ω̄1) satisfying the system (8.17)-(8.18) on
M .Thus having a representative (λ, µ) of a stru
ture with vanishing twist, non-vanishing shear and with T1 ≡ 0, we always 
an gauge it to the invariant formssatisfying system (8.17)-(8.18). The other way around: given two 1-forms ω and ω1satisfying the system (8.17)-(8.18), we may 
onsider them as a representative pair
(λ = ω, µ = ω1) of a 
ertain stru
ture with vanishing twist, nonvanishing shear andwith T1 ≡ 0.The immediate 
onsequen
e of the integrabilty 
onditions (8.18) is the nonexis-ten
e of stru
tures (8.17) with a stri
tly 3-dimensional transitive group of symme-tries. This is be
ause, if su
h stru
tures existed, they would have 
onstant invariants
A, B and T0. Thus, for su
h stru
tures the right hand sides of all the equations(8.18) would be zero. But this is impossible, sin
e in su
h a situation the se
ondequation (8.18) implies B1 ≡ 0 whi
h, when 
ompared with equating to zero ther.h.s of the �rst equation (8.18), gives 
ontradi
tion.A family of nonequivalent stru
tures (M, [λ, µ]) from this bran
h of the 
lassi�-
ation is given in Se
tion 8.2.1. Indeed, 
onsider the examples of this se
tion forwhi
h

fxy 6= 0.Sin
e this guarantees that K1 6= 0, and sin
e we have T1 = 0 and K1 = 0 (and,what is less important for us here T0 = 0) for them, we may perform the abovedes
ribed normalization pro
edure on the invariant forms (ω1, ω̄1, ω,Ω) de�ned in8.2.1. A simple 
al
ulation, based on the normalization(8.19) − e−2(r+u+f)fxy = ±1,leads to the redu
tion to M , where the invariant forms read:
ω = du,

ω1 = e−(u+f)
(

∓ fxy
)

1
2 (dx+ ie2(u+f)dy),

ω̄1 = e−(u+f)
(

∓ fxy
)

1
2 (dx− ie2(u+f)dy).They satisfy the system (8.17)-(8.18) with the fun
tions A and B given by:

A = 1
4

(

∓ fxy
)− 3

2

(

2fxfxy + fxxy

)

eu+f

B = 1
4

(

∓ fxy
)− 3

2

(

2fyfxy − fxyy

)

e−u−f .These stru
tures 
an thus be represented on M by
λ = du, µ = dx+ ie2

(

u+f(x,y)
)

dy.The only s
alar invariants for them are the fun
tions A and B as above, sin
e aswe already noti
ed, the s
alar invariant T0 identi
ally vanishes, T0 ≡ 0.Note in parti
ular, that given a fun
tion f = f(x, y), two stru
tures (M, [λ, µ])with λ, µ as above, 
orresponding to two di�erent signs of fxy are nonequivalent.This is be
ause the sign ± in (8.19) is an invariant of su
h stru
tures.
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tures des
ribed above belong to a sub
lass of stru
tures forwhi
h the 
urvature R is mu
h more restri
ted than to h0. Sin
e, in addition to
T0 ≡ 0, we have here T1 ≡ 0, the 
urvature R is a
tually 
ontained in the diagonal1-dimensional subalgebra of h0. Moreover, sin
e also K1 ≡ 0, the 
urvature R doesnot involve ω∧ terms. This means that in this example, similarly as in all exampleswith T0 ≡ T1 ≡ K1 ≡ 0, the 
urvature of the Cartan 
onne
tion ω̃ is horizontal fromthe point of view of the prin
ipal �ber bundle H0 → P → P/D dis
ussed in Remark8.4. Thus here, the Cartan 
onne
tion ω̃ 
an be reinterpreted as a g4-valued Cartan
onne
tion on the bundle H0 → P → P/D .8.3.2. The 
ase K1 6= 0. If K1 6= 0 we 
an use de�nition (8.11) to s
ale it in su
ha way that it has values on the unit 
ir
le

K1 = eiγ .This �xes ρ uniquely, and the system (8.10) is again redu
ed to an invariant systemon M . This reads (with new A and B):
dω = 0,

dω1 = (iB −A)ω1 ∧ ω̄1 + (1 − C + iT0)ω1 ∧ ω + ω̄1 ∧ ω,(8.20)
dω̄1 = (iB +A)ω1 ∧ ω̄1 + ω1 ∧ ω + (1 − C − iT0)ω̄1 ∧ ω,

d[(A+ iB)ω1 + (A− iB)ω̄1 + Cω] =

iK0ω1 ∧ ω̄1 + eiγω1 ∧ ω + e−iγ ω̄1 ∧ ω.Here, all the real invariants are T0, A, B, C, γ and K0 are well de�ned fun
tionsonM . They are expressible in terms of the original variables de�ning the stru
tureand the fun
tions k0, k1 of (8.12). In parti
ular,
K0 = 2

k0

|k1|2
.To dis
uss the integrabilty 
onditions for the system (8.20) we have to distinguishtwo 
ases:

• either K1 = eiγ 6= ±1,
• or K1 = eiγ ≡ ±1.



34 C. DENSON HILL AND PAWE� NUROWSKIIn the �rst 
ase:
dT0 = i(eiγω1 − e−iγ ω̄2) + T00ω

dA = 1
2 [i(K0

2 +A1) +A2]ω1 + 1
2 [−i(K0

2 +A1) +A2]ω̄1 +A0ω

dB = 1
2 [−K0

2 +A1 + iB1]ω1 + 1
2 [−K0

2 +A1 − iB1]ω̄1 +B0ω(8.21)
dC = [−2A+AC +A0 +BT0 + i(BC −AT0 +B0) + eiγ ]ω1 +

[−2A+AC +A0 +BT0 − i(BC −AT0 +B0) + e−iγ ]ω̄1 + C0ω

dγ = [B + (A+ γ1) cotγ + iγ1]ω1 + [B + (A+ γ1) cotγ − iγ1]ω̄1 + γ0ω

dK0 = K01ω1 + K̄01ω̄1 + 2[(A+ γ1) csc γ + (1 − C)K0]ω,and in addition to the the basi
 s
alar invariants K0, γ, A, B, C, we have higherorder s
alar invariants A0, A1, A2, B0, B1, C0, γ0, γ1 (all real) and K01 (
omplex).In the se
ond 
ase, when eiγ ≡ ±1, one of the integrabilty 
onditions is thevanishing of the s
alar invariant A of (8.20),
A ≡ 0.The rest of the integrabilty 
onditions are

dT0 = ±i(ω1 − ω̄2) + T00ω

dB = [−K0

2 + iB1]ω1 + [−K0

2 − iB1]ω̄1 +B0ω(8.22)
dC = [BT0 + i(BC +B0) ± 1]ω1 +

[BT0 − i(BC +B0) ± 1]ω̄1 + C0ω

dK0 = K01ω1 + K̄01ω̄1 + 2[∓B + (1 − C)K0]ω,with the new higher order s
alar invariants B0, B1, C0 (all real) and K01 (
omplex).Theorem 8.8. All lo
ally nonequivalent stru
tures (M, [λ, µ]) of oriented 
ongru-en
es having vanishing twist, nonvanishing shear, with T1 ≡ 0 and K1 6= 0, aredes
ribed by the invariant forms (ω, ω1, ω̄1) satisfying
• either the system (8.20), (8.21) on M , in whi
h 
ase K1 = eiγ 6= ±1,
• or the system (8.20), (8.22) on M , in whi
h 
ase K1 ≡ ±1 and A ≡ 0.As it is readily seen fom the integrabilty 
onditions (8.21), (8.22) neither ofthese 
ases admits stru
tures with a stri
tly 3-dimensional transitive symmetrygroup (look at the equations for dT0 in (8.21), (8.22), and observe that T0 = const,whi
h implies dT0 = 0, is forbidden!).
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ase T1 6= 0. To analyze this 
ase we again start with the basi
 system(8.10) and we assume that t1 6= 0. This assumption enables us to normalize T1 sothat its modulus is equal to one. Thus now we require
|T1| = 1,whi
h uniquely �xes ρ to be
ρ = |t1|.After su
h normalization all the forms be
ome forms on M and, depending on thelo
ation of T1 on the unit 
ir
le, we have to 
onsider two 
ases:

• either T1 = eiδ 6= ±1,
• or T1 = ±1.We analyze the T1 6= ±1 
ase �rst. Here we easily redu
e the system (8.10) to thefollowing system on M :

dω = (eiδω1 + e−iδω̄1) ∧ ω,
dω1 = (iB −A)ω1 ∧ ω̄1 + (1 − C + iT0)ω1 ∧ ω + ω̄1 ∧ ω,(8.23)
dω̄1 = (iB +A)ω1 ∧ ω̄1 + ω1 ∧ ω + (1 − C − iT0)ω̄1 ∧ ω.It has the following integrability 
onditions:

dδ = [δ1 + i((B − δ1) cot δ −A)]ω1 + [δ1 − i((B − δ1) cot δ −A)]ω̄1 + δ0ω(8.24)
dT0 ∧ ω =

{[B0 +BC −AT0 + 2 sin δ + i(2A−AC −BT0 −A0 + C1) −
eiβ(T0 − iC)]ω1 +

[B0 +BC −AT0 + 2 sin δ − i(2A−AC −BT0 −A0 + C̄1) −
e−iβ(T0 + iC)]ω̄1} ∧ ω.Here, the new s
alar invariants are: T0, δ, A,B,C (real), and the higher order s
alarinvariants are: δ0, δ1, B0 (real) and C1 (
omplex).In the T1 ≡ ±1 
ase the equations (8.23) are still valid, provided that we put

B ≡ 0.This 
ondition is implied by T1 ≡ ±1. Thus in this 
ase the invariant forms satisfy
dω = ±(ω1 + ω̄1) ∧ ω,
dω1 = −Aω1 ∧ ω̄1 + (1 − C + iT0)ω1 ∧ ω + ω̄1 ∧ ω,(8.25)
dω̄1 = Aω1 ∧ ω̄1 + ω1 ∧ ω + (1 − C − iT0)ω̄1 ∧ ω.The integrability 
onditions for this system are:
dT0 = T00ω +
(

(∓1 −A)T0 + i(2A−AC −A0 + C1 ± C)
)

ω1 +(8.26)
(

(∓1 −A)T0 − i(2A−AC −A0 + C̄1 ± C)
)

ω̄1,with the invariant sign equal to ±1, the new s
alar invariants being: T0, A, C (real),and the higher order s
alar invariants being: B0, T00 (real) and C1 (
omplex).We summarize with the following theorem.



