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Simple Lie algebras

One of the most spectacular achievements of algebra, and
perhaps, the whole mathematics, is the classification of
simple Lie groups.
This is the result of Wilhelm Killing (1847-1923), which he
published in 1887, while being a teacher and the rector of
the Lyceum Hosianum in Braniewo, a city in Warmia, PL.
What Killing has established is the list of pairwaise
nonequivalent simple Lie algebras:
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List of pairwaise nonequivalent simple Lie algebras

First, we have the classical simple Lie algebras:

Lie algebra dimension notes
aℓ = sl(ℓ+ 1) ℓ ≥ 1 ℓ(ℓ+ 2) all these Lie algebras
bℓ = so(2ℓ+ 1) ℓ ≥ 2 ℓ(2ℓ+ 1) correspond to Lie groups
cℓ = sp(ℓ) ℓ ≥ 3 ℓ(2ℓ+ 1) preserving multilinear forms
dℓ = so(2ℓ) ℓ ≥ 4 ℓ(2ℓ− 1) in RN and CN .

There are infinitely many of them; they are grouped in
infinite series, parametrized by the Lie theoretic invariant
number ℓ, called the rank of the simple Lie algebra.
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List of pairwaise nonequivalent simple Lie algebras

Killing’s gratest discovery was to establish that the above list
should be ammended by a finite number of simple Lie
algrabras. Actually there is precisely five more simple Lie
algrabras. These, for obvious resons are called the exceptional
simple Lie algebras. Their basic properties are listed in the
following table:

Lie algebra dimension notes
e8 248 these algebras
e7 133 were not excluded by
e6 78 the classification
f4 52 but it was not clear
g2 14 if they really exist
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Realizations of exceptional Lie algebras

Killing discovered the root diagram for g2 and found also
diagrams for the other exceptional Lie algebras. But he did
not obtained realizations of these Lie algebras (nor the
corresponding Lie groups).
In particular, Killing did not obtained realization of the
smallest exceptional simple Lie algebra g2, but he claimed
in 1887 that it should be realized as a Lie algebra of a
transformation group in dimension 5.
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Why dimension 5?

The simplest way of realizing a Lie group G geometrically,
is to provide a space M, which is G-homogeneous. Then
the group G is the symmetry group of the space M and,
in particular, it is a symmetry of the entire structure with
which M is naturally equipped. Such space is always
locally equivalent to one of the coset spaces G/P, with
P being some Lie subgroup of G.
The dimension of the homogeneous space M = G/P is
dim(M) = dim(G)− dim(P), so to find a realisation of G in
the lowest dimension, one has to take a subgroup P in G
of the largest dimension.
Killing’s remark that G2 should be realized in dimension
five means that he knew that there are subgroups P in G2
of dimension nine.
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Cartan enters into the stage

Now, due to Élie Cartan’s PhD thesis (written in 1894,
when he was 24), we know that the group G2 has two
geometrically different realizations as a transformation
group in dimension 5; I discussed this story many times, in
particular at this seminar.
So, today I want to discuss lowest possible realizations of
other exceptionals.
As you will see I will focus on E6.

7/34



Cartan enters into the stage

Now, due to Élie Cartan’s PhD thesis (written in 1894,
when he was 24), we know that the group G2 has two
geometrically different realizations as a transformation
group in dimension 5; I discussed this story many times, in
particular at this seminar.
So, today I want to discuss lowest possible realizations of
other exceptionals.
As you will see I will focus on E6.

7/34



Cartan enters into the stage

Now, due to Élie Cartan’s PhD thesis (written in 1894,
when he was 24), we know that the group G2 has two
geometrically different realizations as a transformation
group in dimension 5; I discussed this story many times, in
particular at this seminar.
So, today I want to discuss lowest possible realizations of
other exceptionals.
As you will see I will focus on E6.

