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'See: P. Tod (2015), ‘The equations of Conformal Cyclic Cosmology’,

Gen. Rel. Grav. 47 ,https://doi.org/10.1007/s10714-015-1859-7, for details.
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@ DISCLAIMER:

@ CCC says nothing about this what is the physics in a given eon
when the physical age of it is normal; normal meaning that eon
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when an eon is either about to die, or had just been born.

@ In particular, CCC does not require that the eons have the same
history! It is Conformal Cyclic Cosmology, and not Conformal
Periodic Cosmology!
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consecutive eons, say the past one and the present one, are
glued together along .# " of the past eon, and .# ~ of the
present eon.

@ The vicinity of the matching surface (the wound) of the past
and the present eons — this region Penrose calls bandaged
region for the two eons — is equipped with the following three
metrics, which are conformally flat at the wound:

o a Lorentzian metric g which is regular everywhere,

o a Lorentzian metric g, which represents the physical metric
of the present eon, and which is singular at the wound,

o a Lorentzian metric g, which represents the physical metric
of the past eon, and which infinitely expands at the
wound.
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@ In a bandage region, the three metrics g, § and g, are
conformally related on their overlaping domains.

@ How to make this relation specific is debatable, but
Penrose proposes that
g =9%g,and g = 29, with © — 0 on the wound.
@ The metric ¢ in the present eon is a physical metric
there. Likewise, the metric g in the past eon is a physical
metric there.

@ Of course, the metric g in the present eon, and the metric
g in the past eon, as physical spacetime metrics,
should satisfy Einstein’s equations in their spacetimes,
respectively.
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@ Question: How to make a model of Penrose’s bandaged
region of two eons?

@ One needs a function 2, vanishing on some spacelike
hypersurface, and a regular Lorentzian 4-metric g, such
that if § — 0°¢ satisfies Einstein equations with some
physically reasonable energy momentum tensor, then
g= # g also satisfies Einstein equations with possibly
different, but still physically reasonable energy momentum
tensor.
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prescribed energy momentum tensor on the // part, and a
reasonable energy momentum tensor on the other /V/.

@ It seems to be very unlikely that one finds something interesting
on (M., g), when T and its corresponding g = 2 ?g is given.

@ To get some intuitions , let us check what we can do in the
conformally flat situation (reasonable, because compatible
with the cosmological principle/FLRW paradigm), and
(various) perfect fluids?
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@ From the Einstein’s equations for § we easilly calculate v, and
forcing it to be constant, because of the above ODE satisfied by
Q, we find that it is possible provided that:
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past eon is a spherical wave described by Einstein’s equations
with the pure radiation energy momentum tensor

Ti = dK'KI, g;K'KI =0,
and with cosmological constant A . | solve these Einstein’s
equations associating to // the metric g = ¢ 2( — d* + hy),
which is a Lorentzian analog of the Poincaré-Einstein metric
known from the theory of conformal invariants. The solution is
obtained under the assumption that the 3-dimensional
conformal structure [/] on the .7 of M is flat, that the metric
g admits a power series expansian in the time variable , and
that hy = hi—o € [h]. It follows that such a solution depends on
precisely one real arbitrary function of the radial variable r.
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@ Applying the reciprocal hypothesis, § — g — 1“9, | show that the

new eon (/. §) created from the one containing a single
spherical wave, is filled at its initial state with three types of
radiation: (i) the damped spherical wave which continues its
life from the previous eon, (ii) the ingoing spherical wave
obtained as a result of a colision of the wave from the past eon
with the Bang hypersurface and (iii) randomly scattered waves
that could be interpreted as perfect fluid with the energy density
p and the isotropic pressure p such that p = %ﬁ. The metric g
solves the Einstein’s equations without cosmological constant
and with the energy-momentum tensor

T = dK'KI + LU + (p+ p)U'T + pgr,
in which U't/g; = —1, gL'/ =0and L'KIg; = —2.
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where the unknown function v = v/(f,r) and ;. = u(t, r) are both

real analytic in the variable { and such that:

v(0,r)=0 and p(0,r)=0.

@ This satisfies ;o = hy and because of the analyticity
assumption we have »(t,r) = >, a(r)t" and
p(tor) =57, bi(r)t', with a set of differentiable functions
a; = ai(r) and b; = b;(r) depending on the r variable only.

hy =
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. _ 22 (14222 a(nt' ) dzdz - -

g:tz(—dt2+ ( G127 ) +(1+Z,:1b/(r)t’)dr2).
Our (pre)past eon manifold M is parameterized by t > 0, r > 0
and z € CU {o0}.

@ | now consider the following null vector field K on W

1
2

K=o+ (1+ X% b(nt)

@ ltis tangent to a congruence of null geodesics without shear and
twist, which represents light rays emanating from the source at
the surface r = 0.

Or.

@ | require that the Poincaré-type metric g satisfies the Einstein
equations R/ = Ag! + &K'K/ with this null vector field K and
some functions ® and A. We have the following
theorem/conjecture.
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Possible generalizations

Theorem 1.
If the metric

g =t"2(—df* + hy) =

2r2(1+ 32, a(r)t')dzdz ,
t2( —df S 1 bi(r)t')dr?
( - (1+ Z)2 + +; i(r) )r)

satisfies Einstein’s equations

E;

m>
>>
LQ>

\
o>
x>
>
Il
o

with
K=Ko=a+(1+3b(Nt) 20, K =gK,
i=1

then we have:

29/24
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@ The coefficients ai(r), ax(r) bi(r) and ba(r) identically vanish,
ai(r) = as(r) = by(r) = bo(r) = 0, and the power series
expansion of /; starts at the ° terms, h; = 2 (r) + O(t%).

