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Irreducible SOð3Þ geometry in dimension five

By Marcin Bobieński and Paweł Nurowski at Warszawa

Abstract. We consider the nonstandard inclusion of SOð3Þ in SOð5Þ associated with
a 5-dimensional irreducible representation. The tensor 1 representing this reduction is
found to be given by a ternary symmetric form with special properties. A 5-dimensional
manifold ðM; g;1Þ with Riemannian metric g and ternary form generated by such a tensor
has a corresponding SOð3Þ structure, whose Gray-Hervella type classification is established
using soð3Þ-valued connections with torsion.

Structures with antisymmetric torsions, we call them the nearly integrable SOð3Þ
structures, are studied in detail. In particular, it is shown that the integrable models
(those with vanishing torsion) are isometric to the symmetric spaces Mþ ¼ SUð3Þ=SOð3Þ,
M� ¼ SLð3;RÞ=SOð3Þ, M0 ¼ R5. We also find all nearly integrable SOð3Þ structures with
transitive symmetry groups of dimension d > 5 and some examples for which d ¼ 5.

Given an SOð3Þ structure ðM; g;1Þ, we define its ‘‘twistor space’’ T to be the S2-
bundle of those unit 2-forms on M which span R3 ¼ soð3Þ. The 7-dimensional twistor
manifold T is then naturally equipped with several CR and G2 structures. The ensuing
integrability conditions are discussed and interpreted in terms of the Gray-Hervella type
classification.
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1. Introduction

In Cartan’s list of the irreducible symmetric spaces of Type I the first entry is occu-
pied by the family of symmetric spaces SUðnÞ=SOðnÞ. If n ¼ 2 the corresponding manifold
is a 2-dimensional sphere S2, but n ¼ 3 already corresponds to a nontrivial manifold
Mþ ¼ SUð3Þ=SOð3Þ. This is the so called Wu space [12], [14] which has a number of inter-
esting properties. Among them there is a fact that Mþ constitutes the lowest dimensional
example of a simply connected manifold not admitting a Spinc structure [6]. From the point
of view of the present paper another property of this space is crucial: the isotropy re-
presentation of Mþ ¼ SUð3Þ=SOð3Þ coincides with the irreducible 5-dimensional repre-
sentation of SOð3Þ. Thus, this space provides a symmetric model of a 5-dimensional mani-
fold equipped with the irreducible SOð3Þ structure. Inspecting the entire Cartan list of the
irreducible symmetric spaces one finds (in Type III, again at the first entry!) another 5-
dimensional space M� ¼ SLð3;RÞ=SOð3Þ equipped with the natural irreducible SOð3Þ
structure.

The aim of this paper is to study 5-dimensional geometries modelled on the spaces
Mþ and M�. By this we mean studies of 5-dimensional manifolds with the reduction of the
structure group of the SOð5Þ-frame bundle to the irreducible SOð3Þ. This places the paper
in the domain of special geometries, i.e. Riemannian geometries equipped with additional
geometric structures. In Ref. [3] Th. Friedrich provides a general framework for analysing
such geometries. He also proposes the investigation of geometries modelled on Mþ there.

The framework for analysis of special geometries consists of several steps. First, one
distinguishes a geometric object, preferably of tensorial type, that reduces the structure
group and defines the special geometry. Then, one introduces a metric connection which
preserves this object. As the last step one determines the restrictions on the special geome-
try for this connection to be unique. This unique connection, its torsion and curvature are
then the main tools to study the properties of the considered special geometry.

It is instructive to illustrate this procedure on the well known example of a nearly

Kähler geometry. Our choice of nearly Kähler geometry for this illustration is motivated
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by the fact that its behaviour is remarkably close [7] to all the phenomena we want to dis-
cuss in the context of the irreducible SOð3Þ geometries in dimension five.

A Riemannian geometry ðM; gÞ on a 2n-dimensional manifold M can be made more
special by an introduction of a metric compatible almost complex structure. This is a tensor
field J : TM ! TM which satisfies J 2 ¼ �id and gðJX ; JYÞ ¼ gðX ;Y Þ. The tensor J re-
duces the structure group from SOð2nÞ to UðnÞ and induces the distinguished inclusion of
the Lie algebra uðnÞ in soð2nÞ. This inclusion defines a class of a metric compatible connec-
tions G which preserve J. Here and in the following we will represent connections by means
of Lie-algebra-valued 1-forms on manifolds so, in the considered case, G A uðnÞnW1ðMÞ,
where uðnÞH soð2nÞ. The connections G are highly not unique. However, since all of them
may be considered as elements of soð2nÞnW1ðMÞ, i.e. as elements of the space in which

the Levi-Civita connection G
LC

resides, one can try to make G unique by the requirement
that in the decomposition

G
LC

¼ Gþ 1

2
Tð1:1Þ

the T-part has some special properties. In the considered case the uniqueness of G is
achieved by the demand that in the above decomposition

T A W3ðMÞ:ð1:2Þ

The 3-form T is then interpreted as a skew-symmetric torsion of the connection G. It fol-
lows that the decomposition (1.1)–(1.2) is possible only for a subclass of metric compatible
almost complex structures. They may be characterised by the condition

ð‘
LC

vJÞðvÞ ¼ 0 Ev A TM:

The metric compatible almost complex structures satisfying this condition are called nearly

Kähler. Their geometric properties are described in terms of the properties of the unique
uðnÞ-valued connection G defined by (1.1)–(1.2). In particular, the torsion-free case, T 1 0,
corresponds to Kähler geometries. Another type of the nearly Kähler structures may be
distinguished by specifying that the curvature of G belongs to a particular UðnÞ-irreducible
component of the tensor representation uðnÞnW2ðMÞ.

Our treatment of the irreducible SOð3Þ geometries in dimension five imitates the
above approach to the nearly-Kähler geometries. We first introduce an object, the ð3; 0Þ-
rank tensor 1, which reduces the SOð5Þ structure to the irreducible SOð3Þ. Although this
tensor has a di¤erent rank then J its geometric characterisation, which is a certain algebraic
quadratic identity on 1, resembles very much the quadratic condition J 2 ¼ �id. Using 1
we distinguish an inclusion of soð3Þ in soð5Þ. This maximal inclusion is used on a Riemann-
ian manifold endowed with 1 to distinguish a class of soð3Þ-valued metric connections G.
These are such that, in the decomposition (1.1), they have the skew-symmetric T-part. It
follows that such connections, if exist, are unique. Their existence is only possible for a par-
ticular class of tensors 1 characterised by the condition

ð‘
LC

v1Þðv; v; vÞ ¼ 0 Ev A TM:
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The organisation of the paper is reflected in the table of contents. The notation is
standard. However, depending on the context and esthetics of the presentation, we use
both the Schouten notation with the indices of tensors as well as the geometric, index-free
notation. Since all the time we are in the Riemannian category, we do not distinguish be-
tween covariant and contravariant tensors. This convention, when used in the formulae
written in the Schouten notation, enables as to identify tensors with upper and lower in-
dices. We will write them in the both positions depending on convenience. In the entire text
the Einstein summation convention is assumed.

2. Tensor 1 reducing O(5) to the irreducible SO(3)

The two obvious examples Mþ ¼ SUð3Þ=SOð3Þ and M� ¼ SLð3;RÞ=SOð3Þ of the ir-
reducible SOð3Þ structures should be supplemented by still another one, which in a certain
sense, is the simplest. One achieves this example by identifying vectors A in R5 with 3 � 3
symmetric traceless real matrices sðAÞ,

M5 ¼
�
sðAÞ A M3�3ðRÞ : sðAÞT ¼ sðAÞ; tr

�
sðAÞ

�
¼ 0

�
;ð2:1Þ

and defining the unique irreducible 5-dimensional representation r of SOð3Þ in R5 by

rðhÞA ¼ hsðAÞhT Eh A SOð3Þ; A A R5:ð2:2Þ

Then M0 ¼
�
SOð3Þ �r R

5
�
=SOð3Þ also has an irreducible SOð3Þ structure.

From now on we identify R5 with matrices M5 as in (2.1). Given an element A A R5

we consider its characteristic polynomial

PAðlÞ ¼ det
�
sðAÞ � lI

�
¼ �l3 þ gðA;AÞlþ 2

ffiffiffi
3

p

9
1ðA;A;AÞ:

This polynomial is invariant under the SOð3Þ-action given by the representation r of (2.2),

PrðhÞAðlÞ ¼ PAðlÞ:

Thus, all the coe‰cients of PAðlÞ, which are multilinear in A, are SOð3Þ-invariant. It is
convenient to choose a basis ei in R5 in such a way that the identification s is given by

R5 C A ¼ aiei 7! sðAÞ ¼

a1ffiffiffi
3

p � a4 a2 a3

a2 a1ffiffiffi
3

p þ a4 a5

a3 a5 �2
a1ffiffiffi

3
p

0
BBBBBBBBB@

1
CCCCCCCCCA
A M5:ð2:3Þ

After this convenient choice, the bilinear form g simply becomes

gðA;AÞ ¼ a2
1 þ a2

2 þ a2
3 þ a2

4 þ a2
5 ;ð2:4Þ
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and the ternary one 1 is given by

1ðA;A;AÞ ¼ 1

2
a1ð6a2

2 þ 6a2
4 � 2a2

1 � 3a2
3 � 3a2

5Þð2:5Þ

þ 3
ffiffiffi
3

p

2
a4ða2

5 � a2
3Þ þ 3

ffiffiffi
3

p
a2a3a5:

Both g and 1 are obviously SOð3Þ-invariant. Since g is the usual Riemannian metric on R5

the action r of (2.2) gives a nonstandard irreducible inclusion

i : SOð3Þ ,! Oð5Þ:ð2:6Þ

Remark 2.1. Although it is obvious we remark that

1ðA;A;AÞ ¼ 3
ffiffiffi
3

p

2
det

�
sðAÞ

�
:

In the following we consider a tensor 1ijk A
J3

R5 such that

1ðA;A;AÞ ¼ 1ijkaia jak:

A simple algebra leads to

Proposition 2.2. The tensor 1ijk has the following properties:

(i) It is totally symmetric, 1ijk ¼ 1ðijkÞ.

(ii) It is trace-free, 1ijj ¼ 0.

(iii) It satisfies the identity

1jki1lni þ 1lji1kni þ 1kli1jni ¼ gjkgln þ gljgkn þ gklgjn;

where gðA;AÞ ¼ gija
ia j.

Remark 2.3. It is worth noting that property (iii) after contraction with gkn and
1mkn, respectively, implies

41ijk1mjk ¼ 14gim;

41ilm1jln1kmn ¼ �31ijk:

Group Oð5Þ naturally acts on
J3

R5 by

1ijk 7! H l
i H m

j H n
k 1lmn; H A Oð5Þ:

Our aim now is to find the stabiliser G1 of tensor 1ijk under this action. We know that
SOð3ÞHG1. In the following we show that it is actually equal to SOð3Þ. To see this we
take a 1-parameter subgroup HðsÞ ¼ esX of SOð5Þ generated by an element X of the Lie
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algebra soð5Þ in the standard 5-dimensional representation of skew symmetric matrices.

Taking
d

dsjs¼0
of the stabilising equation 1ijk ¼ HðsÞ l

i HðsÞm
j HðsÞn

k1lmn we get the linear

equation

1ljkX l
i þ 1ilkX l

j þ 1ijlX
l

k ¼ 0ð2:7Þ

for the elements of the Lie algebra of the stabiliser. Its general solution is

X ¼ ðX i
j Þ ¼ x1E1 þ x2E2 þ x3E3 ¼ xI EI ;

where ðxI Þ, I ¼ 1; 2; 3, are real parameters and the matrices

E1 ¼

0 0 0 0
ffiffiffi
3

p

0 0 1 0 0

0 �1 0 0 0

0 0 0 0 1

�
ffiffiffi
3

p
0 0 �1 0

0
BBBBBB@

1
CCCCCCA;ð2:8Þ

E2 ¼

0 0
ffiffiffi
3

p
0 0

0 0 0 0 1

�
ffiffiffi
3

p
0 0 1 0

0 0 �1 0 0

0 �1 0 0 0

0
BBBBB@

1
CCCCCA; E3 ¼

0 0 0 0 0

0 0 0 2 0

0 0 0 0 1

0 �2 0 0 0

0 0 �1 0 0

0
BBBBB@

1
CCCCCA;

satisfy the soð3Þ commutation relations

½E1;E2� ¼ E3; ½E3;E1� ¼ E2; ½E2;E3� ¼ E1;

or ½EJ ;EK � ¼ eI
JKEI , for short. Thus, the intersection of the stabiliser with the SOð5Þ com-

ponent of Oð5Þ is equal to the irreducible SOð3Þ. Actually the stabiliser does not intersect
with the complement of SOð5Þ in Oð5Þ, as it is explained in the following lemma.