7/34



Cartan enters into the stage

Now, due to Élie Cartan’s PhD thesis (written in 1894,
when he was 24), we know that the group G2 has two
geometrically different realizations as a transformation
group in dimension 5; I discussed this story many times, in
particular at this seminar.
So, today I want to discuss lowest possible realizations of
other exceptionals.
As you will see I will focus on E6.

7/34



Cartan enters into the stage

Now, due to Élie Cartan’s PhD thesis (written in 1894,
when he was 24), we know that the group G2 has two
geometrically different realizations as a transformation
group in dimension 5; I discussed this story many times, in
particular at this seminar.
So, today I want to discuss lowest possible realizations of
other exceptionals.
As you will see I will focus on E6.

7/34



Cartan enters into the stage

Now, due to Élie Cartan’s PhD thesis (written in 1894,
when he was 24), we know that the group G2 has two
geometrically different realizations as a transformation
group in dimension 5; I discussed this story many times, in
particular at this seminar.
So, today I want to discuss lowest possible realizations of
other exceptionals.
As you will see I will focus on E6.

7/34



I mean realizations and NOT representations

With the exception of General Relativists, physicists when
thinking about realizations of Lie groups, have in mind
their representations. i.e. linear realizations.
Cartan, in his thesis, established what are the dimensions
for the lowest dimensional irreducible and faithful
representations of the exceptionals. He has shown that
the lowest dimensional irreducible representation of

G2 is in dimension 7,
F4 is in dimension 26,
E6 is in dimension 27,
E7 is in dimension 56,
E8 is in dimension 248.

However these are not the lowest dimensions for the
realizations of these groups. If one drops the linearity of
the action the dimensions are lower. And here is the
proper start of my seminar.
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Cartan-Helgason story

About 20 years ago I red a very nice article of Sigurdur Helgason in
which he writes the following:

And this made it clear to me how to realize F4. It is the symmetry
group of a rank eight distribution in R15 with coordinates
(xi , yj , z, zkl), i , j = 1,2,3,4, 1 ≤ k < l ≤ 4, which annihilates the
seven 1-forms in equation (14). This is similar to G2 being the
symmetry group of a rank two distribution in R5, with coordinates
(x1, x2, x3, x4, x5) annihilating the three 1-forms above equation (14).
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Cartan-Helgason story

Helgason continues:

S. Helgason, Invariant differential equations on homogeneous
manifolds, BAMS 83, 751-756, (1977).
This agrees with the ‘last minus 2’ line in the German version
of Cartan’s PhD thesis (which was published in 1893, one year
before the French version):
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Cartan-Helgason story

But here is the full Cartan’s text; with the last two sentences,
which Helgason seemingly did not read:
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Cartan-Helgason story

Conclusion #1: Cartan’s thesis in German has two misprints,
and Helgason amplified one of these misprints in his influencial
review article in the Bulletin of the AMS; this made me to
believe for many years that the lowest dimension in which
the exceptional Lie group E8 is realized is 29.
This is wrong! And Cartan is innocent here. If Helgason was
patient enough, he would get the correct dimension from the
last sentence of Cartan’s German thesis.
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Cartan-Helgason story
Cartan’s thesis in French, was published one year later, that is
to say in 1894 (I have a copy of the second edition from 1933).
It must have obviously been available in 1976. And it does not
leave any doubt about Cartan’s accuracy in determining the
lowest dimensions of the realizations:

Here are coordinates of the French copy of Cartan’s thesis I
have: É. Cartan, ‘Sur la structure des grupes de
transformations finis et continus’, Thése, Paris, Nony, 2e édition,
Vuibert, (1933).
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Cleaning the mess

Recall that as far as the lowest
dimensional faithful
representaions are concerned we
have:

G2 represented in dimension 7,
F4 represented in dimension 26,
E6 represented in dimension 27,
E7 represented in dimension 56,
E8 represented in dimension
248.

