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a b s t r a c t

We study five dimensional geometries associated with the 5-dimensional irreducible
representation of GL(2,R). These are special Weyl geometries in signature (3, 2) having
the structure group reduced from CO(3, 2) to GL(2,R). The reduction is obtained bymeans
of a conformal class of totally symmetric 3-tensors. Among all GL(2,R) geometries we
distinguish a subclass which we term ‘nearly integrable GL(2,R) geometries’. These define
a unique gl(2,R) connection which has totally skew symmetric torsion. This torsion splits
onto the GL(2,R) irreducible components having respective dimensions three and seven.
We prove that on the solution space of every 5th order ODE satisfying certain three

nonlinear differential conditions there exists a nearly integrable GL(2,R) geometry such
that the skew symmetric torsion of its unique gl(2,R) connection is very special. In contrast
to an arbitrary nearly integrable GL(2,R) geometry, it belongs to the 3-dimensional
irreducible representation of GL(2,R).
We provide nontrivial examples of 5th order ODEs satisfying the three nonlinear

differential conditions, which in turn provide examples of inhomogeneous GL(2,R)
geometries in dimension five, with torsion in R3.
We also outline the theory and the basic properties of GL(2,R) geometries associated

with n-dimensional irreducible representations of GL(2,R) in 6 ≤ n ≤ 9. In particular we
give conditions for an nth order ODE to possess this geometry on its solution space.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let us start with an elementary algebraic geometry in R3. Every point on a curve (1, x, x2) in R3 defines a straight line
passing through the origin in the dual space (R3)∗ via the relation:

θ0 + 2θ1x+ θ2x2 = 0 (1.1)
θ1 + θ2x = 0.

Here (θ0, θ1, θ2) parameterize points of (R3)∗. Whenmoving along the curve (1, x, x2) in R3, the corresponding lines in the
dual space (R3)∗ sweep out a ruled surface there, which is the cone

(θ1)2 − θ0θ2 = 0 (1.2)

with the tip in the origin. The points (θ0, θ1, θ2) lying on this cone may be thought as those, and only those, which admit a
common root x for the pair of Eqs. (1.1). A standard method for determining if two polynomials have a common root is to
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equate to zero their resultant. In the case of Eqs. (1.1) the resultant is:

R3 = det


θ0 2θ1 θ2 0 0
0 θ0 2θ1 θ2 0
0 0 θ0 2θ1 θ2

θ1 θ2 0 0 0
0 θ1 θ2 0 0

 .
It vanishes if and only if condition (1.2) holds.
Before passing to Rn with general n ≥ 3, it is instructive to repeat the above considerations in the cases of n = 4 and

n = 5.
A point on a curve (1, x, x2, x3) in R4 defines a plane passing through the origin in the dual space (R4)∗ via the relation:

θ0 + 3θ1x+ 3θ2x2 + θ3x3 = 0 (1.3)
θ1 + 2θ2x+ θ3x2 = 0.

Now (θ0, θ1, θ2, θ3) parameterize points of the dual (R4)∗ and when moving along the curve (1, x, x2, x3) in R4, the
corresponding planes in (R4)∗ sweep out a ruled hypersurface there, which is defined by the vanishing of the resultant
of the two polynomials defined in (1.3). This is given by

− 3(θ1)2(θ2)2 + 4θ0(θ2)3 + 4(θ1)3θ3 − 6θ0θ1θ2θ3 + (θ0)2(θ3)2 = 0, (1.4)

as can be easily calculated.
For n = 5, a point on a curve (1, x, x2, x3, x4) in R5 defines a 3-plane passing through the origin in the dual space (R5)∗

via the relation:

θ0 + 4θ1x+ 6θ2x2 + 4θ3x3 + θ4x4 = 0 (1.5)
θ1 + 3θ2x+ 3θ3x2 + θ4x3 = 0,

where (θ0, θ1, θ2, θ3, θ4) parameterize points of the dual (R5)∗ as before. And now, when moving along the curve
(1, x, x2, x3, x4) in R5, the corresponding 3-planes in (R4)∗ sweep out a ruled hypersurface there, which is again defined
by the vanishing of the resultant of the two polynomials defined in (1.5). The algebraic expression for this hypersurface in
terms of the θ coordinates is quite complicated:

