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1. Introduction

Recently Dunajski and Sokolov have found [1] a general solution to an interesting 7th order ODE:

10y(3)
3
y(7) − 70y(3)

2
y(4)y(6) − 49y(3)

2
y(5)

2
+ 280y(3)y(4)

2
y(5) − 175y(4)

4
= 0.

This equation can be characterized as a unique (modulo contact transformations of variables) 7th order ODE which has a
10-dimensional group of local contact symmetries [2–4]. As mentioned by Dunajski and Sokolov, this equation was known
already in 1904 by Noth. Since we cannot find any earlier reference to this equation, we will call this Noth’s equation in the
following.

In this short note, we show that Noth’s equation also turns out to be a natural geometric condition for a certain class of
generic 2-distributions in dimension five.

We say that a 2-distribution D = Span(X4, X5), where X4 and X5 are two vector fields on a 5-dimensional manifold M , is
generic, or (2,3,5) onM , if the system of five vector fields

( X1, X2, X3, X4, X5 ) = ( [X5, [X4, X5]], [X4, [X4, X5]], [X4, X5], X4, X5 )

forms a frame onM . Locally, a generic 2-distribution D onM can be defined as the annihilator of three 1-forms (ω1, ω2, ω3)
onM , defined in terms of a single real function f = f (x, y, p, q, z), such that fqq ̸= 0, via

ω1 = dy − pdx, ω2 = dp − qdx, ω3 = dz − f (x, y, p, q, z)dx. (1.1)

Here (x, y, p, q, z) is a local coordinate system inM .
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The local geometry of (2,3,5) distributions is nontrivial: there exist generic distributions D1 and D2 on M which do not
admit a local diffeomorphism ϕ : M → M such that ϕ∗D1 = D2. For example, distributions corresponding to a function
f = q2 and f = q3 in (1.1) do not admit such a diffeomorphism. In such case, we say that they are locally nonequivalent.
The full set of differential invariants of (2,3,5) distributions considered modulo local diffeomorphism was given by Cartan
in [5]. For each (2,3,5) distribution he associated a Cartan connection, with values in the split real form of the exceptional Lie
algebra g2, whose curvature provided the invariants. These invariants can be also understood in terms of a certain conformal
class of metrics [6], defined onM by D. This conformal class is defined as follows:

Let D be defined as the annihilator of 1-forms (ω1, ω2, ω3), as e.g. in (1.1). We supplement them by the 1-forms ω4 and
ω5, in such a way that ω1 ∧ ω2 ∧ ω3 ∧ ω4 ∧ ω5 ̸= 0. In case of (1.1), we take ω4 = dq and ω5 = dx. Consider the forms
(θ1, θ2, θ3, θ4, θ5) defined onM via⎛⎜⎜⎜⎜⎝

θ1

θ2

θ3

θ4

θ5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
b11 b12 b13 0 0
b21 b22 b23 0 0
b31 b32 b33 0 0
b41 b42 b43 b44 b45
b51 b52 b53 b54 b55

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ω1

ω2

ω3

ω4

ω5

⎞⎟⎟⎟⎟⎠ , (1.2)

with some functions bij, i, j = 1, 2, . . . , 5, onM such that θ1
∧ θ2

∧ θ3
∧ θ4

∧ θ5
̸= 0. It follows that for a (2,3,5) distribution

D one can always find functions bij and 1-forms Ωµ, µ = 1, 2, . . . , 7, onM such that

dθ1
= θ1

∧ (2Ω1 + Ω4) + θ2
∧ Ω2 + θ3

∧ θ4

dθ2
= θ1

∧ Ω3 + θ2
∧ (Ω1 + 2Ω4) + θ3

∧ θ5

dθ3
= θ1

∧ Ω5 + θ2
∧ Ω6 + θ3

∧ (Ω1 + Ω4) + θ4
∧ θ5

dθ4
= θ1

∧ Ω7 +
4
3θ

3
∧ Ω6 + θ4

∧ Ω1 + θ5
∧ Ω2

dθ5
= θ2

∧ Ω7 −
4
3θ

3
∧ Ω5 + θ4

∧ Ω3 + θ5
∧ Ω4.