36 C. DENSON HILL AND PAWE� NUROWSKITheorem 8.9. All lo
ally nonequivalent stru
tures (M, [λ, µ]) of oriented 
ongru-en
es having vanishing twist, nonvanishing shear, with T1 6= 0, are des
ribed by theinvariant forms (ω, ω1, ω̄1) satisfying
• either the system (8.23), (8.24) on M , in whi
h 
ase T1 = eiδ 6= ±1,
• or the system (8.25), (8.26) on M , in whi
h 
ase T1 ≡ ±1.We pass to the determination of the stru
tures with stri
tly 3-dimensional tran-sitive group of symmetries.Using the system (8.23), (8.24) we easily establish that in the 
ase T1 6= ±1 thestru
tures are governed by the following system of invariant forms:

dω = (eiδω1 + e−iδω̄1) ∧ ω,

dω1 = −1 − C − cos 2δ

1 − C + cos 2δ
e−iδω1 ∧ ω̄1 + (1 − C + i sin 2δ)ω1 ∧ ω + ω̄1 ∧ ω,(8.27)

dω̄1 =
1 − C − cos 2δ

1 − C + cos 2δ
eiδω1 ∧ ω̄1 + ω1 ∧ ω + (1 − C − i sin 2δ)ω̄1 ∧ ω.In a similar way, if T1 ≡ ±1, using the system (8.25), (8.26), we see that thestru
tures with 3-dimensional symmetry groups are governed by the following sys-tem:

dω = ±(ω1 + ω̄1) ∧ ω,
dω1 = ±ω1 ∧ ω̄1 + iT0ω1 ∧ ω + ω̄1 ∧ ω,(8.28)
dω̄1 = ∓ω1 ∧ ω̄1 + ω1 ∧ ω − iT0ω̄1 ∧ ω.9. Nonvanishing twist and nonvanishing shearThe Cartan pro
edure applied to this 
ase is very similar to the one in Se
tion8 
on
erned with a ≡ 0 and s 6= 0. There, before the �nal redu
tion to threedimensions, the pro
edure stopped at the intermediate 4-dimensional manifoldM×

R+ parametrized by the points of M and the positive 
oordinate ρ. In the present
ase, in addition to s 6= 0, we also have a 6= 0, whi
h enables us to make animmediate redu
tion to three dimensions and thus to produ
e invariants on M .Expli
itly this redu
tion is a
hieved as follows.We start with the general system (5.1) of Se
tion 5. We have
a 6= 0, s 6= 0and we again write the 
omplex shear fun
tion s as

s = |s|eiψ .Now, for a 
hosen pair (λ, µ) representing the stru
ture, we impose the 
onditions
dω ∧ ω = iω1 ∧ ω̄1 ∧ ω(9.1)

dω1 ∧ ω1 = ω1 ∧ ω̄1 ∧ ω(9.2)on the Cartan frame
ω = fλ, ω1 = ρeiφµ, ω̄1 = ρe−iφµ̄.Note that (9.1) is possible be
ause of a 6= 0 and (9.2) is possible be
ause of s 6= 0. Itis a matter of straightforward 
al
ulation to show that these two 
onditions uniquelyspe
ify the 
hoi
e of f , ρ and φ. To write the relevant formulae for f , ρ and φ we



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 37denote the sign of a by eiǫπ, where ǫ = 0 or 1. Then having eiǫπ = sign(a), theseformualae are:
f = eiǫπ|s|, ρeiφ =

√

|a|
√

|s|e−
i
2 (ψ−ǫπ)and the forms (ω, ω1, ω̄1) satisfy

dω = iω1 ∧ ω̄1 + k1ω1 ∧ ω + k̄1ω̄1 ∧ ω
dω1 = k2ω1 ∧ ω̄1 + k3ω1 ∧ ω + ω̄1 ∧ ω(9.3)
dω̄1 = −k̄2ω1 ∧ ω̄1 + ω1 ∧ ω + k̄3ω̄1 ∧ ω.Here the 
omplex fun
tions k1, k2, k3 are de�ned on M and:

k1 =
(b|s| + |s|µ)
√

|a|
√

|s|3
e
i
2 (ψ−ǫπ)

k2 =
−(log |a|)µ̄ + 2p− (log |s|)µ̄ + iψµ̄

2
√

|a|
√

|s|
e−

i
2 (ψ−ǫπ)

k3 =
ibµ̄ − ib̄µ − ibp+ ib̄p̄+ e−iǫπ|a|(q − q̄ − (log |s|)λ + iψλ)

2|a||s|These fun
tions 
onstitute the full system of invariants of (M, [λ, µ]) for a 6= 0,
s 6= 0.Theorem 9.1. A given stru
ture (M, [λ, µ]) of an oriented 
ongruen
e with nonva-nishing twist, a 6= 0, and nonvanishing shear, s 6= 0, uniquely de�nes the frame ofinvariant 1-forms ω, ω1, ω̄1 and invariant 
omplex fun
tions k1, k2, k3 on M . Theforms and the fun
tions are determined by the requirement that they satisfy thesystem (9.3). Starting with an arbitrary representative (λ, µ) of the stru
ture [λ, µ],the forms are given by

ω = eiǫπ|s|λ, ω1 =
√

|a|
√

|s|e−
i
2 (ψ−ǫπ)µ, ω̄1 =

√

|a|
√

|s|e
i
2 (ψ−ǫπ)µ̄,where the shear fun
tion is s = |s|eiψ. Here eiǫπ, ǫ = 0, 1, denotes the sign ofthe twist fun
tion a. The system (9.3) en
odes all the invariant information of thestru
ture (M, [λ, µ]).We pass to the determination of all homogeneous examples with a 6= 0, s 6= 0.Now the maximal dimension of a group of transitive symmetries is three. Thestru
tures with 3-dimensional groups of symmetries 
orrespond to those satisfyingsystem (9.3) with all the fun
tions k1, k2, k3 being 
onstants. Applying the exteriordi�erential to the system (9.3) with k1, k2, k3 
onstants we arrive at the followingTheorem.Theorem 9.2. All homogeneous stru
tures (M, [λ, µ]) with nonvanishing twist,

a 6= 0, and nonvanishing shear, s 6= 0, have a stri
tly 3-dimensional symmetrygroup and fall into four main types 
hara
terized by:I: k3 = 1. In this 
ase there is a 2-real parameter family of nonequivalentstru
tures distinguished by real 
onstants x and y related to the invariants
k1 and k2 via:

k1 = x, k2 = iy.



38 C. DENSON HILL AND PAWE� NUROWSKIII: k3 = eiφ, 0 < φ < 2π. In this 
ase there is a 2-real parameter family ofnonequivalent stru
tures distinguished by real 
onstants x, y whi
h togetherwith the parameter φ are 
onstrained by the equation
cosφ(1 − 2xy + cosφ) = 0.The invariants k1, k2, k3 are then given by

k1 = x(cot φ2 + i), k2 = −iy(cot φ2 + i), k3 = cosφ+ i sinφ.III: k3 + k̄3 = 0, k3 6= ±i. In this 
ase there is a 3-real parameter familyof nonequivalent stru
tures distinguished by real 
onstants y′ 6= ±1, x, yrelated to the invariants k1, k2, k3 via:
k1 = x+ iy, k2 = k̄1 = x− iy, k3 = iy′.IV: |k3| 6= 1, k3 + k̄3 6= 0. In this 
ase there is a 3-real parameter family ofnonequivalent stru
tures distinguished by real 
onstants x′ 6= 0, y′, x, y
onstrained by the equation

x′
2

+ y′
2

+ 2y′(x2 + y2) − 4xy = 1.The invariants k1, k2, k3 are then given by
k1 = x+ iy, k3 = x′ + iy′, k2 =

k̄1(1 + k2
3) − k1(k3 + k̄3)