− 36(θ1)2(θ2)2(θ3)2 + 54θ0(θ2)3(θ3)2 + 64(θ1)3(θ3)3 − 108θ0θ1θ2(θ3)3

+ 27(θ0)2(θ3)4 + 54(θ1)2(θ2)3θ4 − 81θ0(θ2)4θ4 − 108(θ1)3θ2θ3θ4

+ 180θ0θ1(θ2)2θ3θ4 + 6θ0(θ1)2(θ3)2θ4 − 54(θ0)2θ2(θ3)2θ4 + 27(θ1)4(θ4)2

− 54θ0(θ1)2θ2(θ4)2 + 18(θ0)2(θ2)2(θ4)2 + 12(θ0)2θ1θ3(θ4)2 − (θ0)3(θ4)3 = 0, (1.6)

but easily calculable.
The beauty of the hypersurfaces (1.2), (1.4) and (1.6) consists of this that they are given by means of homogeneous

equations, and thus they descend to the corresponding projective spaces. From the point of view of the present paper, even
more important is the fact, that they are GL(2,R) invariant. By this we mean the following:
Consider a real polynomial of (n− 1)-th degree

w(x) =
n−1∑
i=0

(
n− 1
i

)
θ ixi (1.7)

in the real variable x with real coefficients (θ0, θ1, . . . , θn−1). The n-dimensional vector space (Rn)∗ of such polynomials
may be identified with the space of their coefficients. Now, replacing the variable x by a new variable x′ such that

x =
αx′ + β
γ x′ + δ

, αδ − βγ 6= 0, (1.8)

we define a new covector (θ ′0, θ ′1, . . . , θ ′n−1)which is related to (θ0, θ1, . . . , θn−1) of (1.7) via
n−1∑
i=0

(
n− 1
i

)
θ ′
ix′ i = (γ x′ + δ)n−1w(x).

It is obvious that θ ′ = (θ ′0, θ ′1, . . . , θ ′n−1) is linearly expressible in terms of θ = (θ0, θ1, . . . , θn−1):

θ ′ = θ · ρn(a), a =
(
α β
γ δ

)
. (1.9)
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Here a corresponds to the GL(2,R) transformation (1.8), and the map

ρn : GL(2,R)→ GL((Rn)∗) ∼= GL(n,R)

defines the real n-dimensional irreducible representation ofGL(2,R). For example, if n = 2, we havew(x) = θ0+2θ1x+θ2x2,
and we easily get

(
θ ′
0

θ ′
1

θ ′
2)
=
(
θ0 θ1 θ2

) δ2 γ δ γ 2

2βδ αδ + βγ 2αγ
β2 αβ α2

 ,
so that ρ2 is given by

ρ2

(
α β
γ δ

)
=

 δ2 γ δ γ 2

2βδ αδ + βγ 2αγ
β2 αβ α2

 .
Now, let us define g(θ, θ), 4I(θ, θ, θ, θ) and 5I(θ, θ, θ, θ, θ, θ) by

g(θ, θ) = the left hand side of (1.2)
4I(θ, θ, θ, θ) = the left hand side of (1.4) (1.10)
5I(θ, θ, θ, θ, θ, θ) = the left hand side of (1.6).

We will often abbreviate this notation to the respective: g(θ), 4I(θ) and 5I(θ).
To explain our comment about theGL(2,R) invariance of the respective hypersurfaces g(θ) = 0, 4I(θ) = 0 and 5I(θ) = 0

we calculate g(θ ′), 4I(θ ′) and 5I(θ ′)with θ ′ as in (1.9). The result is

g(θ ′) = (αδ − βγ )2 g(θ)
4I(θ ′) = (αδ − βγ )4 4I(θ)
5I(θ ′) = (αδ − βγ )6 5I(θ).

Thus the vanishing of the expressions g(θ), 4I(θ) and 5I(θ) is invariant under the action (1.9) of the irreducible GL(2,R) on
(Rn)∗.
We are now ready to discuss the general case n ≥ 3 of the rational normal curve (1, x, x2, . . . , xn−1) in Rn. Associated

with this curve is a pair of polynomials, namelyw(x) as in (1.7), and its derivative dwdx . We consider the relation

w(x) = 0 &
dw
dx
= 0. (1.11)

This gives a correspondence between the points on the curve (1, x, x2, . . . , xn−1) inRn and the (n−2)-planes passing through
the origin in the dual space (Rn)∗ parameterized by (θ0, θ1, . . . , θn−1). When moving along the rational normal curve in
Rn, the corresponding (n− 2)-planes in (Rn)∗ sweep out a ruled hypersurface there. This is defined by the vanishing of the
resultant, R(w(x), dwdx ), of the two polynomials in (1.11). The algebraic expression for this hypersurface is the vanishing of
a homogeneous polynomial, let us call it I(θ), of order 2(n − 2), in the coordinates (θ0, θ1, . . . , θn−1). The hypersurface
I(θ) = 0 in (Rn)∗ is GL(2,R) invariant, since the property of the two polynomials w(x) and dwdx to have a common root is
independent of the choice (1.8) of the coordinate x. Thus GL(2,R) is included in the stabiliser GI of I under the action of
the full GL(n,R) group. This stabiliser, by definition, is a subgroup of GL(n,R) with elements b ∈ GI ⊂ GL(n,R) such that
I(θ · b) = (det b)