(1.3)

And now, it turns out that the (3, 2)-signature conformal class [gD] represented onM by the metric

gD = gijθ i
⊗ θ j

= θ1
⊗ θ5

+ θ5
⊗ θ1

− θ2
⊗ θ4

− θ4
⊗ θ2

+
4
3θ

3
⊗ θ3 (1.4)

is well defined, and that its Weyl tensor can be used to get all the basic differential invariants of the distribution D. The
simplest of these invariants, the so called Cartan’s quartic C(ζ ) of D, can be obtained in terms of the Weyl tensor of the
conformal class [gD] as follows [7,8]:

Calculate theWeyl tensorW = Wijklθ
i
⊗ θ j

⊗ θ k
⊗ θ l for the metric gD in the coframe (θ1, θ2, θ3, θ4, θ5). (Use the metric

gD to lower the index i from the natural placementW i
jkl to Wijkl, Wijkl = gipW

p
jkl). Then Cartan’s quartic for D is

C(ζ ) := A1 + 4A2ζ + 6A3ζ
2
+ 4A4ζ

3
+ A5ζ

4

with the functions AI , I = 1, 2, . . . , 5, given by

A1 = W4114, A2 = W4124, A3 = W4125, A4 = W4225, A5 = W5225.

The simplest equivalence class of (2,3,5) distributions corresponds to the vanishing of Cartan’s quartic, C(ζ ) ≡ 0, or
equivalently, AI ≡ 0 for all I = 1, 2, . . . , 5. Modulo local diffeomorphisms there is only one such distribution D. It may be
represented by (1.1) with f = q2. This distribution has maximal group of local symmetries. This group is isomorphic to the
split real form of the exceptional group G2 [5].

This provokes a problem: find all functions f = f (x, y, p, q, z), which via (1.1), define a generic distribution D, which is
locally diffeomorphically equivalent to the most symmetric one, the one with f = q2.

The general solution to this problem requires rather elaborate calculations, and it follows that the PDEs required for f
to correspond to vanishing AIs are quite ugly. However in the restricted case when the function f depends only on a single
variable q the solution is quite nice (see [6], Eq. (57)). For completeness, we recall this solution in the next section.

2. Cartan quartic for the distribution with f = f (q)

If the distribution is given as the annihilator of

ω1 = dy − pdx
ω2 = dp − qdx
ω3 = dz − f (q)dx,

(2.1)
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the conformal class [gD] can be represented by (1.4), with the forms (θ1, θ2, θ3, θ4, θ5) given by

θ1
= ω1 −

1
f ′′

(f ′ω2 − ω3)

θ2
=

1
f ′′

(f ′ω2 − ω3)

θ3
=

4f ′′2
− f ′f (3)

4f ′′2
ω2 +

f (3)

4f ′′2
ω3

θ4
=

(7f (3)2 − 4f ′′f (4))
40f ′′3

(f ′ω2 − ω3) + ω4 − ω5

θ5
= −ω4,

where

ω4 = dq, ω5 = dx.

With this choice of θ is the Cartan quartic is

C(ζ ) =
a5

100f ′′4
ζ 4

with

a5 = 10f (6)f ′′3
− 80f ′′2f (3)f (5) − 51f ′′2f (4)

2
+ 336f ′′f (3)

2
f (4) − 224f (3)

4
.

We see, in particular, that the only nonvanishing component of Cartan’s quartic is A5, and that the quartic has a quadruple
root, which makes it of type IV, in the terminology of [9].

We have the following corollary.