1 − |k3|2
.Among all the stru
tures 
overed by the above theorem, the simplest have k1 =

k2 = k3 ≡ 0. This unique stru
ture belongs to the 
ase III above and is the �at
ase for the bran
h a 6= 0, s 6= 0. We des
ribe it in the following proposition.Proposition 9.3. A stru
ture of an oriented 
ongruen
e (M, [λ, µ]) with nonvan-ishing twist, a 6= 0, nonvanishing shear s 6= 0 and having k1 = k2 = k3 ≡ 0, may belo
ally represented by forms(9.4) λ = du+

√
2eiu − iz̄

zz̄ − 1
dz +

√
2e−iu + iz

zz̄ − 1
dz̄, µ =

2eiu

zz̄ − 1
dz −

√
2λ,where (u, z, z̄) are 
oordinates on M . This stru
ture has the lo
al symmetry groupof Bian
hi type VIII, lo
ally isomorphi
 to the group SL(2,R).Remark 9.4. There are more stru
tures with a 6= 0, s 6= 0, whi
h have a 3-dimensional transitive symmetry group of Bian
hi type VIII. It is quite 
ompli
atedto write them all here. For example, among them, there is a 1-parameter family ofnonequivalent stru
tures with k1 = k2 ≡ 0. They may be represented by(9.5) λ = du+

κeiu − iz̄

zz̄ − 1
dz +

κe−iu + iz

zz̄ − 1
dz̄, µ = (κ2 − 1)

2eiu

zz̄ − 1
dz − κλ,where κ > 0, κ 6= 1. The only nonvanishing invariant for this 1-parameter familyis k3 = −i(1 − 2

κ2 ). It may be 
onsidered as a deformation of the �at 
ase above,whi
h 
orresponds to κ =
√

2.Remark 9.5. In a similar way, among all the stru
tures with a 6= 0, s 6= 0, whi
hhave a 3-dimensional transitive symmetry group of Bian
hi type IX, we may easily
hara
terize those with k1 = k2 ≡ 0. They may be represented by(9.6) λ = du+
κeiu − iz̄

zz̄ + 1
dz +

κe−iu + iz

zz̄ + 1
dz̄, µ = (κ2 + 1)

2eiu

zz̄ + 1
dz − κλ,where κ > 0. Here the only nonvanishing invariant is k3 = −i(1 + 2

κ2 ).
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h of the stru
tures (9.5), (9.6) 
or-respond to the �at CR-stru
ture in the sense of Cartan. A

ording to [15℄, they
orrespond to κ = 0,
√

2 in the (9.5) 
ase, and κ = 0 in the (9.6) 
ase. Thus inthese 
ases the 
orresponding stru
tures of an oriented 
ongruen
e are lo
ally CR-equivalent to the hyperquadri
 CR stru
ture of Example 7.3, with a nonstandardsplitting, whi
h 
auses the shear s 6= 0.It is a rather 
ompli
ated matter to des
ribe whi
h Bian
hi types having a 3-dimensional transitive symmetry group 
orrespond to a given homogeneous stru
-ture with a 6= 0, s 6= 0. We remark that the groups of Bian
hi types I and V areex
luded for su
h stru
tures. We also fully des
ribe the situation for Bian
hi typesII and IV. This is summarized in the following theorem.Theorem 9.7.There are only two nonequivalent stru
tures of an oriented 
ongruen
e (M, [λ, µ])with a 6= 0, s 6= 0, whi
h have a lo
al transitive symmetry group of Bian
hi type II.They may be lo
ally represented by
λ = du+ i

2 (zdz̄ − z̄dz), µ = dz ±
√

2(1 − i)λ,where (u, z, z̄) are 
oordinates on M . The 
onstant invariants are
k1 = ±1 − i√

2
, k2 = ±1 + i√

2
, k3 = −i,and the sign ±1 distinguishes between the nonequivalent stru
tures.There are also only two 2-parameter families of nonequivalent stru
tures of anoriented 
ongruen
e (M, [λ, µ]) with a 6= 0, s 6= 0, whi
h have a lo
al transitivesymmetry group of Bian
hi type IV. They may be lo
ally represented by

λ = y−1(du − log ydx), µ = y−1d(x + iy) ±
√

2(1 − i)wλ,where (u, x, y) are 
oordinates on M and w = Re(w) + iIm(w) 6= 0 is a 
omplexparameter. The 
onstant invariants are
k1 = ±1 − i√

2
+

i

2w̄
, k2 = ±1 + i√

2
+

i

2w̄
, k3 = −i± (

1 + i

w̄
+

1 − i

w
),and the two real parameters Re(w) and Im(w), together with the sign ±1 distinguishbetween the nonequivalent stru
tures.Remark 9.8. We remark that the stru
tures with a symmetry group of Bian
hi typeII are in a sense the limiting 
ase of the two families of stru
tures with Bian
hi typeIV. They 
orrespond to the limit |w| → ∞.10. Appli
ation 1: Lorentzian metri
s in four dimensionsIn this se
tion we use our results about oriented 
ongruen
e stru
tures to 
on-stru
t Lorentzian metri
s in 4-dimensions.10.1. Vanishing twist � nonvanishing shear 
ase and pp-waves. Sin
e ouroriented 
ongruen
e stru
tures are 3-dimensional obje
ts, we 
on
entrate only onthose stru
tures, whi
h in some natural manner de�ne an asso
iated 4-dimensionalmanifold. As we noted in the se
tions devoted to the Cartan analysis of the oriented
ongruen
e stru
tures, in some 
ases, su
h as those des
ribed in Se
tion 8, theCartan bundle P en
oding the basi
 invariants of the stru
tures is 4-dimensional.



40 C. DENSON HILL AND PAWE� NUROWSKISo in this 
ase, i.e. when the twist a ≡ 0 and the shear s 6= 0, we have a 4-dimensional manifold naturally asso
iated with the oriented 
ongruen
e stru
ture.Moreover, in su
h 
ase the Cartan pro
edure provides us also with a rigid 
oframeof invariant forms (ω1, ω̄1, ω,Ω) on P . Using these forms we may de�ne(10.1) g = 2ω1ω̄1 + 2ωΩ,or, as suggested by the form of the asso
iated Cartan 
onne
tion,(10.2) g = 2ω1ω̄1 + 2ω(Ω − ω).These both are well de�ned Lorentzian metri
s on P , whi
h are built only from theobje
ts naturally and invariantly asso
iated with the oriented 
ongruen
e stru
ture.To be more spe
i�
, let us 
onsider the stru
tures with the 
urvature of theCartan 
onne
tion R ∈ h1, as des
ribed in Theorem 8.5. In this 
ase the bundle Pis parametrized by (z, z̄, u, r) and the invariant forms are:
Ω = dr, ω = du

ω1 = er
(

hdz − (h̄′ + h̄− iαh̄)dz̄
)

ω̄1 = er
(

h̄dz̄ − (h′ + h+ iαh)dz
)

,with fun
tions α = α(u) (real) and h = h(u) (
omplex) satisfying the ordinarydi�erential equation 8.15. Inserting these forms in the formulae (10.1)-(10.2), weget the respe
tive 4-dimensional Lorentzian metri
s
g0 = 2e2r

(

hdz − (h̄′ + h̄− iαh̄)dz̄
)(

h̄dz̄ − (h′ + h+ iαh)dz
)

+ 2dudr,and
g−1 = 2e2r

(

hdz − (h̄′ + h̄− iαh̄)dz̄
)(

h̄dz̄ − (h′ + h+ iαh)dz
)

+ 2du(dr − du).It turns out that both these metri
s have quite ni
e properties.A
tually, introdu
ing a still bigger 
lass of metri
s
gc = 2e2r

(

hdz − (h̄′ + h̄− iαh̄)dz̄
)(

h̄dz̄ − (h′ + h+ iαh)dz
)

+ 2du(dr − cdu),with c = const ∈ R, one 
he
ks that they all are of type N in the Petrov 
lassi�-
ation of 4-dimensional Lorentzian metri
s. This means that their Weyl tensor isexpressed in terms of only one nonvanishing 
omplex fun
tion Ψ4, 
alled the Weylspin 
oe�
ient, whi
h reads
Ψ4 = 2(iα− c− 1).All the other Weyl 
oe�
ients (Ψ0,Ψ1,Ψ2,Ψ3), whi
h together with Ψ4 totallyen
ode the Weyl tensor of gc, are identi
ally zero.Looking at the spin 
oe�
ient Ψ4 we see that there is a distinguished metri
in the 
lass gc. This 
orresponds to c = −1. In su
h 
ase the Weyl tensor of gis just proportional to Ψ4 = 2iα and we have a Lorentz-geometri
 interpretationof the invariant α = α(u) of the 
orresponding stru
ture of the oriented 
ongru-en
e. Confronting these 
onsiderations with the results of Se
tion 8.2.2 we get thefollowing
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ture of an oriented 
ongruen
e (M,λ, µ) with vanish-ing twist, a ≡ 0, nonvanishing shear s 6= 0, and having the 
urvature R of its
orresponding Cartan 
onne
tion in h1, de�nes a Lorentzian metri

g−1 = 2ω1ω̄1 + 2ω(Ω − ω),whi
h is of Petrov type N or 
onformally �at. The nonequivalent metri
s 
orrespondto di�erent stru
tures of the oriented 
ongruen
e, and the metri
 is 
onformally �atif and only if R ≡ 0.Interestingly metri
s g−1 are 
onformal to Ri

i �at metri
s. The Ri

i �atmetri
 in the 
onformal 
lass of g−1 is given by

ĝ−1 =
2e4u

(t+ e2u)2

(

(

hdz−(h̄′+h̄−iαh̄)dz̄
)(

h̄dz̄−(h′+h+iαh)dz
)