Lemma 2.4. The stabiliser of 1ijk is contained in SOð5Þ component of Oð5Þ.

Proof. Since the complement of SOð5Þ in Oð5Þ consists of elements of the form �g

such that g A SOð5Þ it is enough to prove that �g with g A SOð5Þ can not be in G1. Assum-
ing the opposite i.e. that g A SOð5Þ and �g A G1 we get the contradiction by the following
steps. The adjoint map Adg preserves soð3Þ. Thus it provides an orthogonal (with respect to
the Killing form) transformation of soð3Þ

Adgjsoð3Þ A SO
�
soð3Þ

�
; soð3Þ ¼ SpanðE1;E2;E3Þ:

On the other hand, any orthogonal transformation of our soð3Þ has the form Adh

for an element h A i
�
SOð3Þ

�
. So, g has its corresponding h A i

�
SOð3Þ

�
such that,

Adgjsoð3Þ ¼ Adhjsoð3Þ. Thus, Adgh�1 jsoð3Þ ¼ Id, so that the element gh�1 A SOð5Þ must satisfy
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gh�1X ¼ Xgh�1 EX A SpanðE1;E2;E3Þ:

Forcing gh�1 to satisfy this condition on the basis EJ for J ¼ 1; 2; 3, we find that gh�1 ¼ I .
Thus g ¼ h is in G1 which means that also �gg�1 ¼ �I is in G1. But �I A Oð5Þ sends 1ijk

to �1ijk, which gives the contradiction and finishes the proof. r

Thus we have the following proposition:

Proposition 2.5. The stabiliser of tensor 1ijk is the irreducible SOð3Þ included by i in

Oð5Þ.

2.1. The O(5) invariant characterisation of tensor 1. Since the stabiliser of 1ijk is the
irreducible SOð3Þ, its orbit under the Oð5Þ action is a 7-dimensional homogeneous space
Oð5Þ=i

�
SOð3Þ

�
. In this section we fully characterise this orbit among all the orbits of Oð5Þ

action in
J3

R5. On doing this we view 1ijk as a linear map

R5 C v 7! 1v A EndðR5Þ; ð1vÞij ¼ 1ijkvk:

Using this map we can rewrite the property (iii) of Proposition 2.2 characterising 1ijk to the
equivalent form

Ev A R5 12
v v ¼ gðv; vÞv:

The importance of this reformulation is justified by the following theorem.

Theorem 2.6. The Oð5Þ orbit of tensor 1ijk consists of all tensors �ijk for which the

associated linear map

R5 C v 7! �v A EndðR5Þ; ð �vÞij ¼ �ijkvk

satisfies the following three conditions:

(1) It is totally symmetric, i.e. gðu; �vwÞ ¼ gðw; �vuÞ ¼ gðu; �wvÞ.

(2) It is trace free trð �vÞ ¼ 0.

(3) For any vector v A R5

�2v v ¼ gðv; vÞv:ð2:9Þ

Remark 2.7. The Oð5Þ orbit of 1ijk, described invariantly in the above theorem,
consists of two disjoint SOð5Þ orbits: the orbit of 1ijk and the orbit of �1ijk. Indeed, both
tensorsG1ijk satisfy the three conditions characterising the Oð5Þ orbit and 1ijk can not be
sent to �1ijk via an element h A SOð5Þ. Otherwise the element �h preserves 1ijk and as such
belongs to G1 which contradicts Lemma 2.4.

Proof of Theorem. Let us consider tensor 1ijk for which 1ijkaia jak has the standard
form (2.5). Then its corresponding map 1v in the g-orthonormal basis ei of (2.3), is repre-
sented by the following matrices
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1e1
¼

�1 0 0 0 0

0 1 0 0 0

0 0 s 0 0

0 0 0 1 0

0 0 0 0 s

0
BBBBB@

1
CCCCCA; 1e2

¼

0 1 0 0 0

1 0 0 0 0

0 0 0 0 c

0 0 0 0 0

0 0 c 0 0

0
BBBBB@

1
CCCCCA;ð2:10Þ

1e3
¼

0 0 s 0 0

0 0 0 0 c

s 0 0 �b 0

0 0 �b 0 0

0 c 0 0 0

0
BBBBB@

1
CCCCCA; 1e4

¼

0 0 0 1 0

0 0 0 0 0

0 0 �b 0 0

1 0 0 0 0

0 0 0 0 b

0
BBBBB@

1
CCCCCA; 1e5

¼

0 0 0 0 s

0 0 c 0 0

0 c 0 0 0

0 0 0 0 b

s 0 0 b 0

0
BBBBB@

1
CCCCCA;

where s ¼ �1=2, b ¼ c ¼
ffiffiffi
3

p
=2. The advantage of introducing additional constant b will be

clear later in the proof.

Now, let us take an arbitrary tensor �ijk satisfying the three assumptions of Theorem
2.6. The theorem will be proven if we manage to construct an orthonormal basis
ðe1; . . . ; e5Þ in R5 in which the matrices �ej

take the same form (2.10) as the matrices 1ei
.

Lemma 2.8. For any pair of orthogonal vectors v, w the following identity holds:

gðv; vÞw ¼ 2 �2v w þ �w �vv:

Proof of Lemma. Applying (2.9) for the vector v þ rw ðr A RÞ we get

rgðv; vÞw þ r2gðw;wÞv ¼ r �2v w þ r2 �2wv þ r �v �wv þ r2 �v �ww þ r �w �vv þ r2 �w �vw:

The linear in r term of this identity when compared with the symmetry �wv ¼ �vw yields the
thesis. r

The 5-th order homogeneous polynomial detð �vÞ considered on the unit sphere
fv : gðv; vÞ ¼ 1g satisfies detð ��vÞ ¼ �detð �vÞ. Thus, it can not have a fixed sign everywhere
on the sphere and there exists a unit vector e2 such that

detð �e2
Þ ¼ 0:

Let

e1 :¼ �e2
e2

and let e4 be the unit vector in the kernel of �e2
:

�e2
e4 ¼ 0:

Lemma 2.9. The vectors ðe1; e2; e4Þ are unit and pairwise orthogonal.

Proof.

gðe4; e1Þ ¼ gðe4; �e2
e2Þ ¼ gðe2; �e2

e4Þ ¼ 0;

gðe4; e2Þ ¼ gðe4; �2e2
e2Þ ¼ gðe2; �2e2

e4Þ ¼ 0:
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Using Lemma 2.8 for the unit orthogonal vectors w ¼ e2 and v ¼ e4 we get e2 ¼ �e2 �e4
e4

and so

gðe2; e1Þ ¼ gðe2; �e2 �e2 �e4
e4Þ ¼ gð �2e2

e2; �e4
e4Þ ¼ 0:

Finally, the vector e1 is unit:

gðe1; e1Þ ¼ gð �e2
e2; �e2

e2Þ ¼ gð �2e2
e2; e2Þ ¼ 1: r

The space Spanðe1; e2; e4Þ is �e2
-invariant and �e2

restricted to this invariant space
is trace-free; the same is true for the restriction of �e2

to the orthogonal complement
Spanðe1; e2; e4Þ?. So, there exists a number cf 0 and a pair of unit vectors ðe3; e5Þ such that

�e2
e3 ¼ ce5; �e2

e5 ¼ ce3; cf 0

and the system ðe1; e2; e3; e4; e5Þ is the orthonormal basis of R5. The matrix of �e2
in this

basis has the form as in (2.10), but the constant c is not fixed.

Now, the use of the assumed properties of ð �ijkÞ and the successive application of
Lemma 2.8 proves that the matrices �e1

; . . . ; �e5
have the form of (2.10) with the following

restrictions to the constants ðb; c; sÞ:

s ¼ � 1

2
; c2 ¼ 3

4
; b2 ¼ c2:

If b ¼ �c then one can perform the following change of basis:

ðe1; e2; e3; e4; e5Þ 7! ðe1; e2;�e3;�e4;�e5Þ

resulting the change b 7! ð�bÞ in the matrices (2.10).

This finishes the proof of Theorem 2.6. r

Corollary 2.10. The tensor 1ijk is fully determined by its properties listed in Proposi-

tion 2.2.

3. The SO(3) structure in R5 and the representations of SO(3)

The last corollary motivates the following definition.

Definition 3.1. An SOð3Þ structure on R5 is a pair ðg;1Þ where g is a Riemannian
metric gðA;AÞ ¼ gija

ia j and 1 is a ternary form 1ðA;A;AÞ ¼ 1ijkaia jak such that

(i) 1ijk ¼ 1ðijkÞ,

(ii) 1ijj ¼ 0,

(iii) 1jki1lni þ 1lji1kni þ 1kli1jni ¼ gjkgln þ gljgkn þ gklgjn.
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In this section we will use an SOð3Þ structure to define representations of SOð3Þ inN2
R5. First, we recall the following well known theorem.

Theorem 3.2. All the irreducible finite-dimensional representations of SOð3Þ are odd

dimensional. There is a unique irreducible representation of SOð3Þ in space R2lþ1 for each

l A f0; 1; 2; 3; . . .g. The tensor product R2l1þ1 nR2l2þ1 decomposes onto the SOð3Þ-irreducible

components according to the following Wigner formula:

R2l1þ1 nR2l2þ1 ¼
Ljl1þl2j

l¼jl1�l2j
R2lþ1:ð3:1Þ

The 5-dimensional irreducible representation r of SOð3Þ with the carrier space

V1
5 :¼ R5

was already considered in (2.2). To find the projectors onto the irreducible components of

the tensor representations
N2

R5,
V2

R5 and
J2

R5 we use the SOð3Þ structure ðg;1Þ. As-
sociated with 1 is the endomorphism

1̂1 :
N2

R5 !
N2

R5;

W ik 7!1̂1 41ijm1klmW jl ;

which preserves the decomposition
N2

R5 ¼
V2

R5 l
J2

R5. Now, a simple algebra leads
to the following proposition.

Proposition 3.3.
N2

R5 ¼
V2

3 l
V2

7 l
J2

1 l
J2

5 l
J2

9, where

J2
1 ¼ fS A

N2
R5 j 1̂1ðSÞ ¼ 14 � Sg ¼ fS ¼ l � g; l A Rg;V2

3 ¼ fF A
N2

R5 j 1̂1ðFÞ ¼ 7 � Fg ¼ soð3Þ ¼ SpanðE1;E2;E3Þ;J2
5 ¼ fS A

N2
R5 j 1̂1ðSÞ ¼ �3 � Sg;V2

7 ¼ fF A
N2

R5 j 1̂1ðFÞ ¼ �8 � Fg ¼: n;J2
9 ¼ fS A

N2
R5 j 1̂1ðSÞ ¼ 4 � Sg:

All the representations
V2

j H
V2

R5 and
J2

k H
J2

R5 are irreducible; the indices j and k de-

note their dimensions.

Remark 3.4. Note that the tensor 1̂1 defines a nondegenerate SOð3Þ invariant scalar
product ðF jF 0Þ ¼ �

�
1̂1ðFÞ5�F 0� of signature ð3; 7Þ on the space of 2-forms

V2
R5 ¼ soð5Þ ¼ soð3Þl n ¼

V2
3 l

V2
7:ð3:2Þ

Although this scalar product di¤ers from the one associated with the Killing form
kðF ;F 0Þ ¼ �6 � ðF5�F 0Þ, in both of them we have soð3Þ ? n.
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Remark 3.5. In agreement with the above notation we will denote the irreducible
representation R5 by

V1
5 ¼ R5 ¼

V1
R5:

Using the SOð3Þ structure ðg;1Þ we can also build up an endomorphism

�11 :
J2

R5 !
J2

R5

given by

S kl 7!
�11

41klm1ijmS ij:

It is independent of 1̂1jJ2 R5 . Note that �11 is a composition �11 ¼ 41 � �11 of two maps

J2
R5 !

