Simple models in Penrose's Conformal Cyclic Cosmology

Pawel Nurowski

Centrum Fizyki Teoretycznej Polska Akademia Nauk

International Meeting on Lorentzian Geometry Cordoba, 5.02.2021

- CCC or Conformal Cyclic Cosmology is a proposal for a Cosmology Hypothesis which answers the question 'What was before the Big Bang?'.
- The scheme of Penrose's CCC is as follows:¹

¹See: **P. Tod** (2015), 'The equations of Conformal Cyclic Cosmology', *Gen. Rel. Gray.* **47** https://doi.org/10.1007/s10714-015-1859-7, for details

- CCC or Conformal Cyclic Cosmology is a proposal for a Cosmology Hypothesis which answers the question 'What was before the Big Bang?'.
- The scheme of Penrose's CCC is as follows:¹

¹See: **P. Tod** (2015), 'The equations of Conformal Cyclic Cosmology', *Gen. Rel. Grav.* **47** https://doi.org/10.1007/s10714-015-1859-7. for details

- CCC or Conformal Cyclic Cosmology is a proposal for a Cosmology Hypothesis which answers the question 'What was before the Big Bang?'.
- The scheme of Penrose's CCC is as follows:

¹See: **P. Tod** (2015), 'The equations of Conformal Cyclic Cosmology', *Gen. Bel. Gray.* **47** https://doi.org/10.1007/s10714-015-1859-7_for_details

- CCC or Conformal Cyclic Cosmology is a proposal for a Cosmology Hypothesis which answers the question 'What was before the Big Bang?'.
- The scheme of Penrose's CCC is as follows:¹

¹See: **P. Tod** (2015), 'The equations of Conformal Cyclic Cosmology', *Gen. Rel. Grav.* **47**,https://doi.org/10.1007/s10714-015-1859-7, for details.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\nabla \). The Weyl tensor of the metric on each \(\nabla \) is zero.
- DISCLAIMER:
- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike J. The Weyl tensor of the metric on each J is zero.
- DISCLAIMER:
- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\nabla \). The Weyl tensor of the metric on each \(\nabla \) is zero.
- DISCLAIMER:
- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!

- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\nabla \). The Weyl tensor of the metric on each \(\nabla \) is zero.
- DISCLAIMER:
- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!

- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!

- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!

- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!

- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!

- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!

- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I} . The Weyl tensor of the 4-metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along # of the past eon, and # of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons – this region Penrose calls bandaged region for the two eons – is equipped with the following three metrics, which are conformally flat at the wound:
 - a Lorentzian metric g which is regular everywhere,
 - a Lorentzian metric \check{g} , which represents the physical metric of the **present eon**, and which is **singular** at the wound,
 - a Lorentzian metric \hat{g} , which represents the physical metric of the **past eon**, and which **infinitely expands** at the wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike I. The Weyl tensor of the 4-metric on each I is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along ## of the past eon, and ## of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons – this region Penrose calls bandaged region for the two eons – is equipped with the following three metrics, which are conformally flat at the wound:
 - a Lorentzian metric g which is regular everywhere,
 - a Lorentzian metric \check{g} , which represents the physical metric of the **present eon**, and which is **singular** at the wound,
 - a Lorentzian metric ĝ, which represents the physical metric of the past eon, and which infinitely expands at the wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\nabla \). The Weyl tensor of the 4-metric on each \(\nabla \) is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along #+ of the past eon, and #- of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons – this region Penrose calls bandaged region for the two eons – is equipped with the following three metrics, which are conformally flat at the wound:
 - a Lorentzian metric g which is regular everywhere,
 - a Lorentzian metric \check{g} , which represents the physical metric of the **present eon**, and which is **singular** at the wound,
 - a Lorentzian metric \hat{g} , which represents the physical metric of the **past eon**, and which **infinitely expands** at the wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\nabla \). The Weyl tensor of the 4-metric on each \(\nabla \) is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along ## of the past eon, and ## of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons – this region Penrose calls bandaged region for the two eons – is equipped with the following three metrics, which are conformally flat at the wound:
 - a Lorentzian metric g which is regular everywhere,
 - a Lorentzian metric \check{g} , which represents the physical metric of the **present eon**, and which is **singular** at the wound,
 - a Lorentzian metric \hat{g} , which represents the physical metric of the **past eon**, and which **infinitely expands** at the wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\nabla \). The Weyl tensor of the 4-metric on each \(\nabla \) is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along // of the past eon, and // of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons – this region Penrose calls bandaged region for the two eons – is equipped with the following three metrics, which are conformally flat at the wound:
 - a Lorentzian metric g which is regular everywhere,
 - a Lorentzian metric \check{g} , which represents the physical metric of the **present eon**, and which is **singular** at the wound,
 - a Lorentzian metric \hat{g} , which represents the physical metric of the **past eon**, and which **infinitely expands** at the wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\nabla \). The Weyl tensor of the 4-metric on each \(\nabla \) is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along // of the past eon, and // of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons – this region Penrose calls bandaged region for the two eons – is equipped with the following three metrics, which are conformally flat at the wound:
 - a Lorentzian metric g which is regular everywhere,
 - a Lorentzian metric \check{g} , which represents the physical metric of the **present eon**, and which is **singular** at the wound,
 - a Lorentzian metric \hat{g} , which represents the physical metric of the **past eon**, and which **infinitely expands** at the wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\nabla \). The Weyl tensor of the 4-metric on each \(\nabla \) is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along *\mathcal{I}^+\$ of the past eon, and *\mathcal{I}^-\$ of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons – this region Penrose calls bandaged region for the two eons – is equipped with the following three metrics, which are conformally flat at the wound:
 - a Lorentzian metric g which is regular everywhere,
 - a Lorentzian metric \check{g} , which represents the physical metric of the **present eon**, and which is **singular** at the wound,
 - a Lorentzian metric \hat{g} , which represents the physical metric of the **past eon**, and which **infinitely expands** at the wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\nabla \). The Weyl tensor of the 4-metric on each \(\nabla \) is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along *\mathcal{I}^+\$ of the past eon, and *\mathcal{I}^-\$ of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons – this region Penrose calls bandaged region for the two eons – is equipped with the following three metrics, which are conformally flat at the wound:
 - a Lorentzian metric g which is regular everywhere,

 - a Lorentzian metric \hat{g} , which represents the physical metric of the **past eon**, and which **infinitely expands** at the wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\nabla \). The Weyl tensor of the 4-metric on each \(\nabla \) is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along *\mathcal{I}^+\$ of the past eon, and *\mathcal{I}^-\$ of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons – this region Penrose calls bandaged region for the two eons – is equipped with the following three metrics, which are conformally flat at the wound:
 - a Lorentzian metric g which is regular everywhere,
 - a Lorentzian metric ğ, which represents the physical metric of the present eon, and which is singular at the wound,
 - a Lorentzian metric \hat{g} , which represents the physical metric of the **past eon**, and which **infinitely expands** at the wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\nabla \). The Weyl tensor of the 4-metric on each \(\nabla \) is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along *\mathcal{I}^+\$ of the past eon, and *\mathcal{I}^-\$ of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons – this region Penrose calls bandaged region for the two eons – is equipped with the following three metrics, which are conformally flat at the wound:
 - a Lorentzian metric g which is regular everywhere,
 - a Lorentzian metric ğ, which represents the physical metric of the present eon, and which is singular at the wound,
 - a Lorentzian metric \hat{g} , which represents the physical metric of the **past eon**, and which **infinitely expands** at the wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\mathcal{I} \). The Weyl tensor of the 4-metric on each \(\mathcal{I} \) is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along *\mathcal{I}^+\$ of the past eon, and *\mathcal{I}^-\$ of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons – this region Penrose calls bandaged region for the two eons – is equipped with the following three metrics, which are conformally flat at the wound:
 - a Lorentzian metric g which is regular everywhere,

 - a Lorentzian metric \hat{g} , which represents the physical metric of the **past eon**, and which **infinitely expands** at the wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\nabla \). The Weyl tensor of the 4-metric on each \(\nabla \) is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along *\mathcal{I}^+\$ of the past eon, and *\mathcal{I}^-\$ of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons – this region Penrose calls bandaged region for the two eons – is equipped with the following three metrics, which are conformally flat at the wound:
 - a Lorentzian metric g which is regular everywhere,
 - a Lorentzian metric \check{g} , which represents the physical metric of the **present eon**, and which is **singular** at the wound,
 - a Lorentzian metric \hat{g} , which represents the physical metric of the **past eon**, and which **infinitely expands** at the wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\mathcal{I} \). The Weyl tensor of the 4-metric on each \(\mathcal{I} \) is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along *\mathcal{I}^+\$ of the past eon, and *\mathcal{I}^-\$ of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons – this region Penrose calls bandaged region for the two eons – is equipped with the following three metrics, which are conformally flat at the wound:
 - a Lorentzian metric g which is regular everywhere,
 - a Lorentzian metric \check{g} , which represents the physical metric of the **present eon**, and which is **singular** at the wound,
 - a Lorentzian metric ĝ, which represents the physical metric of the past eon, and which infinitely expands at the wound

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \(\mathcal{I} \). The Weyl tensor of the 4-metric on each \(\mathcal{I} \) is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along *\mathcal{I}^+\$ of the past eon, and *\mathcal{I}^-\$ of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons – this region Penrose calls bandaged region for the two eons – is equipped with the following three metrics, which are conformally flat at the wound:
 - a Lorentzian metric *g* which is regular everywhere,
 - a Lorentzian metric \check{g} , which represents the physical metric of the **present eon**, and which is **singular** at the wound,
 - a Lorentzian metric ĝ, which represents the physical metric of the past eon, and which infinitely expands at the wound.

- How to make this relation specific is debatable, but Penrose proposes that $\check{\alpha} = \Omega^2 \alpha$, and $\hat{\alpha} = \frac{1}{2} \alpha$, with $\Omega \to 0$ on the wound
- The metric \check{g} in the present eon is a physical metric there. Likewise, the metric \hat{g} in the past eon is a physical metric there.
- Of course, the metric \check{g} in the present eon, and the metric \hat{g} in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.

- In a bandage region, the three metrics g, ğ and ĝ, are conformally related on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that $\check{g}=\Omega^2 g$, and $\hat{g}=\frac{1}{\Omega^2}g$, with $\Omega\to 0$ on the wound
- The metric \check{g} in the present eon is a physical metric there. Likewise, the metric \hat{g} in the past eon is a physical metric there
- Of course, the metric \check{g} in the present eon, and the metric \hat{g} in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.

- In a bandage region, the **three metrics** g, \check{g} and \hat{g} , are **conformally related** on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that $\check{g} = \Omega^2 g$, and $\hat{g} = \frac{1}{\Omega^2} g$, with $\Omega \to 0$ on the wound
- The metric \check{g} in the present eon is a physical metric there. Likewise, the metric \hat{g} in the past eon is a physical metric there.
- Of course, the metric ğ in the present eon, and the metric ĝ in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.

- In a bandage region, the **three metrics** g, \check{g} and \hat{g} , are **conformally related** on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that
 - $\check{g} = \Omega^2 g$, and $\hat{g} = \frac{1}{\Omega^2} g$, with $\Omega \to 0$ on the wound.
- The metric ğ in the present eon is a physical metric there. Likewise, the metric ĝ in the past eon is a physical metric there.
- Of course, the metric \check{g} in the present eon, and the metric \hat{g} in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.

- In a bandage region, the **three metrics** g, \check{g} and \hat{g} , are **conformally related** on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that

 $\check{g} = \Omega^2 g$, and $\hat{g} = \frac{1}{\Omega^2} g$, with $\Omega \to 0$ on the wound.

- The metric ğ in the present eon is a physical metric there. Likewise, the metric ĝ in the past eon is a physical metric there.
- Of course, the metric \check{g} in the present eon, and the metric \hat{g} in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.

- In a bandage region, the **three metrics** g, \check{g} and \hat{g} , are **conformally related** on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that
 - $\check{g}=\Omega^2 g$, and $\hat{g}=\frac{1}{\Omega^2}g$, with $\Omega\to 0$ on the wound.
- The metric ğ in the present eon is a physical metric there. Likewise, the metric ĝ in the past eon is a physical metric there.
- Of course, the metric \check{g} in the present eon, and the metric \hat{g} in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.

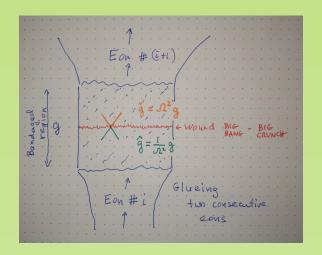
- In a bandage region, the three metrics g, ğ and ĝ, are conformally related on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that
 - $\check{g}=\Omega^2 g$, and $\hat{g}=\frac{1}{\Omega^2}g$, with $\Omega \to 0$ on the wound.
- The metric ğ in the present eon is a physical metric there. Likewise, the metric ĝ in the past eon is a physical metric there.
- Of course, the metric \check{g} in the present eon, and the metric \hat{g} in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.

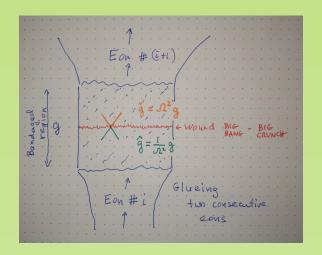
- In a bandage region, the **three metrics** g, \check{g} and \hat{g} , are **conformally related** on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that
 - $\check{g}=\Omega^2 g$, and $\hat{g}=\frac{1}{\Omega^2}g$, with $\Omega \to 0$ on the wound.
- The metric ğ in the present eon is a physical metric there. Likewise, the metric ĝ in the past eon is a physical metric there.
- Of course, the metric ğ in the present eon, and the metric ĝ in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.

- In a bandage region, the **three metrics** g, \check{g} and \hat{g} , are **conformally related** on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that
 - $\check{g}=\Omega^2 g$, and $\hat{g}=\frac{1}{\Omega^2}g$, with $\Omega\to 0$ on the wound.
- The metric ğ in the present eon is a physical metric there. Likewise, the metric ĝ in the past eon is a physical metric there.
- Of course, the metric ğ in the present eon, and the metric ĝ in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.

- In a bandage region, the three metrics g, ğ and ĝ, are conformally related on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that
 - $\check{g}=\Omega^2 g$, and $\hat{g}=\frac{1}{\Omega^2}g$, with $\Omega\to 0$ on the wound.
- The metric ğ in the present eon is a physical metric there. Likewise, the metric ĝ in the past eon is a physical metric there.
- Of course, the metric ğ in the present eon, and the metric ĝ in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.

- In a bandage region, the **three metrics** g, \check{g} and \hat{g} , are **conformally related** on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that
 - $\check{g}=\Omega^2 g$, and $\hat{g}=\frac{1}{\Omega^2}g$, with $\Omega\to 0$ on the wound.
- The metric ğ in the present eon is a physical metric there. Likewise, the metric ĝ in the past eon is a physical metric there.
- Of course, the metric ğ in the present eon, and the metric ĝ in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.





- Question: How to make a model of Penrose's bandaged region of two eons?
- One needs a function Ω , vanishing on some spacelike hypersurface, and a regular Lorentzian 4-metric g, such that if $\check{g} = \Omega^2 g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g} = \frac{1}{\Omega^2} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.

- Question: How to make a model of Penrose's bandaged region of two eons?
- One needs a function Ω , vanishing on some spacelike hypersurface, and a regular Lorentzian 4-metric g, such that if $\check{g} = \Omega^2 g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g} = \frac{1}{\Omega^2} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor

- Question: How to make a model of Penrose's bandaged region of two eons?
- One needs a function Ω , vanishing on some spacelike hypersurface, and a regular Lorentzian 4-metric g, such that if $\check{g} = \Omega^2 g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g} = \frac{1}{\Omega^2} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.

- Question: How to make a model of Penrose's bandaged region of two eons?
- One needs a function Ω , vanishing on some spacelike hypersurface, and a regular Lorentzian 4-metric g, such that if $\check{g}=\Omega^2g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^2}g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor

- Question: How to make a model of Penrose's bandaged region of two eons?
- One needs a function Ω , vanishing on some spacelike hypersurface, and a regular Lorentzian 4-metric g, such that if $\check{g}=\Omega^2 g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^2}g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor

- Question: How to make a model of Penrose's bandaged region of two eons?
- One needs a function Ω , vanishing on some spacelike hypersurface, and a regular Lorentzian 4-metric g, such that if $\check{g} = \Omega^2 g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\check{g} = \frac{1}{\Omega^2} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor

- Question: How to make a model of Penrose's bandaged region of two eons?
- One needs a function Ω , vanishing on some spacelike hypersurface, and a regular Lorentzian 4-metric g, such that if $\check{g} = \Omega^2 g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g} = \frac{1}{\Omega^2} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.

- Similar question to the question posed and solved by H. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other \check{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by H.
 Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the **same** function Ω should lead to **two conformally related but different solutions** $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ **of Einstein equations**, with a prescribed energy momentum tensor on the \hat{M} part, and a **reasonable** energy momentum tensor on the other \check{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by H.
 Brinkman. In 1925 he asked a question 'when in a conformal
 class of metrics there could be two nonisometric Einstein
 metrics?'. Brinkman found all such metrics in dimension four. In
 every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other \check{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by H.
 Brinkman. In 1925 he asked a question 'when in a conformal
 class of metrics there could be two nonisometric Einstein
 metrics?'. Brinkman found all such metrics in dimension four. In
 every signature.
- Here the problem is similar. It seems even simpler: the **same** function Ω should lead to **two conformally related but different solutions** $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ **of Einstein equations**, with a prescribed energy momentum tensor on the \hat{M} part, and a **reasonable** energy momentum tensor on the other \check{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by H.
 Brinkman. In 1925 he asked a question 'when in a conformal
 class of metrics there could be two nonisometric Einstein
 metrics?'. Brinkman found all such metrics in dimension four. In
 every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other \check{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by H.
 Brinkman. In 1925 he asked a question 'when in a conformal
 class of metrics there could be two nonisometric Einstein
 metrics?'. Brinkman found all such metrics in dimension four. In
 every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other \check{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by H.
 Brinkman. In 1925 he asked a question 'when in a conformal
 class of metrics there could be two nonisometric Einstein
 metrics?'. Brinkman found all such metrics in dimension four. In
 every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other \check{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by H.
 Brinkman. In 1925 he asked a question 'when in a conformal
 class of metrics there could be two nonisometric Einstein
 metrics?'. Brinkman found all such metrics in dimension four. In
 every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \check{M} part, and a reasonable energy momentum tensor on the other \check{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by H.
 Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other \hat{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by H.
 Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the **same** function Ω should lead to **two conformally related but different solutions** $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ **of Einstein equations**, with a prescribed energy momentum tensor on the \hat{M} part, and a **reasonable** energy momentum tensor on the other \check{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by H.
 Brinkman. In 1925 he asked a question 'when in a conformal
 class of metrics there could be two nonisometric Einstein
 metrics?'. Brinkman found all such metrics in dimension four. In
 every signature.
- Here the problem is similar. It seems even simpler: the **same** function Ω should lead to **two conformally related but different solutions** $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ **of Einstein equations**, with a prescribed energy momentum tensor on the \hat{M} part, and a **reasonable** energy momentum tensor on the other \check{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by H.
 Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the **same** function Ω should lead to **two conformally related but different solutions** $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ **of Einstein equations**, with a prescribed energy momentum tensor on the \hat{M} part, and a **reasonable** energy momentum tensor on the other \check{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by H.
 Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the **same** function Ω should lead to **two conformally related but different solutions** $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ **of Einstein equations**, with a prescribed energy momentum tensor on the \hat{M} part, and a **reasonable** energy momentum tensor on the other \check{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by H.
 Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the **same** function Ω should lead to **two conformally related but different solutions** $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ **of Einstein equations**, with a prescribed energy momentum tensor on the \hat{M} part, and a **reasonable** energy momentum tensor on the other \check{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by H.
 Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the **same** function Ω should lead to **two conformally related but different solutions** $\check{g} = \Omega^2 g$ and $\hat{g} = \Omega^{-2} g$ **of Einstein equations**, with a prescribed energy momentum tensor on the \hat{M} part, and a **reasonable** energy momentum tensor on the other \check{M} .
- It seems to be very unlikely that one finds something interesting on (\check{M}, \check{g}) , when \hat{T}_{ij} and its corresponding $\hat{g} = \Omega^{-2}g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

Polytrope perfect fluids in FLRW models

• Let us for a while restrict to the FLRW metrics with $\kappa = 1$, $g_{test} = -dt^2 + \Omega^2(t)r_0^2 \left(d\chi^2 + \sin^2\chi \left(d\theta^2 + \sin^2\theta d\phi^2\right)\right)$.

• It is convenient to introduce a **conformal time** $\eta = \int \frac{dt}{a(t)}$ so that the FLRW metric looks

i.e.
$$g_{test} = \Omega^2(\eta)g_{Einst}$$
.

This parametrization is very convenient since taking $u = -\Omega(\eta) d\eta$, the most general FLRW metric g satisfying **Einstein's equations**

$$Ric-rac{1}{2}Rg_{test}=(\mu+p)u\otimes u+pg_{test}$$
 blytropic equation of state $p=w\mu,\ w=cont$

given by

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}} \text{ if } w \neq -\frac{1}{3},$$

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$.