+e−2rdu(dr−du)
)

,where t is a real 
onstant. For ea
h α = α(u) and for ea
h solution h = h(u) of(8.15), the 
orresponding Ri

i �at metri
 is the so 
alled linearly polarized pp-wavefrom General Relativity Theory (see [10℄, p. 385).10.2. Nonvanishing twist � vanishing shear 
ase and the Ba
h metri
s.Another example of 4-dimensional Lorentzian manifolds naturally asso
iated withthe stru
tures of oriented 
ongruen
es appears in the nonvanishing twist � vanishingshear 
ase, as we explained in Se
tion 7.3. A
tually in Se
tion 7.3 we de�ned
onformal Lorentzian 4-manifolds equipped with the 
onformal 
lass of Lorentzianmetri
s [gt], whi
h are naturally asso
iated with a 
ongruen
e stru
ture with twistand without shear. Here we study the 
onformal properties of these metri
s.10.2.1. The Cotton and Ba
h 
onditions for 
onformal metri
s. We re
all [4℄ that aLorentzian metri
 g on a manifold M is 
alled 
onformal to Einstein i� there existsa real fun
tion Υ onM su
h that the res
aled metri
 ĝ = e2Υg satis�es the Einsteinequations Ric(ĝ) = Λĝ. In the 
ase of an orientedM with dimM = 4 there are twone
essary 
onditions [2, 8℄ for g to be 
onformal to Einstein (in algebrai
ally generi

ases [4℄ these ne
essary 
onditions are su�
ient). To des
ribe these 
onditions wedenote by F the 
urvature 2-form of the Cartan normal 
onformal 
onne
tion ω[g]asso
iated with a 
onformal 
lass [g] (see [7℄ for de�nitions). The 
urvature F ishorizontal. Thus, 
hoosing a representative g of the 
onformal 
lass [g], we 
an
al
ulate its Hodge dual ∗F and 
al
ulate the 6 × 6 matrix of 3-forms(10.3) D ∗ F = d ∗ F + ω[g] ∧ ∗F − ∗F ∧ ω[g]for the 
onne
tion ω[g]. This matrix has a remarkably simple form
D ∗ F =





0 ∗jµ 0
0 0 ∗jµ
0 0 0



 ,where ∗jµ is a ve
tor-valued 3-form, the Hodge dual of the so 
alled Yang-Mills
urrent jµ for the 
onformal 
onne
tion ω[g]. Having said this we introdu
e theva
uum Yang-Mills equation for the 
onformal 
onne
tion ω[g](10.4) D ∗ F = 0i.e. the 
ondition that the Yang-Mills 
urrent jµ vanishes. It turns out that in
dimM = 4 equations (10.4) are 
onformally invariant. They are equivalent to therequirement that the Ba
h tensor of g identi
ally vanishes [2, 4℄. This 
ondition is
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onstitute a �rst system of equations whi
h a 4-dimensional metri
 gmust satisfy to be 
onformal to Einstein.Another independent 
ondition 
an be obtained by de
omposing F into F =
F+ ⊕ F−, where ∗F± = ±iF± are its selfdual and antiselfdual parts (note that iappears here as a 
onsequen
e of the assumed Lorentzian signature). De
omposingthe 
urvatures F± onto a basis of 2-forms {θi ∧ θj} asso
iated with a 
oframe {θi}in whi
h g takes the form g = gijθ

iθj , we re
all that the se
ond ne
essary 
onditionfor a 4-metri
 g to be 
onformal to Einstein is(10.5) [F+
ij , F

−
kl ] = 0 ∀i, j, k, l = 1, 2, 3, 4.Here [, ] is the 
ommutator of the 6 × 6 matri
es F+

ij and F−
kl . We term (10.4) theBa
h 
ondition and (10.5) the Cotton 
ondition [4℄.10.2.2. Conformal 
urvature of the asso
iated metri
s. Now we 
al
ulate the Car-tan normal 
onformal 
onne
tion and its 
urvature for the 
onformal metri
s (7.18).We re
all the setting from Se
tions 7.2, 7.3. The stru
ture of an oriented 
ongru-en
e (M,λ, µ) with vanishing shear and nonvanishing twist de�nes a 5-dimensionalprin
ipal �ber bundle H2 → P →M , on whi
h the invariant forms (ω1, ω̄1, ω,Ω, Ω̄),satisfying the system (7.15) reside. There is another �ber bundle asso
iated withsu
h a situation. This is the bundle P → N with a 4-dimensional base N andwith 1-dimensional �bers. The manifold N is in addition �bered over M also with1-dimensional �bers. The forms

{θ1, θ2, θ3, θ4} = {ω1, ω̄1, ω, ti(Ω̄ − Ω)}on P are used to de�ne a bilinear form Gt = 2(θ1θ2 + θ3θ4) on P . Although thisis degenerate on P , it proje
ts to a well de�ned 
onformal 
lass [gt] of Lorentzianmetri
s(10.6) gt = 2(θ1θ2 + θ3θ4)on N , see (7.18).One 
an try to 
al
ulate the Cartan normal 
onformal 
onne
tion for the metri
s
gt on N itself, but we prefer to do this on the 5-dimensional bundle P instead.This is more 
onvenient, sin
e in su
h an approa
h we 
an dire
tly use the 
oframederivatives (7.15) of the forms (ω1, ω̄1, ω,Ω, Ω̄) on P , without the ne

essity ofproje
ting them from P to N .Thus, in the following, we asso
iate the dual set of ve
tor �elds (E1, Ē1, E0, E2, Ē2)to (ω1, ω̄1, ω,Ω, Ω̄), and we will use them to denote the derivatives of the fun
tions,su
h as the invariants K1, K2 and K̄2. The 
onventions will be as follows: thesymbols K11 = E1(K1) and K11̄ = Ē1(K1) will denote the dire
tional derivativesof K1 in the respe
tive dire
tions of the ve
tor �elds E1 and Ē1. In parti
ular K21̄0will denote E0(Ē1(K2)).
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al
ulation gives the following expressions for the Cartannormal 
onformal 
onne
tion ωt for the metri
s gt on P :
(10.7) ωt =





































1
2 (Ω + Ω̄) τ1 τ2 τ3 τ4 0

θ1 −iΩ1 0 −Ω2
i
2θ

1 τ2

θ2 0 iΩ1 −Ω̄2 − i
2θ

2 τ1

θ3 i
2θ

2 − i
2θ

1 − 1
2 (Ω + Ω̄) 0 τ4

θ4 Ω̄2 Ω2 0 1
2 (Ω + Ω̄) τ3

0 θ2 θ1 θ4 θ3 − 1
2 (Ω + Ω̄)





































.

Here the 1-forms Ω1 (real) and Ω2 (
omplex) are
Ω1 = tK1θ

3 + 1−t
2t θ

4, Ω2 = itK1θ
1 + itK̄2θ

3, Ω̄2 = −itK1θ
2 − itK2θ

3and the 1-forms {τ1, τ2, τ3, τ4} are:
τ1 = − 1

6 (5t− 2)K1θ
2 + 1

4 (2itK11 +K2(1 − t))θ3

τ2 = τ̄1 = − 1
6 (5t− 2)K1θ

1 + 1
4 (−2itK11̄ + K̄2(1 − t))θ3

τ3 = 1
4 (2itK11 −K2(t+ 1))θ1 − 1

4 (2itK̄11̄ + K̄2(t+ 1))θ2 − t2K2
1θ

3 + 1
6 (4t− 1)K1θ

4

τ4 = 1
6 (4t− 1)K1θ

3 − 1
4θ

4.The next step, namely the 
al
ulation of the 
urvature Ft = dωt + ωt ∧ ωt of
ωt, is really tedious, but a
hievable with the help of symboli
 
al
ulation programssu
h as, e.g. Mathemati
a. The resulting formulae are too 
ompli
ated to displayhere, but the so(1, 3)-part of the 
urvature, whi
h is just the Weyl tensor of gt, isworth quoting. We present it in terms of the (lifted to P ) Weyl spinors Ψ0, Ψ1,
Ψ2, Ψ3 and Ψ4. These read:

Ψ0 = 0, Ψ1 = 0,

Ψ2 = 1
6 (1 − 4t)K1,

Ψ3 = 1
4

(

2itK11̄ + (3t− 1)K̄2

)

,(10.8)
Ψ4 = −itK̄21̄.We have the followingProposition 10.2. Every metri
 gt with K1 ≡ 0 or t = 1

4 is of Petrov type IIIor its spe
ializations. If t = 1
3 and K1 ≡ 0, then the 
onformal 
lass [g1/3] of themetri
 g1/3 is of Petrov type N .Cal
ulation of the Yang-Mills 
urrent j = jµθ

µ for ωt is also possible. Sin
e the
ovariant derivative of the Hodge dual of the 
urvature Ft is horizontal with repe
tto the bundle P → N , the 
urrent 
omponents jµ, as viewed on P or on N , di�eronly by nonvanishing s
ales. The result of our 
al
ulation on P reads:
j1 = j̄2 = 1