�11 V1
5 !1

J2
5

given by

�11ðSÞi ¼ 1ijkSjk; 1ðvÞ ¼ 1v:ð3:3Þ

We have

kerð�11Þ ¼
J2

1 l
J2

9 ; imð�11Þ ¼
V1

5:

Thus �11 restricted to
J2

5 is an isomorphic intertwiner between the representations
J2

5 andV1
5. Furthermore we have:

41 � �11jJ2
5
¼ 14 � id:

Summarising we have

Proposition 3.6. The eigenvalues of �11 on the representations
J2

1 l
J2

9 and
J2

5 are 0
and 14, respectively.

4. The SO(3) structure on a manifold

Definition 4.1. An SOð3Þ structure on a 5-dimensional Riemannian manifold ðM; gÞ
is a structure defined by means of a rank 3 tensor field 1 for which the associated linear
map

TM C v 7! 1v A EndðTMÞ; ð1vÞij ¼ 1ijkvk;

satisfies the following three conditions:

(1) It is totally symmetric, i.e. gðu;1vwÞ ¼ gðw;1vuÞ ¼ gðu;1wvÞ.

(2) It is trace free trð1vÞ ¼ 0.
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(3) For any vector field v A TM

12
v v ¼ gðv; vÞv:

Definition 4.2. Two SOð3Þ structures ðM; g;1Þ and ðM; g;1Þ defined on two respec-
tive 5-manifolds M and M are (locally) equivalent i¤ there exists a (local) di¤eomorphism
f : M ! M such that

f�ðgÞ ¼ g and f�ð1Þ ¼ 1:

If M ¼ M, g ¼ g, 1 ¼ 1 the equivalence f is called a (local) symmetry of ðM; g;1Þ. The
group of (local) symmetries is called a symmetry group of ðM; g;1Þ.

In view of Corollary 2.10, Theorem 2.6 and Proposition 2.2 the tensor field 1 reduces
the structure group of the bundle of orthonormal frames over M to the irreducible SOð3Þ.
Thus, locally, we can represent an SOð3Þ structure on M by a coframe

y ¼ ðy iÞ ¼ ðy1; y2; y3; y4; y5Þð4:1Þ

on M, given up to the SOð3Þ transformation

TM nW1ðMÞ C y 7! ~yy ¼ rðhÞy:ð4:1Þ

For such a class of coframes the Riemannian metric g is

g ¼ y2
1 þ y2

2 þ y2
3 þ y2

4 þ y2
5 ;

and the tensor 1, reducing the structure group from SOð5Þ to SOð3Þ, is

1 ¼ 1

2
y1ð6y2

2 þ 6y2
4 � 2y2

1 � 3y2
3 � 3y2

5Þ þ
3

ffiffiffi
3

p

2
y4ðy2

5 � y2
3Þ þ 3

ffiffiffi
3

p
y2y3y5:ð4:3Þ

Definition 4.3. An orthonormal coframe ðy1; y2; y3; y4; y5Þ in which the tensor 1 of
an SOð3Þ structure ðM; g;1Þ is of the form (4.3) is called a coframe adapted to ðM; g;1Þ, an
adapted coframe, for short.

4.1. Topological obstruction. The determination of topological obstructions for ex-
istence of an irreducible SOð3Þ structure on a 5-dimensional manifold is presented in a sep-
arate paper of one of us [2]. For the completeness of the present paper we quote the result
here. In the theorem below we denote by pj the jth Pontriagin class.

Theorem 4.4. Let M be a 5-dimensional Spin manifold. There exists an irreducible

SOð3Þ structure on M i¤ M admits the standard SOð3Þ structure (i.e. TM splits on the rank 2
trivial bundle and a rank 3 complement) and

p1ðTMÞ ¼ 5~pp; where ~pp A H 4ðM;ZÞ:

Remark 4.5. The irreducible inclusion i
�
SOð3Þ

�
H SOð5Þ induces the irreducible

inclusion of ~ii
�
Spinð3Þ

�
H Spinð5Þ. Assuming that w2ðTMÞ ¼ 0, the SOð5Þ structure on M
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can be lifted to the Spinð5Þ structure. It further may be reduced to the ~ii
�
Spinð3Þ

�
structure

on M, provided that M admits an irreducible SOð3Þ structure.

4.2. so(3) connection. Given an SOð3Þ structure as above, we consider an soð3Þ con-
nection on M represented locally by means of an soð3Þ-valued 1-form G given by

G ¼ ðG i
j Þ ¼ g1E1 þ g2E2 þ g3E3;ð4:4Þ

where g1, g2, g3 are 1-forms on M and EI with I ¼ 1; 2; 3 are given by (2.8). This con-
nection, having values in soð3ÞH soð5Þ, is necessarily metric. Via the Cartan structure
equations,

dy i þ G i
j5y j ¼ T i;ð4:5Þ

dG i
j þ G i

k5Gk
j ¼ K i

j ;ð4:6Þ

it defines the torsion 2-form T i and the soð3Þ-curvature 2-form K i
j . Using these

forms we define the torsion tensor T i
jk A ðR5 n

V2
R5Þ and the soð3Þ-curvature tensor

rI
jk A

�
soð3Þn

V2
R5

�
, respectively, by

T i ¼ 1

2
T i

jky
j5yk

and

rI ¼ dgI þ 1

2
eI

JKg
J5gK ¼

ffiffiffi
3

p

2
rI

jky
j5yk:ð4:7Þ

(Note that, K ¼ ðK i
j Þ ¼ r1E1 þ r2E2 þ r3E3:) The connection satisfies the first Bianchi

identity

K i
j 5y j ¼ DT ið4:8Þ

and the second Bianchi identity

DK i
j ¼ 0;ð4:9Þ

with the covariant di¤erential defined by

DT i ¼ dT i þ G i
j5T j; DK i

j ¼ dK i
j þ G i

k5K k
j � K i

k5Gk
j :

Since the irreducible SOð3Þ was defined by the demand that it preserves g and 1 we
have

Proposition 4.6. Every soð3Þ connection G of (4.4) is metric

‘
G

vðgÞ1 0
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and preserves tensor 1

‘
G

vð1Þ1 0 Ev A TM:

4.3. SO(3) structures with vanishing torsion. In this section we find all SOð3Þ struc-
tures ðM; g;1Þ which admit soð3Þ connections G of (4.4) with vanishing torsion

T i 1 0:ð4:10Þ

Assuming that T i is identically zero and using the first Bianchi identity (4.8) for G we
easily find that a lot of components of the soð3Þ-curvature rI vanish. Explicitly, we find that
in such a case the curvature forms ðr1; r2; r3Þ are expressible in terms of only one function
r1

15 and read

r1 ¼ r1
15k

1; r2 ¼ r1
15k

2; r3 ¼ r1
15k

3;ð4:11Þ

where

k1 ¼
ffiffiffi
3

p
y15y5 þ y25y3 þ y45y5;

k2 ¼
ffiffiffi
3

p
y15y3 þ y25y5 þ y35y4;

k3 ¼ 2y25y4 þ y35y5:

It further follows, that under the assumption of (4.10), the second Bianchi identity (4.9) im-
plies that

r1
15 ¼ const:

This means that r1
15 is a real parameter and that there is only a 1-parameter family of SOð3Þ

structures with vanishing torsion. This family equips the principal fibre bundle FðMÞ of
SOð3Þ frames

SOð3Þ ! FðMÞ !p M

over M with an soð3Þ-connection

~GG ¼ rðhÞGrðhÞ�1 � drðhÞrðhÞ�1ð4:12Þ

¼ ~gg1E1 þ ~gg2E2 þ ~gg3E3:

This, together with the lifted coframe

~yy ¼ rðhÞyð4:13Þ

of (4.2), satisfies the following di¤erential system:
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d~yy1 ¼ �
ffiffiffi
3

p
~gg15~yy5 �

ffiffiffi
3

p
~gg25~yy3;

d~yy2 ¼ �~gg15~yy3 � ~gg25~yy5 � 2~gg35~yy4;

d~yy3 ¼ ~gg15~yy2 þ
ffiffiffi
3

p
~gg25~yy1 � ~gg25~yy4 � ~gg35~yy5;

d~yy4 ¼ �~gg15~yy5 þ ~gg25~yy3 þ 2~gg35~yy2;

d~yy5 ¼
ffiffiffi
3

p
~gg15~yy1 þ ~gg15~yy4 þ ~gg25~yy2 þ ~gg35~yy3;

d~gg1 ¼ �~gg25~gg3 þ r1
15~kk

1;

d~gg2 ¼ �~gg35~gg1 þ r1
15~kk

2;

d~gg3 ¼ �~gg15~gg2 þ r1
15~kk

3;

ð4:14Þ

where

~kk1 ¼
ffiffiffi
3

p
~yy15~yy5 þ ~yy25~yy3 þ ~yy45~yy5;

~kk2 ¼
ffiffiffi
3

p
~yy15~yy3 þ ~yy25~yy5 þ ~yy35~yy4;ð4:15Þ

~kk3 ¼ 2~yy25~yy4 þ ~yy35~yy5:

The eight linearly independent 1-forms ð~yy1; ~yy2; ~yy3; ~yy4; ~yy5; ~gg1; ~gg2; ~gg3Þ constitute a basis of
1-forms on the eight dimensional manifold FðMÞ. Moreover, since equations (4.14) have
only constant coe‰cients on their right-hand sides, the basis ð~yy1; ~yy2; ~yy3; ~yy4; ~yy5; ~gg1; ~gg2; ~gg3Þ
can be identified with a basis of left invariant forms on a Lie group to which the bundle
FðMÞ is (locally) di¤eomorphic. Thus we may identify FðMÞ with a local Lie group, the
structure constants of which can be read o¤ from the system (4.14)–(4.15). We find that,
depending on the parameter r1

15, these structure constants correspond to

(i) SOð3Þ �r R
5 group i¤ r1

15 ¼ 0,

(ii) SUð3Þ group i¤ r1
15 > 0,

(iii) SLð3;RÞ group i¤ r1
15 < 0.

It further follows from the system (4.14)–(4.15) that the tensors

~gg ¼ ~yy2
1 þ ~yy2

2 þ ~yy2
3 þ ~yy2

4 þ ~yy2
5 ;ð4:16Þ

and

~11 ¼ 1

2
~yy1ð6~yy

2

2 þ 6~yy
2

4 � 2~yy
2

1 � 3~yy
2

3 � 3~yy
2

5Þ þ
3

ffiffiffi
3

p

2
~yy4ð~yy

2

5 � ~yy
2

3Þ þ 3
ffiffiffi
3

p
~yy2
~yy3
~yy5ð4:17Þ

on FðMÞ are preserved under the Lie transport along the fibres of SOð3Þ ! FðMÞ !p M.
Moreover, these tensors are degenerate in precisely vertical directions. Thus they descend to
M defining, respectively, g and 1, i.e. an SOð3Þ structure, there. Locally, depending on the
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sign of r1
15, this structure is isomorphic to the homogeneous model M0 in case (i), the ho-

mogeneous model Mþ in case (ii) and the homogeneous model M� in case (iii).

Theorem 4.7. All SOð3Þ structures with vanishing torsion are locally isometric to one

of the symmetric spaces

M ¼ G=SOð3Þ;

where

G ¼ SOð3Þ �r R
5; SUð3Þ or SLð3;RÞ:

The Riemannian metric g and the tensor 1 defining the SOð3Þ structure are obtained via

(4.16)–(4.17) by means of the left invariant forms ð~yy1; ~yy2; ~yy3; ~yy4; ~yy5; ~gg1; ~gg2; ~gg3Þ on G, which

satisfy (4.14)–(4.15). In all three cases the metric g is Einstein. It is flat in case of

G ¼ SOð3Þ �r R
5. In the other two cases the metric is not even conformally flat.