• Let us for a while restrict to the FLRW metrics with $\kappa = 1$,

$$g_{test} = -\mathrm{d}t^2 + \Omega^2(t) r_0^2 \, \left(\mathrm{d}\chi^2 + \sin^2\chi ig(\mathrm{d} heta^2 + \sin^2 heta\mathrm{d}\phi^2ig)
ight).$$

• It is convenient to introduce a **conformal time** $\eta = \int \frac{\mathrm{d}t}{a(t)}$ so that the FLRW metric looks

$$g_{test} = \Omega^2(\eta) \left(-d\eta^2 + r_0^2 (d\chi^2 + \sin^2 \chi (d\theta^2 + \sin^2 \theta d\phi^2)) \right)$$

i.e. $g_{test} = \Omega^2(\eta)g_{Einst}$.

This parametrization is very convenient since taking $u = -\Omega(\eta) d\eta$, the most general FLRW metric g satisfying **Einstein's equations**

$$Ric - \frac{1}{2}Rg_{test} = (\mu + p)u \otimes u + pg_{test}$$

lytropic equation of state $p = w\mu$, $w = const$, is

given by

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$.

• Let us for a while restrict to the FLRW metrics with $\kappa=1$, $g_{test}=-\mathrm{d}t^2+\Omega^2(t)r_0^2\left(\mathrm{d}\chi^2+\sin^2\chi\left(\mathrm{d}\theta^2+\sin^2\theta\mathrm{d}\phi^2\right)\right)$.

• It is convenient to introduce a **conformal time** $\eta = \int \frac{\mathrm{d}t}{a(t)}$ so that the FLRW metric looks

$$g_{test} = \Omega^2(\eta) \left(-d\eta^2 + r_0^2 (d\chi^2 + \sin^2 \chi (d\theta^2 + \sin^2 \theta d\phi^2)) \right).$$
i.e. $G_{test} = \Omega^2(\eta) G_{test}$

i.e. $g_{test} = \Omega^2(\eta)g_{Einst}$.

This parametrization is very convenient since taking $u = -\Omega(\eta) \mathrm{d}\eta$, the most general FLRW metric g satisfying **Einstein's equations**

$$Ric - \frac{1}{2}Rg_{test} = (\mu + p)u \otimes u + pg_{test}$$
 by tropic equation of state $p = w\mu$, $w = const$, is

ven by $(1 + 3w)_n = \frac{1}{1 + 3w}$

$$\Omega(\eta) = \Omega_0 \Big(\sin^2 rac{(1+3w)\eta}{2r_0} \Big)^{rac{1}{1+3w}} ext{ if } w
eq -rac{1}{3}$$
,

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $W = -rac{1}{3}$.

• Let us for a while restrict to the FLRW metrics with $\kappa=1$, $g_{test}=-\mathrm{d}t^2+\Omega^2(t)r_0^2\left(\mathrm{d}\chi^2+\sin^2\chi\left(\mathrm{d}\theta^2+\sin^2\theta\mathrm{d}\phi^2\right)\right)$.

• It is convenient to introduce a **conformal time** $\eta = \int \frac{\mathrm{d}t}{a(t)}$ so that the FLRW metric looks

$$g_{test} = \Omega^2(\eta) \left(-d\eta^2 + r_0^2 (d\chi^2 + \sin^2 \chi (d\theta^2 + \sin^2 \theta d\phi^2)) \right)$$
e. $g_{test} = \Omega^2(\eta) g_{Finst}$

This parametrization is very convenient since taking $u=-\Omega(\eta)\mathrm{d}\eta,$ the most general FLRW metric g satisfying **Einstein's equations**

 $Ric-rac{1}{2}Rg_{test}=(\mu+p)u\otimes u+pg_{test}$ with **polytropic equation of state** $p=w\mu,\ w=const,$ is given by

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

and

$$\Omega(\eta)=\Omega_0\exp(b\eta)$$
 if $w=-rac{1}{3}$.

9/34

• Let us for a while restrict to the FLRW metrics with $\kappa = 1$,

$$g_{test} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2 \left(\mathrm{d}\chi^2 + \sin^2\chi \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2\right)\right).$$

• It is convenient to introduce a **conformal time** $\eta = \int \frac{\mathrm{d}t}{a(t)}$ so that the FLRW metric looks

$$g_{test} = \Omega^2(\eta) \Big(-d\eta^2 + r_0^2 \Big(d\chi^2 + \sin^2 \chi \Big(d\theta^2 + \sin^2 \theta d\phi^2 \Big) \Big) \Big),$$

i.e. $g_{test} = \Omega^2(\eta)g_{Einst}$.

• This parametrization is very convenient since taking $u = -\Omega(\eta) \mathrm{d}\eta$, the most general FLRW metric g satisfying **Einstein's equations**

 $Ric-rac{1}{2}Rg_{test}=(\mu+p)u\otimes u+pg_{test}$ with **polytropic equation of state** $p=w\mu$, w=const, is given by

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$.

• Let us for a while restrict to the FLRW metrics with $\kappa = 1$,

$$g_{test} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2 \left(\mathrm{d}\chi^2 + \sin^2\chi \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2\right)\right).$$

• It is convenient to introduce a **conformal time** $\eta = \int \frac{dt}{a(t)}$ so that the FLRW metric looks

$$g_{test} = \Omega^2(\eta) \left(-d\eta^2 + r_0^2 \left(d\chi^2 + \sin^2 \chi \left(d\theta^2 + \sin^2 \theta d\phi^2 \right) \right) \right),$$

i.e. $g_{test} = \Omega^2(\eta)g_{Einst}$.

• This parametrization is very convenient since taking $u = -\Omega(\eta) \mathrm{d}\eta$, the most general FLRW metric g satisfying **Einstein's equations**

$$Ric-rac{1}{2}Rg_{test}=(\mu+p)u\otimes u+pg_{test}$$
 with **polytropic equation of state** $p=w\mu,\ w=const,$ is given by

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

$$\Omega(n) = \Omega_0 \exp(bn) \text{ if } w$$

• Let us for a while restrict to the FLRW metrics with $\kappa=1$,

$$g_{test} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2 \left(\mathrm{d}\chi^2 + \sin^2\chi \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2\right)\right).$$

• It is convenient to introduce a **conformal time** $\eta = \int \frac{\mathrm{d}t}{a(t)}$ so that the FLRW metric looks

$$g_{test} = \Omega^2(\eta) \Big(-\mathrm{d}\eta^2 + r_0^2 \big(\mathrm{d}\chi^2 + \sin^2\chi \big(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2 \big) \big) \Big),$$

i.e. $g_{test} = \Omega^2(\eta) g_{Einst}.$

• This parametrization is very convenient since taking $u = -\Omega(\eta) d\eta$, the most general FLRW metric g satisfying **Einstein's equations**

 $Ric-rac{1}{2}Rg_{test}=(\mu+p)u\otimes u+pg_{test}$ with **polytropic equation of state** $p=w\mu$, w=const, is given by

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

and

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$

9/34

• Let us for a while restrict to the FLRW metrics with $\kappa=1$,

$$g_{test} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2 \left(\mathrm{d}\chi^2 + \sin^2\chi \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2\right)\right).$$

• It is convenient to introduce a **conformal time** $\eta = \int \frac{\mathrm{d}t}{a(t)}$ so that the FLRW metric looks

$$g_{test} = \Omega^2(\eta) \left(-d\eta^2 + r_0^2 \left(d\chi^2 + \sin^2 \chi (d\theta^2 + \sin^2 \theta d\phi^2) \right) \right),$$

i.e. $g_{test} = \Omega^2(\eta) g_{Finst}.$

• This parametrization is very convenient since taking $u = -\Omega(\eta) d\eta$, the most general FLRW metric g satisfying **Einstein's equations**

$$Ric - \frac{1}{2}Rg_{test} = (\mu + p)u \otimes u + pg_{test}$$
 with **polytropic equation of state** $p = w\mu$, $w = const$, is given by

$$\Omega(\eta) = \Omega_0 \left(\sin^2 rac{(1+3w)\eta}{2r_0}
ight)^{rac{1}{1+3w}} ext{ if } w
eq -rac{1}{3},$$

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$

• Let us for a while restrict to the FLRW metrics with $\kappa = 1$,

$$g_{test} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2 \left(\mathrm{d}\chi^2 + \sin^2\chi \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2\right)\right).$$

• It is convenient to introduce a **conformal time** $\eta = \int \frac{dt}{a(t)}$ so that the FLRW metric looks

$$g_{test} = \Omega^2(\eta) \Big(-\mathrm{d}\eta^2 + r_0^2 \big(\mathrm{d}\chi^2 + \sin^2\chi \big(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2 \big) \big) \Big),$$

i.e. $g_{test} = \Omega^2(\eta) g_{Einst}.$

• This parametrization is very convenient since taking $u = -\Omega(\eta) d\eta$, the most general FLRW metric g satisfying **Einstein's equations**

$$Ric - \frac{1}{2}Rg_{test} = (\mu + p)u \otimes u + pg_{test}$$
 with **polytropic equation of state** $p = w\mu$, $w = const$, is given by

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

and

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$.

• Let us for a while restrict to the FLRW metrics with $\kappa = 1$,

$$g_{test} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2 \left(\mathrm{d}\chi^2 + \sin^2\chi \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2\right)\right).$$

• It is convenient to introduce a **conformal time** $\eta = \int \frac{\mathrm{d}t}{a(t)}$ so that the FLRW metric looks

$$g_{test} = \Omega^2(\eta) \Big(-d\eta^2 + r_0^2 \Big(d\chi^2 + \sin^2 \chi \Big(d\theta^2 + \sin^2 \theta d\phi^2 \Big) \Big) \Big),$$

i.e. $g_{test} = \Omega^2(\eta) g_{Einst}.$

• This parametrization is very convenient since taking $u = -\Omega(\eta) d\eta$, the most general FLRW metric g satisfying **Einstein's equations**

$$Ric - \frac{1}{2}Rg_{test} = (\mu + p)u \otimes u + pg_{test}$$
 with **polytropic equation of state** $p = w\mu$, $w = const$, is given by

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

and

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$.

• Let us for a while restrict to the FLRW metrics with $\kappa=1$,

$$g_{test} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2 \left(\mathrm{d}\chi^2 + \sin^2\chi \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2\right)\right).$$

• It is convenient to introduce a **conformal time** $\eta = \int \frac{\mathrm{d}t}{a(t)}$ so that the FLRW metric looks

$$g_{test} = \Omega^2(\eta) \left(-d\eta^2 + r_0^2 \left(d\chi^2 + \sin^2 \chi (d\theta^2 + \sin^2 \theta d\phi^2) \right) \right),$$

i.e. $g_{test} = \Omega^2(\eta) g_{Finst}.$

• This parametrization is very convenient since taking $u = -\Omega(\eta) d\eta$, the most general FLRW metric g satisfying **Einstein's equations**

$$Ric - \frac{1}{2}Rg_{test} = (\mu + p)u \otimes u + pg_{test}$$
 with **polytropic equation of state** $p = w\mu$, $w = const$, is given by

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

and

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$.

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Einst}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{q} = \Omega^2 q$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 rac{(1+3w)\eta}{2r_0}
ight)^{rac{1}{1+3w}} ext{ if } w
eq -rac{1}{3},$$

and

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$,

then $\hat{g} = \Omega^{-2}g$ satisfies the **same kind of Einstein's equations**, but now with w replaced by \hat{w} such that $(1+3\hat{w})^{-1} = -(1+3w)^{-1}$, or what is the same, $\hat{w} = -2/3 = w$

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Eins}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{g} = \Omega^2 g$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 rac{(1+3w)\eta}{2r_0}
ight)^{rac{1}{1+3w}} ext{ if } w
eq -rac{1}{3}$$

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$,

then $\hat{g} = \Omega^{-2}g$ satisfies the **same kind of Einstein's equations**, but now with w replaced by \hat{w} such that $(1+3\hat{w})^{-1} = -(1+3w)^{-1}$, or what is the same, $\hat{w} = -2/3 = w$

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Einst}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{g} = \Omega^2 g$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 rac{(1+3w)\eta}{2r_0}
ight)^{rac{1}{1+3w}} ext{ if } w
eq -rac{1}{3}$$

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$,

then $\hat{g} = \Omega^{-2}g$ satisfies the **same kind of Einstein's equations**, but now with w replaced by \hat{w} such that $(1+3\hat{w})^{-1} = -(1+3w)^{-1}$, or what is the same, $\hat{w} = -2/3 - w$

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Einst}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{g} = \Omega^2 g$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 rac{(1+3w)\eta}{2r_0}
ight)^{rac{1}{1+3w}} ext{ if } w
eq -rac{1}{3},$$

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$,

then $\hat{g} = \Omega^{-2}g$ satisfies the **same kind of Einstein's equations**, but now with w replaced by \hat{w} such that $(1+3\hat{w})^{-1} = -(1+3w)^{-1}$, or what is the same, $\hat{w} = -2/3 - w$

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Einst}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{g} = \Omega^2 g$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 rac{(1+3w)\eta}{2r_0}
ight)^{rac{1}{1+3w}} ext{ if } w
eq -rac{1}{3},$$

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$,

then $\hat{g} = \Omega^{-2}g$ satisfies the **same kind of Einstein's equations**, but now with w replaced by \hat{w} such that $(1+3\hat{w})^{-1} = -(1+3w)^{-1}$, or what is the same, $\hat{w} = -2/3 - w$

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Einst}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{g} = \Omega^2 g$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 rac{(1+3w)\eta}{2r_0}
ight)^{rac{1}{1+3w}} ext{ if } w
eq -rac{1}{3},$$

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$,

then $\hat{g} = \Omega^{-2}g$ satisfies the **same kind of Einstein's equations**, but now with w replaced by \hat{w} such that $(1+3\hat{w})^{-1} = -(1+3w)^{-1}$, or what is the same, $\hat{w} = -2/3 - w$

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Einst}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{g} = \Omega^2 g$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 rac{(1+3w)\eta}{2r_0}
ight)^{rac{1}{1+3w}} ext{ if } w
eq -rac{1}{3},$$

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$,

then $\hat{g} = \Omega^{-2}g$ satisfies the **same kind of Einstein's equations**, but now with w replaced by \hat{w} such that $(1+3\hat{w})^{-1} = -(1+3w)^{-1}$, or what is the same, $\hat{w} = -2/3 - w$

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Einst}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{g} = \Omega^2 g$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

and

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$, then $\hat{g} = \Omega^{-2}g$ satisfies the **same kind of Einstein's equations**, but now with w replaced by \hat{w} such that $(1+3\hat{w})^{-1} = -(1+3w)^{-1}$, or what is the same, $\hat{w} = -2/3 - w$

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Einst}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{g} = \Omega^2 g$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

and

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$,

then $\hat{g} = \Omega^{-2}g$ satisfies the **same kind of Einstein's equations**, but now with w replaced by \hat{w} such that $(1+3\hat{w})^{-1} = -(1+3w)^{-1}$, or what is the same, $\hat{w} = -2/3 - w$

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Einst}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{g} = \Omega^2 g$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

and

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$,

then $\hat{g} = \Omega^{-2}g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that

$$(1+3\hat{w})^{-1} = -(1+3w)^{-1}$$
, or what is the same, $\hat{w} = -2/3 - w$.

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Einst}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{g} = \Omega^2 g$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

and

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$,

then $\hat{g} = \Omega^{-2}g$ satisfies the **same kind of Einstein's equations**, but now with w replaced by \hat{w} such that $(1+3\hat{w})^{-1} = -(1+3w)^{-1}$, or what is the same,

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Einst}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{g} = \Omega^2 g$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

and

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$,

then $\hat{g} = \Omega^{-2}g$ satisfies the **same kind of Einstein's equations**, but now with w replaced by \hat{w} such that $(1+3\hat{w})^{-1} = -(1+3w)^{-1}$, or what is the same,

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Einst}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{g} = \Omega^2 g$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

and

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$,

then $\hat{g} = \Omega^{-2}g$ satisfies the **same kind of Einstein's equations**, but now with w replaced by \hat{w} such that $(1+3\hat{w})^{-1} = -(1+3w)^{-1}$, or what is the same, $\hat{w} = -2/3 - w$.

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Einst}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{g} = \Omega^2 g$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

and

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$,

then $\hat{g} = \Omega^{-2}g$ satisfies the **same kind of Einstein's equations**, but now with w replaced by \hat{w} such that $(1+3\hat{w})^{-1} = -(1+3w)^{-1}$, or what is the same, $\hat{w} = -2/3 - w$.

- Now we go back to the Penrose-Tod's bandage triple (\check{g},g,\hat{g}) .
- Take g as g_{Einst} , $g = g_{Einst}$
- Take $\check{g} = g_{test} = \Omega^2(\eta)g_{Einst}$. This satisfies Einstein's equations with perfect fluid with $\check{p} = w\check{\mu}$.
- Take as $\hat{g} = \Omega^{-2}(\eta)g_{Einst}$.
- Since $\check{g} = \Omega^2 g$ satisfying these Einstein's equations has:

$$\Omega(\eta) = \Omega_0 \left(\sin^2 \frac{(1+3w)\eta}{2r_0} \right)^{\frac{1}{1+3w}}$$
 if $w \neq -\frac{1}{3}$,

and

$$\Omega(\eta) = \Omega_0 \exp(b\eta)$$
 if $w = -\frac{1}{3}$,

then $\hat{g} = \Omega^{-2}g$ satisfies the **same kind of Einstein's equations**, but now with w replaced by \hat{w} such that $(1+3\hat{w})^{-1} = -(1+3w)^{-1}$, or what is the same, $\hat{w} = -2/3 - w$.

$$\hat{g} = \frac{1}{\Omega^2} g_{Einst}$$
 satisfies Einstein's equations, with $\Lambda = 0$, and

$$\hat{w} = -\frac{1}{3}(2$$

$$\frac{1+w}{\Omega_0^2 r_0^2 \left(\sin^6 \frac{(1+3W)\eta}{2r_0}\right)^{\frac{1+w}{1+3W}}} \text{ if } W \neq -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ and } H = \frac{1}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } W = -1/3 \text{ if } W = -1/3 \text{ if } W = -1/3 \text{ if }$$

If $\Omega=\Omega(\eta)$ is such that $\begin{tabular}{c} \begin{tabular}{c} \begi$

with the energy momentum tensor
$$\hat{T}$$
 of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p} = \hat{w}\hat{\mu}$ with

The **Discipalar** of the matrix × is

The **Ricci sclar** of the metric
$$\check{g}$$
 is $3(1-3\check{w})$ if $\check{w} \neq 1/3$

 $\Omega_0^2 r_0^2 \left(\sin^6 \frac{(1+3W)\eta}{2r_0}\right)^{1+3W}$ so it is **positive** if $-1 < \check{W} < 1/3$ (recall the energy conditions

If $\Omega = \Omega(\eta)$ is such that $\check{g} = \Omega^2 g_{Einst}$ satisfies Einstein's equations, with $\Lambda = 0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p} = \check{w}\check{\mu}$, $\check{w} = const$, then

$$\hat{g} = \frac{1}{\Omega^2} g_{Einst}$$
 satisfies Einstein's equations, with $\Lambda = 0$, a with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p} = \hat{w}\hat{\mu}$ with

The **Ricci sclar** of the metric \check{a} is

The **Ricci sclar** of the metric
$$\check{g}$$
 is
$$= \frac{3(1-3\check{w})}{\Omega_0^2 r_0^2 \exp(2bn)} \text{ if } \check{w} \neq -1/3 \text{ and } R = \frac{6(1+b^2r_0^2)}{\Omega_0^2 r_0^2 \exp(2bn)} \text{ if } \check{w} = 0$$

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^2g_{Einst}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w}\check{\mu}$, $\check{w}=const$, then

$$\hat{g} = \frac{1}{\Omega^2} g_{Einst}$$
 satisfies Einstein's equations, with $\Lambda = 0$, and

with the energy momentum tensor \hat{T} of a perfect fluid, whose presure $\hat{\rho}$ and the energy density $\hat{\mu}$ are related by $\hat{\rho} = \hat{w}\hat{\mu}$ with

$$\hat{w} = -\frac{1}{3}(2+3\check{w})$$

The Ricci sclar of the metric \check{g} is

$$R = \frac{3(1-3\check{w})}{\Omega_0^2 r_0^2 \left(\sin^6 \frac{(1+3\check{w})\eta}{2r_0}\right)^{\frac{1+w}{1+3\check{w}}}} \text{ if } \check{w} \neq -1/3 \text{ and } R = \frac{6(1+b^2r_0^2)}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } \check{w} = -1/3.$$

If $\Omega=\Omega(\eta)$ is such that $\begin{tabular}{c} \begin{tabular}{c} \begi$

$$\hat{g} = \frac{1}{\Omega^2} g_{Einst}$$
 satisfies Einstein's equations, with $\Lambda = 0$, and with the energy momentum tensor \hat{T} of a perfect fluid, whose presure $\hat{\rho}$ and the energy density $\hat{\mu}$ are related by $\hat{\rho} = \hat{w}\hat{\mu}$ with

$$\hat{w} = -\frac{1}{3}(2+3\check{w})$$

The Ricci sclar of the metric \check{g} is

$$R = \frac{\frac{3(1-3\check{w})}{\Omega_0^2 r_0^2 \left(\sin^6 \frac{(1+3\check{w})\eta}{2r_0}\right)^{\frac{1+w}{1+3\check{w}}}} \text{ if } \check{w} \neq -1/3 \text{ and } R = \frac{6(1+b^2r_0^2)}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } \check{w} = -1/3,$$