@ The metric g, or what is the same, the power series expansions
v(tr) =357, a(rt and u(t,r) =57, bi(r)t', are totally
determined up to infinite order by an arbitrary differentiable
function 7 = 7(r).

@ More precisely, the Einstein equations £; = O(#“*") solved up
to an order k, together with an arbitrary differentiable function
f = f(r), uniquely determine v(t, r) and x(f, r) up to an order
(k + 2).

23/24
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Possible generalizations

@ In the lowest order the solution reads:

f 2f
u:r—3t3+0(t4) and ;L:fr—at3+(9(t4);

The energy function ® and the cosmological constant A are:

/

¢ = SEtG +O(t") and A =3+ O(t:*3);
the Weyl tensor of the solution is
Wik = O(t).

In particular, the Weyl tensor W', vanishes at t = 0 and
A =3 > 0 there.

24/34



Possible generalizations

25/34



Possible generalizations

@ With the use of computers we calculated this solution up to the
order k = 10, finding explicitly » = Zlozs axt" and
w= 21013 by t.

25/34



Possible generalizations

@ With the use of computers we calculated this solution up to the
order k = 10, finding explicitly » = 22(013 axt" and
o= ,%, byt*. The formulas are compact enough up to k — 8
and up to the order k = 8 they read:
u(t,n) =ty — 3¢5+ &(— 2 +371") 4

1 (af2 f 2.1 34(3) {6
24(3f 3rf" + 3r°f 2r°f ),6‘

S

7
b (— 24" — 1056 + 24" — 12r7®) 1 5314)) &—
8
ok (601 + 28811 — 150r1'% — 60rt’" — 216rtf" + 302 %) — 10°1() 4 3r41)) L4

o((4)*)
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Possible generalizations

@ For a solution up to this order we find that:

A 0310 3 gt 1y 7 3r3 0 7 2.(3)y 8
b =35 + 3°(F — ") by + 3 (2 — 2" 4 P L 4

1)

9
(6 + 6" —6rf’ + 3218 — ) L4
(241" + 66ff — 12112 — 241" — 301t + 12,27 — 4r%f®) 4 410)) l
;

=)

t

o

£
8
3

= (120" + 522ff' — 177:1'2 — 120" — 378rif'" + 93721 + 60r2 1) 4 90r2 D — 20°14) 4 5,47
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A=3+ 0.
@ | have no patience to type the Weyl tensor components up to

high order. It is enough to say that that up to the 4th order in ,
modulo a nonzero constant tensor C'j, it is equal to:

Wiy = (if e + gg)C//k/ + O(<§>4).

r’r rr2

@ Of course, for the positivity of the energy density ® close to the
surface .7 of M we need

f'> 0.
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Possible generalizations

The Poincaré-type metric g can be interpreted as the ending
stage of the evolution of the past eon in Penrose’s CCC. The
eon has a positive cosmological constant A ~ 3, which is filled
with a spherically symmetric pure radiation moving along the
null congruence generated by the vector field K.
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Theorem 2. o
Assume that the metric g as before satisfies the Einstein

equations £; = 0. Then, the reciprocal metric

2 2r2( 1+ v(t, r))dzdz

v 2
g =t dt .
( (1+%)2

F(14 ;,(r.r))dr2) =

B2 4 T t' )dzdz =
G ( (%’*‘Zj’)(;) )42z (4 +3 bt )ar?)
o) i=1

satisfies the Einstein equations
Ej = Ry — ®KiK; — WLLi — (p + p)iiliy — 3(5 — b)gj = 0.

Here K; and L; are the null 1-forms corresponding to the pair of
going-ingoing null vector fields
K=K =or+(1+ i bi(Nt') ’%0, and L=L8 = z'»,f(w i i bi(r)t! ) ’%0,\
via K; = g;K’ and L = g;1/, and the 1-form vector field &;
corresponds to the future oriented - Note that now < 0 (!) -
timelike unit vector field

u=1to; = —t"'a,

ams  ViA U = Giill.
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energy densities ® W, j and the pressure p are as follows:
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In these formulas all the doted terms are explicitly determined in

terms of f and its derivatives (I was lazy, and typed only the terms
adapted to the choice kK = 6 in Theorem 1).
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Remarks.

@ Note that since in // the time < 0, the requirement that the

energy densities are positive near the Big Bang hypersurface

t = 0 implies that f > 0 in addition to > 0, the requirement we
got from the past eon. Note also that f > 0 and ' > 0 are the
only conditions needed for the positivity of energy densities, as
the leading term in 7 is 5 ~ 3t *, and is positive regardless of
the sign of i.

Remarkably the leading terms in j and p, i.e. the terms with
negative powers in t, are proportional to each other with the
numerical factor three. We have

This means that immediately after the Bang, apart from the
matter content of the two spherical ingoing and outgoing waves
in the new eon, there is also a scattered radiation there,
described by the perfect fluid with p = 1.
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Possible generalizations

@ This solution to the three metrics in Penrose-Tod’s
bandage region has the following apealing physical
property: Immediately after the Bang, the spherical wave
from the previous eon not only produces two spherical
waves - one is obvious: it is the still expanding but damped
wave that survived the Bang; the other is less obvious,
becuase although it is still sphereical it focuses - but there
is also there a third ingredient: it is a randomly scattered
radiation described by the perfect fluid with p = 13 D.

@ So what the Penrose-Tod scenario does to the new eon out
of a single spherical wave in the past eon, is that it splits
this wave into three portions of radiation: the two spherical
waves, and in addition a lump of scattered radiation
described by the statistical physics.
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