Proof. Only the last three sentences of the theorem remain to be proven. Since there
is no torsion, the Levi-Civita connection for g, when written in terms of the coframe
ð~yy1; ~yy2; ~yy3; ~yy4; ~yy5; ~gg1; ~gg2; ~gg3Þ, is simply ~GG of (4.12). Then, the direct calculation shows that
the metric is Einstein with both the Ricci scalar and the Weyl tensor being proportional,
modulo a constant factor, to r1

15. r

Remark 4.8. According to the last sentence of the theorem the spaces MG corre-
sponding to nontrivial SOð3Þ structures without torsion are not of constant curvature for
the Levi-Civita connection of g.

Remark 4.9. Note that

� ~KK0 ¼ ~kkI EIð4:18Þ

is the curvature of the canonical connection [5] on the symmetric space SUð3Þ=SOð3Þ.
Moreover, the forms ð~yy1; y2; ~yy3; ~yy4; ~yy5; ~gg1; ~gg2; ~gg3Þ define an absolute teleparallelism on
FðMÞ. They can be collected to an suð3Þ-valued matrix

GCartan ¼
0 ~gg3 ~gg2

�~gg3 0 ~gg1

�~gg2 �~gg1 0

0
B@

1
CAþ i

~yy1ffiffiffi
3

p � ~yy4 ~yy2 ~yy3

~yy2
~yy1ffiffiffi

3
p þ ~yy4 ~yy5

~yy3 ~yy5 �2
~yy1ffiffiffi

3
p

0
BBBBBBBBB@

1
CCCCCCCCCA
;ð4:19Þ

which defines an suð3Þ-valued Cartan connection on the bundle SOð3Þ ! FðMÞ ! M. The
curvature of this connection

WCartan ¼ dGCartan þ GCartan5GCartanð4:20Þ
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is

WCartan ¼ ðr1
15 � 1Þ

0 ~kk3 ~kk2

�~kk3 0 ~kk1

�~kk2 �~kk1 0

0
B@

1
CA

and it vanishes i¤ the corresponding soð3Þ connection G has constant positive curvature
determined by r1

15 ¼ 1.

Remark 4.10. Remark 4.9 can be generalised leading to the description of SOð3Þ
geometries with arbitrary soð3Þ connection in terms of an suð3Þ Cartan connection on
the fibre bundle SOð3Þ ! FðMÞ ! M. Indeed, given an SOð3Þ geometry with the adapted
coframe ðy1; y2; y3; y4; y5Þ and the soð3Þ connection G we define the lifted coframe
ð~yy1; ~yy2; ~yy3; ~yy4; ~yy5Þ via (4.13) and the 1-forms ð~gg1; ~gg2; ~gg3Þ via (4.12). Then, the suð3Þ-valued
Cartan connection on FðMÞ is given by equation (4.19). The curvature (4.20) of this con-
nection satisfies the Bianchi identity

DWCartan ¼ dWCartan þ GCartan5WCartan �WCartan5GCartan 1 0ð4:21Þ

and naturally splits onto the real and imaginary parts

WCartan ¼ ReðWCartanÞ þ isð ~TTÞ ¼
0 ~rr3 ~rr2

�~rr3 0 ~rr1

�~rr2 �~rr1 0

0
B@

1
CAþ i

~TT 1ffiffiffi
3

p � ~TT 4 ~TT 2 ~TT 3

~TT 2
~TT 1ffiffiffi

3
p þ ~TT 4 ~TT 5

~TT 3 ~TT 5 �2
~TT 1ffiffiffi

3
p

0
BBBBBBBBB@

1
CCCCCCCCCA
:

The imaginary part is simply the lift of the torsion T of the soð3Þ-connection G,

~TT ¼ rðhÞT :

The real part can be collected to a 5 � 5 matrix

~RR ¼ ~rr1E1 þ ~rr2E2 þ ~rr3E3:

This satisfies

~RR ¼ ~KK � ~KK0; ~KK ¼ rðhÞKrðhÞ�1;ð4:22Þ

where K is the soð3Þ curvature of G and ~KK0 is given by (4.18). Thus, ~RR is the lift of the soð3Þ
curvature K shifted by the curvature � ~KK0 of the canonical connection on the symmetric
space SUð3Þ=SOð3Þ.

4.4. spin(3) connection. The even Cli¤ord algebra Cl0ð5; 0Þ has a 4-dimensional
faithful representation in which the orthonormal vectors ðe1; e2; e3; e4; e5Þ may be repre-
sented by
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e1 ¼

0 0 1 0

0 0 0 �1

1 0 0 0

0 �1 0 0

0
BBB@

1
CCCA; e2 ¼

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA;ð4:23Þ

e3 ¼

0 0 �i 0

0 0 0 i

i 0 0 0

0 �i 0 0

0
BBB@

1
CCCA; e4 ¼

0 �i 0 0

i 0 0 0

0 0 0 �i

0 0 i 0

0
BBB@

1
CCCA; e5 ¼

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

0
BBB@

1
CCCA:

One checks, by direct calculations, that

e2
i ¼ 1; eiej þ ejei ¼ 0; j 3 i ¼ 1; 2; 3; 4; 5:

Now, the double covering homomorphism Spinð5Þ ! SOð5Þ induces the isomor-
phism of the Lie algebras spinð5Þ ! soð5Þ. By means of this isomorphism an element
eiej A spinð5Þ, i < j, is mapped to ð fijÞ—a 5 � 5 antisymmetric matrix having value 1 at its
entry fij, value �1 at fji and value 0 in all the remaining entries. This implies that the basis
of the Lie algebra spinð3Þ corresponding to the basis ðE1;E2;E3Þ of the irreducible soð3Þ is

E1 ¼ 1

2
ð

ffiffiffi
3

p
e1e5 þ e2e3 þ e4e5Þ; E2 ¼ 1

2
ð

ffiffiffi
3

p
e1e3 þ e2e5 þ e3e4Þ;

E3 ¼ 1

2
ð2e2e4 þ e3e5Þ:

Explicitly:

E1 ¼ 1

2

0 i �
ffiffiffi
3

p
i

i 0 �i �
ffiffiffi
3

pffiffiffi
3

p
�i 0 �i

i
ffiffiffi
3

p
�i 0

0
BBB@

1
CCCA;ð4:24Þ

E2 ¼ 1

2

i
ffiffiffi
3

p
�1 0 �1

1 i
ffiffiffi
3

p
�1 0

0 1 �i
ffiffiffi
3

p
1

1 0 �1 �i
ffiffiffi
3

p

0
BBB@

1
CCCA; E3 ¼ 1

2

2i 0 i 0

0 �2i 0 i

i 0 2i 0

0 i 0 �2i

0
BBB@

1
CCCA:

Thus we have

spinð3Þ ¼ SpanðE1;E2;E3ÞH spinð5Þ ¼ Span
1

2
eiej; i < j ¼ 1; 2; . . . ; 5

� �
:

Now, given an SOð3Þ structure ðM; g;1Þ and an soð3Þ connection G ¼ g1E1 þ g2E2 þ g3E3,
we associate with it a connection

Gspin ¼ g1E1 þ g2E2 þ g3E3 A spinð3Þð4:25Þ
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which we call spinð3Þ connection. This connection will be used in Section 7 to define cova-
riantly constant spinor fields on M.

5. Characteristic connection

Suppose now that we are given an SOð3Þ structure ðM; g;1Þ on a 5-dimensional man-

ifold M. This defines the Levi-Civita connection G
LC

which, having values in soð5Þ, is an

element G
LC

ijk of soð5ÞnR5 ¼
V2

R5 nR5. In the following we will be only interested in a
subclass of SOð3Þ structures, which we term nearly integrable.

Definition 5.1. An SOð3Þ structure ðM; g;1Þ is called nearly integrable i¤

ð‘
LC

v1Þðv; v; vÞ1 0ð5:1Þ

for the Levi-Civita connection ‘
LC

.

The condition (5.1), when written in an adapted coframe (4.1), is

G
LC

mð ji1klÞm 1 0:ð5:2Þ

This motivates an introduction of the map

1 0 :
V2

R5 nR5 7!
J4

R5

such that

1 0ðG
LC

Þijkl ¼ 12G
LC

mð ji1klÞmð5:3Þ

¼ G
LC

mji1mkl þ G
LC

mki1jml þ G
LC

mli1jkm

þ G
LC

mij1mkl þ G
LC

mkj1iml þ G
LC

mlj1ikm

þ G
LC

mik1mjl þ G
LC

mjk1iml þ G
LC

mlk1ijm

þ G
LC

mil1mjk þ G
LC

mjl1imk þ G
LC

mkl1ijm:

We have the following proposition.

Proposition 5.2. An SOð3Þ structure ðM; g;1Þ is nearly integrable if and only if its

Levi-Civita connection G
LC

A ker1 0.

It is worthwhile to note that each of the last four rows of (5.3) resembles the l.h.s. of
equality (2.7). Thus, soð3ÞnR5 H ker1 0. Due to the first equality in (5.3) we also haveV3

R5 H ker1 0. It further follows that ker1 0 ¼ ½soð3ÞnR5� þ
V3

R5. Now, introducing
the map

69Bobieński and Nurowski, Irreducible SOð3Þ geometry in dimension five



�11 : ker1 0 !
N2

R5

given by

�11ðG
LC

Þil ¼ 1ijk G
LC

ljk

and observing that ker �11 ¼
V3

R5 we get the SOð3Þ invariant decomposition

ker1 0 ¼ ½soð3ÞnR5�l
V3

R5:

This is the base for the following proposition.

Proposition 5.3. The Levi-Civita connection G
LC

of a nearly integrable SOð3Þ structure

ðM; g;1Þ uniquely decomposes onto

G
LC

¼ Gþ 1

2
T ;ð5:4Þ

where

G A soð3ÞnR5 and T A
V3

R5 ¼ ker �11:

The decomposition (5.4) of the Levi-Civita connection G
LC

of a nearly integrable
SOð3Þ structure defines an soð3Þ connection G. Rewriting the Cartan structure equation

dy i þ G
LC

i
j 5y j ¼ 0

for G
LC

into the form

dy i þ G i
j5y j ¼ 1

2
T i

jky
j5yk

enables us to interpret T as the totally skew symmetric torsion of G.

Definition 5.4. An soð3Þ connection G of an SOð3Þ structure ðM; g;1Þ is called a
characteristic connection if its torsion Tijk is totally skew symmetric.

The consideration of this section can be summarised in

Theorem 5.5. Among all SOð3Þ structures only the nearly integrable ones admit char-

acteristic connection G. Every nearly integrable SOð3Þ structure defines G uniquely.

Remark 5.6. Note, that out of a priori 50 independent components of the Levi-

Civita connection G
LC

, the nearly integrable condition (5.1) excludes 25. Thus, heuristi-
cally, the nearly integrable SOð3Þ structures constitute ‘a half ’ of all the possible SOð3Þ
structures.

Remark 5.7. Note, that given a nearly integrable SOð3Þ structure its totally skew
symmetric torsion Tijk defines the torsion 3-form
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T ¼ 1

6
Tijky

i5y j5yk:

Since V3
R5 ¼

V2
R5 ¼

V2
3 l

V2
7

we have two kinds of skew symmetric torsions of ‘pure type’—those for which T belongs to
the representation

V2
3 and those whose T is in

V2
7.

Note that for an SOð3Þ structure with arbitrary soð3Þ connection its torsion Tijk

belongs to
V2

R5 nR5. Thus, according to the discussion at the beginning of this section,
under the action of SOð3Þ, such Tijk satisfy

Tijk A
V2

R5 nR5 ¼
�
½soð3ÞnR5�l

V3
R5

�
lR25:

Obviously, R25 further decomposes onto irreducibles: R25 ¼ R5 lR9 lR11.