If $\Omega=\Omega(\eta)$ is such that $\begin{tabular}{c} \check{g}=\Omega^2g_{Einst} \end{tabular}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w}\check{\mu}$, $\check{w}=const$, then

$$\hat{g} = \frac{1}{\Omega^2} g_{Einst}$$
 satisfies Einstein's equations, with $\Lambda = 0$, and with the energy momentum tensor \hat{T} of a perfect fluid, whose presure $\hat{\rho}$ and the energy density $\hat{\mu}$ are related by $\hat{\rho} = \hat{w}\hat{\mu}$ with

$$\hat{w} = -\frac{1}{3}(2+3\check{w})$$

The Ricci sclar of the metric \check{g} is

$$R=rac{3(1-3\check{w})}{\Omega_0^2r_0^2ig(\sin^6rac{(1+3\check{w})\eta}{2r_0}ig)^{rac{1+w}{1+3\check{w}}}} ext{ if } \check{w}
eq -1/3 ext{ and } R=rac{6(1+b^2r_0^2)}{\Omega_0^2r_0^2\exp(2b\eta)} ext{ if } \check{w}=-1/3,$$

If $\Omega=\Omega(\eta)$ is such that $\begin{tabular}{c} \check{g}=\Omega^2g_{\it Einst} \end{tabular}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w}\check{\mu}$, $\check{w}=const$, then

$$\hat{g} = \frac{1}{\Omega^2} g_{Einst}$$
 satisfies Einstein's equations, with $\Lambda = 0$, and

with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p} = \hat{w}\hat{\mu}$ with

$$\hat{w}=-\frac{1}{3}(2+3\check{w})$$

The **Ricci sclar** of the metric \check{g} is

$$R = \frac{3(1-3\check{w})}{\Omega_0^2 r_0^2 \left(\sin^6 \frac{(1+3\check{w})\eta}{2c}\right)^{\frac{1+w}{1+3\check{w}}}} \text{ if } \check{w} \neq -1/3 \text{ and } R = \frac{6(1+b^2r_0^2)}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } \check{w} = -1/3,$$

If $\Omega=\Omega(\eta)$ is such that $\begin{tabular}{c} \check{g}=\Omega^2g_{Einst} \end{tabular}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w}\check{\mu}$, $\check{w}=const$, then

$$\hat{g}=rac{1}{\Omega^2}g_{ extit{Einst}}$$
 satisfies Einstein's equations, with $\Lambda=0$, and

with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by

$$\hat{w} = -\frac{1}{3}(2+3\check{w})$$

The Ricci sclar of the metric \check{g} is

$$R = \frac{3(1-3\check{w})}{\Omega_0^2 r_0^2 \left(\sin^6 \frac{(1+3\check{w})\eta}{2}\right)^{\frac{1+w}{1+3\check{w}}}} \text{ if } \check{w} \neq -1/3 \text{ and } R = \frac{6(1+b^2r_0^2)}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } \check{w} = -1/3$$

so it is **positive** if $-1 \le \check{w} < 1/3$ (recall the energy conditions

Theorem

If $\Omega=\Omega(\eta)$ is such that $\begin{tabular}{c} \check{g}=\Omega^2g_{Einst} \end{tabular}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w}\check{\mu}$, $\check{w}=const$, then

$$\hat{g}=rac{1}{\Omega^2}g_{ extit{Einst}}$$
 satisfies Einstein's equations, with $\Lambda=0$, and

with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by

$$\hat{p} = \hat{w}\hat{\mu}$$
 with

$$\hat{w} = -\frac{1}{3}(2+3\check{w})$$

The **Ricci sclar** of the metric \check{g} is

$$R = \frac{3(1-3\check{w})}{\Omega_0^2 r_0^2 \left(\sin^6 \frac{(1+3\check{w})\eta}{2} \right)^{\frac{1+w}{1+3\check{w}}}} \text{ if } \check{w} \neq -1/3 \text{ and } R = \frac{6(1+b^2r_0^2)}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } \check{w} = -1/3$$

so it is **positive** if $-1 \le \check{w} < 1/3$ (recall the energy conditions

Theorem

If $\Omega=\Omega(\eta)$ is such that $\begin{tabular}{c} \check{g}=\Omega^2g_{Einst} \end{tabular}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w}\check{\mu}$, $\check{w}=const$, then

$$\hat{g}=rac{1}{\Omega^2}g_{ extit{Einst}}$$
 satisfies Einstein's equations, with $\Lambda=0$, and

with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p} = \hat{w}\hat{\mu}$ with

$$\hat{w} = -\frac{1}{3}(2+3\check{w})$$

The **Ricci sclar** of the metric \check{g} is

$$R = \frac{3(1-3\check{w})}{\Omega_0^2 r_0^2 \left(\sin^6 \frac{(1+3\check{w})\eta}{2r}\right)^{\frac{1+w}{1+3\check{w}}}} \text{ if } \check{w} \neq -1/3 \text{ and } R = \frac{6(1+b^2r_0^2)}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } \check{w} = -1/3$$

so it is **positive** if $-1 \le \check{w} < 1/3$ (recall the energy conditions

Theorem

If $\Omega=\Omega(\eta)$ is such that $\begin{tabular}{c} \check{g}=\Omega^2g_{Einst} \end{tabular}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w}\check{\mu}$, $\check{w}=const$, then

$$\hat{g}=rac{1}{\Omega^2}g_{ extit{Einst}}$$
 satisfies Einstein's equations, with $\Lambda=0$, and

with the energy momentum tensor \hat{T} of a perfect fluid, whose presure $\hat{\rho}$ and the energy density $\hat{\mu}$ are related by $\hat{\rho} = \hat{w}\hat{\mu}$ with

$$\hat{w} = -\frac{1}{3}(2+3\check{w}).$$

The **Ricci sclar** of the metric \check{g} is

$$R = \frac{3(1-3\check{w})}{\Omega_0^2 r_0^2 \left(\sin^6 \frac{(1+3\check{w})\eta}{2r_0}\right)^{\frac{1+w}{1+3w}}} \text{ if } \check{w} \neq -1/3 \text{ and } R = \frac{6(1+b^2r_0^2)}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } \check{w} = -1/3$$

so it is **positive** if $-1 \le \check{w} < 1/3$ (recall the energy conditions

Theorem

If $\Omega=\Omega(\eta)$ is such that $\begin{tabular}{c} \check{g}=\Omega^2g_{Einst} \end{tabular}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w}\check{\mu}$, $\check{w}=const$, then

$$\hat{g}=rac{1}{\Omega^2}g_{ extit{Einst}}$$
 satisfies Einstein's equations, with $\Lambda=0$, and

with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p} = \hat{w}\hat{\mu}$ with

$$\hat{w} = -\frac{1}{3}(2+3\check{w}).$$

The Ricci sclar of the metric \check{g} is

$$R = \frac{3(1-3\check{w})}{\Omega_0^2 r_0^2 \left(\sin^6 \frac{(1+3\check{w})\eta}{2r_0}\right)^{\frac{1+w}{1+3\check{w}}}} \text{ if } \check{w} \neq -1/3 \text{ and } R = \frac{6(1+b^2 r_0^2)}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } \check{w} = -1/3,$$
 so it is **positive** if $-1 \leq \check{w} < 1/3$ (recall the energy conditions

Theorem

If $\Omega=\Omega(\eta)$ is such that $\begin{tabular}{c} \check{g}=\Omega^2g_{Einst} \end{tabular}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w}\check{\mu}$, $\check{w}=const$, then

$$\hat{g}=rac{1}{\Omega^2}g_{ extit{Einst}}$$
 satisfies Einstein's equations, with $\Lambda=0$, and

with the energy momentum tensor \hat{T} of a perfect fluid, whose presure $\hat{\rho}$ and the energy density $\hat{\mu}$ are related by $\hat{\rho} = \hat{w}\hat{\mu}$ with

$$\hat{w} = -\frac{1}{3}(2+3\check{w}).$$

The **Ricci sclar** of the metric \check{g} is

$$R = \frac{3(1-3\check{w})}{\Omega_0^2 r_0^2 \left(\sin^6 \frac{(1+3\check{w})\eta}{2r_0}\right)^{\frac{1+w}{1+3w}}} \text{ if } \check{w} \neq -1/3 \text{ and } R = \frac{6(1+b^2r_0^2)}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } \check{w} = -1/3,$$

Theorem

If $\Omega=\Omega(\eta)$ is such that $\begin{tabular}{c} \check{g}=\Omega^2g_{Einst} \end{tabular}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w}\check{\mu}$, $\check{w}=const$, then

$$\hat{g}=rac{1}{\Omega^2}g_{ extit{Einst}}$$
 satisfies Einstein's equations, with $\Lambda=0$, and

with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p} = \hat{w}\hat{\mu}$ with

$$\hat{w} = -\frac{1}{3}(2+3\check{w}).$$

The Ricci sclar of the metric \check{g} is

$$R = \frac{3(1-3\check{w})}{\Omega_0^2 r_0^2 \left(\sin^6 \frac{(1+3\check{w})\eta}{2r_0}\right)^{\frac{1+w}{1+3w}}} \text{ if } \check{w} \neq -1/3 \text{ and } R = \frac{6(1+b^2r_0^2)}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } \check{w} = -1/3,$$

so it is **positive** if $-1 \le \check{w} < 1/3$ (recall the energy conditions

Theorem

If $\Omega=\Omega(\eta)$ is such that $\begin{tabular}{c} \check{g}=\Omega^2g_{Einst} \end{tabular}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w}\check{\mu}$, $\check{w}=const$, then

$$\hat{g}=rac{1}{\Omega^2}g_{ extit{Einst}}$$
 satisfies Einstein's equations, with $\Lambda=0$, and

with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p} = \hat{w}\hat{\mu}$ with

$$\hat{w} = -\frac{1}{3}(2+3\check{w}).$$

The **Ricci sclar** of the metric \check{g} is

$$R = \frac{3(1-3\check{w})}{\Omega_0^2 r_0^2 \left(\sin^6\frac{(1+3\check{w})\eta}{2r_0}\right)^{\frac{1+w}{1+3\check{w}}}} \text{ if } \check{w} \neq -1/3 \text{ and } R = \frac{6(1+b^2r_0^2)}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } \check{w} = -1/3,$$

so it is **positive** if $-1 \le \check{w} < 1/3$ (recall the energy conditions

If $\Omega=\Omega(\eta)$ is such that $\begin{tabular}{c} \check{g}=\Omega^2g_{\it Einst} \end{tabular}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w}\check{\mu}$, $\check{w}=const$, then

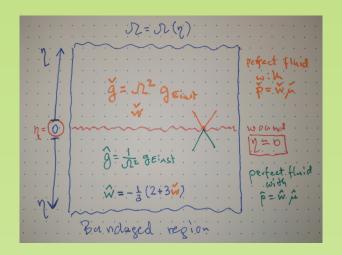
$$\hat{g}=rac{1}{\Omega^2}g_{ extit{Einst}}$$
 satisfies Einstein's equations, with $\Lambda=0$, and

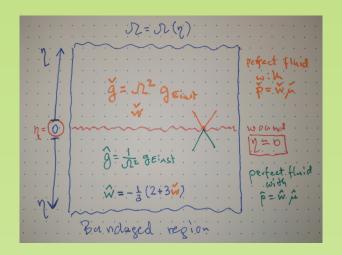
with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p} = \hat{w}\hat{\mu}$ with

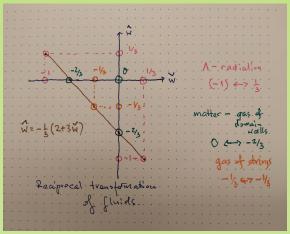
$$\hat{w} = -\frac{1}{3}(2+3\check{w}).$$

The Ricci sclar of the metric \check{g} is

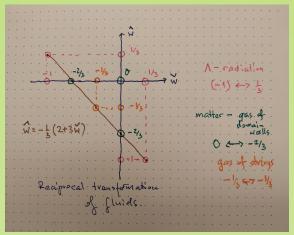
$$R = \frac{3(1-3\check{w})}{\Omega_0^2 r_0^2 \left(\sin^6\frac{(1+3\check{w})\eta}{2r_0}\right)^{\frac{1+w}{1+3w}}} \text{ if } \check{w} \neq -1/3 \text{ and } R = \frac{6(1+b^2r_0^2)}{\Omega_0^2 r_0^2 \exp(2b\eta)} \text{ if } \check{w} = -1/3,$$





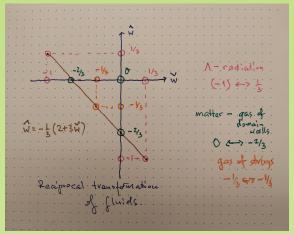


Suspiscious points: $\check{w} = -1, 1/3$ (cosmological constant radiation), since the scalar curvature R = 0, when $\check{w} = 1/3$; and $\check{w} = -1/3$ (gas of strings), when $\Omega \neq 0$ on \mathscr{I} .



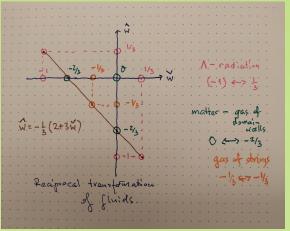
Suspiscious points: $\check{w}=-1,1/3$ (cosmological constant radiation), since the scalar curvature R=0, when $\check{w}=1/3$; and $\check{w}=-1/3$ (gas of strings), when $\Omega \neq 0$ on \mathscr{F} .

◆□▶◆圖▶◆圖▶◆圖▶ ■ 夕久(



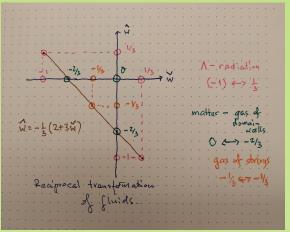
Suspiscious points: $\check{w}=-1,1/3$ (cosmological constant radiation), since the scalar curvature R=0, when $\check{w}=1/3$; and $\check{w}=-1/3$ (gas of strings), when $\Omega\neq 0$ on \mathscr{I} .

◆ロト ◆団 ▶ ◆ 豆 ▶ ◆ 豆 ** りへ(



Suspiscious points: $\check{w}=-1,1/3$ (cosmological constant radiation), since the scalar curvature R=0, when $\check{w}=1/3$; and $\check{w}=-1/3$ (gas of strings), when $\Omega\neq 0$ on \mathscr{I} .

◄□▶◀圖▶◀臺▶◀臺▶ 臺 ∽9



Suspiscious points: $\check{w}=-1,1/3$ (cosmological constant radiation), since the scalar curvature R=0, when $\check{w}=1/3$; and $\check{w}=-1/3$ (gas of strings), when $\Omega\neq 0$ on \mathscr{I} .

(ロ) (部) (目) (目) (目) (9)

Transformation $\check{g} \to \hat{g} \to \check{g} \to \hat{g} \to \dots$ of fluids: more careful approach

- We come back to the FLRW metric $\check{g} = -dt^2 + \Omega^2(t)r_0^2g_{\mathbb{S}^3}$.
- We write it as $\check{g}=\Omega^2(t)\big(-\frac{\mathrm{d}t^2}{\Omega^2(t)}+r_0^2g_{\mathbb{S}^3}\big)$, so that it is clear that $\check{g}=\Omega^2(t)g_{\mathsf{Einst}}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d}t,\,\check{p}=\check{w}\check{\mu},$ and the cosmological constant $\check{\Lambda}$, is equivalent to the following ODE for Ω : $2r_0^2\Omega\Omega''=-(1+3\check{w})(1+r_0^2\Omega'^2)+(1+\check{w})\check{\Lambda}r_0^2\Omega^2.$
- We want that $\check{w} = const$ and that $\hat{g} = \frac{1}{\Omega^2} g_{Einst}$ satisfies perfect fluid Eisntein's equations with $\hat{u} = -\frac{dt}{\Omega^2}$, $\hat{p} = \hat{w}\hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w} = const$.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w} , and forcing it to be constant, because of the above ODE satisfied by Ω , we find that it is possible provided that:

$$\dot{\Lambda}\dot{\Lambda}(1+\dot{W})(1-3\dot{W})=0$$

- We come back to the FLRW metric $\check{g} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2g_{\mathbb{S}^3}$.
- We write it as $\check{g} = \Omega^2(t) \left(-\frac{dt^2}{\Omega^2(t)} + r_0^2 g_{\mathbb{S}^3} \right)$, so that it is clear that $\check{g} = \Omega^2(t) g_{\text{Einst}}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u} = -\mathrm{d}t$, $\check{p} = \check{w}\check{\mu}$, and the cosmological constant $\check{\Lambda}$, is equivalent to the following ODE for Ω : $2r_0^2\Omega\Omega'' = -(1+3\check{w})(1+r_0^2\Omega'^2) + (1+\check{w})\check{\Lambda}r_0^2\Omega^2.$
- We want that $\check{w} = const$ and that $\hat{g} = \frac{1}{\Omega^2} g_{Einst}$ satisfies perfect fluid Eisntein's equations with $\hat{u} = -\frac{\mathrm{d}t}{\Omega^2}$, $\hat{p} = \hat{w}\hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w} = const$.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w} , and forcing it to be constant, because of the above ODE satisfied by Ω , we find that it is possible provided that:

$$\check{\Lambda}\hat{\Lambda}(1+\check{w})(1-3\check{w})=0$$

- We come back to the FLRW metric $\check{g} = -dt^2 + \Omega^2(t)r_0^2g_{\mathbb{S}^3}$.
- We write it as $\check{g} = \Omega^2(t) \left(-\frac{\mathrm{d}t^2}{\Omega^2(t)} + r_0^2 g_{\mathbb{S}^3} \right)$, so that it is clear that $\check{g} = \Omega^2(t) g_{\mathrm{Einst}}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u} = -\mathrm{d}t$, $\check{p} = \check{w}\check{\mu}$, and the cosmological constant $\check{\Lambda}$, is equivalent to the following ODE for Ω : $2r_0^2\Omega\Omega'' = -(1+3\check{w})(1+r_0^2\Omega'^2) + (1+\check{w})\check{\Lambda}r_0^2\Omega^2.$
- We want that $\check{w} = const$ and that $\hat{g} = \frac{1}{\Omega^2} g_{Einst}$ satisfies perfect fluid Eisntein's equations with $\hat{u} = -\frac{\mathrm{d}t}{\Omega^2}$, $\hat{p} = \hat{w}\hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w} = const$.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w} , and forcing it to be constant, because of the above ODE satisfied by Ω , we find that it is possible provided that:

$$\check{\Lambda}\hat{\Lambda}(1+\check{w})(1-3\check{w})=0.$$

- We come back to the FLRW metric $\check{g} = -dt^2 + \Omega^2(t)r_0^2g_{\mathbb{S}^3}$.
- We write it as $\check{g} = \Omega^2(t) \left(-\frac{\mathrm{d}t^2}{\Omega^2(t)} + r_0^2 g_{\mathbb{S}^3} \right)$, so that it is clear that $\check{g} = \Omega^2(t) g_{\mathsf{Einst}}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u} = -\mathrm{d}t$, $\check{p} = \check{w}\check{\mu}$, and the cosmological constant $\check{\Lambda}$, is equivalent to the following ODE for Ω : $2r_0^2\Omega\Omega'' = -(1+3\check{w})(1+r_0^2\Omega'^2) + (1+\check{w})\check{\Lambda}r_0^2\Omega^2.$
- We want that $\check{w} = const$ and that $\hat{g} = \frac{1}{\Omega^2} g_{Einst}$ satisfies perfect fluid Eisntein's equations with $\hat{u} = -\frac{dt}{\Omega^2}$, $\hat{p} = \hat{w}\hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w} = const$.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w} , and forcing it to be constant, because of the above ODE satisfied by Ω , we find that it is possible provided that:

$$\check{\Lambda}\hat{\Lambda}(1+\check{w})(1-3\check{w})=0$$

Transformation $\check{g} \to \hat{g} \to \check{g} \to \hat{g} \to \dots$ of fluids: more careful approach

- We come back to the FLRW metric $\check{g} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2g_{\mathbb{S}^3}$.
- We write it as $\check{g} = \Omega^2(t) \left(-\frac{\mathrm{d}t^2}{\Omega^2(t)} + r_0^2 g_{\mathbb{S}^3} \right)$, so that it is clear that $\check{g} = \Omega^2(t) g_{\mathsf{Einst}}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d}t,\,\check{p}=\check{w}\check{\mu}$, and the cosmological constant $\check{\Lambda}$, is equivalent to the following ODE for Ω :
 - $2r_0^2\Omega\Omega'' = -(1+3\check{w})(1+r_0^2\Omega'^2) + (1+\check{w})\Lambda r_0^2\Omega^2$
- We want that $\check{w} = const$ and that $\hat{g} = \frac{1}{\Omega^2} g_{Einst}$ satisfies perfect fluid Eisntein's equations with $\hat{u} = -\frac{dt}{\Omega^2}$, $\hat{p} = \hat{w}\hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w} = const$.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w} , and forcing it to be constant, because of the above ODE satisfied by Ω , we find that it is possible provided that:

$$\mathring{\Lambda}\mathring{\Lambda}(1+\check{w})(1-3\check{w})=0.$$

Transformation $\mathring{g} \to \mathring{g} \to \mathring{g} \to \mathring{g} \to \dots$ of fluids: more careful approach