And Cartan in his Thesis
claims that the lowest
dimensional realizations
are in dimension:

5 for G2,
15 for F4,
16 for E6,
27 for E7,
57 for E8.
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Parabolic people: they understand these numbers

The numbers of the lowest dimensional realizations can be get
from the Dynkin diagrams of simple Lie groups. Here they are:
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Gradations in simple Lie algebras

Every complex simple Lie algebra g can be graded, i.e.
decomposed onto a direct sum

g = g−p ⊕ g−p+1 ⊕ · · · ⊕ g−1︸ ︷︷ ︸
g−

⊕g0 ⊕ g1 ⊕ · · · ⊕ gp−1 ⊕ gp︸ ︷︷ ︸
g+

of vector spaces gi , i = 1,2, . . . ,p satisfying
[gi , gj ] ⊂ gi+j , with gi+j = {0} iff |i + j | > p, and such that
dim(gi) = dim(g−i) for all is.

Every such gradation defines a subalgebra p = g0 ⊕ g+, which
is a parabolic subalgebra in g. The subalgebra popp = g− ⊕ g0 is
isomorphic to p.

A parabolic subalgebra in a simple Lie algebra g is defined as
a subalgebra p of g such that its Killing form orthogonal
complement p⊥ is nilpotent.

In our setting above p⊥ = g+ and p⊥opp = g−.

In particular g− = g−p ⊕ · · · ⊕ g−1 is nilpotent. Actually it is
p-step nilpotent, meaning that the sequence gk = [g−1, g−k ],
starting at k = 1 terminates at k = p, gp = {0}.
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As many parabolics as ways of crossings in the Dynskin diagram

Fact
The number of nonequivalent gradations in a simple Lie
algebra g is equal to
the number of nonisomorphic parabolic subalgebras in
g and is equal to
the number of nonequivalent crossings of the nodes of
the Dynkin diagram of g.
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Example of nonequivalent crossings in E6...

18/34



... and equivalent pairs in E6
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Explaining diagram with crossings

Each crossed Dynkin
diagram corresponds to a
particular choice of a
parabolic subalgebra p in g,
and as such defines a
gradation p = g− ⊕ g0 ⊕ g+
in g.

What crossed diagram visualises is the
g0 part of this gradation:

It follows that g0 is a direct sum of
the semisimple part gss and the
center, which is a direct sum of a
number of Cs,
g0 = gss ⊕ C⊕ · · · ⊕ C.
The semisimple gss is the
uncrossed remnant of the original
crossed diagram, and the number
of C factors in g0 is the number of
crosses.

Thus, in our picture on the left, the g0s
of the corresponding gradations in e6
are respectively: so(10)⊕C, so(8)⊕ 2C,
sl(4)⊕ sl(2)⊕ 2C, sl(3)⊕ 2sl(2)⊕ 2C,
sl(2)⊕ sl(3)⊕ 3C, and 2sl(2)⊕ 4C.
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Explaining diagram with crossings

Now, recall that the
gradation in a simple Lie
algebra g caused by the
choice of crosses is
symmetric, meaning that
dim(g−) = dim(g+) = s.

g︸︷︷︸
dim=r

= g−︸︷︷︸
dim=s

⊕
p︷ ︸︸ ︷

g0︸︷︷︸
dim=k

⊕ g+︸︷︷︸
dim=s

,

Thus, if we consider a pair (G,P) of Lie
groups G and P ⊂ G, with the
respective Lie algebras g and p, the
G-homogeneous space M = G/P will
have dimension

d = dim(g)− dim(p) = s = 1
2 (r − k),

where

r is the dimension of g, and
k is the dimension of g0.
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k is the dimension of g0.
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Explaining diagram with crossings
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Cartan’s lowest dimensions for realizations of the
exceptionals
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Did I cleared up the Helgason-Cartan story?