Corollary 2.1. Necessary and sufficient conditions for the distribution

D = Span(∂q, ∂x + p∂y + q∂p + f (q)∂z)

to have split real form of the exceptional Lie group G2 as a group of its local symmetries are

f ′′
̸= 0 (2.2)

and

10f (6)f ′′3
− 80f ′′2f (3)f (5) − 51f ′′2f (4)

2
+ 336f ′′f (3)

2
f (4) − 224f (3)

4
= 0. (2.3)

Thus apart from the genericity condition (2.2) the function f must satisfy quite a complicated 6th order ODE (2.3).
Strangely enough, this ODE is closely related to the Noth equation, studied by Dunajski and Sokolov, and mentioned in

the Section 1. We have the following proposition.

Proposition 2.2. Suppose that a real, sufficiently many times differentiable, function f = f (q) satisfies (2.3). Let Θ = Θ(x5) be
another real, sufficiently many times differentiable, function of a real variable x5, whose second and third derivatives with respect
to x5 are related to f via an equation:

f (−Θ (3)) + x5Θ (3)
− Θ ′′

= 0. (2.4)

Assume in addition that Θ (4)
̸= 0. Then the function Θ = Θ(x5) satisfies the following 8th order ODE:

10Θ (4)3Θ (8)
− 70Θ (4)2Θ (5)Θ (7)

− 49Θ (4)2Θ (6)2
+ 280Θ (4)Θ (5)2Θ (6)

− 175Θ (5)4
= 0.

Proof. The proof consists in a successive differentiation of the equation f (−Θ (3)) = −x5Θ (3)
+ Θ ′′ using the chain rule. We

have −Θ (4)f ′
= −Θ (3)

− x5Θ (4)
+ Θ (3), i.e. f ′

= x5. Then, in the same way:

f (p) = −
1

Θ (4)

d
dx5

f (p−1) for p = 2, 3, . . . ,

i.e. f ′′
= −

1
Θ(4) , f (3) = −

Θ(5)

Θ(4)3
, f (4) =

Θ(6)

Θ(4)4
− 3Θ(5)2

Θ(4)5
, etc. Inserting these derivatives of f into the definition of a5 we get

a5 =

−
10Θ (4)3Θ (8)

− 70Θ (4)2Θ (5)Θ (7)
− 49Θ (4)2Θ (6)2

+ 280Θ (4)Θ (5)2Θ (6)
− 175Θ (5)4

Θ (4)12
.
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Thus if the equation a5 = 0 for f is satisfied, i.e. if (2.3) holds, then the function Θ = Θ(x5) satisfies the 8th order ODE from
the proposition, as claimed. □

Magically, Eq. (2.3), when transformed via (2.4) into the 8th order ODE from Proposition 2.2 and then reduced by one
order via y = Θ ′, becomes the 7th order ODE of Noth. The magic is in a peculiar form of the transformation (2.4) relating f
and Θ . The geometric reason for this transformation is explained in the next section.

3. Distribution with f = f (q) as a twistor distribution

A particular class of (2,3,5) distributions is associated with 4-dimensional split signature metrics. This is carefully
explained in [7], see Section 2, for every split signature metric. Here we concentrate on a special case, when the metric
is given in terms of a one real function of four variables, called Plebański second heavenly function.

Let Θ = Θ(x, y, z, w) be a real, sufficiently smooth, function of four real variables (x, y, z, w) which satisfies the
differential equation called second heavenly equation of Plebański:

Θwx + Θzy + ΘxxΘyy − Θ2
xy = 0. (3.1)

Such a function enables us to define a 4-metric g , on a manifold U parametrized by (x, y, z, w), via

g = dwdx + dzdy − Θxxdz2 − Θyydw2
+ 2Θxydwdz. (3.2)

This is Plebański’s second heavenly metric. It can be written in the form

g = τ 1
⊗ τ 2

+ τ 2
⊗ τ 1

+ τ 3
⊗ τ 4

+ τ 4
⊗ τ 3,

where

τ 1
= dx − Θyydw + Θxydz

τ 2
= dw

τ 3
= dy − Θxxdz + Θxydw

τ 4
= dz.