3 (1 − 4t)[K111θ
1 − 2iK11θ

4] + 1
6j

1
2θ

2 − 1
6j

1
3θ

3

j3 = − 1
6 j

1
3θ

1 − 1
6 j̄

1
3θ

2 − 1
6j

3
3θ

3 − 1
6j

1
2θ

4

j4 = 2
3 (4t− 1)[K1θ

4 + iK11θ
1 − iK11̄θ

2] − 1
6j

1
2θ

3,
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j12 = (1 − 4t)(1 − 12t)K2

1 + (7t− 1)(K111̄ +K11̄1)

j13 = 16it(4t− 1)K1K11 − 2(1 − 2t)(1 − 4t)K1K2 + (1 − 4t)K21̄1 +

3it(K111̄1 +K11̄11)

j33 = 16t2(1 − 4t)K3
1 − 36t2K11K11̄ + 3(1 − t)(1 + 3t)|K2|2 + 2(t+ 2)K21̄3 −

24t2K1(K111̄ +K11̄1) + 2it(4 − 7t)(K11̄K2 −K11K̄2).We have also 
al
ulated the Cotton matri
es [F+
tij , F

−
tij ] for ea
h value of thereal parameter t. We obtained formulae whi
h are too 
ompli
ated to write here.However we observed, that among all the parameter values for t, there are a fewpreferred ones for whi
h the formulae simplify signi�
antly. These spe
ial parametervalues are:

t = ±1

3
, t =

1

4
, t = 1.Here we fo
us on t = − 1

3 and t = 1, for whi
h we have the following theorem.Theorem 10.3. If t = − 1
3 or t = 1 and the relative invariant K1 ≡ 0, thenthe 
onformal metri
s [gt] satisfy the Ba
h 
ondition. If in addition the relativeinvariant K2 6= 0, the metri
s are not 
onformally �at and do not satisfy the Cotton
ondition. If K1 ≡ K2 ≡ 0 the 
onformal metri
s g−1/3 and g1 have Ft ≡ 0, i.e.they are 
onformally �at.The theorem 
an be veri�ed by using the expli
it formulae for the Yang-Mills
urrent jµ, the matri
es [F+
tij , F

−
tij ], and the integrability 
onditions for the system(7.15) with K1 = 0. These integrability 
onditions, in parti
ular, imply that K21̄ =

0. We shall return to the other two interesting values t = 1/4 and t = 1/3 for gtbelow, where we 
onsider examples.10.2.3. Examples. As noted above a parti
ularly interesting 
lass of stru
tures
(M,λ, µ) 
orresponds to K1 ≡ 0 and K2 6= 0. Looking at the list of our examplespresented in Se
tion 7 we �nd su
h a stru
ture in Se
tion 7.6. This 
orresponds toa spe
ial value of the parameter βK = −3

1
3 in the family of stru
tures des
ribed bythe invariant system (7.35), and is lo
ally represented by forms λ, µ as in (7.37) with

βK = −3
1
3 . A
tually it is worthwhile to write the metri
s gt for all the stru
tures
overed by (7.37). These metri
s read:

gt = gt(β) = 2dzdz̄ +

t
(

du+
2βe−iβu + iz̄

β(zz̄ − 2β2(2 + β3))
dz +

2βeiβu − iz

β(zz̄ − 2β2(2 + β3))
dz̄

)

×

(zz̄ − 2β2(2 + β3))2

2β4

(

2dr +
2(βe−iβu − iz̄)

zz̄ − 2β2(2 + β3)
dz +

2(βeiβu + iz)

zz̄ − 2β2(2 + β3)
dz̄

)

,and in addition to the real parameter t, they are parametrized by the real parameter
β 6= 0 whi
h enumerates nonequivalent stru
tures (M,λ, µ).These are quite interesting 
onformal Lorentzian metri
s for the following rea-sons.First, if

β = βK = −3
1
3 ,
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ording to Theorem 10.3, the metri
s
g−1/3(−3

1
3 ) = 2dzdz̄ −

(

du+
2·3 1

3 e3
1
3 iu − iz̄

3
1
3 (zz̄ + 2·3 2

3 )
dz +

2·3 1
3 e−3

1
3 iu + iz

3
1
3 (zz̄ + 2·3 2

3 )
dz̄

)

×

(zz̄ + 2·3 2
3 )2

18·3 1
3

(

2dr − 2(3
1
3 e3

1
3 iu + iz̄)

zz̄ + 2·3 2
3

dz − 2(3
1
3 e−3

1
3 iu − iz)

zz̄ + 2·3 2
3

dz̄
)

,and
g1(−3

1
3 ) = 2dzdz̄ +

(

du+
2·3 1

3 e3
1
3 iu − iz̄

3
1
3 (zz̄ + 2·3 2

3 )
dz +

2·3 1
3 e−3

1
3 iu + iz

3
1
3 (zz̄ + 2·3 2

3 )
dz̄

)

×

(zz̄ + 2·3 2
3 )2

6·3 1
3

(

2dr − 2(3
1
3 e3

1
3 iu + iz̄)

zz̄ + 2·3 2
3

dz − 2(3
1
3 e−3

1
3 iu − iz)

zz̄ + 2·3 2
3

dz̄
)

,are Ba
h �at. Sin
e the invariant K2 of the 
orresponding stru
tures (M,λ, µ)is nonvanishing, they are also not 
onformal to any Einstein metri
. Note that,again be
ause of K1 ≡ 0 and K2 6= 0, both metri
s g1(−3
1
3 ) and g−1/3(−3

1
3 ) areof general Petrov type III (see Proposition 10.2). As far as we know, they bothprovide the �rst expli
it examples of 
onformally non Einstein Ba
h metri
s whi
hare of this Petrov type (
ompare e.g. with [16℄).Se
ond, note also that, sin
e K1 ≡ 0 for βK = −3

1
3 , the metri
 g1/3(βK), withnow t = +1/3, is also quite interesting. A

ording to Proposition 10.2 this metri
 isof Petrov type N. In gravitation theory it would be also termed twisting type N (see[10℄). It is not 
onformal to any Einstein metri
, sin
e for all metri
s gt(βK) theBa
h tensor Bt(βk), when expressed in terms of the 
oframe (θ1, θ2, θ3, θ4), reads

Bt(−3
1
3 ) = 25·34 (t− 1)(1 + 3t)

(zz̄ + 2·3 2
3 )6

θ3 ⊙ θ3.This obviously does not vanish, when t = 1/3, hen
e the metri
s g1/3(βK) areexamples of twisting type N metri
s, whi
h are not 
onformally Einstein.Third, suggested by the stru
ture of the Weyl tensor (10.8) for all the metri
s
gt we spe
ialize the metri
s gt(β) to the 
ase when t = 1

4 . The Yang-Mills 
urrentfor this spe
ial 
ase may be read o� from the general formulae from the previousse
tion. Here however we prefer to give the expli
it formulae for the Ba
h tensorfor g1/4(β). Here again the Ba
h tensor B1/4(β) for these metri
s has a very simpleform
B1/4(β) = 6

β6(β6 + 36β3 + 36)

(zz̄ − 2β2(2 + β3))6
θ3 ⊙ θ3.As is readily seen this vanishes for the following two real values of β:

βS1 = −
(

6(3 + 2
√

2)
)

1
3 , βS2 = −

(

6(3 − 2
√

2
)

1
3 .Thus the two 
orresponding metri
s g1/4(βS1), and g1/4(βS2) are further examplesof Ba
h Lorentzian metri
s, whi
h are again of Petrov type III. One 
an 
he
k bydire
t 
al
ulation that they are also not 
onformal to any Einstein metri
.



46 C. DENSON HILL AND PAWE� NUROWSKIMotivated by this last example we 
al
ulated the Ba
h tensor for all the metri
s
g1/4 (not ne

essarily those asso
iated with the β-parametrized-stru
tures (7.37)).This 
al
ulation leads to the followingTheorem 10.4. If t = 1

4 and a stru
ture (M,λ, µ) with nonvanishing twist andvanishing shear has the relative invariant K1 satisfying
K111̄ +K11̄1 ≡ 0,then the Ba
h tensor Bt of the metri
s gt 
orresponding to the stru
ture (M,λ, µ),as de�ned in (10.6), has a very simple form

B1/4 =
3

32

(

4K11K11̄ + 2i(K11K̄2 −K11̄K2) − 7K2K̄2 − 4(K21̄0 + K̄210)
)

θ3 ⊙ θ3,in whi
h nine out of the apriori ten 
omponents, identi
ally vanish.Apart from the stru
tures with βS1 and βS2 we do not know examples of stru
-tures satisfying 
ondition K111̄ +K11̄1 ≡ 0.11. Appli
ation 2: Algebrai
ally spe
ial spa
etimesAll the metri
s dis
ussed in Se
tion 10 are examples of algebrai
ally spe
ial spa
e-times. These are 4-dimensional Lorentzian metri
s, whose Weyl tensor is degeneratein an open region of the spa
etime. The algebrai
ally spe
ial va
uum (or in otherwords: Ri

i �at) metri
s have the interesting property that they de�ne a 
ongru-en
e of shearfree and null geodesi
s in the underlying spa
etime. At this stage wemust emphasize that the 
ongruen
e asso
iated with su
h metri
s lives in four di-mensions and the vanishing shear and the geodesi
 
ondition is a four dimensionalnotion here. Nevertheless we observe that the 3-dimensional oriented 
ongruen
esin our sense are related, at least at the level of the Lorentzian metri
s dis
ussed sofar, to an analogous notion in 3+1 dimensions, where the metri
 is of Lorentziansignature. In this se
tion we dis
uss this relationship more 
losely. Note that inall the examples of Se
tion 10 the four -dimensional 
ongruen
e of shearfree nullgeodesi
s was always tangent to the ve
tor �eld k = ∂r.Before passing to the subje
t proper of this se
tion we remark that the alge-brai
ally spe
ial Lorentzian metri
s are very important in physi
s. To be morespe
i�
 we 
onsider the metri
(11.1) g = 2
(