- We come back to the FLRW metric $\check{g} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2g_{\mathbb{S}^3}$.
- We write it as $\check{g} = \Omega^2(t) \left(-\frac{\mathrm{d}t^2}{\Omega^2(t)} + r_0^2 g_{\mathbb{S}^3} \right)$, so that it is clear that $\check{g} = \Omega^2(t) g_{\mathsf{Einst}}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d}t$, $\check{p}=\check{w}\check{\mu}$, and the cosmological constant $\check{\Lambda}$, is equivalent to the following ODE for Ω : $2r_0^2\Omega\Omega''=-(1+3\check{w})(1+r_0^2\Omega'^2)+(1+\check{w})\check{\Lambda}r_0^2\Omega^2.$
- We want that $\check{w} = const$ and that $\hat{g} = \frac{1}{\Omega^2} g_{Einst}$ satisfies perfect fluid Eisntein's equations with $\hat{u} = -\frac{\mathrm{d}t}{\Omega^2}$, $\hat{p} = \hat{w}\hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w} = const$.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w} , and forcing it to be constant, because of the above ODE satisfied by Ω , we find that it is possible provided that:

$$\check{\Lambda}\hat{\Lambda}(1+\check{w})(1-3\check{w})=0.$$

- We come back to the FLRW metric $\check{g} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2g_{\mathbb{S}^3}$.
- We write it as $\check{g}=\Omega^2(t)\big(-\frac{\mathrm{d}t^2}{\Omega^2(t)}+r_0^2\boldsymbol{g}_{\mathbb{S}^3}\big)$, so that it is clear that $\check{g}=\Omega^2(t)\boldsymbol{g}_{\mathsf{Einst}}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d}t$, $\check{p}=\check{w}\check{\mu}$, and the cosmological constant $\check{\Lambda}$, is equivalent to the following ODE for Ω : $2r_0^2\Omega\Omega''=-(1+3\check{w})(1+r_0^2\Omega'^2)+(1+\check{w})\check{\Lambda}r_0^2\Omega^2.$
- We want that $\check{w} = const$ and that $\hat{g} = \frac{1}{\Omega^2} g_{Einst}$ satisfies perfect fluid Eisntein's equations with $\hat{u} = -\frac{\mathrm{d}t}{\Omega^2}$, $\hat{p} = \hat{w}\hat{p}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w} = const$.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w} , and forcing it to be constant, because of the above ODE satisfied by Ω , we find that it is possible provided that:

$$\mathring{\Lambda}\mathring{\Lambda}(1+\mathring{w})(1-3\mathring{w})=0.$$

- We come back to the FLRW metric $\check{g} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2g_{\mathbb{S}^3}$.
- We write it as $\check{g}=\Omega^2(t)\big(-\frac{\mathrm{d}t^2}{\Omega^2(t)}+r_0^2\boldsymbol{g}_{\mathbb{S}^3}\big)$, so that it is clear that $\check{g}=\Omega^2(t)\boldsymbol{g}_{\mathsf{Einst}}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d}t,\ \check{p}=\check{w}\check{\mu}$, and the cosmological constant $\check{\Lambda}$, is equivalent to the following ODE for Ω : $2r_0^2\Omega\Omega''=-(1+3\check{w})(1+r_0^2\Omega'^2)+(1+\check{w})\check{\Lambda}r_0^2\Omega^2.$
- We want that $\check{w} = const$ and that $\hat{g} = \frac{1}{\Omega^2} g_{Einst}$ satisfies perfect fluid Eisntein's equations with $\hat{u} = -\frac{\mathrm{d}t}{\Omega^2}$, $\hat{p} = \hat{w}\hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w} = const$.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w} , and forcing it to be constant, because of the above ODE satisfied by Ω , we find that it is possible provided that:

$$\mathring{\Lambda}\mathring{\Lambda}(1+\mathring{w})(1-3\mathring{w})=0.$$

- We come back to the FLRW metric $\check{g} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2g_{\mathbb{S}^3}$.
- We write it as $\check{g}=\Omega^2(t)\big(-\frac{\mathrm{d}t^2}{\Omega^2(t)}+r_0^2\boldsymbol{g}_{\mathbb{S}^3}\big)$, so that it is clear that $\check{g}=\Omega^2(t)\boldsymbol{g}_{\mathsf{Einst}}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d}t,\ \check{p}=\check{w}\check{\mu}$, and the cosmological constant $\check{\Lambda}$, is equivalent to the following ODE for Ω : $2r_0^2\Omega\Omega''=-(1+3\check{w})(1+r_0^2\Omega'^2)+(1+\check{w})\check{\Lambda}r_0^2\Omega^2.$
- We want that $\check{w} = const$ and that $\hat{g} = \frac{1}{\Omega^2} g_{Einst}$ satisfies perfect fluid Eisntein's equations with $\hat{u} = -\frac{\mathrm{d}t}{\Omega^2}$, $\hat{p} = \hat{w}\hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w} = const$.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w} , and forcing it to be constant, because of the above ODE satisfied by Ω , we find that it is possible provided that:

$$\mathring{\Lambda}\mathring{\Lambda}(1+\mathring{w})(1-3\mathring{w})=0.$$

- We come back to the FLRW metric $\check{g} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2g_{\mathbb{S}^3}$.
- We write it as $\check{g}=\Omega^2(t)\big(-\frac{\mathrm{d}t^2}{\Omega^2(t)}+r_0^2\boldsymbol{g}_{\mathbb{S}^3}\big)$, so that it is clear that $\check{g}=\Omega^2(t)\boldsymbol{g}_{\mathsf{Einst}}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d}t,\,\check{p}=\check{w}\check{\mu},$ and the cosmological constant $\check{\Lambda}$, is equivalent to the following ODE for Ω : $2r_0^2\Omega\Omega''=-(1+3\check{w})(1+r_0^2\Omega'^2)+(1+\check{w})\check{\Lambda}r_0^2\Omega^2.$
- We want that $\check{w} = const$ and that $\hat{g} = \frac{1}{\Omega^2} g_{Einst}$ satisfies perfect fluid Eisntein's equations with $\hat{u} = -\frac{\mathrm{d}t}{\Omega^2}$, $\hat{p} = \hat{w}\hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w} = const$.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w} , and forcing it to be constant, because of the above ODE satisfied by Ω , we find that it is possible provided that:

$$\mathring{\Lambda}\mathring{\Lambda}(1+\check{w})(1-3\check{w})=0.$$

- We come back to the FLRW metric $\check{g} = -dt^2 + \Omega^2(t)r_0^2g_{\mathbb{S}^3}$.
- We write it as $\check{g}=\Omega^2(t)\big(-\frac{\mathrm{d}t^2}{\Omega^2(t)}+r_0^2\boldsymbol{g}_{\mathbb{S}^3}\big)$, so that it is clear that $\check{g}=\Omega^2(t)\boldsymbol{g}_{\mathsf{Einst}}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d}t,\ \check{p}=\check{w}\check{\mu}$, and the cosmological constant $\check{\Lambda}$, is equivalent to the following ODE for Ω : $2r_0^2\Omega\Omega''=-(1+3\check{w})(1+r_0^2\Omega'^2)+(1+\check{w})\check{\Lambda}r_0^2\Omega^2.$
- We want that $\check{w} = const$ and that $\hat{g} = \frac{1}{\Omega^2} g_{Einst}$ satisfies perfect fluid Eisntein's equations with $\hat{u} = -\frac{\mathrm{d}t}{\Omega^2}$, $\hat{p} = \hat{w}\hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w} = const$.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w} , and forcing it to be constant, because of the above ODE satisfied by Ω , we find that it is possible provided that:

$$\mathring{\Lambda}\mathring{\Lambda}(1+\mathring{w})(1-3\mathring{w})=0.$$

- We come back to the FLRW metric $\check{g} = -dt^2 + \Omega^2(t)r_0^2g_{\mathbb{S}^3}$.
- We write it as $\check{g}=\Omega^2(t)\big(-\frac{\mathrm{d}t^2}{\Omega^2(t)}+r_0^2\boldsymbol{g}_{\mathbb{S}^3}\big)$, so that it is clear that $\check{g}=\Omega^2(t)\boldsymbol{g}_{\mathsf{Einst}}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d}t$, $\check{p}=\check{w}\check{\mu}$, and the cosmological constant $\check{\Lambda}$, is equivalent to the following ODE for Ω : $2r_0^2\Omega\Omega''=-(1+3\check{w})(1+r_0^2\Omega'^2)+(1+\check{w})\check{\Lambda}r_0^2\Omega^2.$
- We want that $\check{w} = const$ and that $\hat{g} = \frac{1}{\Omega^2} g_{Einst}$ satisfies perfect fluid Eisntein's equations with $\hat{u} = -\frac{\mathrm{d}t}{\Omega^2}$, $\hat{p} = \hat{w}\hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w} = const$.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w} , and forcing it to be constant, because of the above ODE satisfied by Ω , we find that it is possible provided that:

$$\check{\Lambda}\hat{\Lambda}(1+\check{w})(1-3\check{w})=0.$$

- We come back to the FLRW metric $\check{g} = -\mathrm{d}t^2 + \Omega^2(t)r_0^2g_{\mathbb{S}^3}$.
- We write it as $\check{g}=\Omega^2(t)\big(-\frac{\mathrm{d}t^2}{\Omega^2(t)}+r_0^2\boldsymbol{g}_{\mathbb{S}^3}\big)$, so that it is clear that $\check{g}=\Omega^2(t)\boldsymbol{g}_{\mathsf{Einst}}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d}t,\,\check{p}=\check{w}\check{\mu},$ and the cosmological constant $\check{\Lambda}$, is equivalent to the following ODE for Ω : $2r_0^2\Omega\Omega''=-(1+3\check{w})(1+r_0^2\Omega'^2)+(1+\check{w})\check{\Lambda}r_0^2\Omega^2.$
- We want that $\check{w} = const$ and that $\hat{g} = \frac{1}{\Omega^2} g_{Einst}$ satisfies perfect fluid Eisntein's equations with $\hat{u} = -\frac{\mathrm{d}t}{\Omega^2}$, $\hat{p} = \hat{w}\hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w} = const$.
- From the Einstein's equations for \hat{g} we easily calculate \hat{w} , and forcing it to be constant, because of the above ODE satisfied by Ω , we find that it is possible provided that:

$$\check{\Lambda}\hat{\Lambda}(1+\check{w})(1-3\check{w})=0.$$

- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3\cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\tilde{\Lambda}\tilde{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\tilde{\Lambda}r_0^2}$$

has the property that both $\check{g}=\Omega^2 g_{Einst}$ and $\hat{g}=\Omega^{-2} g_{Einst}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{Finst}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{\mathrm{S}3}$.

Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha

- Considering the case $\check{w}=1/3$, one shows that remarkably $\hat{w}=1/3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3\cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\tilde{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\tilde{\Lambda}r_0^2}$$

has the property that both $\check{g}=\Omega^2 g_{Einst}$ and $\hat{g}=\Omega^{-2} g_{Einst}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{Einst}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{\mathbb{S}^3}$.

Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha...

- Considering the case $\check{w}=1/3$, one shows that remarkably $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3\cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\tilde{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\tilde{\Lambda}r_c^2}$$

has the property that both $\check{g}=\Omega^2 g_{Einst}$ and $\hat{g}=\Omega^{-2} g_{Einst}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{Einst}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{\mathbb{S}^3}$.

Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha...

イロト (個) (量) (量) (型) のQの

- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3\cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\tilde{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\tilde{\Lambda}r_0^2}$$

has the property that both $\check{g}=\Omega^2 g_{\textit{Einst}}$ and $\hat{g}=\Omega^{-2} g_{\textit{Einst}}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{\textit{Einst}}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{\mathbb{S}^3}$.

Colloquially speaking incoherent radiation passes
 happily through the wound. However, cosmological
 constants can change from any positive value to any other
 one. Ha...

◆ロ → ◆昼 → ◆ 恵 → ● ・ 今 へ ○

- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3\cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\tilde{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\tilde{\Lambda}r_c^2}$$

has the property that both $\check{g}=\Omega^2 g_{Einst}$ and $\hat{g}=\Omega^{-2} g_{Einst}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{Finst}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{\mathrm{S}3}$.

Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha...

イロト (個) (量) (量) (型) のQの

- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3\cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\tilde{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\tilde{\Lambda}r_0^2}$$

has the property that both $\check{g}=\Omega^2 g_{Einst}$ and $\hat{g}=\Omega^{-2} g_{Einst}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{Einst}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{\mathbb{S}^3}$.

Colloquially speaking incoherent radiation passes
 happily through the wound. However, cosmological
 constants can change from any positive value to any other
 one. Ha...

◆ロト ◆昼 > ◆ 喜 > ◆ へ で

- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3\cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\check{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\check{\Lambda}r_0^2}$$

has the property that both $\check{g}=\Omega^2 g_{Einst}$ and $\hat{g}=\Omega^{-2} g_{Einst}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{Einst}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{\mathbb{S}^3}$.

Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha...

◆ロ → ◆昼 → ◆ 恵 → ● ・ 今 へ ○

- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3 \cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\check{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\check{\Lambda}r_0^2}$$

- has the property that both $\check{g}=\Omega^2g_{Einst}$ and $\hat{g}=\Omega^{-2}g_{Einst}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{Einst}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{\mathrm{S}3}$.
- Colloquially speaking incoherent radiation passes
 happily through the wound. However, cosmological
 constants can change from any positive value to any other
 one. Ha

- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3 \cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\check{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\check{\Lambda}r_0^2}$$

has the property that both $\check{g}=\Omega^2g_{Einst}$ and $\hat{g}=\Omega^{-2}g_{Einst}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{Einst}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{\mathbb{S}^3}$.

Colloquially speaking incoherent radiation passes
 happily through the wound. However, cosmological
 constants can change from any positive value to any other
 one. Ha...

◆ロ → ◆昼 → ◆ 恵 → ● ・ 今 へ ○

- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3 \cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\check{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\check{\Lambda}r_0^2}$$

has the property that both $\check{g}=\Omega^2g_{Einst}$ and $\hat{g}=\Omega^{-2}g_{Einst}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{Einst}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{\mathrm{S}3}$.

Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha...

◆ロト ◆昼 > ◆ 喜 > ◆ へ で

- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3\cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\tilde{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\tilde{\Lambda}r_0^2}$$

has the property that both $\check{g}=\Omega^2g_{Einst}$ and $\hat{g}=\Omega^{-2}g_{Einst}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{Einst}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{S^3}$.

Colloquially speaking incoherent radiation passes
 happily through the wound. However, cosmological
 constants can change from any positive value to any other
 one. Ha...

◆□▶◆圖▶◆臺▶◆臺▶ 臺 めQ@

- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3\cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\tilde{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\tilde{\Lambda}r_0^2}$$

has the property that both $\check{g}=\Omega^2g_{Einst}$ and $\hat{g}=\Omega^{-2}g_{Einst}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants Λ and Λ . Here $g_{Einst}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{S3}$.

Colloquially speaking incoherent radiation passes
 happily through the wound. However, cosmological
 constants can change from any positive value to any other
 one. Ha...

- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3 \cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\check{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\check{\Lambda}r_0^2}$$

has the property that both $\check{g}=\Omega^2 g_{Einst}$ and $\hat{g}=\Omega^{-2} g_{Einst}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$.

Here $g_{Einst} = -\Omega^{-2} dt^2 + r_0^2 g_{\mathbb{S}^3}$.

Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha...

◆□ → ◆□ → ◆ ■ → ◆ ■ ・ り へ ○

- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3 \cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\check{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\check{\Lambda}r_0^2}$$

has the property that both $\check{g}=\Omega^2 g_{\textit{Einst}}$ and $\hat{g}=\Omega^{-2} g_{\textit{Einst}}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{\textit{Einst}}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{\mathbb{S}^3}$.

Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha...

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ り へ ○

- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3\cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\check{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\check{\Lambda}r_0^2}$$

has the property that both $\check{g}=\Omega^2 g_{\textit{Einst}}$ and $\hat{g}=\Omega^{-2} g_{\textit{Einst}}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{\textit{Einst}}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{\mathbb{S}^3}$.

Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha...

- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3\cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\check{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\check{\Lambda}r_0^2}$$

has the property that both $\check{g}=\Omega^2g_{\textit{Einst}}$ and $\hat{g}=\Omega^{-2}g_{\textit{Einst}}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{\textit{Einst}}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{\mathbb{S}^3}$.

Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha...

《□》《□》《□》《□》 (□》 (□)

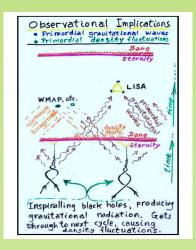
- Considering the case $\check{w}=1/3$, one shows that **remarkably** $\hat{w}=1/3$ (generalization of the result of **Paul Tod**). More explicitly this case can be integrated to the very end.
- **Theorem**. The function $\Omega = \Omega(t)$ given by:

$$\Omega^2 = \frac{3 - 3\cosh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t) - 2r_0^2\sqrt{\check{\Lambda}\hat{\Lambda}}\sinh(2\sqrt{\frac{\tilde{\Lambda}}{3}}t)}{\check{\Lambda}r_0^2}$$

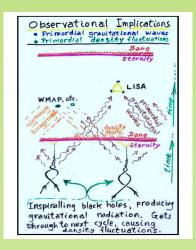
has the property that both $\check{g}=\Omega^2g_{\textit{Einst}}$ and $\hat{g}=\Omega^{-2}g_{\textit{Einst}}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1/3$ (radiation), and with the corresponding cosmological constants $\check{\Lambda}$ and $\hat{\Lambda}$. Here $g_{\textit{Einst}}=-\Omega^{-2}\mathrm{d}t^2+r_0^2g_{\mathbb{S}^3}$.

Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha...

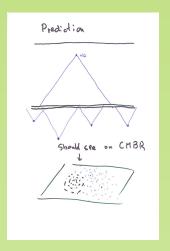
Motivation for the next model (picture by R. Penrose)



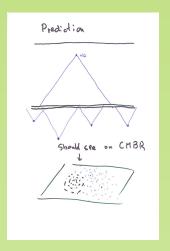
Motivation for the next model (picture by R. Penrose)



Motivation for the next model (picture by P.N.)



Motivation for the next model (picture by P.N.)



- I consider two consecutives eons \hat{M} and \hat{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (\hat{M}) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$\hat{T}^{ij} = \hat{\Phi} K^i K^j, \quad \hat{g}_{ij} K^i K^j = 0,$$

and with cosmological constant $\hat{\Lambda}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}\big(-\mathrm{d}t^2+h_t\big)$, which is a **Lorentzian analog of the Poincaré-Einstein metric** known from the theory of conformal invariants. The solution is obtained under the assumption that the **3-dimensional conformal structure** [h] on the \mathscr{I}^+ of \hat{M} is flat, that the metric \hat{g} admits a power series expansian in the time variable t, and that $h_0=h_{t=0}\in[h]$. It follows that such a solution depends on precisely one real arbitrary function of the radial variable t.

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (\check{M}) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$\hat{T}^{ij} = \hat{\Phi} K^i K^j, \quad \hat{g}_{ij} K^i K^j = 0,$$

and with cosmological constant $\hat{\Lambda}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}(-\mathrm{d}t^2+h_t)$, which is a **Lorentzian analog of the Poincaré-Einstein metric** known from the theory of conformal invariants. The solution is obtained under the assumption that the **3-dimensional conformal structure** [h] on the \mathscr{I}^+ of \hat{M} is flat, that the metric \hat{g} admits a power series expansian in the time variable t, and that $h_0=h_{t=0}\in[h]$. It follows that such a solution depends on precisely one real arbitrary function of the radial variable r.

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (\check{M}) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$\hat{T}^{ij} = \hat{\Phi} K^i K^j, \quad \hat{g}_{ij} K^i K^j = 0,$$

and with cosmological constant $\hat{\Lambda}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}(-\mathrm{d}t^2+h_t)$, which is a **Lorentzian analog of the Poincaré-Einstein metric** known from the theory of conformal invariants. The solution is obtained under the assumption that the **3-dimensional conformal structure** [h] on the \mathscr{I}^+ of \hat{M} is flat, that the metric \hat{g} admits a power series expansian in the time variable t, and that $h_0=h_{t=0}\in[h]$. It follows that such a solution depends on precisely one real arbitrary function of the radial variable t.

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (\check{M}) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$\hat{T}^{ij} = \hat{\Phi} K^i K^j, \quad \hat{g}_{ij} K^i K^j = 0,$$

and with cosmological constant $\hat{\Lambda}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}\big(-\mathrm{d}t^2+h_t\big)$, which is a Lorentzian analog of the Poincaré-Einstein metric known from the theory of conformal invariants. The solution is obtained under the assumption that the 3-dimensional conformal structure [h] on the \mathscr{I}^+ of \hat{M} is flat, that the metric \hat{g} admits a power series expansian in the time variable t, and that $h_0=h_{t=0}\in[h]$. It follows that such a solution depends on precisely one real arbitrary function of the radial variable r.