2(n−2)
n I(θ). Moreover, in n = 4, 5, it turns out that GI is precisely the group GL(2,R) in the corresponding

irreducible representation ρn. Thus if n = 4, 5 one can characterise the irreducible GL(2,R) in n dimensions as the stabiliser
of the polynomial I(θ).
Crucial for the present paper is an observation of KarlWünschmann that the algebraic geometry and the correspondences

wewere describing above, naturally appear in the analysis of solutions of the ODE y(n) = 0. Indeed, followingWünschmann1
(see the Introduction in his Ph.D. thesis [1], pp. 5-6), we note the following:
Consider the third order ODE: y′′′ = 0. Its general solution is y = c0 + 2c1x + c2x2, where c0, c1, c2 are the integration

constants. Thus, the solution space of the ODE y′′′ = 0 is R3 with solutions identified with points c = (c0, c1, c2) ∈ R3. The
solutions to the ODE y′′′ = 0 may be also identified with curves y(x) = c0 + 2c1x + c2x2, actually parabolas, in the plane
(x, y). Suppose now, that we take two solutions of y′′′ = 0 corresponding to two neighbouring points c = (c0, c1, c2) and
c+ dc = (c0 + dc0, c1 + dc1, c2 + dc2) in R3. Among all pairs of neighbouring solutions we choose only those, which have
the property that their corresponding curves y = y(x) and y + dy = y(x) + dy(x) touch each other, at some point (x0, y0)

1 We are very grateful to Niels Schuman, who found a copy of Wünschmann’s thesis in the city library of Berlin and sent it to us. It was this copy, which
after translation from German by Denson Hill, led us to write this introduction.
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in the plane (x, y). If we do not require anything more about the properties of this incidence of the two curves, we say that
solutions c and c+ dc have zero order contact at (x0, y0).
In this ‘baby’ example everything is very simple: To get the criterion for the solutions to have zero order contact we first

write the curves y = c0 + 2c1x+ c2x2 and y+ dy = c0 + dc0 + 2(c1 + dc1)x+ (c2 + dc2)x2 corresponding to c and c+ dc.
Thus the solutions have zero order contact at (x0, y(x0)) provided that dy(x0) = 0, i.e. if and only if

dc0 + 2x0dc1 + x20dc2 = 0.

This shows that such a contact is possible if and only if the determinant

g(dc, dc) = (dc1)2 − dc0dc2
is non-negative, since otherwise the quadratic equation for x0 has no solutions. Unexpectedly, we find that the requirement
for the two neighbouring solution curves of y′′′ = 0 to have zero order contact at some point is equivalent to the requirement
that the corresponding two neighbouring points c and c+ dc in R3 be spacelike separated in the Minkowski metric g in R3.
This is the discovery of Wünschmann that is quoted in Elie Cartan’s 1941 year’s paper2 [4].
Now we consider the neighbouring solutions c and c + dc of y′′′ = 0 which are null separated in the metric ds2. What

we can say about the corresponding curves in the plane (x, y)?
To answer this we need the notion of a first order contact: Two neighbouring solution curves y = c0 + 2c1x + c2x2 and

y+ dy = c0 + 2c1x+ c2x2 + (dc0 + 2xdc1 + x2dc2) of y′′′ = 0, corresponding to c and c+ dc in R3, have first order contact
at (x0, y0) iff they have zero order contact at (x0, y0) and, in addition, their curves of first derivatives, y′ = 2c1 + 2c2x and
y′+dy′ = 2(c1+dc1)+2(c2+dc2)x, have zero order contact at (x0, y0). Thus the condition of first order contact at (x0, y(x0))
is equivalent to dy(x0) = 0 and dy′(x0) = 0, i.e. to the condition that x0 is a simultaneous root for

dc0 + 2x0dc1 + x20dc2 = 0 (1.12)
dc1 + x0dc2 = 0.