We close this section with the analysis of the SOð3Þ decomposition of the curvature

K i
j ¼ 1

2
K i

jkly
k5y l ¼ dG i

j þ G i
k5Gk

j

of the characteristic connection G. Since Kijkl A soð3Þn
V2

R5, this is given by

Proposition 5.8. The projectors onto the irreducible components of the decomposition

soð3Þn
V2

R5 G
J2

1 l
V2

3 l
V2

7 l
J2

5 l
J2

9 l
V1

5ð5:5Þ

are:

Kijkl 7! K½ijkl � A
V4

R5 ¼
V1

5;

Kijkl 7! Kijil ¼: kjl 7! k½ jl � A
V2

3 l
V2

7;

Kijkl 7! Kijil ¼ kjl 7! kð jlÞ �
1

5
kiigjl

� �
A
J2

5 l
J2

9 ;

Kijkl 7! Kijil ¼ kjl 7! kii A
J2

1 :

Remark 5.9. Note that the curvature tensor decomposition (5.5) is an analog,
but not just the refinement, of the standard Riemann tensor components. The soð3Þ-
connection, we investigate, is not in general (compare Section 4.3 for the exception) the
torsion free connection and so the curvature does not have the usual Riemann tensor
symmetries.

6. Homogeneous examples

In the present section we look for examples of nearly integrable SOð3Þ structures ad-
mitting transitive symmetry groups.
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Using the fact that the possible subgroups of SOð3Þ may have dimensions 0, 1, 3 we
get

Proposition 6.1. A transitive symmetry group G of an SOð3Þ structure may have the

dimension 5, 6 or 8.

6.1. Examples with 8-dimensional symmetry group. If the group of transitive
symmetries G is 8-dimensional, the SOð3Þ frame bundle FðMÞ may be identified with G.
Then, the problem of finding all the examples with such group of symmetries is equivalent

to find those Gs for which the basis of left invariant forms ð~yy1; ~yy2; ~yy3; ~yy4; ~yy5; ~gg1; ~gg2; ~gg3Þ sat-
isfies the pull-backed Cartan equations (4.4)–(4.6) with the torsion coe‰cients Tijk and the
curvature coe‰cients rI

jk constant on G. This is a purely algebraic problem with the follow-
ing solution.

Proposition 6.2. There are only three di¤erent examples of nearly integrable SOð3Þ
geometries with 8-dimensional symmetry group. These are the torsion-free models:

Mþ ¼ SUð3Þ=SOð3Þ; M0 ¼
�
SOð3Þ �r R

5
�
=SOð3Þ; M� ¼ SLð3;RÞ=SOð3Þ:

6.2. Examples with 6-dimensional symmetry group. To obtain all the examples with
6-dimensional transitive symmetry groups we do as follows. We further reduce the lifted
system (4.4)–(4.6) from the SOð3Þ frame bundle FðMÞ to a 6-dimensional group G fibred
over M. We will identify G with the transitive symmetry group of the considered structure.
Thus, M will be a homogeneous space

M ¼ G=H

where H is a 1-dimensional subgroup of G.

The reduction of the lifted system (4.4)–(4.6) from FðMÞ to G implies that on G, the
two of the connection 1-forms ð~gg1; ~gg2; ~gg3Þ, say ~gg1 and ~gg2, must be R-linearly dependent on
the lift of the adapted coframe ð~yy1; ~yy2; ~yy3; ~yy4; ~yy5Þ. Thus, in such case, the basis for 1-forms
on G is ð~yy1; ~yy2; ~yy3; ~yy4; ~yy5; ~gg3Þ. It is subject to the lift of the structure equations (4.4)–(4.6).
One of the integrability conditions for these equations requires that ~gg1 and ~gg2 must be of the
form

~gg1 ¼ �b~yy3 þ a~yy5;

~gg2 ¼ a~yy3 þ b~yy5;
ð6:1Þ

where a; b A R.

Due to the fact that all the coe‰cients in the pullback of the Cartan structure equa-
tions (4.4)–(4.6) are constant on G, the closure of these equations implies the following
proposition.

Proposition 6.3. All SOð3Þ nearly integrable structures with 6-dimensional symmetry

group have (skew symmetric) torsion of the form
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T ¼ t1y
15y25y4 þ t2y

15y35y5:

There are three families of such geometries:

(1) b ¼ t1 ¼ t2 ¼ 0, and a arbitrary;

(2) a ¼ b ¼ 0 and t1, t2 arbitrary;

(3) a ¼ 0, b ¼ t1 � 2t2

2
ffiffiffi
3

p and t1, t2 arbitrary.

Below we discuss all possibilities.

The point (1) of Proposition 6.3. In this case the torsion is obviously zero and the
soð3Þ curvature form is

K ¼ �a2½k1 � E1 þ k2 � E2 þ k3 � E3�;

where k1, k2, k3 are given by (4.11). Thus, in this case, we reconstruct two of the three tor-
sion-free examples. For a ¼ 0 the respective SOð3Þ structure is equivalent to M0. For a3 0
we reconstruct the structure M� ¼ SLð3;RÞ=SOð3Þ. The latter case corresponds to the fol-
lowing 6-dimensional subgroup of SLð3;RÞ:

G ¼ M ¼
d e f

g h k

0 0 m

0
B@

1
CA : det M ¼ 1

8><
>:

9>=
>;; H ¼ SOð2Þ ¼

cos t sin t 0

�sin t cos t 0

0 0 1

0
B@

1
CA

8><
>:

9>=
>;:

The point (2) of Proposition 6.3. In this case an invariant coframe ð~yy1; . . . ; ~yy5; ~gg3Þ on
G satisfies the following di¤erential system:

d~yy1 ¼ t1
~yy25~yy4 þ t2

~yy35~yy5;

d~yy2 ¼ �t1
~yy15~yy4 þ 2~yy45~gg3;

d~yy3 ¼ �t2
~yy15~yy5 þ ~yy55~gg3;

d~yy4 ¼ t1
~yy15~yy2 � 2~yy25~gg3;

d~yy5 ¼ t2
~yy15~yy3 � ~yy35~gg3;

d~gg3 ¼ � t1t2

2
ð~yy35~yy5 þ 2~yy25~yy4Þ:

The symmetry group G ¼ Gðt1; t2Þ depends on the torsion parameters ðt1; t2Þ. We depict the
possible Gs on the ðt1; t2Þ-plane in Figure 1.

Below we discuss each Gðt1; t2Þ separately.

(i) t1t2ðt1 � 2t2Þ3 0. In this case G is always of the form
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G ¼ G1 � G2;ð6:2Þ

where Gj is either SOð3Þ or SOð1; 2Þ—see Figure 1. There is a standard inclusion of SOð2Þ
in both of the above groups. The inclusion of H ¼ SOð2Þ in the product G is given by
SOð2Þ C h 7! ðh2; hÞ A G1 � G2. We consider the standard 3-dimensional representations of
soð1; 2Þ and soð3Þ so that the Maurer-Cartan form ~yyMC on G is given by

~yyMC ¼

0 c~aa1 þ 2~hh ~aa2 0 0 0

�ðc~aa1 þ 2~hhÞ 0 ~aa4 0 0 0

e1~aa
2 e1~aa

4 0 0 0 0

0 0 0 0 �2c~aa1 þ ~hh ~aa3

0 0 0 �ð�2c~aa1 þ ~hhÞ 0 ~aa5

0 0 0 e2~aa
3 e2~aa

5 0

0
BBBBBBB@

1
CCCCCCCA
;ð6:3Þ

where

c ¼ 1ffiffiffi
5

p ;

e1 ¼ �sgn½t1ðt1 � 2t2Þ�;

e2 ¼ sgn½t2ðt1 � 2t2Þ�

Figure 1. Groups Gðt1; t2Þ of SOð3Þ structures of Proposition 6.3 (2).
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and ð~aa i; ~hhÞ is a left invariant coframe on G. We have the following relations between ð~aa i; ~hhÞ
and the canonical coframe ð~yy i; ~gg3Þ:

~gg3 ¼ ~hh� 2t1 þ t2ffiffiffi
5

p
ðt1 � 2t2Þ

� ~aa1; ~yy1 ¼
ffiffiffi
5

p

t1 � 2t2
� ~aa1;

~yy2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e1

�t1ðt1 � 2t2Þ

r
� ~aa2; ~yy4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1

�t1ðt1 � 2t2Þ

r
� ~aa4;

~yy3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2e2

t2ðt1 � 2t2Þ

s
� ~aa3; ~yy5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2

t2ðt1 � 2t2Þ

s
� ~aa5:

ð6:4Þ

Now, we take ð~gg; ~11Þ in the canonical form (4.16), (4.17). These descend to the SOð3Þ
structure ðg;1Þ on M ¼ G=H due to the isotropy invariance of ð~gg; ~11Þ. The G-invariant
soð3Þ connection G on M has the form

G ¼ G0 �
1

5
ð2t1 þ t2Þy1 � E3;

where G0 is the canonical connection on the reductive homogeneous space G=H—see [5].

Remark 6.4. It is worth to notice that on the line t2 ¼ �2t1 the connection G
coincides with the canonical connection G0. The example from this line corresponding to
ðt1; t2Þ ¼ ð1=5;�2=5Þ is due to Th. Friedrich [4].

In general, the torsion T has components in the both possible irreducible SOð3Þ re-
presentations

V2
3 and

V2
7 (see Remark 5.7). On the line t2 ¼ 2t1 the torsion is of pure typeV2

3; on the line t1 ¼ �2t2 it is of pure type
V2

7—see the Figure 1.

The soð3Þ curvature is of the form

K ¼ �t1t2k
3 � E3:

It belongs to soð3Þn soð3Þ. If t1t2 3 0 the curvature has non-zero values in all of the
components

J2
1 l

J2
5 l

V1
5 of the irreducible decomposition (5.5).

(ii) t1 ¼ 0, t2 3 0. The group G1 of the previous case contracts and the symmetry
group becomes

G ¼
�
SOð2ÞzR2

�
� SOð3Þ:

The inclusion of H ¼ SOð2Þ in the product G is given by

SOð2Þ C h 7! ðh2; hÞ:

The Maurer-Cartan form on G has the form (6.3) with e1 ¼ 0. The relations (6.4) remain

valid after passing to the limit
e1

t1
! �sgn½ðt1 � 2t2Þ� ¼ sgn t2:
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~gg3 ¼ ~hhþ 1

2
ffiffiffi
5

p � ~aa1; ~yy1 ¼ �
ffiffiffi
5

p

2t2
� ~aa1;

~yy2 ¼ 1ffiffiffiffiffiffiffiffiffi
2jt2j

p � ~aa2; ~yy4 ¼ 1ffiffiffiffiffiffiffiffiffi
2jt2j

p � ~aa4;

~yy3 ¼ 1

jt2j
� ~aa3; ~yy5 ¼ 1

jt2j
� ~aa5:

These define an SOð3Þ structure on M ¼ G=H in an analogous way as in the previous case.
The torsion T 3 0 is never of a pure type and the soð3Þ curvature K 1 0.

(iii) t2 ¼ 0, t1 3 0. This case is the same as the previous one. One has to put e2 ¼ 0 in

(6.3) and
e2

t2
! sgn t1 in (6.4). The statements about curvature and torsion are the same as in

the previous point.

(iv) t1 ¼ 0, t2 ¼ 0. In this case both the torsion and the soð3Þ curvature vanish. Thus,
this case corresponds to the flat model M0. Hence the symmetry group G is extendable to
SOð3Þ �r R

5. For the purpose of the next point it is useful to analyse G more carefully. Let
t be the standard representation of SOð2Þ in R2. In conform with the Figure 1 we observe
that

G ¼ R�
�
SOð2ÞzR4

�
; H ¼ SOð2Þ;

where the semi-direct product is taken with respect to the representation t2 l t of SOð2Þ on
R4. The Maurer-Cartan form ~yyMC on G is

~yyMC ¼

0 2~hh ~aa2 0 0 0 0

�2~hh 0 ~aa4 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 ~hh ~aa3 0

0 0 0 �~hh 0 ~aa5 0

0 0 0 0 0 0 0

0 0 0 0 0 0 ~aa1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:ð6:5Þ

The relation between ð~aa j; ~hhÞ and ð~yy j; ~gg3Þ is ~yy j ¼ ~aa j and ~gg3 ¼ ~hh.

(v) t1 ¼ 2t2, t2 3 0. In this case the group G ¼ Gs has the following abstract descrip-
tion. We present the Lie algebra of G as a central extension by R of a 5-dimensional alge-

bra l. Let us recall (see [13]) that such extensions are classified by closed 2-forms s A
V2

l�.