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (\check{M}) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$\hat{T}^{ij} = \hat{\Phi} K^i K^j, \quad \hat{g}_{ij} K^i K^j = 0,$$

and with cosmological constant $\hat{\Lambda}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}\big(-\mathrm{d}t^2+h_t\big)$, which is a **Lorentzian analog of the Poincaré-Einstein metric** known from the theory of conformal invariants. The solution is obtained under the assumption that the **3-dimensional conformal structure** [h] on the \mathscr{I}^+ of \hat{M} is flat, that the metric \hat{g} admits a power series expansian in the time variable t, and that $h_0=h_{t=0}\in[h]$. It follows that such a solution depends on precisely one real arbitrary function of the radial variable r.

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (\check{M}) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$\hat{T}^{ij} = \hat{\Phi} K^i K^j, \quad \hat{g}_{ij} K^i K^j = 0,$$

and with cosmological constant $\hat{\Lambda}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}\big(-\mathrm{d}t^2+h_t\big)$, which is a **Lorentzian analog of the Poincaré-Einstein metric** known from the theory of conformal invariants. The solution is obtained under the assumption that the **3-dimensional conformal structure** [h] on the \mathscr{I}^+ of \hat{M} is flat, that the metric \hat{g} admits a power series expansian in the time variable t, and that $h_0=h_{t=0}\in[h]$. It follows that such a solution depends on precisely one real arbitrary function of the radial variable t.

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (\check{M}) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$\hat{T}^{ij} = \hat{\Phi} K^i K^j, \quad \hat{g}_{ij} K^i K^j = 0,$$

and with cosmological constant $\hat{\Lambda}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}(-\mathrm{d}t^2+h_t)$, which is a **Lorentzian analog of the Poincaré-Einstein metric** known from the theory of conformal invariants. The solution is obtained under the assumption that the **3-dimensional conformal structure** [h] on the \mathscr{I}^+ of \hat{M} is flat, that the metric \hat{g} admits a power series expansian in the time variable t, and that $h_0=h_{t=0}\in[h]$. It follows that such a solution depends on precisely one real arbitrary function of the radial variable t.

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (\check{M}) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$\hat{T}^{ij} = \hat{\Phi} K^i K^j, \quad \hat{g}_{ij} K^i K^j = 0,$$

and with cosmological constant $\hat{\Lambda}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}\big(-\mathrm{d}t^2+h_t\big)$, which is a **Lorentzian analog of the Poincaré-Einstein metric** known from the theory of conformal invariants. The solution is obtained under the assumption that the **3-dimensional conformal structure** [h] on the \mathscr{I}^+ of \hat{M} is flat, that the metric \hat{g} admits a power series expansian in the time variable t, and that $h_0=h_{t=0}\in[h]$. It follows that such a solution depends on precisely one real arbitrary function of the radial variable t.

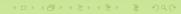
- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (\check{M}) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

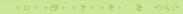
$$\hat{T}^{ij} = \hat{\Phi} K^i K^j, \quad \hat{g}_{ij} K^i K^j = 0,$$

and with cosmological constant $\hat{\Lambda}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}\big(-\mathrm{d}t^2+h_t\big)$, which is a **Lorentzian analog of the Poincaré-Einstein metric** known from the theory of conformal invariants. The solution is obtained under the assumption that the **3-dimensional conformal structure** [h] on the \mathscr{I}^+ of \hat{M} is flat, that the metric \hat{g} admits a power series expansian in the time variable t, and that $h_0=h_{t=0}\in[h]$. It follows that such a solution depends on precisely one real arbitrary function of the radial variable r.

$$\check{T}^{ij}=\check{\Phi}K^iK^j+\check{\Psi}L^iL^j+(\check{p}+\check{p})\check{u}^i\check{u}^j+\check{p}\check{g}^{ij},$$
n which $\check{u}^i\check{u}^j\check{g}_{ij}=-1$, $\check{g}_{ij}L^iL^j=0$ and $L^iK^j\check{g}_{ij}=-2$.

$$\check{T}^{ij}=\check{\Phi}K^iK^j+\check{\Psi}L^iL^j+(\check{
ho}+\check{
ho})\check{u}^i\check{u}^j+\check{
ho}\check{g}^{ij},$$
 in which $\check{u}^i\check{u}^j\check{g}_{ij}=-1$, $\check{g}_{ij}L^iL^j=0$ and $L^iK^j\check{g}_{ij}=-2$.





 $\check{T}^{ij} = \check{\Phi} K^i K^j + \check{\Psi} L^i L^j + (\check{\rho} + \check{\rho}) \check{u}^i \check{u}^j + \check{\rho} \check{g}^{ij},$ in which $\check{u}^i \check{u}^j \check{g}_{ij} = -1$, $\check{g}_{ij} L^i L^j = 0$ and $L^i K^j \check{g}_{ij} = -2$.

$$\check{T}^{ij} = \check{\Phi} K^i K^j + \check{\Psi} L^i L^j + (\check{\rho} + \check{p}) \check{u}^i \check{u}^j + \check{p} \check{g}^{ij},$$
 in which $\check{u}^i \check{v}^j \check{g}_{ii} = -1$, $\check{g}_{ii} L^i L^j = 0$ and $L^i K^j \check{g}_{ii} = -2$.

$$h_0 = \frac{2r^2 dz d\bar{z}}{(1 + \frac{z\bar{z}}{2})^2} + dr^2.$$

• Then I make Poincar'e anstaz by considering a 1-paramater family of 3-d metrics h_t . This will be a *spherically symmetric* family

$$h_t = rac{2r^2\left(1+
u(t,r)
ight)\mathrm{d}z\mathrm{d}ar{z}}{(1+rac{zar{z}}{2})^2} + \left(1+\mu(t,r)
ight)\mathrm{d}r^2,$$

where the unknown function $\nu = \nu(t,r)$ and $\mu = \mu(t,r)$ are both real analytic in the variable t and such that:

• This satisfies $h_{t=0} = h_0$ and because of the analyticity assumption we have $\nu(t,r) = \sum_{i=1}^{\infty} a_i(r)t^i$ and $\mu(t,r) = \sum_{i=1}^{\infty} b_i(r)t^i$, with a set of differentiable functions $a_i = a_i(r)$ and $b_i = b_i(r)$ depending on the r variable only.

◆ロ → ◆団 → ◆ 豆 → ○ ● ・ の へ ○

$$h_0 = \frac{2r^2 dz d\bar{z}}{(1 + \frac{z\bar{z}}{2})^2} + dr^2.$$

• Then I make Poincar'e anstaz by considering a 1-paramater family of 3-d metrics h_t . This will be a *spherically symmetric* family

$$h_t = rac{2r^2\left(1+
u(t,r)
ight)\mathrm{d}z\mathrm{d}ar{z}}{(1+rac{zar{z}}{2})^2} + \left(1+\mu(t,r)
ight)\mathrm{d}r^2,$$

where the unknown function $\nu = \nu(t,r)$ and $\mu = \mu(t,r)$ are both real analytic in the variable t and such that:

• This satisfies $h_{t=0} = h_0$ and because of the analyticity assumption we have $\nu(t,r) = \sum_{i=1}^{\infty} a_i(r)t^i$ and $\mu(t,r) = \sum_{i=1}^{\infty} b_i(r)t^i$, with a set of differentiable functions $a_i = a_i(r)$ and $b_i = b_i(r)$ depending on the r variable only

$$h_0 = \frac{2r^2 dz d\bar{z}}{(1 + \frac{z\bar{z}}{2})^2} + dr^2.$$

 Then I make Poincar'e anstaz by considering a 1-paramater family of 3-d metrics h_t. This will be a spherically symmetric family

$$h_t = \frac{2r^2\left(1+\nu(t,r)\right)\mathrm{d}z\mathrm{d}\bar{z}}{\left(1+\frac{z\bar{z}}{2}\right)^2} + \left(1+\mu(t,r)\right)\mathrm{d}r^2,$$

where the unknown function $\nu = \nu(t,r)$ and $\mu = \mu(t,r)$ are both *real analytic* in the variable t and such that: $\nu(0,r) = 0$ and $\mu(0,r) = 0$.

• This satisfies $h_{t=0} = h_0$ and because of the analyticity assumption we have $\nu(t,r) = \sum_{i=1}^{\infty} a_i(r)t^i$ and $\mu(t,r) = \sum_{i=1}^{\infty} b_i(r)t^i$, with a set of differentiable functions $a_i = a_i(r)$ and $b_i = b_i(r)$ depending on the r variable only

$$h_0 = \frac{2r^2 dz d\bar{z}}{(1 + \frac{z\bar{z}}{2})^2} + dr^2.$$

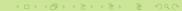
• Then I make Poincar'e anstaz by considering a 1-paramater family of 3-d metrics h_t . This will be a *spherically symmetric* family

$$h_t = \frac{2r^2\left(1+\nu(t,r)\right)\mathrm{d}z\mathrm{d}\bar{z}}{\left(1+\frac{z\bar{z}}{2}\right)^2} + \left(1+\mu(t,r)\right)\mathrm{d}r^2,$$

where the unknown function $\nu = \nu(t,r)$ and $\mu = \mu(t,r)$ are both real analytic in the variable t and such that:

$$\nu(0,r) = 0$$
 and $\mu(0,r) = 0$.

• This satisfies $h_{l=0}=h_0$ and because of the analyticity assumption we have $\nu(t,r)=\sum_{i=1}^\infty a_i(r)t^i$ and $\mu(t,r)=\sum_{i=1}^\infty b_i(r)t^i$, with a set of differentiable functions $a_i=a_i(r)$ and $b_i=b_i(r)$ depending on the r variable only



$$h_0 = \frac{2r^2 dz d\bar{z}}{(1 + \frac{z\bar{z}}{2})^2} + dr^2.$$

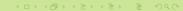
 Then I make Poincar'e anstaz by considering a 1-paramater family of 3-d metrics h_t. This will be a spherically symmetric family

$$h_t = \frac{2r^2\left(1+\nu(t,r)\right)\mathrm{d}z\mathrm{d}\bar{z}}{\left(1+\frac{z\bar{z}}{2}\right)^2} + \left(1+\mu(t,r)\right)\mathrm{d}r^2,$$

where the unknown function $\nu = \nu(t,r)$ and $\mu = \mu(t,r)$ are both real analytic in the variable t and such that:

$$\nu(0,r) = 0$$
 and $\mu(0,r) = 0$.

• This satisfies $h_{t=0} = h_0$ and because of the analyticity assumption we have $\nu(t,r) = \sum_{i=1}^{\infty} a_i(r)t^i$ and $\mu(t,r) = \sum_{i=1}^{\infty} b_i(r)t^i$, with a set of differentiable functions $a_i = a_i(r)$ and $b_i = b_i(r)$ depending on the r variable only



$$h_0 = \frac{2r^2 dz d\bar{z}}{(1 + \frac{z\bar{z}}{2})^2} + dr^2.$$

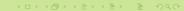
 Then I make Poincar'e anstaz by considering a 1-paramater family of 3-d metrics h_t. This will be a spherically symmetric family

$$h_t = \frac{2r^2\left(1+\nu(t,r)\right)\mathrm{d}z\mathrm{d}\bar{z}}{\left(1+\frac{z\bar{z}}{2}\right)^2} + \left(1+\mu(t,r)\right)\mathrm{d}r^2,$$

where the unknown function $\nu = \nu(t,r)$ and $\mu = \mu(t,r)$ are both real analytic in the variable t and such that:

$$\nu(0,r) = 0$$
 and $\mu(0,r) = 0$.

• This satisfies $h_{t=0} = h_0$ and because of the analyticity assumption we have $\nu(t,r) = \sum_{i=1}^{\infty} a_i(r)t^i$ and $\mu(t,r) = \sum_{i=1}^{\infty} b_i(r)t^i$, with a set of differentiable functions $a_i = a_i(r)$ and $b_i = b_i(r)$ depending on the r variable only.



$$h_0 = \frac{2r^2 dz d\bar{z}}{(1 + \frac{z\bar{z}}{2})^2} + dr^2.$$

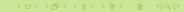
 Then I make Poincar'e anstaz by considering a 1-paramater family of 3-d metrics h_t. This will be a spherically symmetric family

$$h_t = \frac{2r^2\left(1+\nu(t,r)\right)\mathrm{d}z\mathrm{d}\bar{z}}{\left(1+\frac{z\bar{z}}{2}\right)^2} + \left(1+\mu(t,r)\right)\mathrm{d}r^2,$$

where the unknown function $\nu = \nu(t,r)$ and $\mu = \mu(t,r)$ are both real analytic in the variable t and such that:

$$\nu(0,r) = 0$$
 and $\mu(0,r) = 0$.

• This satisfies $h_{t=0}=h_0$ and because of the analyticity assumption we have $\nu(t,r)=\sum_{i=1}^\infty a_i(r)t^i$ and $\mu(t,r)=\sum_{i=1}^\infty b_i(r)t^i$, with a set of differentiable functions $a_i=a_i(r)$ and $b_i=b_i(r)$ depending on the r variable only.



Possible generalizations

• This leads to the following ansatz for the Poincaré-type metric \hat{g} for the past eon \hat{M} :

$$\hat{g} = t^{-2} \left(-dt^2 + \frac{2r^2 \left(1 + \sum_{i=1}^{\infty} a_i(r)t^i \right) dz d\bar{z}}{(1 + \frac{z\bar{z}}{2})^2} + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i \right) dr^2 \right).$$

Our (pre)past eon manifold \hat{M} is parameterized by t > 0, r > 0 and $z \in \mathbb{C} \cup \{\infty\}$.

• I now consider the following null vector field K on \hat{M} :

$$K = \partial_t + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i\right)^{-\frac{1}{2}}\partial_r.$$

- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface r = 0.
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{ij} = \hat{\Lambda} \hat{g}^{ij} + \hat{\Phi} K^i K^j$ with this null vector field K and some functions $\hat{\Phi}$ and $\hat{\Lambda}$. We have the following theorem/conjecture.

4日 > 4目 > 4目 > 4目 > 940

$$\hat{g} = t^{-2} \left(-dt^2 + \frac{2r^2 \left(1 + \sum_{i=1}^{\infty} a_i(r)t^i \right) dz d\bar{z}}{(1 + \frac{z\bar{z}}{2})^2} + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i \right) dr^2 \right)$$

Our (pre)past eon manifold \hat{M} is parameterized by $t>0,\,r>0$ and $z\in\mathbb{C}\cup\{\infty\}.$

• I now consider the following null vector field K on \hat{M} :

$$K = \partial_t + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i\right)^{-\frac{1}{2}} \partial_r.$$

- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface r = 0.
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{ij} = \hat{\Lambda} \hat{g}^{ij} + \hat{\Phi} K^i K^j$ with this null vector field K and some functions $\hat{\Phi}$ and $\hat{\Lambda}$. We have the following theorem/conjecture.

$$\hat{g} = t^{-2} \left(-\mathrm{d}t^2 + \tfrac{2r^2 \left(1 + \sum_{i=1}^\infty a_i(r)t^i\right) \mathrm{d}z \mathrm{d}\bar{z}}{(1 + \tfrac{z\bar{z}}{2})^2} + \left(1 + \sum_{i=1}^\infty b_i(r)t^i\right) \mathrm{d}r^2 \right).$$

Our (pre)past eon manifold \hat{M} is parameterized by $t>0,\,r>0$ and $z\in\mathbb{C}\cup\{\infty\}.$

• I now consider the following null vector field K on \hat{M} :

$$K = \partial_t + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i\right)^{-\frac{1}{2}} \partial_r.$$

- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface r = 0.
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{ij} = \hat{\Lambda} \hat{g}^{ij} + \hat{\Phi} K^i K^j$ with this null vector field K and some functions $\hat{\Phi}$ and $\hat{\Lambda}$. We have the following theorem/conjecture.

$$\hat{g} = t^{-2} \left(-\mathrm{d}t^2 + \tfrac{2r^2 \left(1 + \sum_{i=1}^\infty a_i(r)t^i\right) \mathrm{d}z \mathrm{d}\bar{z}}{(1 + \tfrac{z\bar{z}}{2})^2} + \left(1 + \sum_{i=1}^\infty b_i(r)t^i\right) \mathrm{d}r^2 \right).$$

Our (pre)past eon manifold \hat{M} is parameterized by t>0, r>0 and $z\in\mathbb{C}\cup\{\infty\}$.

• I now consider the following null vector field K on \hat{M} :

$$K = \partial_t + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i\right)^{-\frac{1}{2}} \partial_r.$$

- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface r = 0.
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{ij} = \hat{\Lambda} \hat{g}^{ij} + \hat{\Phi} K^i K^j$ with this null vector field K and some functions $\hat{\Phi}$ and $\hat{\Lambda}$. We have the following theorem/conjecture.

$$\hat{g} = t^{-2} \left(-\mathrm{d}t^2 + \tfrac{2r^2 \left(1 + \sum_{i=1}^\infty a_i(r)t^i\right) \mathrm{d}z \mathrm{d}\bar{z}}{(1 + \tfrac{z\bar{z}}{2})^2} + \left(1 + \sum_{i=1}^\infty b_i(r)t^i\right) \mathrm{d}r^2 \right).$$

Our (pre)past eon manifold \hat{M} is parameterized by t>0, r>0 and $z\in\mathbb{C}\cup\{\infty\}$.

• I now consider the following null vector field K on \hat{M} :

$$K = \partial_t + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i\right)^{-\frac{1}{2}}\partial_r$$

- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface r = 0.
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{ij} = \hat{\Lambda} \hat{g}^{ij} + \hat{\Phi} K^i K^j$ with this null vector field K and some functions $\hat{\Phi}$ and $\hat{\Lambda}$. We have the following theorem/conjecture.

$$\hat{g} = t^{-2} \left(-\mathrm{d}t^2 + \tfrac{2r^2 \left(1 + \sum_{i=1}^\infty a_i(r)t^i\right) \mathrm{d}z \mathrm{d}\bar{z}}{(1 + \tfrac{z\bar{z}}{2})^2} + \left(1 + \sum_{i=1}^\infty b_i(r)t^i\right) \mathrm{d}r^2 \right).$$

Our (pre)past eon manifold \hat{M} is parameterized by t > 0, r > 0 and $z \in \mathbb{C} \cup \{\infty\}$.

• I now consider the following null vector field K on \hat{M} :

$$K = \partial_t + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i\right)^{-\frac{1}{2}}\partial_r.$$

- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface r = 0.
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{ij} = \hat{\Lambda} \hat{g}^{ij} + \hat{\Phi} K^i K^j$ with this null vector field K and some functions $\hat{\Phi}$ and $\hat{\Lambda}$. We have the following theorem/conjecture.

$$\hat{g} = t^{-2} \left(-\mathrm{d}t^2 + \tfrac{2r^2 \left(1 + \sum_{i=1}^\infty a_i(r)t^i\right) \mathrm{d}z \mathrm{d}\bar{z}}{(1 + \tfrac{z\bar{z}}{2})^2} + \left(1 + \sum_{i=1}^\infty b_i(r)t^i\right) \mathrm{d}r^2 \right).$$

Our (pre)past eon manifold \hat{M} is parameterized by t > 0, r > 0 and $z \in \mathbb{C} \cup \{\infty\}$.

• I now consider the following null vector field K on \hat{M} :

$$K = \partial_t + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i\right)^{-\frac{1}{2}}\partial_r.$$

- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface r = 0.
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{ij} = \hat{\Lambda} \hat{g}^{ij} + \hat{\Phi} K^i K^j$ with this null vector field K and some functions $\hat{\Phi}$ and $\hat{\Lambda}$. We have the following theorem/conjecture.

$$\hat{g} = t^{-2} \left(-\mathrm{d}t^2 + \tfrac{2r^2 \left(1 + \sum_{i=1}^\infty a_i(r)t^i\right) \mathrm{d}z \mathrm{d}\bar{z}}{(1 + \tfrac{z\bar{z}}{2})^2} + \left(1 + \sum_{i=1}^\infty b_i(r)t^i\right) \mathrm{d}r^2 \right).$$

Our (pre)past eon manifold \hat{M} is parameterized by t > 0, r > 0 and $z \in \mathbb{C} \cup \{\infty\}$.

• I now consider the following null vector field K on \hat{M} :

$$K = \partial_t + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i\right)^{-\frac{1}{2}} \partial_r.$$

- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface r = 0.
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{ij} = \hat{\Lambda} \hat{g}^{ij} + \hat{\Phi} \mathcal{K}^i \mathcal{K}^j$ with this null vector field \mathcal{K} and some functions $\hat{\Phi}$ and $\hat{\Lambda}$. We have the following theorem/conjecture.

4 D > 4 D > 4 D > 4 D > 9 Q C

Theorem 1

If the metric

$$\hat{g} = t^{-2}(-dt^2 + h_t) = t^{-2}\left(-dt^2 + \frac{2r^2(1 + \sum_{i=1}^{\infty} a_i(r)t^i)dzd\bar{z}}{(1 + \frac{z\bar{z}}{2})^2} + (1 + \sum_{i=1}^{\infty} b_i(r)t^i)dr^2\right)$$

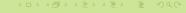
satisfies Einstein's equations

$$\hat{E}_{ij} := \hat{R}_{ij} - \hat{\Lambda} \hat{g}_{ij} - \hat{\Phi} \hat{K}_i \hat{K}_j = 0$$

with

$$K = K^i \partial_i = \partial_t + \left(1 + \sum_{i=1}^{\infty} b_i(r) t^i\right)^{-\frac{1}{2}} \partial_r, \qquad \hat{K}_i = \hat{g}_{ij} K^j$$

then we have:



Theorem 1.