P2µµ̄+ λ(dr + Wµ+ W̄µ+ Hλ)
)

,where
λ = du+

i
(

2M + (a+M)zz̄
)

z(1 + K
2 zz̄)

2
dz − i

(

2M + (a+M)zz̄
)

z̄(1 + K
2 zz̄)

2
dz̄, µ = dz,

P2 =
r2

(1 + K
2 zz̄)

2
+

(

KM − a+ (KM + a)K2 zz̄
)2

(1 + K
2 zz̄)

4
,(11.2) W =

iKaz̄

(1 + K
2 zz̄)

2
,

H = −K
2

+

mr +KM2 − aM
1−K2 zz̄

1+
K
2 zz̄

r2 +

(

KM−a+(KM+a)
K
2 zz̄

)2

(1+
K
2 zz̄)

2

,
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onstants.This s
ary-looking metri
 has very interesting properties. First, it admits a 4-dimensional 
ongruen
e of null and shearfree geodesi
s, whi
h is tangent to theve
tor �eld k = ∂r. Se
ond, if K = 1, it is algebrai
ally spe
ial, a
tually of PetrovtypeD, and more importantly, it is Ri

i �at. The parameter valuesK−1 = M = 0,
orrespond to the 
elebrated Kerr metri
, des
ribing a gravitational �eld outside arotating bla
k hole, with mass m and angular momentum parameter a. In this 
asethe angular momentum parameter a measures the twist of the 
ongruen
e tangentto k. If in addition a = 0, the twist of the 
ongruen
e vanishes, and the metri
be
omes the S
hwarzs
hild metri
. Third, in theK−1 = a = m = 0 
ase the metri
is the Taub-NUT va
uum metri
, whi
h is important in Relativity Theory be
auseits serves as a `
ounterexample for almost everything' [13℄. Fourth, it should bealso noted that if M = 0 and the other parameters, in
luding K, are arbitrary, themetri
 is again type D and Ri

i �at. Finally, we should mention that for generalvalues of K 6= 1 and M 6= 0 the metri
 is algebrai
ally general and neither Ri

i�at nor Einstein.From the point of view of our paper the relevan
e of the metri
 (11.1)-(11.2) isself evident. The four dimensional spa
etime M on whi
h the metri
 is de�ned,lo
ally parametrized by (u, z, z̄, r), is lo
ally a produ
t M = M × R, with Mbeing parametrized by (u, z, z̄). The 3-dimensional manifold M is then naturallyequipped with the oriented 
ongruen
e stru
ture (M,λ, µ), de�ned in terms of the1-forms λ, µ from (11.2). Note that these forms, although de�ned on M, do notdepend on the r 
oordinate, and as su
h proje
t to M . Note also that the oriented
ongruen
e stru
ture de�ned by these forms has always vanishing shear s ≡ 0. Ithas nonvanishing twist, with the ex
eption of the S
hwarzs
hild metri
 a = M = 0,or the 
ase when K = 0 and M + a = 0. In this last 
ase the metri
 is of Petrovtype D, but is neither Ri

i �at nor Einstein.Sin
e in the 
ase of Ri

i �at metri
s (11.1)-(11.2) only the S
hwarzs
hild metri
has the 
orresponding stru
ture of an oriented 
ongruen
e with vanishing twist, inthe next se
tions we de
ided to make a systemati
 study of the Lorentzian metri
s(11.1) (not ne
essarily of the form (11.2)), with forms λ, µ de�ning an oriented
ongruen
e stru
ture in three dimensions whi
h have vanishing shear, but nonvan-ishing twist, only. A
tually, for the sake of brevity, we only dis
uss the 
ase whenthe stru
tural invariants K1 and K2 of the 
ongruen
e stru
tures, as de�ned inSe
tion 7.1, satisfy K1 6= 0, K2 ≡ 0.11.1. Redu
tion of the Einstein equations. As we know from Se
tion 7.5 everystru
ture (M, [λ, µ]) having K1 6= 0, K2 ≡ 0 de�nes an invariant 
oframe (ω, ω1, ω̄1)on M whi
h satis�es the system (7.29), (7.31). Given su
h a stru
ture we 
onsidera 4-manifold M = R ×M with a distinguished 
lass of Lorentzian metri
s. Thesemetri
s 
an be written using any representative of a 
lass [λ, µ]. Sin
e the invariantforms (ω, ω1) provide us with su
h a representative it is natural to use them, ratherthan a randomly 
hosen pair (λ, µ). Thus, given a stru
ture (M, [λ, µ]) having
K1 6= 0, K2 ≡ 0, we write a metri
 on(11.3) M = R ×Mas(11.4) g = P 2 [ 2ω1ω̄1 + 2ω(dr +Wω1 + W̄ ω̄1 +Hω) ].



48 C. DENSON HILL AND PAWE� NUROWSKIHere the forms (ω, ω1, ω̄1) satisfy the system (7.29), (7.31), r is a 
oordinate alongthe R fa
tor in M, and P 6= 0, H (real) and W (
omplex) are arbitrary fun
tionson M.The null ve
tor �eld k = ∂r is tangent to a 
ongruen
e of twisting and shear-freenull geodesi
s in M. This is a distinguished geometri
 stru
ture on M.Now we pass to the question if the metri
s (11.4) may be Einstein. To dis
ussthis we need to spe
ify what is the interesting energy momentum tensor that will
onstitute the r.h.s. of the Einstein equations. Sin
e the only geometri
ally dis-tinguished stru
ture on M is the shear-free 
ongruen
e generated by k = ∂r it isnatural to 
onsider the Einstein equations in the form(11.5) Ric(g) = Φk ⊙ k.If the real fun
tion Φ satis�es Φ > 0 the above equations have the physi
al inter-pretation of a gravitational �eld of `pure radiation' type in whi
h the gravitationalenergy is propagated with the speed of light along the 
ongruen
e k. If Φ ≡ 0 wehave just Ri

i-�at metri
s, whi
h 
orrespond to va
uum gravitational �elds. Thislast possibility is not ex
luded by our Einstein equations. In the following analysiswe will not insist on the 
ondition Φ ≡ 0.At this point it is worthwhile to mentioned that a similar problem was studiedby one of us some years ago in [14℄; see also the more modern treatment in [6℄.Using the results of [6, 14℄ and the symboli
 
al
ulation program Mathemati
a, weredu
ed the Einstein equations (11.5) to the following form:First, it turns out that the Einstein equations (11.5) 
an be fully integrated along
k, so that the r dependen
e of the fun
tions P , H , W is expli
itly determined.A
tually we have:

P =
p

cos r2

W = iαe−ir + β(11.6)
H = − m̄

p4
e2ir − m

p4
e−2ir + 1

2 φ̄eir + 1
2φe−ir + 1

2χ,where the fun
tions p, χ (real) and α, β,m (
omplex) do not depend on the r 
o-ordinate. Thus, using some of the Einstein equations (11.5), one qui
kly redu
esthe problem from M to a system of equations on the CR-manifold with preferredsplitting (M, [λ, µ]).Now we introdu
e a preferred set of ve
tor �elds (∂0, ∂, ∂̄) on M de�ned asthe respe
tive duals of the preferred forms (ω, ω1, ω̄1). Note that this notationis in agreement with the notation of CR-stru
ture theory. In parti
ular ∂̄ is thetangential CR-operator on M , so that the equation for a CR-fun
tion ξ on M is
∂̄ξ = 0.With this notation the remaining Einstein equations (11.5) for ds2 give �rst:

α = 2(∂ log p− c)

β = 2i(∂ log p− 2c− A1)(11.7)
φ = (∂̄ +A1 + iB̄1 + iβ̄)α− 4

m

p4

χ = 3αᾱ+ 2i(∂ +A1 − iB1)β̄ − 2i(∂̄ +A1 + iB̄1)β ∓ 1,where we have introdu
ed a new unknown 
omplex fun
tion c on M and used theCartan invariants A1 > 0, B1 and ±1 of the system (7.29), (7.31).
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tions c,m and p equivalentto the Einstein equations (11.5) are:
(∂ − 3A1 + iB1)c− 2c2 + a11 −A2

1 + i
2A1(3B1 + B̄1) = 0(11.8)