Solving the second of these equations for x0, and inserting it into the first, after an obvious simplification, we conclude that
(dc1)2 − dc0dc2 = 0. Thus we get the interpretation of the null separated neighbouring points in R3 as the solutions of
y′′′ = 0 whose curves in the (x, y) plane are neighbouring and have first order contact at some point.
Wünschmann notes that the procedure described here for the equation y′′′ = 0 can be repeated for the equation y(n) = 0

for arbitrary n ≥ 3. In the cases of n = 4 and n = 5 he however passes to the discussion of the solutions that have contact of
order (n− 2) rather then one. This is an interesting possibility, complementary in a sense to the one in which the solutions
have first order contact. Wünschmann spends rest of the thesis studying it. But we will not discuss it here.
Since Wünschmann does not discuss the first order contact of the solutions in n = 4, 5, let us look closer into these two

cases:
The general solution to y(4) = 0 is y = c0 + 3c1x + 3c2x2 + c3x3, and the general solution to y(5) = 0 is y =

c0 + 4c1x + 6c2x2 + 4c3x3 + c4x4. Thus now the solutions are points c in R4 and R5, respectively. The condition that the
neighbouring solutions c = (c0, c1, c2, c3) and c+ dc = (c0 + dc0, c1 + dc1, c2 + dc2, c3 + dc3) of y(4) = 0 have first order
contact at (x0, y(x0)) is equivalent to the requirement that the system

dc0 + 3x0dc1 + 3x20dc2 + x
3
0dc3 = 0 (1.13)

dc1 + 2x0dc2 + x20dc3 = 0

have a common root x0. Similarly, the condition that the neighbouring solutions c = (c0, c1, c2, c3, c4) and c + dc =
(c0 + dc0, c1 + dc1, c2 + dc2, c3 + dc3, c4 + dc4) of y(5) = 0 have first order contact at (x0, y(x0)) is equivalent to the
requirement that the system

dc0 + 4x0dc1 + 6x20dc2 + 4x
3
0dc3 + x

4
0dc4 = 0 (1.14)

dc1 + 3x0dc2 + 3x20dc3 + x
3
0dc4 = 0

have a common root x0. Calculating the resultants for the systems (1.12)–(1.14) we get:

• R3 = g(dc, dc)dc2 if n = 3,
• R4=4 I(dc, dc, dc, dc)dc3 if n = 4,
• R5 = 5I(dc, dc, dc, dc, dc, dc)dc4 if n = 5,

where g , 4I and 5I are as in (1.10).

2 It is worthwhile remarking, that Wünschmann thesis is dated ‘1905’, the same year in which Einstein published his famous special relativity theory
paper [2]. It was not until three years later when Minkowski gave the geometric interpretation of Einstein’s theory in terms of his metric [3]. Perhaps
Wünschmann was the first who ever wrote such a metric in a scientific paper. This is a very interesting feature of Wünschmann’s thesis: he calls the
expressions like (dc1)2 − dc0dc2 = 0, aMongesche Gleichung rather than a cone in the metric, because the notion of a metric with signature different than
the Riemannian one was not yet abstracted!
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This confirms our earlier statement that two neighbouring solutions of y′′′ = 0 have first order contact iff g(dc, dc) = 0,
since if dc2 = 0 the system (1.12) collapses to dc1 = dc0 = 0. Similarly, one can prove that two neighbouring solutions of
y(4) = 0 or y(5) = 0 have first order contact if and only if they are null separated in the respective symmetric multilinear
forms 4I or 5I . Our previous discussion of the invariant properties of these forms, shows that in the solution space of an ODE
y(n) = 0, for n ≥ 4, there is a naturally defined action of the the GL(2,R) group. This group is the stabiliser of the invariant
polynomial I(dc)which distinguishes neighbouring solutions having first order contact.
First question one can ask in this context is if one can retain this GL(2,R) structure in the solution space for more

complicated ODEs. In otherwords, onemay asks the following:What does one have to assume about the function F , defining
an ODE

y(n) = F(x, y, y′, . . . , y(n−1)),

in order to have a well defined conformal tensor g , 4I or 5I , in the respective cases n = 3, 4, 5, on the solution space of the
ODE? The same question can be repeated for any n > 5 and the invariant I .
The answer to this question in the n = 4 case was found by Robert Bryant in [5]. Our paper, among other things, gives a