Since g has split signature on U , there is a natural circle bundle S1
→ T(U) → U over U [7]. In this bundle, which we call

as the circle twistor bundle for (U, g), every point in the fiber over x ∈ U is a certain real totally null selfdual 2-plane at x.
There is an entire circle of such planes at x. The bundle T(U)

π
→ U is naturally equipped with a 2-dimensional distribution

D. Its plane Dp at a point p ∈ T(U), which as we know can be identified with a certain real totally null 2-plane N(p) at
π (p), is the tautological horizontal lift of N(p) from π (p) to p. Horizontality in T(U) is induced by the Levi-Civita connection
of g from U . (See [7], Section 2, for details.) In case of the Plebański metric (3.2), given in terms of the heavenly function
Θ = Θ(x, y, z, w), the circle twistor bundle can be locally parametrized by (x, y, z, w, ξ ) and the twistor distribution can be
defined as the annihilator of the 1-forms

ω̃1 = dξ −

(
(∂x + ξ∂y)3Θ

)
dz

ω̃2 = dw + ξdz

ω̃3 = dy − ξdx −

(
(∂x + ξ∂y)2Θ

)
dz.

A little tweak (see [9], Thm 3.3.5), which we have learned from Ian Anderson [10], and which he attributes to Goursat [11]
(see also [12], p. 7), consists in introducing new coordinates (x1, x2, x3, x4, x5) on T(U):

x1 = z, x2 = w, x3 = −ξ, x4 = y − ξx, x5 = x, (3.3)

and enables us to conclude that the twistor distribution for the Plebański metric (3.2) can equivalently be defined by the
annihilator of the forms

ω1 = dx2 − x3dx1
ω2 = dx3 + Θ555dx1
ω3 = dx4 − (Θ55 − x5Θ555)dx1.

(3.4)

HereΘ55 =
∂2Θ

∂x25
,Θ555 =

∂3Θ

∂x35
, and becauseΘ is originally function of only four variables (x, y, z, w), we haveΘ3+x5Θ4 = 0.

Now we can demystify transformation (2.4): Consider the case when the function Θ is a function of x only, Θ = Θ(x5).
Note that in this case the second heavenly equation (3.1) is automatically satisfied. Then, comparing the formulae (2.1) and
(3.4), we see that the relation between the function f in (2.1) and the function Θ in (3.4) is

q = −Θ555, f (q) = Θ55 − x5Θ555.
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This inevitably leads to

f (−Θ555) = Θ55 − x5Θ555,

which is the relation (2.4).
For an explicit derivation of Noth’s ODE in terms of the Plebański second heavenly metric, we find explicit formulae for

the conformal class [gD] associated with the distribution D defined by (3.4) with Θ = Θ(x5). Since for this the function Θ

is a function of one variable only, we will denote the derivatives w.r.t. x5 by primes, double primes, etc. First we extend the
forms (3.4) by

ω4 = dx1, ω5 = dx5 (3.5)

to a coframeonT(U), and then find a suitable representatives of the forms (θ1, θ2, θ3, θ4, θ5) defining, via (1.4), the conformal
class [gD]. These forms can be taken to be

θ1
= ω1 − Θ (4)(x5ω2 − ω3)

θ2
= Θ (4)(x5ω2 − ω3)

θ3
= −

4Θ (4)
+ x5Θ (5)

4Θ (4) ω2 +
Θ (5)

4Θ (4) ω3

θ4
= −

5Θ (5)2
− 4Θ (4)Θ (6)

40Θ (4)3
(x5ω2 − ω3) + ω4 − Θ (4)ω5

θ5
= Θ (4)ω5,

with
ω1 = dx2 − x3dx1
ω2 = dx3 + Θ (3)dx1
ω3 = dx4 − (Θ ′′

− x5Θ (3))dx1
ω4 = dx1
ω5 = dx5.