(∂̄ − 6c̄)m = 0(11.9)
(∂ + 3A1 − iB1)∂̄p+ (∂̄ + 3A1 + iB̄1)∂p+

−3[(∂ + 3A1 − iB1)c̄+ (∂̄ + 3A1 + iB̄1)c+ 2cc̄+
8
3A

2
1 + 4

3a11 + 2i
3 A1(B̄1 −B1) ± 1

6 ]p =(11.10)
−m+ m̄

p3
.We thus have the following theorem.Theorem 11.1. Let (M, [λ, µ]) be a stru
ture of an oriented 
ongruen
e havingvanishing shear, nonvanishing twist and the invariants K1 6= 0, K2 ≡ 0. Then aLorentzian metri
 asso
iated with (M, [λ, µ]) via (11.3)-(11.4) satsi�es the Einsteinequations (11.5) if and only if the metri
 fun
tions are given by means of (11.6)-(11.7) with the unknown fun
tions c,m (
omplex), p (real) on M satsifying thedi�erential equations (11.8)-(11.10).Remark 11.2. Note that 
ontrary to the invariants (ω, ω1, ω̄1) the 
oordinate r,and in turn the di�erential dr, has no geometri
 meaning. A
tually the 
oordinatefreedom in 
hoosing r is r → r + f , where f is any real fun
tion f on M . Thisindu
es some gauge transformations on the variables β and χ. Nevertherless theequations (11.8)-(11.10) are not a�e
ted by these transformations.Remark 11.3. Equations (11.8)-(11.10) should be understood in the following way.Start with a stru
ture of an oriented 
ongruen
e (M, [λ, µ]) having vanishing shear,nonvanishing twist and the invariants K1 6= 0, K2 ≡ 0. Cal
ulate its invariants

(ω, ω1, ω̄1), (∂0, ∂, ∂̄), A1, B1, a11 of (7.29), (7.31). Having this data write downequations (11.8)-(11.10) for the unknowns c,m, p. As a hint for solving these equa-tions observe that the equation (11.8) involves only the unknown c. Thus solve it�rst. On
e having the general solution for c insert it to the equation (11.9). Thenthis equation be
omes an equation for the unknown m. In parti
ular m = 0 isalways a solution of (11.9). On
e this equation for m is solved, insert c and mto the equation (11.10), whi
h be
omes a real, se
ond order equation for the realunknown p. In parti
ular, if it happens that you are only interested in solutions forwhi
h m+ m̄ = 0, this equation is a linear se
ond order PDE on M . For parti
ular
hoi
es of (M, [λ, µ]) it 
an be redu
ed to well known equations of mathemati
alphysi
s, su
h as for example the hypergeometri
 equation [14℄.Remark 11.4. The unknown variable m is related to a notion known to physi
istsas 
omplex mass. For physi
ally interesting solutions, su
h as for example the Kerrbla
k hole, the imaginary part of m is related to the mass of the gravitationalsour
e. The real part of m is related to the so 
alled NUT parameter. Moreover
m is responsible for algebrai
al spe
ialization of the Weyl tensor of the metri
. If
m ≡ 0 the metri
 is of type III, or its spe
ializations, in the Cartan-Petrov-Penrosealgebrai
 
lassi�
ation of gravitational �elds.



50 C. DENSON HILL AND PAWE� NUROWSKI11.2. Examples of solutions. Here we give examples of metri
s (11.4) satisfyingthe Einstein equations (11.5). In all these examples the stru
tures of oriented
ongruen
es (M, [λ, µ]) will be isomorphi
 to the stru
tures with a 3-dimensionalgroup of symmetries des
ribed by Proposition 7.16. The invariant forms (ω, ω1, ω̄1)for these stru
tures are:
ω =

2τ2

1 ∓ 4τ2
(y−2(1∓2τ2)du − y−1dx),

ω1 = ±iτy−1(dx + idy),(11.11)
ω̄1 = ∓iτy−1(dx − idy).We re
all that the real parameter τ is related to the invariants A1, B1 of thestru
tures (11.11) via:
A1 = −∓1 + 2τ2

2τ
, B1 = iτ.Sin
e these invariants are 
onstant, all the higher order invariants for these stru
-tures, su
h as for example the a11 in (7.31), are identi
ally vanishing. AlthoughPropsition 7.16 ex
ludes the values τ2 = 1
2 in the upper sign 
ase, we in
lude itin the dis
ussion below. This value 
orresponds to A1 = 0 and therefore mustdes
ribe one of the two nonequivalent stru
tures (M, [λ, µ]) of Example 7.7. Fromthe two stru
tures of this example, the one 
orresponding to τ2 = 1

2 is de�ned by
(ǫ1, ǫ2) = (0, 1). In parti
ular, it has a stri
tly 4-dimensional symmetry group.First we assume that the metri
 (11.4) has the same 
onformal symmetries asthe stru
tures (11.11). This assumption, together with Einstein's equations (11.5),whi
h are equivalent to the equations (11.6)-(11.7), (11.8)-(11.10), implies thatall the metri
 fun
tions p,m, c must be 
onstant. Then the system (11.8)-(11.10)redu
es to the following algebrai
 equations for m, p, c:

(−3A1 + iB1)c− 2c2 −A2
1 + i

2A1(3B1 + B̄1) = 0(11.12)
c̄m = 0(11.13)
3[(3A1 − iB1)c̄+ (3A1 + iB̄1)c+ 2cc̄+(11.14)
8
3A

2
1 + 2i

3 A1(B̄1 −B1) ± 1
6 ]p =

m+ m̄

p3
.Thus we have two 
ases.

• Either c = 0
• or m = 0.Strangely enough in both 
ases equations (11.12)-(11.14) admit solutions only forthe upper sign in (11.14).If c = 0 then we have only one solution 
orresponding to τ = ± 1√

2
with arbitrary
onstant p 6= 0 and m = p4

4 + iM , where M is real 
onstant. The 
orrespondingmetri

ds2 =

p2

cos2 r
2

[
dx2 + dy2

y2
+ 2(

dx

y
− du)(dr − 2 cos2 r

2 (cos r + 4M sin r)(
dx

y
− du)]is va
uum i.e. it satis�es equations (11.5) with Φ ≡ 0.If m = 0 then p 6= 0 is an arbitrary 
onstant, and we have the following solutions:
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• τ = ǫ1

4

√

5 + ǫ2
√

17, c = − ǫ1√
5+ǫ2

√
17
,

• τ = ǫ1
2

√

1
2 (7 + ǫ2

√
17), c = ǫ1

4

√

1
2 (7 + ǫ2

√
17)(3 + ǫ2

√
17).Here ǫ21 = ǫ22 = 1. Sadly, irrespe
tively of the signs of ǫ1, ǫ2, all these solutions have

Φ = const < 0, and as su
h do not 
orrespond to physi
ally meaningful sour
es.As the next example we still 
onsider stru
tures (M, [λ, µ]) with the invariants(11.11), and assume that the metri
s have only two 
onformal symmetries ∂u and
∂x. For simpli
ity we 
onsider only solutions with m = 0 in (11.9). Under theseassumptions we �nd that the general solution of (11.8)-(11.10) in
ludes a free realparameter t and is given by(11.15) c =

−2 + 4τ2

4τ
+

1 − 4τ2

4τ

1

1 − ty(4τ2−1)
,with the real fun
tion p = p(y) satisfying a linear 2nd order ODE:

4y(y − ty4τ2

)2 [ yp′′ + (4τ2 − 2)p′ ] +

[(−32τ4 + 20τ2 − 1)y2 + 4t2(4τ4 − 7τ2 + 2)y8τ2 −(11.16)
16t(8τ4 − 5τ2 + 1)y(4τ2+1)]p = 0.If this equation is satis�ed, the only a'priori nonvanishing 
omponent of the Ri

itensor is

R33 = − 1
8

( cos( r2 )

τ(y − ty4τ2)p

)4

×
(

(

(8τ2 − 3)(128τ6 − 160τ4 + 92τ2 − 21)y4 +

8t4τ2(32τ6 + 8τ4 − 28τ2 + 9)y16τ2

+

4t(8τ2 − 3)(256τ6 − 248τ4 + 58τ2 + 3)y3+4τ2

+

36t2(4τ4 + τ2 − 1)(32τ4 − 12τ2 − 1)y2+8τ2

+

16t3τ2(128τ6 − 184τ4 + 122τ2 − 27)y1+12τ2)

p2 −
4y(y − ty4τ2

)
(

(8τ2 − 3)(16τ4 − 3)y3 + 4t3τ2(16τ4 − 3)y12τ2

+

6t(8τ2 − 3)y2+4τ2

+ 96t2τ2(1 − 2τ2)2y1+8τ2)

pp′ +

4y2(y − ty4τ2

)2
(

(8τ2 − 3)y + 4tτ2y4τ2)2
p′

2
)

.It follows that this R33, with p satisfying (11.16), may identi
ally vanish for somevalues of parameter τ . This happens only when the parameter t = 0. If
t = 0the values of τ for whi
h R33 may be identi
ally zero and for whi
h the fun
tion

p = p(y) satis�es (11.16) are:
τ = ± 1

2

√
2, τ = ± 1

2

√

3

2
, τ = ± 1

2

√

5

3
, τ = ± 1

2

√
3,

τ− = ± 1
2

√

1
6 (11 −

√
13), τ+ = ± 1

2

√

1
6 (11 +

√
13).Of these distinguished values the most interesting (modulo sign) are the last two,

τ− and τ+, sin
e for them the 
orresponding metri
s (11.4) may be va
uum and
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onformally �at. A
tually, restri
ting our attention to the plus signs above andassuming t = 0, we have the following possibilities:
• τε = 1

2

√

1
6 (11 + ε

√
13), ε = ±1; for these two values of τ the generalsolution of (11.16) is
pε = y

1
12 (1−ε

√
13)(s2 + s1y),and the only potentially nonvanishing 
omponent of the Ri

i tensor is

R33 = − 4
9 (7 + ε

√
13) s22 y

−1
6 (1−ε

√
13)

( cos r2
s2 + s1y

)4

.This vanishes when s2 = 0. If s2 = 0 the 
orresponding metri
s gε, asde�ned in (11.4), read
gε = 2P 2

(

ω1ω̄1 + ω
(

dr +Wω1 + W̄ ω̄1 +
3+(9−20τ2

ε ) cos r
12τ2

ε
ω
)

)

,with
P = s1y

2(1−τ2
ε )

cos
r
2

, W = i
2(20τ2

ε −9)+(8τ2
ε−9)e−ir

24τ3
ε

,and ω, ω1, ω̄1 given by (11.11). For both values of ε = ±1 the metri
 isRi

i �at and of Petrov type III. In parti
ular it is neither �at, nor oftype N .In all other 
ases of the distinguished τs the 
orresponding va
uum metri
s are the�at Minkowski metri
s. In fa
t,
• if τ = 1

2

√

3
2 , the general solution to (11.16) is

p = s1
√
y + s2y,and the 
orresponding metri
 (11.4) is �at.