Well...Helgason speaks about realizations in RN , so he
means realizations of real forms of the simple exceptional
Lie groups.
I discussed complex simple exceptional Lie groups, and
my realizations were in CN . All my numerical dimensions
were complex dimensions. My homogeneous spaces
were portions of CNs and not RNs.
Fortunately, every complex simple Lie algebra g has a real
form, called the split real form, for which all the
statements about its complexification g are true, when
one replaces the word complex by the word real.
So yes, there are realizations of the split real forms of the
exceptionals in all the dimensions mentioned by Cartan in
his thesis. And these are the lowest real dimensional
realizations among all their real forms.
But there are still some unclear issues here.
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There are issues...

Cartan realized F4 and its split real form denoted by FI as an
automorphism group of a certain (8,15) distribution. This can be
realized on the nilpotent Lie gorup G−, whose Lie algebra is g−,
related to the choice of parabolic . This nilpotent Lie
algebra is 2-step: g− = g−2 ⊕ g−1, with the respective
dimensions dim(g−2) = 7 and dim(g−1) = 8, corresponding to
the rank 8 of the distribution and its co-rank 7. So Cartan’s
realization of the split real form FI of F4 is a 2-step parablic
geometry.

Cartan is very explicit in describing his realization of the split real
form of F4. But he is very brief in telling what a geometric
structure is behind his realzations of e.g. split real form of E6 in
dimension 16.

He does not mention, that the parabolic geometry of the pair
(EI ,P) realizing the split real form EI of E6 in dimension 16 is
1-step. It is a geometric structure in the tangent space to the
homogeneous space M = EI/P, and not on a nontrivial
distribution in M as it was in the case of (FI ,P). He does not say
that his geometry in dimension 16, with EI as the group of
symmetry, is RSpin(5,5) geometry.24/34
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There are issues...

So Helgason’s statement
‘Similar results for E6 in R16 ... are indicated [in Cartan’s thesis]’
is again wrong:
realizations of F4 in R15 and E6 in R16 are not similar.

In the same way Cartan’s realizations of split real forms of E7
and E8 in the respective dimensions 27 and 57, are not similar to
his realization of F4 and G2.
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Questions

Q1: Are there realizations of real forms of Eℓ, ℓ = 6,7,8
similar to Cartan’s realization of the split real form FI of
F4? By this I mean, realizations of these real groups as
symmetry groups of a bracket generating, 2-step
distribution on a manifold?
Q2: True or not?:
All real forms of a given simple exceptional Lie algebras
have the lowest dimensional realization in the same
dimension.
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Real forms, on an example of E6

To enumerate nonequivalent real forms of a given complex
simple Lie algebra g, one decorates its Dynkin diagram
by:

(a) changing color of some nodes from white to black,
(b) conecting some nodes by arrows.

The rules as to which nodes could be changed into black,
and which nodes could be connected by arrows are too
complicated to be presented here.
We only mention, that in the real case, the Dynkin diagram
nodes representing simple roots of the Lie algebra can be
real - the white ones without an arrow pointing to them
imaginary, called compact - the black ones, or they may
be grouped into pairs of complex nodes, which consist of
mutually complex conjugated roots - they form pairs of
white nodes connected with an arrow.
Such a properly decorated Dynkin diagram is called
Satake diagram, and there is as many Satake diagrams of
a given complex Lie algebra as many its real forms.
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nodes representing simple roots of the Lie algebra can be
real - the white ones without an arrow pointing to them
imaginary, called compact - the black ones, or they may
be grouped into pairs of complex nodes, which consist of
mutually complex conjugated roots - they form pairs of
white nodes connected with an arrow.
Such a properly decorated Dynkin diagram is called
Satake diagram, and there is as many Satake diagrams of
a given complex Lie algebra as many its real forms.
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Satake diagrams for E6
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Rules for crossings/ chosing parabolics

Choices of parabolics are in one to
one correspondence with the
choices of decorating nodes by
crossings. But now, we have
selection rules:

it is forbidden to cross a black
node,
if two nodes are connected by
an arrow, crossing one of
them implies crossing both.