It is straightforward now to calculate Cartan’s quartic for gD with these forms θ i. It reads

C(ζ ) = −
α5ζ

4

100Θ (4) ,

where α5 is given by

α5 = 10Θ (4)3Θ (8)
− 70Θ (4)2Θ (5)Θ (7)

− 49Θ (4)2Θ (6)2
+ 280Θ (4)Θ (5)2Θ (6)

− 175Θ (5)4.

Thus under the condition Θ (4)
̸= 0, Cartan’s quartic identically vanishes if and only if y = Θ ′ satisfies Noth’s ODE.

We have just proved the following theorem.

Theorem3.1. The twistor distributionD on the circle twistor bundle S1
→ T(M) → M of the Plebański second heavenlymanifold

(M, g) with the metric

g = dwdx + dzdy − Θ ′′dz2

and the second heavenly function Θ = Θ(x) such that Θ (4)
̸= 0, has the split real form of the exceptional group G2 as a group of

its local symmetries if and only if the heavenly function Θ satisfies the ODE:

10Θ (4)3Θ (8)
− 70Θ (4)2Θ (5)Θ (7)

− 49Θ (4)2Θ (6)2
+ 280Θ (4)Θ (5)2Θ (6)

− 175Θ (5)4
= 0.

4. G2 flatness for D of Plebański metrics implies Noth’s equation

The aim of this section1 is to argue that G2 flatness of the twistor distribution associated with Plebański second heavenly
manifolds (M, g) implies Noth’s equation for the heavenly function Θ . Since the Cartan quartic for the general case looks
horrible and is impossible to be displayed here, we present the details of the calculation only in the restricted case when the
heavenly function Θ is independent of w and z. We will comment on the general case at the end of this section.

1 The first version of this paper appeared on arXiv.org in 2013without this section. Since thenwe have expanded our result to general Plebanski metrics.
Also, the results of our arXiv.org version of the paper were used by M. Randal in [13,14].
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If we assume that Θ is independent of w and z, we have Θw = 0 and Θz = 0, which degenerates the second heavenly
equation into the form:

ΘxxΘyy − Θ2
xy = 0, (4.1)

which is the homogeneous Monge–Ampere equation. This is a special case which is convenient to study using the same
change of coordinates as before in (3.3), because in them the differential equation retains its form:

Θ44Θ55 − Θ2
45 = 0. (4.2)

Also, the conditions Θw = Θz = Θξ = 0 in the original coordinates imply, and are equivalent to, that the function Θ in the
new coordinates satisfies

Θ1 = Θ2 = Θ3 + x5Θ4 = 0.

It is convenient to rewrite the Monge–Ampere equation (4.2) into equivalent form,

Θ45 = HΘ55

Θ44 = H2Θ55,
(4.3)

which is a system of differential equations for Θ and a certain differentiable function H . Then applying these relations, we
can compute the exterior derivatives of Θ , H and their partials as follows:

dΘ = −Θ4x5dx3 + Θ4dx4 + Θ5dx5
dΘ5 = (−Θ4 − HΘ55x5)dx3 + HΘ55dx4 + Θ55dx5
dΘ4 = −H2Θ55x5dx3 + H2Θ55dx4 + HΘ55dx5
dΘ55 = −(2HΘ55 + H5Θ55x5 + HΘ555x5)dx3 + (H5Θ55 + HΘ555)dx4 + Θ555dx5
dΘ555 = (−3H5Θ55 − 3HΘ555 − H55Θ55x5 − 2H5Θ555x5 − HΘ5555x5)dx3

+ (H55Θ55 + 2H5Θ555 + HΘ5555)dx4 + Θ5555dx5
dΘ5555 = (−4H55Θ55 − 8H5Θ555 − 4HΘ5555 − H555Θ55x5