• if τ = 1
2

√

5
3 , the general solution to (11.16) is

p = y
2
3 (s1 + s2 log y),and the potentially nonvanishing Ri

i 
omponent R33 is

R33 = − 8
25s2(2s1 + s2 + 2s2 log y)

( cos r2

(s1 + s2 log y)y
1
3

)4

.This vanishes when s2 = 0. In su
h 
ase the metri
 is �at.
• if τ = 1

2

√
2, the general solution of (11.16) is

p =
√
y(s1 + s2 log y),and

R33 = −2s22
y

( cos r2
s1 + s2 log y

)4

;this vanishes when s2 = 0; in su
h 
ase the metri
 is �at.
• if τ = 1

2

√
3, the general solution of (11.16) is

p = s1y + s2y
−1,and

R33 = −32s22y
2

( cos r2
s2 + s1y2

)4

;
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h 
ase the metri
 is the �at Minkowskimetri
.We 
lose this se
tion with an example of a metri
 that goes a bit beyond theformulation of the Einstein equations presented here. Remaining with the stru
turesof an oriented 
ongruen
e with the upper sign in (11.11), we take c as in (11.15)with t = 0, and 
onsider the metri
 (11.4), (11.6), (11.7) with a 
onstant fun
tion
p given by

p =

√
3

4sτ

√

ε(−1 + 20τ2 − 32τ4).Here the ε is ±1, and is 
hosen to be su
h that the value ε(−1 + 20τ2 − 32τ4) ispositive; s is a nonzero 
onstant. A short 
al
ulation shows that the Ri

i tensorfor this metri
 has the following form
Ric = (τ2 − 1)(8τ2 − 5)

16Λ(4τ2 + 1) cos4 r
2

3τ2(1 − 20τ2 + 32τ4)
k ⊙ k + Λg.Thus, this metri
 is Einstein, with 
osmologi
al 
onstant equal to Λ = εs2, providedthat

τ = ±1, or τ = ± 1
2

√

5

2
.It is remarkable that the Einstein metri


g = − 3

5Λ cos2 r
2

(

ω1ω̄1 + ω
(

dr + i(2e−ir+5)√
10

ω1 − i(2eir+5)√
10

ω̄1 + 7
10 (3 + 2 cos r)ω

)

)

,
orresponding to τ = ± 1
2

√

5
2 , is of Petrov type N with the quadruple prin
ipal nulldire
tion of the Weyl tensor being twisting. It was �rst obtained by Leroy [11℄ andre
ently dis
ussed in [17℄. The Einstein metri


g = − 39

8Λ cos2 r
2

(

ω1ω̄1 + ω
(

dr + i(e−ir+4)
2 ω1 − i(eir+4)

2 ω̄1 + 5
8 (3 + 2 cos r)ω

)

)

,
orresponding to τ = ±1 is of Petrov type III.11.3. Dis
ussion of the redu
ed equations. Here we dis
uss the integrationpro
edures for equations (11.8)-(11.10) along the lines indi
ated in Remark 11.3.We start with equation (11.8). This is an equation for the unknown c. Remarkably,the existen
e of a fun
tion c satisfying this equation is equivalent to an existen
eof a 
ertain CR fun
tion η on M . To see this we pro
eed as follows. We 
onsider a1-form Π on M given by(11.17) Π = ω1 + 2i(A1 + c̄)ω,where c is an arbitrary 
omplex fun
tion on M . Of 
ourse(11.18) Π ∧ Π̄ 6= 0,sin
e otherwise the forms ω1 and ω̄1 would not be independent. Now using thedi�erentials dω, dω1, dA1 given in (7.29), (7.31), we easily �nd that
dΠ ∧ Π = 2i [ (∂̄ − 3A1 − iB̄1)c̄− 2c̄2 + a11 −A2

1 − i
2A1(3B̄1 +B1) ]ω1 ∧ ω̄1 ∧ ω.Thus our equation (11.8) is satis�ed for c if and only if dΠ ∧ Π = 0. Due to ourLemma 5.1, Π satisfying dΠ ∧ Π = 0 de�nes a 
omplex valued fun
tion η on Msu
h that Π = hdη. Be
ause of (11.18) we have hh̄dη ∧ dη̄ 6= 0. Furthermore, sin
e
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Π is given by (11.17) then Π ∧ ω ∧ ω1 = 0, whi
h after fa
toring out by h gives
dη ∧ ω ∧ ω1 = 0. Thus η is a CR-fun
tion on M .Conversely, suppose that we have a CR-fun
tion η on M su
h that(11.19) dη ∧ dη̄ 6= 0.Then the three one forms ω1, ω and dη are linearly dependent at ea
h point. Thusthere exist 
omplex fun
tions x, y on M su
h that(11.20) dη = xω1 + yω.Due to the nondegenar
y 
ondition (11.19) we must have xx̄ω1 ∧ ω̄1 + xȳω1 ∧ ω −
x̄yω̄1 ∧ ω 6= 0, so that the 
omplex fun
tion x must be nonvanishing. In su
h 
asewe may rewrite (11.20) in the more 
onvenient form hdη = ω1 + z̄ω, where h = 1/xand z̄ = y/x. Now, de�ning c to be c = iz

2 − A1, we see that the trivially satis�edequation (hdη)∧d(hdη) = 0 implies that the fun
tion cmust satisfy equation (11.8).Summarizing we have the following proposition.Proposition 11.5. Every solution η of the tangential CR equation ∂̄η = 0 satis-fying dη ∧ dη̄ 6= 0 de�nes a solution c of equation (11.8). Given η, the fun
tion csatisfying equation (11.8) is de�ned by(11.21) c =
i

2

ȳ

x̄
−A1,where dη = xω1 +yω. Also the 
onverse is true: every solution c of equation (11.8)de�nes a CR fun
tion η su
h that dη ∧ dη̄ 6= 0.Remark 11.6. Re
all that the stru
tures (M, [λ, µ]) satisfying the system (7.29),(7.31) admit at least one CR-fun
tion ζ, sin
e they have zero shear s ≡ 0. Asso-
iated to ζ, by the above Proposition, there should be a solution c of the Einsteinequation (11.8). One 
he
ks by dire
t 
al
ulation that

c = −A1automati
ally satis�es (11.8). And this is the solution c aso
iated with ζ. This is
onsistent with formula (11.21), sin
e y ≡ 0 means that dη ∧dζ ≡ 0 (
ompare with(11.20)).We now pass to the dis
ussion of the se
ond Einstein equation (11.9). Equa-tion (11.9), the equation for the fun
tion m, has a prin
ipal part resembling thetangential CR-equation. Remarkably its solutions m are also expressible in termsof CR-fun
tions. To see this 
onsider an arbitrary 
omplex valued fun
tion ξ andde�ne m to be(11.22) m = [ ∂0ξ − 2i(A1 + c̄)∂ξ + 2i(A1 + c)∂̄ξ ]3.Here c is supposed to be a solution to the �rst Einstein equation (11.8). Observe,that sin
e the ve
tor �eld ∂0 − 2i(A1 + c̄)∂ + 2i(A1 + c)∂̄ is real, then given m one
an always lo
ally solve for ξ. Our goal now is to show that if ξ is a CR-fun
tionon M , then m given by (11.22) satis�es equation (11.9). To prove this one inserts(11.22) into equation (11.9) and 
ommutes the operators ∂̄∂0 and ∂̄∂. After this isperformed the equation (11.9) for m be
omes the following equation for ξ:
(∂0 + 2i∂̄(A1 + c) + 2i(A1 + c)∂̄ − 2i(A1 + c̄)∂ − 4ic̄(A1 + c) +A1 − iB1)∂̄ξ = 0.This, in parti
ular, means that if ξ is a CR-fun
tion then this equation is satis�edautomati
ally. Thus given a CR-fun
tion ξ, via (11.22), we 
onstru
ted m whi
h



INTRINSIC GEOMETRY OF ORIENTED CONGRUENCES IN THREE DIMENSIONS 55satis�es equation (11.9). To see that all solutions m of (11.9) 
an be 
onstru
tedin this way is a bit more subtle (see [6℄).Referen
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