The rules on what is the g0 after
croses have been made are the
same.
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Crosing only the first node is not possible for EII and EIII

Because of the second of the
selection rules, we see that if we
cross node Λ1 in EII or EIII we must
also cross the node Λ5 on these
diagrams.

Thus, the 16-dimensional realization
of EII or EIII similar to the
16-dimensional realzation of EI is
not possible.

There exists however a
16-real-dimensional realization of
EIV . This is similar to Cartan’s
realization of EI : it corresponds to
RSpin(1,9) structure in dimension
16 with EIv as a symmetry.
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Accidental CR structures with EII or EIII groups of CR automorphisms

Wanting to be as close as possible to Cartan’s
realization of EI in dimension 16, which coresponds to
cross on the node Λ1 in the EI diagram, together with
Denny Hill, Joël Merker, and Zhoahu Nie, we crossed
nodes Λ1 on the Satake diagrams for EII and EIII .

This, by the second selection rule, forced us to cross
nodes Λ5 on both of these diagrams.

We got two E6-homogenoeus 24-dimensional
manifolds EII/PII and EIII/PIII .

It turns out that each of these real manifolds is
equipped with a (16, 24) distribution, and this
distribution has the EII or EIII symmetry, respectively.

So we have two realizations of the two exceptionals,
EII and EIII , which are similar to Cartan’s realization of
FI .

What is more interesting, the rank 16-distributions in
both of these realizations admit an integrable complex
structure J, s.t. J2 = −Id, which is respectively EII or
EIII compatible.

Thus, in this way we constructed two CR structures of
CR dimension 8, and real codimension 8, easilly
embeddable in C16 and which have EII or EIII as a
group of CR automorphisms.
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Para-CR structures with symmetries EI and EIV

And what if we make two crosses on EI or EIV ?

Well..., we also get two 24-real-dimensional EI -, or
EIV -homogeneous manifolds M = EI/PI or
M = EIV /PIv , equiped with (16, 24) distributions.
Let us call them D.

But now, each of the rank 16 distributions is equipped
with an E6 compatible integrable real structure K , s.t.
K 2 = Id.

This, in either case of EI or EIv , splits rank 16
distribution D onto two distributions,
D = D− ⊕ D+, each of rank 8.

Each of these 8-distributions is integrable. But of
course D is not integrable, since [D,D] = TM.
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Look at the simple part of g0 in EI and EIV cases

Compare the semisimple parts of these two diagrams with the

real forms of d4:

which respectively

correspond to SO(8, 0), SO(7, 1), SO(6, 2), SO∗(8), SO(4, 4)

and SO(5, 3).

We see that in the EIV case the simple part gss of g0 is
so(8, 0) and in the case of EI the simple part gss of g0
is so(4, 4).

Both of these real Lie algebras share the phenomenon
of triality. They both have three real nonequivalent
irreducible representations in dimension 8.

Two of these representations, say γ+ and γ− are
spinorial, in the respective 8-dimensional spaces S+
and S− of real Weyl spinors. They are the two
nonequivalent irreducible parts of the real
16-dimensional representation γ = γ+ ⊕ γ− of gss in
the space of real Dirac spinors S = S+ ⊕ S−.

The third representation ρ is the standard vectorial
representations of the groups SO(8, 0) or SO(4, 4) in
the real 8-dimensional (pseudo)Euclidean vector space
V = R(8,0) or V = R(4,4) .

Interestingly the choice of parabolics in EI or EiV
corresponding to the crossings as in the left, because
of the real structure K in the distribution D, makes the
gradations in eI or eIV as
eI/IV = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 with g−2 = V
and g−1 = S+ ⊕ S−

These three spaces g−1+ = S+, g−1− = S− and
g−2 = V are a natural realisation of the triality. The
semisimple part of the algebra g0 acts in each of the
three spaces g−1+, g−1− and g−2 with a different
representation of the so(8, 0) or so(4, 4)!
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