− 3H55Θ555x5 − 3H5Θ5555x5 − HΘ55555x5)dx3
+ (H555Θ55 + 3H55Θ555 + 3H5Θ5555 + HΘ55555)dx4 + Θ55555dx5

dΘ55555 = (−5H555Θ55 − 15H55Θ555 − 15H5Θ5555 − 5HΘ55555 − H5555Θ55x5
− 4H555Θ555x5 − 6H55Θ5555x5 − 4H5Θ55555x5 − HΘ555555x5)dx3
+ (H5555Θ55 + 4H555Θ555 + 6H55Θ5555 + 4H5Θ55555 + HΘ555555)dx4
+ Θ555555dx5

dΘ555555 = (−6H5555Θ55 − 24H555Θ555 − 36H55Θ5555 − 24H5Θ55555 − 6HΘ555555

− H55555Θ55x5 − 5H5555Θ555x5 − 10H555Θ5555x5 − 10H55Θ55555x5
− 5H5Θ555555x5 − HΘ5555555x5)dx3
+ (H55555Θ55 + 5H5555Θ555 + 10H555Θ5555 + 10H55Θ55555

+ 5H5Θ555555 + HΘ5555555)dx4 + Θ5555555dx5

dH = H(H − H5x5)dx3 + HH5dx4 + H5dx5
dH5 = (HH5 − H2

5x5 − HH55x5)dx3 + (H2
5 + HH55)dx4 + H55dx5

dH55 = −(3H5H55 + HH555)x5dx3 + (3H5H55 + HH555)dx4 + H555dx5
dH555 = (−3H5H55 − HH555 − 3H2

55x5 − 4H5H555x5 − HH5555x5)dx3
+ (3H2

55 + 4H5H555 + HH5555)dx4 + H5555dx5
dH5555 = (−6H2

55 − 8H5H555 − 2HH5555 − 10H55H555x5 − 5H5H5555x5
− HH55555x5)dx3
+ (10H55H555 + 5H5H5555 + HH55555)dx4 + H55555dx5.

Now, we can calculate the components Ai, i = 1, 2, . . . , 5 of the Cartan quartic for the twistor distribution associated
with this Plebański function Θ . We take the coframe given by (3.4) and (3.5), and find a new coframe (1.2) such that (1.3) is
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satisfied. It requires long steps of calculations to find such a coframe. The coframe we eventually found is shown below:⎛⎜⎜⎜⎜⎝
θ1

θ2

θ3

θ4

θ5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
Θ5555 0 0 0 0
0 −x5 1 0 0
0 1 0 0 0

b41 b42
−5Θ2

55555 + 3Θ5555Θ555555

30Θ2
5555

0 −Θ5555

b51 b52 0 1 2HΘ55

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ω1

ω2

ω3

ω4

ω5

⎞⎟⎟⎟⎟⎠ ,

where

b41 = −
1

15Θ2
5555

(3H5555Θ
2
55Θ5555 + 27H555Θ55Θ555Θ5555 + 45H55Θ

2
555Θ5555

+ 18H55Θ55Θ
2
5555 + 45H5Θ555Θ

2
5555 − 5H555Θ

2
55Θ55555

− 35H55Θ55Θ555Θ55555 − 40H5Θ
2
555Θ55555 + 7H5Θ55Θ5555Θ55555

+ 5HΘ555Θ5555Θ55555 + 5HΘ55Θ
2
55555 − 3HΘ55Θ5555Θ555555)