Let L ¼ SOð2ÞzR4 with the representation t2 l t of SOð2Þ as in the previous point;
l is the Lie algebra of L. We take the Maurer-Cartan forms ð~aa2; ~aa3; ~aa4; ~aa5; ~hhÞ, defined in
(6.5), as the basis of the left invariant forms on L. One can check that the following 2-
form on L:

~ss ¼ ~aa35~aa5 þ 2~aa25~aa4; s :¼ ~sse A
V2

l�ð6:6Þ

is closed.
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We define the Lie algebra g ¼ gs as a central extension of l by R

0 ! R ! g !p l ! 0ð6:7Þ

characterised by the element s. Let G ¼ Gs be a Lie group with Lie algebra gs. We extend
the basis of left invariant forms on L to the (left invariant) basis ð~aa1; ~aa2; ~aa3; ~aa4; ~aa5; ~hhÞ on G.
The di¤erential d~aa1 is (see [13])

d~aa1 ¼ ~ss:

The exact sequence of Lie algebras (6.7) has a partial splitting s : soð2Þ ,! g (i.e. the com-
position p � s is the inclusion of soð2Þ into l) which defines the inclusion H ¼ SOð2ÞHG.

Finally, the relation between this basis ð~aa j; ~hhÞ and the canonical coframe ð~yy j; ~gg3Þ is as
follows:

~gg3 ¼ ~hh� t2
2 � ~aa1; ~yy1 ¼ t2 � ~aa1; ~yy2 ¼ ~aa2; ~yy3 ¼ ~aa3; ~yy4 ¼ ~aa4; ~yy5 ¼ ~aa5:

These define a nearly integrable SOð3Þ structure on M ¼ G=H as in each of the previous
cases. The torsion T 3 0 is never of a pure type and the soð3Þ-curvature has the form

K ¼ �2ðt2Þ2k3 � E3:

The point (3) of Proposition 6.3. We start with the observation that the line t1 ¼ 2t2

on the ðt1; t2Þ-plane in the present case and the line t1 ¼ 2t2 of the previous case coincide
(see Proposition 6.3). Thus, in the entire analysis of this case, we assume that t1 3 2t2.

We have the following di¤erential system on G:

d~yy1 ¼ t1
~yy25~yy4 þ ðt1 � t2Þ~yy35~yy5;

d~yy2 ¼ �t1
~yy15~yy4 þ 2~yy45~gg3;

d~yy3 ¼ � 1

2
t1
~yy15~yy5 þ ~yy55~gg3 þ t1 � 2t2

2
ffiffiffi
3

p ~yy25~yy3 þ t1 � 2t2

2
ffiffiffi
3

p ~yy45~yy5;

d~yy4 ¼ t1
~yy15~yy2 � 2~yy25~gg3;

d~yy5 ¼ 1

2
t1
~yy15~yy3 � ~yy35~gg3 � t1 � 2t2

2
ffiffiffi
3

p ~yy25~yy5 � t1 � 2t2

2
ffiffiffi
3

p ~yy35~yy4;

d~gg3 ¼ � 2

3
ðt2

1 � t1t2 þ t2
2Þ~yy25~yy4 � 1

2
t1ðt1 � t2Þ~yy35~yy5:

ð6:8Þ

It follows, that o¤ the line t1 ¼ 2t2, independently of ðt1; t2Þ, the symmetry group G ¼ Ges

is a central extension of the group

L ¼ SLð2;RÞzR2

by a 1-dimensional Lie group. Ges is characterised by a closed 2-form es A
V2

l�,
e ¼ sgnjt1 � t2j.
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It is convenient to choose the basis of left invariant forms ð~aa2; ~aa3; ~aa4; ~aa5; ~hhÞ on L so
that the Maurer-Cartan form ~yyMC on L reads

~yyMC ¼
�~aa4 ~aa2 þ ~hh ~aa3

~aa2 � ~hh ~aa4 ~aa5

0 0 0

0
B@

1
CA:

Obviously, we have SOð2ÞH SLð2;RÞHL.

Now, the possible symmetry groups G ¼ Ges, e ¼ 0; 1, are presented in Figure 2.
Below, we discuss cases e ¼ 1 and e ¼ 0 separately.

(i) e ¼ 1. This case corresponds to t1 3 t2. Here, we observe that

~ss ¼ ~aa35~aa5; s :¼ ~sse A
V2

l�

is closed on L. It is this form that defines the desired central extension of the Lie algebra l to
the Lie algebra g ¼ gs of the symmetry group Gs. Now, the forms ð~aa2; ~aa3; ~aa4; ~aa5; ~hhÞ extend
to the left invariant forms on Gs. Together with the form ~aa1 such that d~aa1 ¼ ~ss they define

the left invariant coframe on Gs. This coframe is related to the canonical coframe ð~yy i; ~gg3Þ of
(6.8) via

Figure 2. Groups G ¼ Ges of SOð3Þ structures of Proposition 6.3 (3).
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~yy1 ¼ � 6t1

ðt1 � 2t2Þ2
� ~hhþ 2ðt1 � t2Þ

e
� ~aa1;

~yy2 ¼ 2
ffiffiffi
3

p

t1 � 2t2
� ~aa2; ~yy4 ¼ 2

ffiffiffi
3

p

t1 � 2t2
� ~aa4;

~yy3 ¼ ~aa3 � ~aa5; ~yy5 ¼ ~aa3 þ ~aa5;

~gg3 ¼ ðt1 � 2t2Þ2 þ 3t2
1

ðt1 � 2t2Þ2
� ~hh� t1ðt1 � t2Þ

e
� ~aa1:

ð6:9Þ

Now, in analogy to the case (v), we use the partial splitting s : soð2Þ ! l, to recover the in-
clusion H ¼ SOð2ÞHGs. Then the SOð3Þ structure on M ¼ G=H is obtained via the stan-
dard procedure of taking ð~gg; ~11Þ in the form (4.16), (4.17) and passing to the quotient struc-
ture ðg;1Þ. The G-invariant soð3Þ connection on M is given by

G ¼ G0 �
t1 � 2t2

2
ffiffiffi
3

p y3 � E1 þ
t1 � 2t2

2
ffiffiffi
3

p y5 � E2 �
t1

2
y1 � E3;

where G0 is the canonical connection on G=H.

As in the entire point (2) of the present proposition, the torsion T has the pure typeV2
3 i¤ t2 ¼ 2t1; it is of the pure type

V2
7 i¤ t1 ¼ �2t2; in all other cases it is not of a pure

type (see Figure 2).

In contrast to the point (2) of the present proposition, the soð3Þ curvature has the
form

K ¼ 1

12

�� ffiffiffi
3

p
t1ðt1 � 2t2Þy15y5 � ðt1 � 2t2Þ2ðy25y3 þ y45y5Þ

�
� E1

þ
� ffiffiffi

3
p

t1ðt1 � 2t2Þy15y3 � ðt1 � 2t2Þ2ðy25y5 þ y35y4Þ
�
� E2

þ
�
�8ðt2

1 � t1t2 þ t2
2Þy

25y4 þ ð�7t2
1 þ 10t1t2 � 4t2

2Þy
35y5

�
� E3

	
;

and (o¤ the line t1 ¼ 2t2) it is never of type soð3Þn soð3Þ. In general, the curvature can
assume values in all of the components of the decomposition (5.5), but

V2
3 and

V2
7:

K A
J2

1 l
J2

5 l
J2

9 l
V1

5:

Independently of ðt1; t2Þ the curvature has always the
J2

1 and
J2

5 part; it is without theJ2
9 component on the line t2 ¼ 2t1 and without the

V1
5 component on lines t1 ¼ 0 and

3t1 ¼ 2t2—see Figure 2.

(ii) e ¼ 0. This corresponds to the line t1 ¼ t2. Now, all the formulas of the previous
case remain valid, except the formulas for ~yy1 and ~gg3. To get correct expressions for them, one

has to pass to the limit
t1 � t2

e
! 1 in (6.9).
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It is worthwhile to note that the central extension G0 is, in this case, trivial. Hence, the
symmetry group is simply a product

G0 ¼ R�
�
SLð2;RÞzR2

�
with H ¼ SOð2ÞH SLð2;RÞ:

6.3. Examples with 5-dimensional symmetry group. The first set of examples in this
section is characterised by the requirement that a nearly integrable SOð3Þ geometry has flat
characteristic connection. The full list of such geometries is given in Section 6.3.1. In The-
orem 6.5 we prove that flatness of the characteristic connection implies that the correspond-
ing nearly integrable SOð3Þ geometry has at least 5-dimensional transitive symmetry group.
Inspection of the examples of Section 6.3.1 shows that, in generic cases, their symmetry
groups are strictly 5-dimensional.

Of course, examples with flat characteristic connections do not exhaust the list of all
nearly integrable SOð3Þ structures with strictly 5-dimensional transitive symmetry group.
We obtained other two classes of examples assuming that, in addition to the action of a
5-dimensional transitive symmetry group, the torsion of characteristic connection is of
pure type. The results are given in respective Sections 6.3.2 and 6.3.3. It is worth noticing
that it was possible to find all structures with 5-dimensional transitive symmetry group and
torsion in

V2
3 (see Theorem 6.7). In case of

V2
7 type torsion we were only able to find a

2-parameter family of examples.

6.3.1. Vanishing curvature.

Theorem 6.5. Let ðM; g;1Þ be a nearly integrable SOð3Þ structure with vanishing cur-

vature of its characteristic connection. Then M has a structure of a 5-dimensional Lie group

G and the SOð3Þ-structure is G-invariant.

Proof. Since the characteristic connection of an SOð3Þ structure is flat, one can as-
sume that the connection (locally) vanishes. Thus, in a suitably chosen local coframe (4.1)
the first Cartan structure equations are

dy1 ¼ t1y
25y3 þ t2y

25y4 þ t3y
25y5 þ t4y

35y4 þ t5y
35y5 þ t6y

45y5;

dy2 ¼ �t1y
15y3 � t2y

15y4 � t3y
15y5 þ t7y

35y4 þ t8y
35y5 þ t9y

45y5;

dy3 ¼ t1y
15y2 � t4y

15y4 � t5y
15y5 � t7y

25y4 � t8y
25y5 þ t10y

45y5;ð6:10Þ

dy4 ¼ t2y
15y2 þ t4y

15y3 � t6y
15y5 þ t7y

25y3 � t9y
25y5 � t10y

35y5;

dy5 ¼ t3y
15y2 þ t5y

15y3 þ t6y
15y4 þ t8y

25y3 þ t9y
25y4 þ t10y

35y4:

Here the functional coe‰cients ti, i ¼ 1; 2; . . . ; 10 are related to the torsion 3-form T via:

T ¼ t1y
15y25y3 þ t2y

15y25y4 þ t3y
15y25y5 þ t4y

15y35y4ð6:11Þ

þ t5y
15y35y5 þ t6y

15y45y5 þ t7y
25y35y4 þ t8y

25y35y5

þ t9y
25y45y5 þ t10y

35y45y5:
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Now, the Bianchi identities are equivalent to the following integrability conditions of the
system (6.10):

(a) All the functions ti; i ¼ 1; 2; . . . ; 10 are constants.

(b) They are subject to the constraints

t3t10 þ t6t8 � t5t9 ¼ 0;

t1t10 þ t5t7 � t4t8 ¼ 0;

t3t7 � t2t8 þ t1t9 ¼ 0;

t2t10 þ t6t7 � t4t9 ¼ 0;

t3t4 � t2t5 þ t1t6 ¼ 0:

ð6:12Þ

The point (a) above proves the theorem, showing that M can be identified with the symme-
try group G which has ti as its structure constants. r

Below we solve conditions (6.12) to fully characterise G under the genericity as-
sumption

t10 3 0:

If this is assumed the general solution of system (6.12) is

t1 ¼ 1

t10
ðt4t8 � t5t7Þ; t2 ¼ 1

t10
ðt4t9 � t6t7Þ; t3 ¼ 1

t10
ðt5t9 � t6t8Þ:

Now it is easy to see that the linearly independent (t10 3 0!) 1-forms

a4 ¼ t10y
1 � t6y

3 þ t5y
4 � t4y

5;

a5 ¼ t10y
2 � t9y

3 þ t8y
4 � t7y

5

are closed. They can be further supplemented to a coframe ða1; a2; a3; a4; a5Þ on M such
that

da1 ¼ a25a3;

da2 ¼ a35a1;

da3 ¼ a15a2;

da4 ¼ 0;

da5 ¼ 0:

This proves
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Proposition 6.6. If the torsion coe‰cient t10 3 0, the symmetry group G of a nearly

integrable SOð3Þ-structure with flat characteristic connection is isomorphic to SOð3Þ � R2.