If the metric

$$\hat{g} = t^{-2}(-dt^2 + h_t) = t^{-2}\left(-dt^2 + \frac{2r^2\left(1 + \sum_{i=1}^{\infty} a_i(r)t^i\right)dzd\bar{z}}{\left(1 + \frac{z\bar{z}}{2}\right)^2} + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i\right)dr^2\right)$$

satisfies Einstein's equations

$$\hat{E}_{ij} := \hat{R}_{ij} - \hat{\Lambda} \hat{g}_{ij} - \hat{\Phi} \hat{K}_i \hat{K}_j = 0$$

with

$$K = K^i \partial_i = \partial_t + \left(1 + \sum_{i=1}^{\infty} b_i(r) t^i\right)^{-\frac{1}{2}} \partial_r, \qquad \hat{K}_i = \hat{g}_{ij} K^j,$$

then we have:



Theorem 1. If the metric

$$\hat{g} = t^{-2}(-dt^2 + h_t) = t^{-2}\left(-dt^2 + \frac{2r^2(1 + \sum_{i=1}^{\infty} a_i(r)t^i)dzd\bar{z}}{(1 + \frac{z\bar{z}}{2})^2} + (1 + \sum_{i=1}^{\infty} b_i(r)t^i)dr^2\right)$$

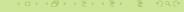
satisfies Einstein's equations

$$\hat{E}_{ij} := \hat{R}_{ij} - \hat{\Lambda}\hat{g}_{ij} - \hat{\Phi}\hat{K}_i\hat{K}_j = 0$$

with

$$K = K^i \partial_i = \partial_t + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i\right)^{-\frac{1}{2}} \partial_r, \qquad \hat{K}_i = \hat{g}_{ij}K^j,$$

then we have:



Theorem 1. If the metric

$$\hat{g} = t^{-2}(-dt^2 + h_t) = t^{-2}\left(-dt^2 + \frac{2r^2(1 + \sum_{i=1}^{\infty} a_i(r)t^i)dzd\bar{z}}{(1 + \frac{z\bar{z}}{2})^2} + (1 + \sum_{i=1}^{\infty} b_i(r)t^i)dr^2\right)$$

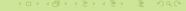
satisfies Einstein's equations

$$\hat{E}_{ij} := \hat{R}_{ij} - \hat{\Lambda} \hat{g}_{ij} - \hat{\Phi} \hat{K}_i \hat{K}_j = 0$$

with

$$K = K^i \partial_i = \partial_t + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i\right)^{-\frac{1}{2}} \partial_r, \qquad \hat{K}_i = \hat{g}_{ij}K^j,$$

then we have:



- The coefficients $a_1(r)$, $a_2(r)$ $b_1(r)$ and $b_2(r)$ identically vanish, $a_1(r) = a_2(r) = b_1(r) = b_2(r) = 0$, and the power series expansion of h_t starts at the t^3 terms, $h_t = t^3 \chi(r) + \mathcal{O}(t^4)$.
- The metric \hat{g} , or what is the same, the power series expansions $\nu(t,r) = \sum_{i=1}^{\infty} a_i(r)t^i$ and $\mu(t,r) = \sum_{i=1}^{\infty} b_i(r)t^i$, are totally determined up to infinite order by an arbitrary differentiable function f = f(r).
- More precisely, the Einstein equations $\hat{E}_{ij} = \mathcal{O}(t^{k+1})$ solved up to an order k, together with an arbitrary differentiable function f = f(r), uniquely determine $\nu(t, r)$ and $\mu(t, r)$ up to an order (k+2).

- The coefficients $a_1(r)$, $a_2(r)$ $b_1(r)$ and $b_2(r)$ identically vanish, $a_1(r) = a_2(r) = b_1(r) = b_2(r) = 0$, and the power series expansion of h_t starts at the t^3 terms, $h_t = t^3 \chi(r) + \mathcal{O}(t^4)$.
- The metric \hat{g} , or what is the same, the power series expansions $\nu(t,r) = \sum_{i=1}^{\infty} a_i(r)t^i$ and $\mu(t,r) = \sum_{i=1}^{\infty} b_i(r)t^i$, are totally determined up to infinite order by an arbitrary differentiable function f = f(r).
- More precisely, the Einstein equations $\hat{E}_{ij} = \mathcal{O}(t^{k+1})$ solved up to an order k, together with an arbitrary differentiable function f = f(r), uniquely determine $\nu(t, r)$ and $\mu(t, r)$ up to an order (k+2).

◆□▶◆■▶◆■▶◆■> 9へ○

- The coefficients $a_1(r)$, $a_2(r)$ $b_1(r)$ and $b_2(r)$ identically vanish, $a_1(r) = a_2(r) = b_1(r) = b_2(r) = 0$, and the power series expansion of h_t starts at the t^3 terms, $h_t = t^3 \chi(r) + \mathcal{O}(t^4)$.
- The metric \hat{g} , or what is the same, the power series expansions $\nu(t,r) = \sum_{i=1}^{\infty} a_i(r)t^i$ and $\mu(t,r) = \sum_{i=1}^{\infty} b_i(r)t^i$, are totally determined up to infinite order by an arbitrary differentiable function f = f(r).
- More precisely, the Einstein equations $\hat{E}_{ij} = \mathcal{O}(t^{k+1})$ solved up to an order k, together with an arbitrary differentiable function f = f(r), uniquely determine $\nu(t, r)$ and $\mu(t, r)$ up to an order (k+2).

- The coefficients $a_1(r)$, $a_2(r)$ $b_1(r)$ and $b_2(r)$ identically vanish, $a_1(r) = a_2(r) = b_1(r) = b_2(r) = 0$, and the power series expansion of h_t starts at the t^3 terms, $h_t = t^3 \chi(r) + \mathcal{O}(t^4)$.
- The metric \hat{g} , or what is the same, the power series expansions $\nu(t,r) = \sum_{i=1}^{\infty} a_i(r)t^i$ and $\mu(t,r) = \sum_{i=1}^{\infty} b_i(r)t^i$, are totally determined up to infinite order by an arbitrary differentiable function f = f(r).
- More precisely, the Einstein equations $\hat{E}_{ij} = \mathcal{O}(t^{k+1})$ solved up to an order k, together with an arbitrary differentiable function f = f(r), uniquely determine $\nu(t, r)$ and $\mu(t, r)$ up to an order (k+2).

$$u = \frac{f}{r^3}t^3 + \mathcal{O}(t^4)$$
 and $\mu = -\frac{2f}{r^3}t^3 + \mathcal{O}(t^4)$;

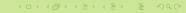
The energy function $\hat{\Phi}$ and the cosmological constant $\hat{\Lambda}$ are:

$$\hat{\Phi}=3rac{f'}{r^3}t^6+\mathcal{O}(t^7)$$
 and $\hat{\Lambda}=3+\mathcal{O}(t^{k+3});$

the Wevl tensor of the solution is

$$W^i_{jkl} = \mathcal{O}(t).$$

In particular, the Weyl tensor W^i_{jkl} vanishes at t=0 and $\hat{\Lambda}=3>0$ there.



$$\nu = \frac{f}{r^3}t^3 + \mathcal{O}(t^4)$$
 and $\mu = -\frac{2f}{r^3}t^3 + \mathcal{O}(t^4)$;

The energy function $\hat{\Phi}$ and the cosmological constant $\hat{\Lambda}$ are:

$$\hat{\Phi} = 3 \frac{f'}{r^3} t^6 + \mathcal{O}(t^7)$$
 and $\hat{\Lambda} = 3 + \mathcal{O}(t^{k+3})$

the Weyl tensor of the solution is

$$W^i_{jkl} = \mathcal{O}(t).$$

In particular, the Weyl tensor W^i_{jkl} vanishes at t=0 and $\hat{\Lambda}=3>0$ there.

$$\nu = \frac{f}{r^3}t^3 + \mathcal{O}(t^4)$$
 and $\mu = -\frac{2f}{r^3}t^3 + \mathcal{O}(t^4)$;

The energy function $\hat{\phi}$ and the cosmological constant $\hat{\Lambda}$ are:

$$\hat{\Phi} = 3 rac{f'}{r^3} t^6 + \mathcal{O}(t^7)$$
 and $\hat{\Lambda} = 3 + \mathcal{O}(t^{k+3})$;

the Weyl tensor of the solution is

$$W^i_{jkl} = \mathcal{O}(t).$$

In particular, the Weyl tensor W^i_{jkl} vanishes at t=0 and $\hat{\Lambda}=3>0$ there.

◆ロト ◆母 ト ◆ 豊 ト ◆ 豊 ・ 夕 Q ②

$$\nu = \frac{f}{r^3}t^3 + \mathcal{O}(t^4)$$
 and $\mu = -\frac{2f}{r^3}t^3 + \mathcal{O}(t^4)$;

The energy function $\hat{\phi}$ and the cosmological constant $\hat{\Lambda}$ are:

$$\hat{\Phi} = 3 \frac{f'}{r^3} t^6 + \mathcal{O}(t^7)$$
 and $\hat{\Lambda} = 3 + \mathcal{O}(t^{k+3})$;

the Weyl tensor of the solution is

$$W^i_{jkl} = \mathcal{O}(t).$$

In particular, the Weyl tensor W^i_{jkl} vanishes at t=0 and $\hat{\Lambda}=3>0$ there.

4 D > 4 B > 4 B > 4 B > 9 Q C

$$\nu = \frac{f}{r^3}t^3 + \mathcal{O}(t^4)$$
 and $\mu = -\frac{2f}{r^3}t^3 + \mathcal{O}(t^4)$;

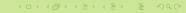
The energy function $\hat{\phi}$ and the cosmological constant $\hat{\Lambda}$ are:

$$\hat{\Phi} = 3 \frac{f'}{r^3} t^6 + \mathcal{O}(t^7)$$
 and $\hat{\Lambda} = 3 + \mathcal{O}(t^{k+3})$;

the Weyl tensor of the solution is

$$W^{i}_{jkl} = \mathcal{O}(t).$$

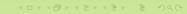
In particular, the Weyl tensor W^{i}_{jkl} vanishes at t=0 and $\hat{\Lambda}=3>0$ there.



• With the use of computers we calculated this solution up to the order k=10, finding explicitly $\nu=\sum_{k=3}^{10}a_kt^k$ and $\mu=\sum_{k=3}^{10}b_kt^k$. The formulas are compact enough up to k=8 and up to the order k=8 they read:

$$\begin{split} \nu(t,r) = & f \frac{t^3}{r^3} - \frac{3}{4} f' \frac{t^4}{r^4} + \frac{1}{10} \left(-2rt' + 3r^2 f'' \right) \frac{t^5}{r^5} + \\ & \frac{1}{24} \left(3t^2 - 3rt' + 3r^2 f'' - 2r^3 f^{(3)} \right) \frac{t^5}{r^6} + \\ & \frac{r}{280} \left(-24t' - 105tt' + 24rt'' - 12r^2 f^{(3)} + 5r^3 f^{(4)} \right) \frac{t^7}{r^7} - \\ & \frac{r}{960} \left(60t' + 288tt' - 150rt'^2 - 60rt'' - 216rtt'' + 30r^2 f^{(3)} - 10r^3 f^{(4)} + 3r^4 f^{(5)} \right) \frac{t^8}{r^8} + \\ & \mathcal{O}\left(\left(\frac{1}{r} \right)^9 \right) \end{split}$$

$$\mu(t,r) = -2t \frac{t^3}{r^3} + \frac{3}{4} t' \frac{t^4}{r^4} - \frac{1}{5} t'' \frac{t^5}{r^5} + \frac{1}{24} \left(39t^2 + r^3 f^{(3)} \right) \frac{t^6}{r^6} - \frac{r}{280} \left(390tt' + 2r^3 f^{(4)} \right) \frac{t^7}{r^7} + \frac{t^6}{r^8} - \frac{3}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^7}{r^7} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2 f^{(4)} \right) \frac{t^8}{r^8} + \frac{1}{280} \left(390tt' + 3r^2$$



• With the use of computers we calculated this solution up to the order k=10, finding explicitly $\nu=\sum_{k=3}^{10}a_kt^k$ and

 $\mu = \sum_{k=3}^{10} b_k t^k$. The formulas are compact enough up to k=8 and up to the order k=8 they read:

$$\begin{split} \nu(t,r) = & t \frac{\beta^{3}}{r^{3}} - \frac{3}{4} t' \frac{t^{4}}{r^{4}} + \frac{1}{10} \left(-2rt' + 3r^{2}t'' \right) \frac{t^{5}}{r^{5}} + \\ & \frac{1}{24} \left(3t^{2} - 3rt' + 3r^{2}t'' - 2r^{3}t^{(3)} \right) \frac{t^{6}}{r^{6}} + \\ & \frac{r}{280} \left(-24t' - 105tt' + 24rt'' - 12r^{2}t^{(3)} + 5r^{3}t^{(4)} \right) \frac{t^{7}}{r^{7}} - \\ & \frac{r}{960} \left(60t' + 288tt' - 150rt'^{2} - 60rt'' - 216rtt'' + 30r^{2}t^{(3)} - 10r^{3}t^{(4)} + 3r^{4}t^{(5)} \right) \frac{t^{8}}{r^{8}} + \\ & \mathcal{O}(\left(\frac{t}{r} \right)^{9}) \end{split}$$

$$\begin{split} \mu(t,r) &= -2t\frac{t^3}{r^3} + \tfrac{3}{4}t'\frac{t^4}{r^4} - \tfrac{1}{5}t''\frac{t^5}{r^5} + \tfrac{1}{24}(39t^2 + r^3t^{(3)})\frac{t^6}{r^6} - \tfrac{r}{280}(390tt' + 2r^3t^{(4)})\frac{t^7}{r^7} + \\ & \tfrac{r}{960}(-18tt' + 300tt'^2 + 378rtt'' + r^4t^{(5)})\frac{t^8}{t^8} + \mathcal{O}((\tfrac{t}{t})^9). \end{split}$$



• With the use of computers we calculated this solution up to the order k=10, finding explicitly $\nu=\sum_{k=3}^{10}a_kt^k$ and $\mu=\sum_{k=3}^{10}b_kt^k$. The formulas are compact enough up to k=8 and up to the order k=8 they read:

$$\begin{split} \nu(t,r) = & f \frac{l^3}{r^3} - \frac{3}{4} f' \frac{t^4}{r^4} + \frac{1}{10} \left(-2rf' + 3r^2 f'' \right) \frac{t^5}{r^5} + \\ & \frac{1}{24} \left(3f^2 - 3rf' + 3r^2 f'' - 2r^3 f^{(3)} \right) \frac{t^6}{r^6} + \\ & \frac{r}{280} \left(-24f' - 105ff' + 24rf'' - 12r^2 f^{(3)} + 5r^3 f^{(4)} \right) \frac{t^7}{r^7} - \\ & \frac{r}{960} \left(60f' + 288ff' - 150rf'^2 - 60rf'' - 216rff'' + 30r^2 f^{(3)} - 10r^3 f^{(4)} + 3r^4 f^{(5)} \right) \frac{t^8}{r^8} + \\ & \mathcal{O}(\left(\frac{t}{r} \right)^9) \end{split}$$

$$\begin{split} \mu(t,r) &= -2t\frac{3}{r^3} + \frac{3}{4}t'\frac{t^4}{r^4} - \frac{1}{5}t''\frac{t^5}{r^5} + \frac{1}{24}(39t^2 + r^3t^{(3)})\frac{t^6}{r^6} - \frac{r}{280}(390tt' + 2r^3t^{(4)})\frac{t^7}{r^7} + \\ & \frac{r}{960}(-18tt' + 300tt'^2 + 378rtt'' + r^4t^{(5)})\frac{t^6}{t^8} + \mathcal{O}((\frac{t}{t})^9). \end{split}$$

• With the use of computers we calculated this solution up to the order k=10, finding explicitly $\nu=\sum_{k=3}^{10}a_kt^k$ and $\mu=\sum_{k=3}^{10}b_kt^k$. The formulas are compact enough up to k=8 and up to the order k=8 they read:

$$\begin{split} \nu(t,r) &= f \frac{t^3}{r^3} - \frac{3}{4} f' \frac{t^4}{r^4} + \frac{1}{10} \left(-2rf' + 3r^2 f'' \right) \frac{t^5}{r^5} + \\ &= \frac{1}{24} \left(3t^2 - 3rf' + 3r^2 f'' - 2r^3 f^{(3)} \right) \frac{t^6}{r^6} + \\ &= \frac{r}{280} \left(-24f' - 105ff' + 24rf'' - 12r^2 f^{(3)} + 5r^3 f^{(4)} \right) \frac{t^7}{r^7} - \\ &= \frac{r}{960} \left(60f' + 288ff' - 150rf'^2 - 60rf'' - 216rff'' + 30r^2 f^{(3)} - 10r^3 f^{(4)} + 3r^4 f^{(5)} \right) \frac{t^8}{r^8} + \\ &\mathcal{O}(\left(\frac{t}{r} \right)^9) \end{split}$$

$$\mu(t,r) = -2f \frac{t^3}{r^3} + \frac{3}{4} f' \frac{t^4}{r^4} - \frac{1}{5} f'' \frac{t^5}{r^5} + \frac{1}{24} \left(39f^2 + r^3 f^{(3)} \right) \frac{t^6}{r^6} - \frac{r}{280} \left(390ff' + 2r^3 f^{(4)} \right) \frac{t^7}{r^7} + \\ &= \frac{r}{960} \left(-18ff' + 300rf'^2 + 378rff'' + r^4 f^{(5)} \right) \frac{t^8}{r^8} + \mathcal{O}(\left(\frac{t}{r} \right)^9). \end{split}$$

For a solution up to this order we find that:

$$\begin{split} \hat{\Phi} &= 3r^3t'\frac{\ell^8}{r^8} + 3r^3(t'-rt'')\frac{\ell^2}{r^7} + \frac{3r^3}{2}(2t'-2rt''+r^2t^{(3)})\frac{\ell^8}{r^8} + \\ &\frac{\ell^3}{2}\left(6t'+6tt'-6rt''+3r^2t^{(3)}-r^3t^{(4)}\right)\frac{\ell^9}{r^9} + \\ &\frac{\ell^3}{8}\left(24t'+66tt'-12rt'^2-24rt''-30rtt''+12r^2t^{(3)}-4r^3t^{(4)}+r^4t^{(5)}\right)\frac{t^{10}}{r^{10}} + \\ &\frac{\ell^3}{40}\left(120t'+522tt'-177rt'^2-120rt''-378rtt''+93r^2t't''+60r^2t^{(3)}+90r^2tt^{(3)}-20r^3t^{(4)}+5r^4t^{(5)}\right) \\ &\mathcal{O}(\left(\frac{t}{r}\right)^{12}), \end{split}$$

$$\hat{\Lambda} = 3 + \mathcal{O}(t^9)$$

I have no patience to type the Weyl tensor components up to high order. It is enough to say that that up to the 4th order in t, modulo a **nonzero constant** tensor C^i_{jkl} , it is equal to:

$$W^{i}_{jkl} = \left(\frac{f}{r^2}\frac{t}{r} - \frac{f'}{r}\frac{t^2}{r^2} + \frac{f''}{2}\frac{t^3}{r^3}\right)C^{i}_{jkl} + \mathcal{O}\left(\left(\frac{t}{r}\right)^4\right).$$

$$f'>0$$
.

$$\begin{split} \hat{\Phi} &= 3r^3f'\frac{t^6}{r^6} + 3r^3(f' - rf'')\frac{t^7}{r^7} + \frac{3r^3}{2}\left(2f' - 2rf'' + r^2f^{(3)}\right)\frac{t^8}{r^8} + \\ &\qquad \frac{r^3}{2}\left(6f' + 6ff' - 6rf'' + 3r^2f^{(3)} - r^3f^{(4)}\right)\frac{t^9}{r^9} + \\ &\qquad \frac{r^3}{8}\left(24f' + 66ff' - 12rf'^2 - 24rf'' - 30rff'' + 12r^2f^{(3)} - 4r^3f^{(4)} + r^4f^{(5)}\right)\frac{t^{10}}{r^{10}} + \\ &\qquad \frac{r^3}{40}\left(120f' + 522ff' - 177rf'^2 - 120rf'' - 378rff'' + 93r^2f'f'' + 60r^2f^{(3)} + 90r^2ff^{(3)} - 20r^3f^{(4)} + 5r^4f^{(5)}\right) \\ &\mathcal{O}\left(\left(\frac{t}{r}\right)^{12}\right), \end{split}$$

$$\hat{\Lambda} = 3 + \mathcal{O}(t^9)$$

 I have no patience to type the Weyl tensor components up to high order. It is enough to say that that up to the 4th order in t, modulo a nonzero constant tensor Cⁱ_{|kl}, it is equal to:

$$W^{i}_{jkl} = \left(\frac{f}{r^{2}}\frac{t}{r} - \frac{f'}{r}\frac{t^{2}}{r^{2}} + \frac{f''}{2}\frac{t^{3}}{r^{3}}\right)C^{i}_{jkl} + \mathcal{O}\left(\left(\frac{t}{r}\right)^{4}\right)$$

$$f'>0$$
.