b42 =
10Θ5555Θ55555 + 5Θ2

55555x5 − 3Θ5555Θ555555x5
30Θ2

5555

b51 = −
1

30Θ3
5555

(−5H2
555Θ

4
55 − 70H55H555Θ

3
55Θ555 − 245H2

55Θ
2
55Θ

2
555

− 80H5H555Θ
2
55Θ

2
555 − 560H5H55Θ55Θ

3
555 − 320H2

5Θ
4
555 + 30H2

55Θ
3
55Θ5555

+ 20H5H555Θ
3
55Θ5555 − 6HH5555Θ

3
55Θ5555 + 260H5H55Θ

2
55Θ555Θ5555

− 44HH555Θ
2
55Θ555Θ5555 + 280H2

5Θ55Θ
2
555Θ5555 − 20HH55Θ55Θ

2
555Θ5555

+ 80HH5Θ
3
555Θ5555 − 35H2

5Θ
2
55Θ

2
5555 − 36HH55Θ

2
55Θ

2
5555

− 140HH5Θ55Θ555Θ
2
5555 − 20H2Θ2

555Θ
2
5555 + 30H2Θ55Θ

3
5555

+ 10HH555Θ
3
55Θ55555 + 70HH55Θ

2
55Θ555Θ55555 + 80HH5Θ55Θ

2
555Θ55555

− 14HH5Θ
2
55Θ5555Θ55555 − 10H2Θ55Θ555Θ5555Θ55555 − 5H2Θ2

55Θ
2
55555

+ 3H2Θ2
55Θ5555Θ555555)

b52 = −
1

3Θ2
5555

(−H555Θ
2
55 − 7H55Θ55Θ555 − 8H5Θ

2
555 + 5H5Θ55Θ5555

+ 4HΘ555Θ5555 + HΘ55Θ55555).

Even in this restricted situation the computed Cartan’s matrix coefficients Ai, i = 1, 2, 3, 4, 5, are too complicated to list
them all here. However, surprisingly we found that

A5 =
1

100Θ55554 (175Θ
4
55555 − 280Θ5555Θ

2
55555Θ555555 + 49Θ2

5555Θ
2
555555

+ 70Θ2
5555Θ55555Θ5555555 − 10Θ3

5555Θ55555555).

For G2 flatness of the twistor distribution we need that all the Ai, i = 1, 2, 3, 4, 5 must vanish. The form of the computed A5
shows that Noth’s equation

175Θ4
55555 − 280Θ5555Θ

2
55555Θ555555 + 49Θ2

5555Θ
2
555555+

70Θ2
5555Θ55555Θ5555555 − 10Θ3

5555Θ55555555 = 0,
(4.4)

for Θ5 is a necessary condition. Whether this condition is sufficient is an open question.
Interestingly, there are three well-known solutions of the Monge–Ampere equations (4.1):

(1) Θ = φ(C1x + C2y) + C3x + C4y + C5
(2) Θ = (C1x + C2y)φ

( y
x

)
+ C3x + C4y + C5

(3) Θ = (C1x + C2y + C3)φ
(

C4x+C5y+C6
C1x+C2y+C3

)
+ C7x + C8y + C9

Rewriting these solutions in terms of the variables x3, x4 and x5 using x = x5, y = x4 − x3x5, we impose Noth’s equation
(4.4) on such Θs, which in turn impose conditions on the free function φ appearing in (1)–(3). The results are as follows:

ad (1) In this case all the Ais, i = 1, 2, 3, 4, 5, vanish provided that the function φt satisfies Noth’s ODE for the variable
t = C1x5 + C2(x4 − x3x5). Thus in this case Noth’s ODE is sufficient to guarantee the G2 flatness of the twistor
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distribution. However, by a simple change of coordinates, one can convince himself that the heavenly metric
corresponding to Θ = φ(C1x + C2y) + C3x + C4y + C5 is the same as in Theorem 3.1.

ad (2)–(3) In these cases the equations Ai = 0, i = 1, 2, 3, 4, 5, cannot be satisfied by function φ, which obey the genericity
condition Θ5555 ̸= 0.

We actually have computed Ai, i = 1, 2, . . . , 5 for the Plebański metric satisfying the heavenly equations with heavenly
function Θ depending on all the variables (x, y, z, w). This was done with the help of Mathematica symbolic calculation
program. It follows that in that, fully general case, the Noth equation (4.4) is still necessary for the heavenly function θ to
correspond to G2 flat twistor distribution. While this could be checked by brute force calculation, we conjecture that there
should be a more geometrical argument for this, which we leave as an open question. Also it would be interesting to know
if there are heavenly functions satisfying both (3.1) and (4.4) and for which the corresponding heavenly metric (3.2) is not
equivalent to the one from Theorem 3.1.
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