6.3.2. Torsion in
V2

3. In the following a parameter d ¼ 0; 1 labels 5-dimensional Lie
groups Gd. By definition G0 ¼ SOð3Þ � A¤ð1Þ, the direct product of SOð3Þ and the a‰ne
group A¤ð1Þ in dimension 1. We characterise the group G1 by specifying the structure
equations for a left invariant coframe on G1. Thus, G1 is such a 5-dimensional Lie group
for which there exists a coframe ða1; a2; a3; a4; a5Þ which satisfies the following equations:

da1 ¼ 0;

da2 ¼ a15a2;

da3 ¼ �2a15a3;

da4 ¼ �a15a4 þ a25a3;

da5 ¼ a25a4:

This group has the Lie algebra g1 which is a central extension 0 ! R ! g1 ! h ! 0 of the
4-dimensional Lie algebra

h ¼
x1 x3 x4

0 �x1 x2

0 0 0

0
B@

1
CA; x1; x2; x3; x4 A R

8><
>:

9>=
>;

by a real line R. The extension is given by means of a closed 2-form (see [13]) s ¼ a25a4.

The following theorem is obtained by a successive application of the Bianchi identi-
ties on the system (4.5)–(4.6) in which the characteristic connection G is supposed to have
torsion in

V2
3 and for which all the connection coe‰cients, the curvature coe‰cients and

the torsion coe‰cients are constants.

Theorem 6.7. Let ðM; g;1Þ be a nearly integrable SOð3Þ geometry admitting a

5-dimensional transitive symmetry group G. Assume, in addition, that the torsion of its char-

acteristic connection is of pure type
V2

3. Then:

� Modulo a constant SOð3Þ gauge transformation, it is defined by means of the adapted

coframe ðy1; y2; y3; y4; y5Þ satisfying the following di¤erential system:

dy1 ¼ � 2

3

ffiffiffi
3

p
%e
�
y25y4 þ ð2 � 3dÞy35y5

�
;

dy2 ¼ �2% cos jy25y4;

dy3 ¼ �% cos jy25y5 þ
ffiffiffi
3

p
%eð1 � dÞy15y5 þ %edy25y3 þ %ðde� sin jÞy45y5;

dy4 ¼ �2% sin jy25y4;

dy5 ¼ % cos jy25y3 þ
ffiffiffi
3

p
%eðd� 1Þy15y3 � %edy25y5 � %ðdeþ sin jÞy35y4;
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with constant parameters % > 0, j A ½0; 2p½, e ¼G1, d ¼ 0; 1.

� G GGd.

� For all values of the parameters e, d, %, j the curvature of the characteristic connec-

tion is of type
J2

1 l
J2

5 l
V1

5 with all the irreducible components non-zero.

6.3.3. Torsion in
V2

7. It is easy to check that an adapted coframe ðy1; y2; y3; y4; y5Þ
with di¤erentials given by

dy1 ¼ 0;

dy2 ¼ �% cos jy25y4;

dy3 ¼ 1

2

ffiffiffi
3

p
% cos jy15y3 � 1

2

ffiffiffi
3

p
% sin jy15y5 � 1

2
% sin jy25y3 þ 1

2
% cos jy35y4;

dy4 ¼ % sin jy25y4;

dy5 ¼ � 1

2

ffiffiffi
3

p
% sin jy15y3 � 1

2

ffiffiffi
3

p
% cos jy15y5 � 1

2
% sin jy25y5 � 1

2
% cos jy45y5;

where the parameters % > 0, j A ½0; 2p½ are constants, defines a nearly integrable SOð3Þ geo-
metry whose characteristic torsion has pure type

V2
7. Its symmetry group is transitive,

strictly 5-dimensional and has the Maurer-Cartan form

yMC ¼

a4 0 0 a1

0 a5 0 a2

0 0 �ða4 þ a5Þ a3

0 0 0 0

0
BBB@

1
CCCA;

where the forms ða1; a2; a3; a4; a5Þ are related to the coframe ðy1; y2; y3; y4; y5Þ via an ap-
propriate %-dependent GLð5;RÞ transformation.

It is worth noting that the curvature of the characteristic connection in this
2-parameter family of examples is always of the type

J2
1 l

J2
9 with both the irreducible

components non-zero.

7. Ricci tensor and covariantly constant spinors

7.1. Ricci tensor. We have the following proposition:

Proposition 7.1. For every nearly integrable SOð3Þ structure ðM; g;1Þ the Ricci

tensor RicLC of the Levi-Civita connection G
LC

is related to the Ricci tensor RicG of the char-

acteristic soð3Þ connection G via

RicLC
ij ¼ RicG

ij þ
1

4
TiklTjkl þ

1

2
ð�d � TÞij:
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Corollary 7.2. Given a nearly integrable SOð3Þ structure ðM; g;1Þ the following two

conditions are equivalent:

� The codi¤erential of the torsion 3-form T vanishes.

� The Ricci tensor RicG of the characteristic connection G is symmetric.

Thus, for nearly integrable SOð3Þ structures we have

�d � T 1 0 , RicG
ij 1RicG

ji :

In the rest of this section we discuss the torsion/curvature properties of the homoge-
neous examples of Section 6. It is interesting to note that all these examples satisfy

�d � T 1 0:

Thus, the Ricci tensor RicG is symmetric for them. In many cases both the Ricci tensors
RicG and RicLC are diagonal1). More explicitly:

� In case (1) of Proposition 6.3 we have:

RicLC ¼ RicG ¼ �6a2g; T 1 0:

� In case (2) of Proposition 6.3 we have:

RicLC ¼ 1

2
ðt2

1 þ t2
2Þg þ 1

24
ð16t2

1 þ 12t1t2 � t2
2ÞE2

3 þ 1

24
ð4t2

1 � t2
2ÞE4

3 ;

RicG ¼ 1

2
t1t2E2

3 ;

dT ¼ �2t1t2y
25y35y45y5:

� In case (3) of Proposition 6.3 we have:

RicLC ¼ t2
1 � t1t2 þ

1

2
t2
2

� �
g þ 1

24
ð44t2

1 � 58t1t2 þ 27t2
2ÞE2

3 þ 1

24
ð8t2

1 � 10t1t2 þ 3t2
2ÞE4

3 ;

RicG ¼ 1

2
t1ðt1 � 2t2Þg þ 1

12
ð14t2

1 � 29t1t2 þ 14t2
2ÞE2

3 þ 1

12
ðt1 � 2t2Þð2t1 � t2ÞE4

3 ;

dT ¼ �t2
1y

25y35y45y5:

� For the examples of Theorem 6.5 we have:

RicG 1 0;

dT 1 0;

1) Note that the square of the matrix E3 and its fourth power are diagonal matrices.
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and RicLC has a rather complicated form depending on the torsion parameters ta,
a ¼ 1; 2; . . . ; 10; for some values of the parameters the Levi-Civita Ricci tensor RicLC

may be diagonal, e.g.: if ta ¼ 0, Ea3 1 then

RicLC ¼ 1

2
t2
1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0
BBBBB@

1
CCCCCA:

� For the examples of Theorem 6.7 we have:

RicLC ¼ %2 10

3
� 2d

� �
g þ 2%2E2

3 ;

RicG ¼ �2%2dg þ 4

3
%2E2

3 ;

dT ¼ 4

3
%2ð3d� 4Þy25y35y45y5:

� For the examples of Section 6.3.3 we have:

RicLC ¼ � 3%2

2

1 0 0 0 0

0 sin2ðjÞ 0
1

2
sinð2jÞ 0

0 0 0 0 0

0
1

2
sinð2jÞ 0 cos2ðjÞ 0

0 0 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
;

RicG ¼ � %2

2

3 0 0 0 0

0 2 � cosð2jÞ 0 sinð2jÞ 0

0 0 1 0 0

0 sinð2jÞ 0 2 þ cosð2jÞ 0

0 0 0 0 1

0
BBBBB@

1
CCCCCA;

dT 1 0:

7.2. Absence of covariantly constant spinors. We now pass to the question if a man-
ifold with an SOð3Þ structure ðM; g;1Þ and an soð3Þ connection G may admit a covariantly
constant spinor field. We look for C : M ! C4 such that

dCþ GspinC ¼ 0;ð7:1Þ

where Gspin is a spin connection (4.25) corresponding to G.

We use the curvature
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Wspin ¼ dGspin þ Gspin5Gspin

of Gspin. This curvature is expressible in terms of the curvature K ¼
ffiffiffi
3

p

2
rI

jky
jykEI of G and

the (Dirac) matrices EI of (4.24). We have

Wspin ¼
ffiffiffi
3

p

2
rI

jky
j5ykEI :

It is easy to see that the integrability conditions for the equations (7.1) are

WspinC ¼ 0:

These equations should be satisfied for each element of the basis of 2-forms y i5yk. Thus,
they are equivalent to

WijC ¼ 0 Ei < j ¼ 1; 2; 3; 4; 5

where Wij is a 4 � 4 matrix

Wij ¼ rI
ijEI :

This shows that an existence of a non-zero solution for C gives a severe restriction on the
curvature Wspin. In particular, this implies that

detðWijÞ ¼ detðrI
ijEIÞ ¼ 0 Ei < j ¼ 1; 2; 3; 4; 5:ð7:2Þ

But

detðWijÞ ¼
9

16

�
ðr1

ijÞ
2 þ ðr2

ijÞ
2 þ ðr3

ijÞ
2�2

:

Thus, equations (7.2) are satisfied only if all the curvature coe‰cients rI
ij are zero. In such

case Wspin ¼ 0, which means that the corresponding soð3Þ connection G is flat. This proves

Proposition 7.3. Let ðM; g; tÞ be a 5-dimensional SOð3Þ geometry equipped with an

soð3Þ connection G. Then ðM; g;1Þ admits a covariantly constant spinor field with respect

to the corresponding spinð3Þ connection Gspin if the connection G is flat. If this condition is

satisfied then, locally, one has a 4-parameter family of constant spinors.

8. The twistor bundle T

It is remarkable that each 5 dimensional manifold M with an SOð3Þ structure ðg;1Þ
on it defines a natural 2-sphere bundle S2 ! T ! M. This bundle, which via analogy with
the twistor theory, we call the twistor bundle, will be defined by recalling that at every point
x of M we have a distinguished subspace ð

V2
3Þx of those 2-forms that span the irreducible

soð3Þ. Considered point by point, spaces ð
V2

3Þx form a rank 3 vector bundle
V2

3 M over M

with the following basis of sections:
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k1 ¼
ffiffiffi
3

p
y15y5 þ y25y3 þ y45y5;

k2 ¼
ffiffiffi
3

p
y15y3 þ y25y5 þ y35y4;

k3 ¼ 2y25y4 þ y35y5:

Here we have used the adapted coframe ðy1; y2; y3; y4; y5Þ for ðM; g;1Þ. It is also convenient
to note that the forms ðk1; k2; k3Þ are related to the basis ðE1;E2;E3Þ of the irreducible

soð3ÞH soð5Þ via kI ¼ 1

2
EIijy

i5y j, I ¼ 1; 2; 3, see (2.8).

Definition 8.1. The twistor bundle over a 5-dimensional manifold M equipped with
an SOð3Þ structure ðg;1Þ is the 2-sphere bundle S2 ! T !p M defined by

T ¼ fo A
V2

3 M : �ðo5�oÞ ¼ 5g:ð8:1Þ

Remark 8.2. The constant 5 in the above normalisation means that o A
V2

3 M i¤
o ¼ b1k

1 þ b2k
2 þ b3k

3 where b2
1 þ b2

2 þ b2
3 ¼ 1.