$$\begin{split} \hat{\Phi} &= 3r^3 t' \frac{t^6}{r^6} + 3r^3 (t' - rt'') \frac{t^7}{r^7} + \frac{3r^3}{2} (2t' - 2rt'' + r^2 t^{(3)}) \frac{t^8}{r^8} + \\ & \frac{r^3}{2} \left(6t' + 6tt' - 6rt'' + 3r^2 t^{(3)} - r^3 t^{(4)} \right) \frac{t^9}{r^9} + \\ & \frac{r^3}{8} \left(24t' + 66tt' - 12rt'^2 - 24rt'' - 30rtt'' + 12r^2 t^{(3)} - 4r^3 t^{(4)} + r^4 t^{(5)} \right) \frac{t^{10}}{r^{10}} + \\ & \frac{r^3}{40} \left(120t' + 522tt' - 177rt'^2 - 120rt'' - 378rtt'' + 93r^2 t't'' + 60r^2 t^{(3)} + 90r^2 tt^{(3)} - 20r^3 t^{(4)} + 5r^4 t^{(5)} \right) \mathcal{O}\left(\left(\frac{t}{r} \right)^{12} \right), \end{split}$$

$$\hat{\Lambda} = 3 + \mathcal{O}(t^9).$$

 I have no patience to type the Weyl tensor components up to high order. It is enough to say that that up to the 4th order in t, modulo a nonzero constant tensor Cⁱ_{|kl}, it is equal to:

$$W^{i}_{jkl} = \left(\frac{f}{r^{2}}\frac{t}{r} - \frac{f'}{r}\frac{t^{2}}{r^{2}} + \frac{f''}{2}\frac{t^{3}}{r^{3}}\right)C^{i}_{jkl} + \mathcal{O}\left(\left(\frac{t}{r}\right)^{4}\right)$$

$$f'>0$$
.

$$\begin{split} \hat{\Phi} &= 3r^3t'\frac{t^6}{r^6} + 3r^3(t' - rt'')\frac{t^7}{r^7} + \frac{3r^3}{2}(2t' - 2rt'' + r^2f^{(3)})\frac{t^8}{r^8} + \\ & \frac{r^3}{2}\left(6t' + 6tt' - 6rt'' + 3r^2t^{(3)} - r^3t^{(4)}\right)\frac{t^9}{r^9} + \\ & \frac{r^3}{8}\left(24t' + 66tt' - 12rt'^2 - 24rt'' - 30rtt'' + 12r^2t^{(3)} - 4r^3t^{(4)} + r^4t^{(5)}\right)\frac{t^{10}}{r^{10}} + \\ & \frac{r^3}{40}\left(120t' + 522tt' - 177rt'^2 - 120rt'' - 378rtt'' + 93r^2t't'' + 60r^2t^{(3)} + 90r^2tt^{(3)} - 20r^3t^{(4)} + 5r^4t^{(5)}\right) \\ & \mathcal{O}(\left(\frac{t}{r}\right)^{12}), \end{split}$$

$$\hat{\Lambda}=3+\mathcal{O}(t^9).$$

• I have no patience to type the Weyl tensor components up to high order. It is enough to say that that up to the 4th order in t, modulo a **nonzero constant** tensor C^i_{jkl} , it is equal to:

$$W^{i}_{jkl} = \left(\frac{f}{r^{2}}\frac{t}{r} - \frac{f'}{r}\frac{t^{2}}{r^{2}} + \frac{f''}{2}\frac{t^{3}}{r^{3}}\right)C^{i}_{jkl} + \mathcal{O}\left(\left(\frac{t}{r}\right)^{4}\right)$$

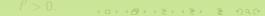
$$f'>0$$
. The state of the state

$$\begin{split} \hat{\Phi} &= 3r^3f'\frac{f^6}{f^6} + 3r^3(f' - f'')\frac{t^7}{r^7} + \frac{3r^3}{2}(2f' - 2f'' + r^2f^{(3)})\frac{t^8}{r^8} + \\ &\frac{r^3}{2}(6f' + 6ff' - 6ff'' + 3r^2f^{(3)} - r^3f^{(4)})\frac{t^9}{r^9} + \\ &\frac{r^3}{8}(24f' + 66ff' - 12ff'^2 - 24ff'' - 30fff'' + 12r^2f^{(3)} - 4r^3f^{(4)} + r^4f^{(5)})\frac{t^{10}}{r^{10}} + \\ &\frac{r^3}{40}(120f' + 522ff' - 177ff'^2 - 120f'' - 378rff'' + 93r^2f'f'' + 60r^2f^{(3)} + 90r^2ff^{(3)} - 20r^3f^{(4)} + 5r^4f^{(5)} \\ &\mathcal{O}(\left(\frac{t}{r}\right)^{12}), \end{split}$$

$$\hat{\Lambda} = 3 + \mathcal{O}(t^9).$$

• I have no patience to type the Weyl tensor components up to high order. It is enough to say that that up to the 4th order in t, modulo a **nonzero constant** tensor C^i_{jkl} , it is equal to:

$$W^{i}_{jkl} = \left(\frac{f}{r^{2}}\frac{t}{r} - \frac{f'}{r}\frac{t^{2}}{r^{2}} + \frac{f''}{2}\frac{t^{3}}{r^{3}}\right)C^{i}_{jkl} + \mathcal{O}(\left(\frac{t}{r}\right)^{4}).$$



$$\begin{split} \hat{\Phi} &= 3r^3 f' \frac{t^6}{r^6} + 3r^3 (t' - rt'') \frac{t^7}{r^7} + \frac{3r^3}{2} (2t' - 2rt'' + r^2 f^{(3)}) \frac{t^8}{r^8} + \\ & \frac{r^3}{2} \left(6t' + 6tt' - 6rt'' + 3r^2 f^{(3)} - r^3 f^{(4)} \right) \frac{t^9}{r^9} + \\ & \frac{r^3}{8} \left(24t' + 66tt' - 12rt'^2 - 24rt'' - 30rtt'' + 12r^2 f^{(3)} - 4r^3 f^{(4)} + r^4 f^{(5)} \right) \frac{t^{10}}{r^{10}} + \\ & \frac{r^3}{40} \left(120t' + 522tt' - 177rt'^2 - 120rt'' - 378rtt'' + 93r^2 t't'' + 60r^2 t^{(3)} + 90r^2 tt^{(3)} - 20r^3 t^{(4)} + 5r^4 t^{(5)} \right) \mathcal{O}(\left(\frac{t}{r}\right)^{12}), \end{split}$$

$$\hat{\Lambda} = 3 + \mathcal{O}(t^9).$$

• I have no patience to type the Weyl tensor components up to high order. It is enough to say that that up to the 4th order in t, modulo a **nonzero constant** tensor C^i_{jkl} , it is equal to:

$$W^{i}_{jkl} = \left(\frac{f}{r^{2}}\frac{t}{r} - \frac{f'}{r}\frac{t^{2}}{r^{2}} + \frac{f''}{2}\frac{t^{3}}{r^{3}}\right)C^{i}_{jkl} + \mathcal{O}(\left(\frac{t}{r}\right)^{4}).$$

$$f'>0$$
.

The Poincaré-type metric \hat{g} can be interpreted as the ending stage of the evolution of the past eon in Penrose's CCC. The eon has a positive cosmological constant $\hat{\Lambda} \simeq 3$, which is filled with a spherically symmetric pure radiation moving along the null congruence generated by the vector field K.

The Poincaré-type metric \hat{g} can be interpreted as the ending stage of the evolution of the past eon in Penrose's CCC. The eon has a positive cosmological constant $\hat{\Lambda} \simeq 3$, which is filled with a spherically symmetric pure radiation moving along the null congruence generated by the vector field K.

Theorem 2.

Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{ij} = 0$. Then, the **reciprocal metric**

$$\begin{split} \check{g} = & t^2 \left(- dt^2 + \frac{2r^2 \left(1 + \nu(t, r) \right) dz d\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \mu(t, r) \right) dr^2 \right) = \\ & t^2 \left(- dt^2 + \frac{2r^2 \left(1 + \sum_{i=1}^{m} a_i(r)t^i \right) dz d\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i \right) dr^2 \right) \end{split}$$

satisfies the Einstein equations

$$\check{E}_{ij} = \check{R}_{ij} - \check{\Phi} \check{K}_i \check{K}_j - \check{\Psi} \check{L}_i \check{L}_j - (\check{\rho} + \check{p}) \check{u}_i \check{u}_j - \frac{1}{2} (\check{\rho} - \check{p}) \check{g}_{ij} = 0.$$

Here \check{K}_i and \check{L}_i are the null 1-forms corresponding to the pair of outgoing-ingoing null vector fields

$$K = K^i \partial_i = \partial_t + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i\right)^{-\frac{1}{2}} \partial_r \quad \text{and} \quad L = L^i \partial_i = \partial_t - \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i\right)^{-\frac{1}{2}} \partial_r,$$

via $\check{K}_i = \check{g}_{ij}K^j$ and $\check{L} = \check{g}_{ij}L^j$, and the 1-form vector field \check{u}_i corresponds to the future oriented - **Note that now** t < 0 (!) - timelike unit vector field

$$u = u^i \partial_i = -t^{-1} \partial_t$$



Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{ij} = 0$. Then, the **reciprocal metric**

$$\begin{split} \check{g} = & t^2 \left(- \mathrm{d}t^2 + \frac{2t^2 \left(1 + \nu(t, r) \right) \mathrm{d}z \mathrm{d}\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \mu(t, r) \right) \mathrm{d}r^2 \right) = \\ & t^2 \left(- \mathrm{d}t^2 + \frac{2r^2 \left(1 + \sum_{i=1}^{\infty} a_i(r) t^i \right) \mathrm{d}z \mathrm{d}\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \sum_{i=1}^{\infty} b_i(r) t^i \right) \mathrm{d}r^2 \right) \end{split}$$

satisfies the Einstein equations

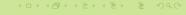
$$\label{eq:definition} \check{E}_{ij} = \check{A}_{ij} - \check{\Phi} \check{K}_i \check{K}_j - \check{\Psi} \check{L}_i \check{L}_j - (\check{\rho} + \check{p}) \check{u}_i \check{u}_j - \frac{1}{2} (\check{\rho} - \check{p}) \check{g}_{ij} = 0.$$

Here \check{K}_i and \check{L}_i are the null 1-forms corresponding to the pair of outgoing-ingoing null vector fields

$$K = K^{i} \partial_{i} = \partial_{t} + \left(1 + \sum_{i=1}^{\infty} b_{i}(r)t^{i}\right)^{-\frac{1}{2}} \partial_{r} \quad \text{and} \quad L = L^{i} \partial_{i} = \partial_{t} - \left(1 + \sum_{i=1}^{\infty} b_{i}(r)t^{i}\right)^{-\frac{1}{2}} \partial_{r},$$

via $K_i = g_{ij}K^j$ and $L = g_{ij}L^j$, and the 1-form vector field U_i corresponds to the future oriented - **Note that now** t < 0 (!) - timelike unit vector field

$$\ddot{u} = \ddot{u}^i \partial_i = -t^{-1} \partial_t$$



Theorem 2. Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{ij} = 0$. Then, the reciprocal metric

$$\begin{split} \check{g} &= t^2 \left(- dt^2 + \frac{2r^2 \left(1 + \nu(t, r) \right) dz d\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \mu(t, r) \right) dr^2 \right) = \\ t^2 \left(- dt^2 + \frac{2r^2 \left(1 + \sum_{i=1}^{\infty} a_i(r)t^i \right) dz d\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i \right) dr^2 \right) \end{split}$$

satisfies the Einstein equations

$$\check{E}_{ij} = \check{R}_{ij} - \check{\Phi} \check{K}_i \check{K}_j - \check{\Psi} \check{L}_i \check{L}_j - (\check{\rho} + \check{p}) \check{u}_i \check{u}_j - \frac{1}{2} (\check{\rho} - \check{p}) \check{g}_{ij} = 0.$$

Here \check{K}_i and \check{L}_i are the null 1-forms corresponding to the pair of outgoing-ingoing null vector fields

$$K = K^i \partial_i = \partial_t + \Big(1 + \sum_{i=1}^\infty b_i(r)t^i\Big)^{-\frac{1}{2}} \partial_r \quad \text{and} \quad L = L^i \partial_i = \partial_t + \Big(1 + \sum_{i=1}^\infty b_i(r)t^i\Big)^{-\frac{1}{2}} \partial_r,$$

via $K_i = g_{ij}K^j$ and $L = g_{ij}L^j$, and the 1-form vector field U_i corresponds to the future oriented - **Note that now** t < 0 (!) - timelike unit vector field

$$\check{u}=\check{u}^i\partial_i=-t^{-1}\partial_t$$

Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{ij} = 0$. Then, the **reciprocal metric**

$$\begin{split} \check{g} = & t^2 \left(- \mathrm{d}t^2 + \frac{2r^2 \left(1 + \nu(t,r) \right) \mathrm{d}z \mathrm{d}\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \mu(t,r) \right) \mathrm{d}r^2 \right) = \\ & t^2 \left(- \mathrm{d}t^2 + \frac{2r^2 \left(1 + \sum_{i=1}^{\infty} a_i(r)t^i \right) \mathrm{d}z \mathrm{d}\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i \right) \mathrm{d}r^2 \right) \end{split}$$

satisfies the Einstein equations

$$\check{E}_{ij} = \check{R}_{ij} - \check{\Phi} \check{K}_i \check{K}_j - \check{\Psi} \check{L}_i \check{L}_j - (\check{\rho} + \check{\rho}) \check{u}_i \check{u}_j - \frac{1}{2} (\check{\rho} - \check{\rho}) \check{g}_{ij} = 0.$$

Here K_i and L_i are the null 1-forms corresponding to the pair of outgoing-ingoing null vector fields

$$K = K^i \partial_i = \partial_t + \Big(1 + \sum_{i=1}^\infty b_i(r)t^i\Big)^{-\frac{1}{2}} \partial_r \quad \text{and} \quad L = L^i \partial_i = \partial_t + \Big(1 + \sum_{i=1}^\infty b_i(r)t^i\Big)^{-\frac{1}{2}} \partial_r,$$

via $K_i = g_{ij}K^j$ and $L = g_{ij}L^j$, and the 1-form vector field U_i corresponds to the future oriented - **Note that now** t < 0 (!) - timelike unit vector field

$$\check{u}=\check{u}^i\partial_i=-t^{-1}\partial_t$$

Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{ij} = 0$. Then, the **reciprocal metric**

$$\begin{split} \check{g} = & t^2 \left(- \mathrm{d}t^2 + \frac{2r^2 \left(1 + \nu(t,r) \right) \mathrm{d}z \mathrm{d}\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \mu(t,r) \right) \mathrm{d}r^2 \right) = \\ & t^2 \left(- \mathrm{d}t^2 + \frac{2r^2 \left(1 + \sum_{i=1}^{\infty} a_i(r)t^i \right) \mathrm{d}z \mathrm{d}\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i \right) \mathrm{d}r^2 \right) \end{split}$$

satisfies the Einstein equations

$$\label{eq:definition} \check{E}_{ij} = \check{R}_{ij} - \check{\Phi} \check{K}_i \check{K}_j - \check{\Psi} \check{L}_i \check{L}_j - (\check{\rho} + \check{p}) \check{u}_i \check{u}_j - \frac{1}{2} (\check{\rho} - \check{p}) \check{g}_{ij} = 0.$$

Here K_i and L_i are the null 1-forms corresponding to the pair of outgoing-ingoing null vector fields

$$K = K^i \partial_i = \partial_t + \Big(1 + \sum_{i=1}^\infty b_i(r)t^i\Big)^{-\frac{1}{2}} \partial_r \quad \text{and} \quad L = L^i \partial_i = \partial_t + \Big(1 + \sum_{i=1}^\infty b_i(r)t^i\Big)^{-\frac{1}{2}} \partial_r,$$

via $K_i = g_{ij}K^j$ and $L = g_{ij}L^j$, and the 1-form vector field U_i corresponds to the future oriented - **Note that now** t < 0 (!) - timelike unit vector field

via $\check{u}_i = \check{g}_{ii}\check{u}^j$.

Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{ij} = 0$. Then, the **reciprocal metric**

$$\begin{split} \check{g} = & t^2 \left(- \mathrm{d}t^2 + \frac{2r^2 \left(1 + \nu(t,r) \right) \mathrm{d}z \mathrm{d}\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \mu(t,r) \right) \mathrm{d}r^2 \right) = \\ & t^2 \left(- \mathrm{d}t^2 + \frac{2r^2 \left(1 + \sum_{i=1}^{\infty} a_i(r)t^i \right) \mathrm{d}z \mathrm{d}\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \sum_{i=1}^{\infty} b_i(r)t^i \right) \mathrm{d}r^2 \right) \end{split}$$

satisfies the Einstein equations

$$\label{eq:definition} \check{E}_{ij} = \check{R}_{ij} - \check{\Phi} \check{K}_i \check{K}_j - \check{\Psi} \check{L}_i \check{L}_j - (\check{\rho} + \check{p}) \check{u}_i \check{u}_j - \frac{1}{2} (\check{\rho} - \check{p}) \check{g}_{ij} = 0.$$

Here K_i and L_i are the null 1-forms corresponding to the pair of outgoing-ingoing null vector fields

$$K = K^l \partial_l = \partial_l + \left(1 + \sum_{l=1}^{\infty} b_l(r) l^l\right)^{-\frac{1}{2}} \partial_r \quad \text{and} \quad L = L^l \partial_l = \partial_l + \left(1 + \sum_{l=1}^{\infty} b_l(r) l^l\right)^{-\frac{1}{2}} \partial_r,$$

via $K_i = \check{g}_{ij}K^j$ and $\check{L} = \check{g}_{ij}L^j$, and the 1-form vector field \check{u}_i corresponds to the future oriented - **Note that now** t < 0 (!) - timelike unit vector field

 $\check{u}=\check{u}'\partial_i=-t^{-1}\partial_t,$

via $\check{u}_i = \check{g}_{ii}\check{u}^j$.

Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{ij} = 0$. Then, the **reciprocal metric**

$$\begin{split} \check{g} = & t^2 \left(- dt^2 + \frac{2r^2 \left(1 + \nu(t,r) \right) dz d\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \mu(t,r) \right) dr^2 \right) = \\ & t^2 \left(- dt^2 + \frac{2r^2 \left(1 + \sum_{i=1}^{\infty} a_i(r) t^i \right) dz d\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \sum_{i=1}^{\infty} b_i(r) t^i \right) dr^2 \right) \end{split}$$

satisfies the Einstein equations

$$\label{eq:definition} \check{E}_{ij} = \check{R}_{ij} - \check{\Phi} \check{K}_i \check{K}_j - \check{\Psi} \check{L}_i \check{L}_j - (\check{\rho} + \check{p}) \check{u}_i \check{u}_j - \frac{1}{2} (\check{\rho} - \check{p}) \check{g}_{ij} = 0.$$

Here K_i and L_i are the null 1-forms corresponding to the pair of outgoing-ingoing null vector fields

$$K = K^i \partial_i = \partial_t + \left(1 + \sum_{i=1}^\infty b_i(r)t^i\right)^{-\frac{1}{2}} \partial_r \quad \text{and} \quad L = L^i \partial_i = \partial_t - \left(1 + \sum_{i=1}^\infty b_i(r)t^i\right)^{-\frac{1}{2}} \partial_r,$$

via $K_i = g_{ij}K^j$ and $L = g_{ij}L^j$, and the 1-form vector field U_i corresponds to the future oriented - Note that now t < 0 (!) - timelike unit vector field

 $\check{u} = \check{u}^I \partial_I = -t^{-1} \partial_t,$

Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{ij} = 0$. Then, the **reciprocal metric**

$$\begin{split} \check{g} = & t^2 \left(- dt^2 + \frac{2r^2 \left(1 + \nu(t,r) \right) dz d\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \mu(t,r) \right) dr^2 \right) = \\ & t^2 \left(- dt^2 + \frac{2r^2 \left(1 + \sum_{i=1}^{\infty} a_i(r) t^i \right) dz d\bar{z}}{\left(1 + \frac{z\bar{z}}{2} \right)^2} + \left(1 + \sum_{i=1}^{\infty} b_i(r) t^i \right) dr^2 \right) \end{split}$$

satisfies the Einstein equations

$$\label{eq:definition} \check{E}_{ij} = \check{R}_{ij} - \check{\Phi} \check{K}_i \check{K}_j - \check{\Psi} \check{L}_i \check{L}_j - (\check{\rho} + \check{p}) \check{u}_i \check{u}_j - \frac{1}{2} (\check{\rho} - \check{p}) \check{g}_{ij} = 0.$$

Here K_i and L_i are the null 1-forms corresponding to the pair of outgoing-ingoing null vector fields

$$K = K^i \partial_i = \partial_t + \left(1 + \sum_{i=1}^\infty b_i(r)t^i\right)^{-\frac{1}{2}} \partial_r \quad \text{and} \quad L = L^i \partial_i = \partial_t - \left(1 + \sum_{i=1}^\infty b_i(r)t^i\right)^{-\frac{1}{2}} \partial_r,$$

via $\check{K}_i = \check{g}_{ij}K^j$ and $\check{L} = \check{g}_{ij}L^j$, and the 1-form vector field \check{u}_i corresponds to the future oriented - **Note that now** t < 0 (!) - timelike unit vector field

$$\check{u}=\check{u}^i\partial_i=-t^{-1}\partial_t,$$

$$\begin{split} \dot{\Phi} &= -\frac{9f}{r^3}t^{-3} + \frac{9f'}{r^3}t^{-2} + \frac{1}{2r^4}(8f' - 11\pi'')t + \frac{3}{4r^5}(5f' - 5\pi''' + 3r^2f^{(3)}) + \\ &= \frac{9}{40r^6}(16f' + 5ff' - 16\pi''' + 8r^2f^{(3)} - 3r^3f^{(4)})t + \\ &= \frac{1}{120r^7}(420f' + 1068ff' - 30\pi'^2 - 420\pi''' - 384\pi ff''' + 210r^2f^{(3)} - 70r^3f^{(4)} + 19r^4f^{(5)})t^2 + \\ &\cdots + \mathcal{O}(t^{k-3}), \end{split}$$

$$\dot{\Psi} &= -\frac{9f}{r^3}t^{-3} + \frac{6f'}{r^3}t^{-2} + \frac{1}{2r^4}(2f' - 5\pi''')t^{-1} + \frac{3}{4r^5}(f' - \pi''' + r^2f^{(3)}) + \\ &= \frac{1}{40r^6}(24f' - 75ff' - 24\pi'' + 12r^2f^{(3)} - 7r^3f^{(4)})t + \\ &= \frac{1}{60r^7}(30f' + 39ff' + 75\pi'^2 - 30\pi'' + 33\pi ff'' + 15r^2f^{(3)} - 5r^3f^{(4)} + 2r^4f^{(5)})t^2 + \\ &\cdots + \mathcal{O}(t^{k-3}), \end{split}$$

$$\check{\Phi} = -\frac{9f}{r^3}t^{-3} + \frac{9f'}{r^3}t^{-2} + \frac{1}{2r^4}(8t' - 11t'')t + \frac{3}{4r^5}(5t' - 5tt'' + 3r^2t^{(3)}) + \frac{9}{40r^6}(16t' + 5tt' - 16tt'' + 8r^2t^{(3)} - 3r^3t^{(4)})t + \frac{1}{120r^7}(420t' + 1068tt' - 30tt'^2 - 420tt'' - 384ttt'' + 210r^2t^{(3)} - 70r^3t^{(4)} + 19r^4t^{(5)})t^2 + \cdots + \mathcal{O}(t^{k-3}),$$

$$\check{\Psi} = -\frac{9f}{r^3}t^{-3} + \frac{6t'}{r^3}t^{-2} + \frac{1}{2r^4}(2t' - 5tt'')t^{-1} + \frac{3}{4r^5}(t' - tt'' + r^2t^{(3)}) + \frac{1}{40r^6}(24t' - 75tt' - 24tt'' + 12r^2t^{(3)} - 7r^3t^{(4)})t + \frac{1}{60r^7}(30t' + 39tt' + 75tt'^2 - 30tt'' + 33tt'' + 15r^2t^{(3)} - 5r^3t^{(4)} + 2r^4t^{(5)})t^2 + \frac{1}{60r^7}(30t' + 39tt' + 75tt'^2 - 30tt'' + 33tt'' + 15r^2t^{(3)} - 5r^3t^{(4)} + 2r^4t^{(5)})t^2 + \frac{1}{60r^7}(30t' + 39tt' + 75tt'^2 - 30tt'' + 33tt'' + 15r^2t^{(3)} - 5r^3t^{(4)} + 2r^4t^{(5)})t^2 + \frac{1}{60r^7}(30t' + 39tt' + 75tt'^2 - 30tt'' + 33tt'' + 15r^2t^{(3)} - 5r^3t^{(4)} + 2r^4t^{(5)})t^2 + \frac{1}{60r^7}(30t' + 30t'' +$$

$$\begin{split} &\check{\Phi} = -\frac{9f}{r^3}t^{-3} + \frac{9f'}{r^3}t^{-2} + \frac{1}{2r^4}(8f' - 11f'')t + \frac{3}{4r^5}(5f' - 5ff'' + 3r^2f^{(3)}) + \\ &\frac{9}{40r^6}\left(16f' + 5ff' - 16rf'' + 8r^2f^{(3)} - 3r^3f^{(4)}\right)t + \\ &\frac{1}{120r^7}\left(420f' + 1068ff' - 30f'^2 - 420f'' - 384rff'' + 210r^2f^{(3)} - 70r^3f^{(4)} + 19r^4f^{(5)}\right)t^2 + \\ &\cdots + \mathcal{O}(t^{k-3}), \\ &\check{\Psi} = -\frac{9f}{r^3}t^{-3} + \frac{6f'}{r^3}t^{-2} + \frac{1}{2r^4}\left(2f' - 5ff''\right)t^{-1} + \frac{3}{4r^5}\left(f' - rf'' + r^2f^{(3)}\right) + \\ &\frac{1}{40r^6}\left(24f' - 75ff' - 24rf'' + 12r^2f^{(3)} - 7r^3f^{(4)}\right)t + \\ &\frac{1}{60r^7}\left(30f' + 39ff' + 75ff'^2 - 30rf'' + 33rff'' + 15r^2f^{(3)} - 5r^3f^{(4)} + 2r^4f^{(5)}\right)t^2 + \\ &\cdots + \mathcal{O}\left(t^{k-3}\right), \end{split}$$

$$\tilde{\rho} = 3t^{-4} + \frac{18t'}{r^3}t^{-1} - \frac{18t'}{r^3} + \frac{-6t' + 9t''}{r^4}t - \frac{3}{4r^6}(9t^2 + 3t' - 3r^2t'' + 2r^3t^{(3)})t^2 + \frac{3}{20r^6}(-24t' + 105tt' + 24tt'' - 12r^2t^{(3)} + 5r^3t^{(4)})t^3 - \frac{1}{20r^7}(60t' + 96tt' + 120tt'^2 - 60t'' + 72ttt'' + 30r^2t^{(3)} - 10r^3t^{(4)} + 3r^4t^{(5)})t^4 + \dots + \mathcal{O}(t^{k-1}),$$

$$\tilde{\rho} = t^{-4} + \frac{6t}{r^3}t^{-1} + \frac{1}{r^4}(2t' - tt'')t + \frac{1}{2r^6}(18t^2 + 3tt' - 3r^2t'' + r^3t^{(3)})t^2 - \frac{3}{20r^6}(-8t' + 45tt' + 8tt'' - 4r^2t^{(3)} + r^3t^{(4)})t^3 + \frac{1}{30r^7}(30t' + 57tt' + 45tt'^2 - 30tt'' + 39tt''' + 15r^2t^{(3)} - 5r^3t^{(4)} + r^4t^{(5)})t^4 + \dots + \mathcal{O}(t^{k-1}).$$

In these formulas all the *doted* terms are explicitly determined in terms of f and its derivatives (I was lazy, and typed only the terms adapted to the choice k = 6 in Theorem 1).

$$\begin{split} \check{p} = & 3t^{-4} + \frac{18f}{r^3}t^{-1} - \frac{18f'}{r^3} + \frac{-6f' + 9ff''}{r^4}t - \frac{3}{4r^6}\left(9f^2 + 3rf' - 3r^2f'' + 2r^3f^{(3)}\right)t^2 + \\ & \frac{3}{20r^6}\left(-24f' + 105ff' + 24rf'' - 12r^2f^{(3)} + 5r^3f^{(4)}\right)t^3 - \\ & \frac{1}{20r^7}\left(60f' + 96ff' + 120rf'^2 - 60rf'' + 72rff'' + 30r^2f^{(3)} - 10r^3f^{(4)} + 3r^4f^{(5)}\right)t^4 + \\ & \cdots + \mathcal{O}(t^{k-1}), \\ \check{p} = t^{-4} + \frac{6f}{r^3}t^{-1} + \frac{1}{r^4}\left(2f' - rf''\right)t + \frac{1}{2r^6}\left(18t^2 + 3rf' - 3r^2f'' + r^3f^{(3)}\right)t^2 - \\ & \frac{3}{20r^6}\left(-8f' + 45ff' + 8rf'' - 4r^2f^{(3)} + r^3f^{(4)}\right)t^3 + \\ & \frac{1}{30r^7}\left(30f' + 57ff' + 45rf'^2 - 30rf'' + 39rff'' + 15r^2f^{(3)} - 5r^3f^{(4)} + r^4f^{(5)}\right)t^4 + \\ & \cdots + \mathcal{O}(t^{k-1}). \end{split}$$

In these formulas all the *doted* terms are explicitly determined in terms of f and its derivatives (I was lazy, and typed only the terms adapted to the choice k = 6 in Theorem 1).

$$\begin{split} \ddot{\rho} = & 3t^{-4} + \frac{18f}{r^3}t^{-1} - \frac{18f'}{r^3} + \frac{-6f' + 9rf''}{r^4}t - \frac{3}{4r^6}\left(9f^2 + 3rf' - 3r^2f'' + 2r^3f^{(3)}\right)t^2 + \\ & \frac{3}{20r^6}\left(-24f' + 105ff' + 24rf'' - 12r^2f^{(3)} + 5r^3f^{(4)}\right)t^3 - \\ & \frac{1}{20r^7}\left(60f' + 96ff' + 120rf'^2 - 60rf'' + 72rff'' + 30r^2f^{(3)} - 10r^3f^{(4)} + 3r^4f^{(5)}\right)t^4 + \\ & \cdots + \mathcal{O}\left(t^{k-1}\right), \\ \ddot{\rho} = t^{-4} + \frac{6f}{r^3}t^{-1} + \frac{1}{r^4}\left(2f' - rf''\right)t + \frac{1}{2r^6}\left(18f^2 + 3rf' - 3r^2f'' + r^3f^{(3)}\right)t^2 - \\ & \frac{3}{20r^6}\left(-8f' + 45ff' + 8rf'' - 4r^2f^{(3)} + r^3f^{(4)}\right)t^3 + \\ & \frac{1}{30r^7}\left(30f' + 57ff' + 45rf'^2 - 30rf'' + 39rff'' + 15r^2f^{(3)} - 5r^3f^{(4)} + r^4f^{(5)}\right)t^4 + \\ & \cdots + \mathcal{O}\left(t^{k-1}\right). \end{split}$$

In these formulas all the *doted* terms are explicitly determined in terms of f and its derivatives (I was lazy, and typed only the terms adapted to the choice k = 6 in Theorem 1).

$$\begin{split} \ddot{\rho} = & 3t^{-4} + \frac{18f}{r^3}t^{-1} - \frac{18f'}{r^3} + \frac{-6f' + 9rf''}{r^4}t - \frac{3}{4r^6}\left(9f^2 + 3rf' - 3r^2f'' + 2r^3f^{(3)}\right)t^2 + \\ & \frac{3}{20r^6}\left(-24f' + 105ff' + 24rf'' - 12r^2f^{(3)} + 5r^3f^{(4)}\right)t^3 - \\ & \frac{1}{20r^7}\left(60f' + 96ff' + 120rf'^2 - 60rf'' + 72rff'' + 30r^2f^{(3)} - 10r^3f^{(4)} + 3r^4f^{(5)}\right)t^4 + \\ & \cdots + \mathcal{O}\left(t^{k-1}\right), \\ \ddot{\rho} = t^{-4} + \frac{6f}{r^3}t^{-1} + \frac{1}{r^4}\left(2f' - rf''\right)t + \frac{1}{2r^6}\left(18f^2 + 3rf' - 3r^2f'' + r^3f^{(3)}\right)t^2 - \\ & \frac{3}{20r^6}\left(-8f' + 45ff' + 8rf'' - 4r^2f^{(3)} + r^3f^{(4)}\right)t^3 + \\ & \frac{1}{30r^7}\left(30f' + 57ff' + 45rf'^2 - 30rf'' + 39rff'' + 15r^2f^{(3)} - 5r^3f^{(4)} + r^4f^{(5)}\right)t^4 + \\ & \cdots + \mathcal{O}\left(t^{k-1}\right). \end{split}$$

In these formulas all the *doted* terms are explicitly determined in terms of f and its derivatives (I was lazy, and typed only the terms adapted to the choice k = 6 in Theorem 1).

Possible generalizations

Remarks.

- Note that since in \check{M} the time t<0, the requirement that the energy densities are positive near the Big Bang hypersurface t=0 implies that f>0 in addition to f'>0, the requirement we got from the past eon. Note also that f>0 and f'>0 are the only conditions needed for the positivity of energy densities, as the leading term in \check{p} is $\check{p}\simeq 3t^{-4}$, and is positive regardless of the sign of t.
- Remarkably the leading terms in \check{p} and \check{p} , i.e. the terms with negative powers in t, are proportional to each other with the numerical factor *three*. We have

$$\check{p} = \frac{1}{3}\check{\rho} + \mathcal{O}(t^0).$$

• This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outgoing waves in the new eon, there is also a scattered *radiation* there, described by the perfect fluid with $\check{p}=\frac{1}{3}\check{p}$.

- Note that since in \check{M} the time t < 0, the requirement that the energy densities are positive near the Big Bang hypersurface t = 0 implies that f > 0 in addition to f' > 0, the requirement we got from the past eon. Note also that f > 0 and f' > 0 are the only conditions needed for the positivity of energy densities, as the leading term in β is $\beta \simeq 3t^{-4}$, and is positive regardless of the sign of t.
- Remarkably the leading terms in \check{p} and \check{p} , i.e. the terms with negative powers in t, are proportional to each other with the numerical factor *three*. We have

$$\check{p} = \frac{1}{3}\check{\rho} + \mathcal{O}(t^0).$$

• This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outgoing waves in the new eon, there is also a scattered *radiation* there, described by the perfect fluid with $\check{p} = \frac{1}{2}\check{p}$.

(ロ) (個) (目) (目) (目) (90)

- Note that since in \check{M} the time t<0, the requirement that the energy densities are positive near the Big Bang hypersurface t=0 implies that f>0 in addition to f'>0, the requirement we got from the past eon. Note also that f>0 and f'>0 are the only conditions needed for the positivity of energy densities, as the leading term in \check{p} is $\check{p}\simeq 3t^{-4}$, and is positive regardless of the sign of t.
- Remarkably the leading terms in \check{p} and \check{p} , i.e. the terms with negative powers in t, are proportional to each other with the numerical factor *three*. We have

$$\check{p} = \frac{1}{3}\check{\rho} + \mathcal{O}(t^0).$$

• This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outgoing waves in the new eon, there is also a scattered *radiation* there, described by the perfect fluid with $\check{p} = \frac{1}{2}\check{p}$.

- Note that since in \check{M} the time t<0, the requirement that the energy densities are positive near the Big Bang hypersurface t=0 implies that f>0 in addition to f'>0, the requirement we got from the past eon. Note also that f>0 and f'>0 are the only conditions needed for the positivity of energy densities, as the leading term in $\check{\rho}$ is $\check{\rho}\simeq 3t^{-4}$, and is positive regardless of the sign of t.
- Remarkably the leading terms in $\check{\rho}$ and \check{p} , i.e. the terms with negative powers in t, are proportional to each other with the numerical factor *three*. We have

$$\check{p} = \frac{1}{3}\check{\rho} + \mathcal{O}(t^0).$$

• This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outgoing waves in the new eon, there is also a scattered *radiation* there, described by the perfect fluid with $\check{p}=\frac{1}{2}\check{p}$.

- Note that since in \check{M} the time t<0, the requirement that the energy densities are positive near the Big Bang hypersurface t=0 implies that f>0 in addition to f'>0, the requirement we got from the past eon. Note also that f>0 and f'>0 are the only conditions needed for the positivity of energy densities, as the leading term in $\check{\rho}$ is $\check{\rho}\simeq 3t^{-4}$, and is positive regardless of the sign of t.
- Remarkably the leading terms in \check{p} and \check{p} , i.e. the terms with negative powers in t, are proportional to each other with the numerical factor *three*. We have

$$\check{p} = \frac{1}{3}\check{\rho} + \mathcal{O}(t^0).$$

• This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outgoing waves in the new eon, there is also a scattered *radiation* there, described by the perfect fluid with $\check{p}=\frac{1}{2}\check{p}$.

- Note that since in \check{M} the time t<0, the requirement that the energy densities are positive near the Big Bang hypersurface t=0 implies that f>0 in addition to f'>0, the requirement we got from the past eon. Note also that f>0 and f'>0 are the only conditions needed for the positivity of energy densities, as the leading term in $\check{\rho}$ is $\check{\rho}\simeq 3t^{-4}$, and is positive regardless of the sign of t.
- Remarkably the leading terms in \check{p} and \check{p} , i.e. the terms with negative powers in t, are proportional to each other with the numerical factor *three*. We have

$$\check{p} = \frac{1}{3}\check{\rho} + \mathcal{O}(t^0).$$

• This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outgoing waves in the new eon, there is also a scattered *radiation* there, described by the perfect fluid with $\check{p}=\frac{1}{3}\check{p}$.

- Note that since in \check{M} the time t<0, the requirement that the energy densities are positive near the Big Bang hypersurface t=0 implies that f>0 in addition to f'>0, the requirement we got from the past eon. Note also that f>0 and f'>0 are the only conditions needed for the positivity of energy densities, as the leading term in $\check{\rho}$ is $\check{\rho}\simeq 3t^{-4}$, and is positive regardless of the sign of t.
- Remarkably the leading terms in \check{p} and \check{p} , i.e. the terms with negative powers in t, are proportional to each other with the numerical factor *three*. We have

$$\check{p} = \frac{1}{3}\check{\rho} + \mathcal{O}(t^0).$$

• This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outgoing waves in the new eon, there is also a scattered *radiation* there, described by the perfect fluid with $p = \frac{1}{3}p$.

- Note that since in \check{M} the time t<0, the requirement that the energy densities are positive near the Big Bang hypersurface t=0 implies that f>0 in addition to f'>0, the requirement we got from the past eon. Note also that f>0 and f'>0 are the only conditions needed for the positivity of energy densities, as the leading term in $\check{\rho}$ is $\check{\rho}\simeq 3t^{-4}$, and is positive regardless of the sign of t.
- Remarkably the leading terms in \check{p} and \check{p} , i.e. the terms with negative powers in t, are proportional to each other with the numerical factor *three*. We have

$$\check{p} = \frac{1}{3}\check{\rho} + \mathcal{O}(t^0).$$

• This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outgoing waves in the new eon, there is also a scattered *radiation* there, described by the perfect fluid with $\check{p} = \frac{1}{3}\check{p}$.

- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it **focuses** but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $p = \frac{1}{3}p$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.

- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it **focuses** but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $p = \frac{1}{3}p$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.

- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, because although it is still sphereical it **focuses** but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $p = \frac{1}{3}p$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.

- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, because although it is still sphereical it **focuses** but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $p = \frac{1}{3}p$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.

- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it **focuses** but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $p = \frac{1}{2}p$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.

- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it **focuses** but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $p = \frac{1}{4}p$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.

- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it **focuses** but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $p = \frac{1}{3}p$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.

- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it **focuses** but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $p = \frac{1}{3}p$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.

- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it **focuses** but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $p = \frac{1}{3}p$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.

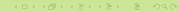
- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it **focuses** but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $p = \frac{1}{3}p$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.

- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it **focuses** but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with p = 1/3 p.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.

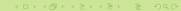
- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it **focuses** but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $p = \frac{1}{3}p$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.

- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', *Math. Ann.* **94**, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47, https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', *Phys. Rev. D* **95**, Issue 8, 84016, 1-5.
- P. Nurowski (2021), 'Radiative Poincaré type eon and its follower', https://arxiv.org/abs/2101.12670.

- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47, https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', *Phys. Rev. D* **95**, Issue 8, 84016, 1-5.
- P. Nurowski (2021), 'Radiative Poincaré type eon and its follower', https://arxiv.org/abs/2101.12670.



- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47, https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', *Phys. Rev. D* **95**, Issue 8, 84016, 1-5.
- P. Nurowski (2021), 'Radiative Poincaré type eon and its follower', https://arxiv.org/abs/2101.12670.



- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', *Math. Ann.* **94**, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47, https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', *Phys. Rev. D* **95**, Issue 8, 84016, 1-5.
- P. Nurowski (2021), 'Radiative Poincaré type eon and its follower', https://arxiv.org/abs/2101.12670.

- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', *Math. Ann.* **94**, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47, https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', *Phys. Rev. D* **95**, Issue 8, 84016, 1-5.
- P. Nurowski (2021), 'Radiative Poincaré type eon and its follower', https://arxiv.org/abs/2101.12670.

- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47, https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', *Phys. Rev. D* 95, Issue 8, 84016, 1-5.
- P. Nurowski (2021), 'Radiative Poincaré type eon and its follower', https://arxiv.org/abs/2101.12670.

- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47, https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', *Phys. Rev. D* 95, Issue 8, 84016, 1-5.
- P. Nurowski (2021), 'Radiative Poincaré type eon and its follower', https://arxiv.org/abs/2101.12670.

THANK YOU!