Consider the complexification TCM of the tangent bundle of ðM; g;1Þ and denote by
the same letters the complexifications of the tensors g and 1. At every point x A M consider
the space

Nx ¼ fn A TC
x M : 1ðn; n; �Þ1 0g

of vectors, which are null with respect to the complexified 1. Given any complexified vector
03 v A TC

x M we define

dirðvÞ ¼ flv A TC
x M : l A Cg:

We have

Proposition 8.3. The space of null directions

PNx ¼ fdirðnÞ : n A Nxg

is a disjoint sum of two connected components

PNx ¼ PNþ
x t PN�

x ; PN�
x ¼ PNþ

x :

Each of them is naturally di¤eomorphic to the fibre Tx ¼ p�1ðxÞ ¼ S2 of the twistor bundle T.

Proof. Consider a 2-form o A Tx. In the adapted coframe ðy1; y2; y3; y4; y5Þ it reads

o ¼ 1

2
oijy

i5y j. It defines a linear map

TC
x M C vi 7! ðovÞj ¼ ojivi A TC

x M:

It is easy to see that the eigenvalues of this endomorphism are f0;Gi;G2ig. The corre-
sponding G2i eigenspaces are null with respect to 1 due to the following argument. The
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SOð3Þ invariance of the tensor 1, see (2.7), when applied to form o and a vector n belong-
ing to theG2i eigenspaces of oij reads

0 ¼ 1ðon; n; �Þ þ 1ðn;on; �Þ þ 1ðn; n;o�Þ ¼ 4i1ðn; n; �Þ þ 1ðn; n;o�Þ:

Now, if v belongs to any eigenspace of oij the implication of this equality is 1ðn; n; vÞ ¼ 0,
which means that 1ðn; n; �Þ1 0.

Thus, the map

Tx C o 7! kerðoH 2iÞ A PNG
x :

is well defined. It further follows that it provides the desired di¤eomorphism between Tx

and PNG
x . r

Now we define the 2-sphere bundle of null directions for 1 to be

PN ¼
S

x AM

PNþ
x

and, as a corollary to the above proposition, we get:

Proposition 8.4. There exists a natural bundle isomorphism between the bundle PN of

null directions for 1 and the twistor bundle T.

Remark 8.5. The above proposition enables one to view the twistor bundle T as an
analog of the twistor bundles of 4-dimensional (pseudo)Riemannian geometries (see e.g.
[8]). Historically, the first such bundle—Penrose’s bundle of light rays over the Minkowski
space-time [10]—is a 2-sphere bundle of null directions. It proved to be very useful in Gen-
eral Relativity Theory, especially in the case of complexified Minkowski space-time and its
curved generalisations. Motivated by the utility of Penrose’s bundle of light rays Atiyah,
Hitchin and Singer [1] considered the 2-sphere bundle of complexified null 2-planes over
a 4-dimensional Riemannian manifold. This bundle, which they identified with the bundle
of almost hermitian structures over the 4-manifold, they termed the twistor bundle. Later,
mathematicians generalised the notion of twistor bundle in many directions, so that the
relation between null directions and todays twistors is weaker and weaker. We find par-
ticularly remarkable the fact that the 5-dimensional geometries considered in the present
paper lead to twistor bundle T whose relation to null directions is very apparent.

8.1. Elements of geometry of T. Now, we consider an arbitrary SOð3Þ structure
ðM; g;1Þ equipped with an soð3Þ connection G (we do not assume that G is the character-
istic connection). These data induce interesting geometrical structures on the twistor bundle
T. The rest of this section is devoted to their brief description.

(1) The connection G splits the tangent space TT into horizontal and vertical parts:

TT ¼ HlV:

The fibre of the twistor bundle Tx is naturally embedded in the vector space ð
V2

3Þx. It is a
unit sphere S2 with respect to the natural scalar product S on two-forms, which explicitly
reads
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Sðs1; s2Þ ¼
1

5
� ðs15�s2Þ Es1; s2 A ð

V2
3Þx:

Thus the vertical tangent space Vo at a point o A Tx may be identified with the orthogonal
complement of o with respect to S. Hence

Vo ¼ fs A ð
V2

3Þx : Sðs;oÞ ¼ 0g:

(2) There is a natural Riemannian metric ~gg on T. This metric is given by
~gg ¼ S2 l p�g, where S2 is the natural scalar product induced on the fibre by S.

(3) There is a natural complex structure J on the fibre Tx, given by

JoðsÞ ¼ ½o; s�; s A VoH ð
V2

3Þx:

Here, we view the forms o and s as elements of the Lie algebra soð3ÞG ð
V2

3Þx, so that ½� ; ��
is the Lie bracket in soð3Þ. Obviously, J is compatible with the metric S2. Now, the metric
S2 together with orientation given by J determine the volume 2-form h2 on the fibre.

(4) There is a tautological horizontal 2-form o on T.

(5) T is equipped with the horizontal vector field u given by

~ggðuÞ ¼ 1

4
~��ðh25o5oÞ

where ~�� is the Hodge star operation on ðT; ~ggÞ. The vector field u is unital: ~ggðu; uÞ ¼ 1. We
denote the ~gg-orthogonal complement of u in H by Hu.

(6) At every point x A T the metric ~gg descends to the 4-dimensional, naturally ori-
ented, vector space Hu

x . Thus, in Hu
x , the Hodge star operator is well defined. By using it

we decompose the restriction of the tautological 2-form ojHu into the self-daul and anti-
self-dual parts

ojHu ¼ oþ þ o�:

The forms oG define the pair of p�g-compatible complex structures JG on Hu

p�gðJGv1; v2Þ ¼
2

2G 1
oGðv1; v2Þ; v1; v2 A GðHuÞ:

These two complex structures commute:

½Jþ; J�� ¼ 0:

8.2. Almost CR-structures on T and their integrability conditions. We recall that an
odd-dimensional real manifold P is equipped with an almost CR-structure if there exists on
P a distinguished codimension one distribution N endowed with an almost complex struc-
ture J (see e.g. [9]). TheGi eigenspaces of J define the split
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CnN ¼ Nð1;0Þ lNð0;1Þ:

An almost CR-structure ðN;JÞ on P is called an integrable CR-structure i¤ the following
integrability conditions are satisfied:

½Nð1;0Þ;Nð1;0Þ�HNð1;0Þ:

The twistor bundle T is naturally equipped with four almost CR-structures. They are
genuinely distinct i.e. not related by the conjugacy operation. One obtains these structures
by defining the distribution N to be NT ¼ u?, the orthogonal complement of the unit vec-
tor u with respect to the metric ~gg on T. Since NT ¼ VlHu, then the four almost com-
plex structures on NT may be defined by

J ¼ J l eJG; e ¼ 1 or �1:

Thus we have four natural almost CR-structures on T defined by means of four Js on NT.
Among them the most interesting is

ðNT;J0Þ; where J0 ¼ J l Jþ:

This structure is the only one among ðNT;JÞ that may be integrable. More specifically, we
have

Theorem 8.6. (1) Among the four natural almost CR-structures ðNT; J l eJGÞ on T,
the only one that may be integrable is ðNT;J0Þ.

(2) Let ðM; g;1Þ be a nearly integrable SOð3Þ structure and let ðNT;J0Þ be the almost

CR-structure on T induced by the characteristic connection of ðM; g;1Þ. This CR-structure

is integrable if and only if

K	2
9
1 0; and T A

V2
3:

Sketch of the proof. We start by choosing an SOð3Þ adapted coframe
ðy1; y2; y3; y4; y5Þ on U HM. We parametrise TjU by U � C, so that the tautological
2-form o reads

o ¼ z þ z

1 þ jzj2
k1 þ

iðz � zÞ
1 þ jzj2

k2 þ
1 � jzj2

1 þ jzj2
k3; z A C:ð8:2Þ

The horizontal-vertical splitting of the tangent bundle TT with respect to an soð3Þ-
connection G ¼ g1E1 þ g2E2 þ g3E3 is given by the complex valued 1-form

~hh ¼ 1

1 þ jzj2
dz þ 1 � z2

2i
g1 þ

1 þ z2

2
g2 þ izg3

� �
:

The horizontal subspace HHTT is the kernel of ~hh.

The 1-form ~uu ¼ ~ggðuÞ—the ~gg-dual to the unit horizontal vector field u—is given by
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~uu ¼ � 1 � 4jzj2 þ jzj4

ð1 þ jzj2Þ2
y1 þ i

ffiffiffi
3

p
ðz � zÞðz þ zÞ
ð1 þ jzj2Þ2

y2 �
ffiffiffi
3

p
ðz þ zÞðjzj2 � 1Þ
ð1 þ jzj2Þ2

y3

�
ffiffiffi
3

p
ðz2 þ z2Þ

ð1 þ jzj2Þ2
y4 � i

ffiffiffi
3

p
ðz � zÞðjzj2 � 1Þ
ð1 þ jzj2Þ2

y5:

Since there exist two commuting complex structures JG on every 4-dimensional hori-
zontal subspace Hu

x , the complexification of this subspace decomposes onto the common
eigenspaces of JG. Explicitly we have

ðHu
x Þ

C ¼ N1 lN2 lN1 lN2;

where the spaces N1 and N2 are defined by

JGN1 ¼ iN1; JGN2 ¼GiN2;

and N1, N2 denote their respective complex conjugates. The explicit formulae for the
~gg-duals ~nn1 and ~nn2 of the vectors n1 and n2 generating the subspaces N1 and N2 are the
following:

~nn1 ¼ i2
ffiffiffi
3

p
zðjzj2 � 1Þ

ð1 þ jzj2Þ2
y1 � 2ðz3 þ zÞ

ð1 þ jzj2Þ2
y2 � ið1 � 3z2 � 3zz þ z3zÞ

ð1 þ jzj2Þ2
y3

� 2iðz3 � zÞ
ð1 þ jzj2Þ2

y4 � 1 þ 3z2 � 3zz � z3z

ð1 þ jzj2Þ2
y5;

~nn2 ¼ i2
ffiffiffi
3

p
z2

ð1 þ jzj2Þ2
y1 þ z4 � 1

ð1 þ jzj2Þ2
y2 � 2izðz2 � 1Þ

ð1 þ jzj2Þ2
y3 þ iðz4 þ 1Þ

ð1 þ jzj2Þ2
y4 þ 2zðz2 þ 1Þ

ð1 þ jzj2Þ2
y5:

The space N
ð1;0Þ
T of ð1; 0Þ-forms with respect to the almost complex structure J0 is

spanned by

N
ð1;0Þ
T ¼ SpanCð~hh; ~nn1; ~nn2Þ:

Thus the integrability conditions for the CR-structure ðNT;J0Þ have the form

d~uu5~uu5~hh5~nn15~nn2 1 0;

d~hh5~uu5~hh5~nn15~nn2 1 0;

d~nn15~uu5~hh5~nn15~nn2 1 0;

d~nn25~uu5~hh5~nn15~nn2 1 0:

The expression for the other almost CR-structures are analogous.

The remaining part of proof of the theorem is skipped due to its purely computational
character. r
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Remark 8.7. We close this section with a remark that on T there exist also other
natural geometries whose integrability conditions may encode the torsion/curvature prop-
erties of SOð3Þ structures. Let us define the following real 1-forms:

Q1 ¼ Reð~nn1Þ; Q2 ¼ Imð~nn1Þ; Q3 ¼ Reð~nn2Þ; Q4 ¼ Imð~nn1Þ;

Q5 ¼ ~uu; Q6 ¼ �Imð~hhÞ; Q7 ¼ Reð~hhÞ:

They define the ~gg-orthonormal (local) coframe on T. The 3-forms

f1 ¼ i

2
ð~nn15~nn1 � ~nn25~nn2Þ5~uu;

f2 ¼ i

2
ð~nn15~nn25~hh � ~nn15~nn25~hhÞ;

f3 ¼ i

2
~uu5~hh5~hh

are well defined on T. They may be collected to a single well defined 3-form

f ¼ f1 þ f2 þ f3:

This, when expressed in terms of the orthonormal coframe ðQ1; Q2; Q3; Q4; Q5; Q6; Q7Þ, reads

f ¼ ðQ15Q2 � Q35Q4Þ5Q5 þ ðQ15Q3 � Q45Q2Þ5Q6

þ ðQ15Q4 � Q25Q3Þ5Q7 þ Q55Q65Q7:

It equips T with a G2 H SOð~ggÞ structure (see [11]).
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