geometric background and an effective method for answering this question for n > 4. It follows that for every n ≥ 3, one
has (n − 2) contact invariant conditions for F , whose vanishing is necessary and sufficient for defining a conformal tensor
I on the solution space of the ODE. Each of these (n − 2) conditions is of third order in the derivatives of F . In dimension
n = 4 our (4 − 2) = 2 conditions agree with the Bryant ones. Since Wünschman was the first who obtained these types
of conditions in n = 3, we call the (n − 2) conditions for F the generalised Wünschmann’s conditions, or Wünschmann’s
conditions, for short. We also mention that they are lower order equivalents of the conditions discussed recently in [6–8].
The main objective of the paper is a thorough study of the irreducible GL(2,R) geometry in dimension five. This is done

from two points of view: first as a study of an abstract geometry on a manifold and, second, as a study of a contact geometry
of fifth order ODEs. In the latter case we also describe the GL(2,R) geometry in the language of contact invariants of the ODE
and construct the Wünschmann conditions.
We define an abstract 5-dimensional GL(2,R) geometry in two steps. First, in Section 2, we show how to construct the

algebraic model for the GL(2,R) geometry in dimension five utilising the properties of a rational normal curve. Second,
instead of obtaining the reduction from GL(5,R) to GL(2,R) by stabilising the 6-tensor 5I , we get the desired reduction by
stabilising a conformal metric gij → e2φgij of signature (3, 2) and a conformal totally symmetric 3-tensor Υijk → e3φΥijk.
These tensors are supposed to be related by the following algebraic constraint:

g lm(ΥijlΥkmp + ΥkilΥjmp + ΥjklΥimp) = gijgkp + gklgjp + gjkgip. (1.15)

It is worthwhile noting that condition (1.15) is a non-Riemannian counterpart of the condition considered by Elie Cartan in
the context of isoparametric surfaces [9,10]. Our main object of study is then defined in Section 3 as follows:

Definition. An irreducible GL(2,R) geometry in dimension five is a 5-dimensional manifold M5 equipped with a class of
triples [g,Υ , A] such that onM5:

(a) g is a metric of signature (3, 2),
(b) Υ is a traceless symmetric 3rd rank tensor,
(c) A is a 1-form,
(d) the metric g and the tensor Υ satisfy the identity (1.15),
(e) two triples (g,Υ , A) and (g ′,Υ ′, A′) are in the same class [g,Υ , A] if and only if there exists a function φ : M5 → R
such that

g ′ = e2φg, Υ ′ = e3φΥ , A′ = A− 2dφ.

This definition places GL(2,R) geometries in dimension five among the Weyl geometries [g, A]. They are special Weyl
geometries i.e. such for which the structure group is reduced from CO(3, 2) to GL(2,R). A natural description of such
geometries should be then obtained in terms of a certain gl(2,R)-valued connection. However, unlike in the usual Weyl
case, the choice of a gl(2,R) connection is ambiguous, due to the fact that such a connection has non-vanishing torsion in
general, and onemust find admissible conditions for the torsion that specifies a connection uniquely. Pursuing this problem
in Section 3 we find an interesting subclass of GL(2,R) geometries.

Definition. A GL(2,R) geometry [g,Υ , A] is called nearly integrable if the Weyl connection
W
∇ of [g, A] satisfies

(
W
∇XΥ )(X, X, X) = −

1
2
A(X)Υ (X, X, X).

Next we prove the following property of nearly integrable geometries.

Proposition. A nearly integrable GL(2,R) geometry uniquely defines a gl(2,R) connection D. This is characterised by the two
following requirements:
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• D preserves the structural tensors:

Dgij = −Agij,

DΥijk = −
3
2
AΥijk,

• and D has totally skew symmetric torsion.

We call this unique connection the characteristic connection for the nearly integrable GL(2,R) structure.
In Section 4webriefly describeGL(2,R) geometry in the language of the bundleGL(2,R)→ P → M5.We also showhow

an appropriate coframe defined on a nine-dimensional manifold P turns this manifold into a bundle GL(2,R)→ P → M5
and generates the GL(2,R) geometry onM5. The bundle approach is useful in proofs of results in Sections 5 and 6.
Section 5 is devoted to studying the algebraic structure of the torsion and the curvature of the characteristic connection

of a nearly integrable GL(2,R) structure. Since the tensor products of tangent spaces are reducible under the action of
GL(2,R), we decompose the torsion and the curvature tensors into components belonging to the irreducible representations.
In particular, the skew symmetric torsion T has two components, T (3) and T (7), lying in the three-dimensional and the seven-
dimensional irreducible representations respectively. Likewise the Maxwell 2-form dA and the Ricci tensor R decompose
according to dA = dA(3) + dA(7) and R = R(1) + R(3) + R(5) + R(7) + R(9). The last problem we address in Section 5 concerns
with the properties of geometries whose characteristic connections have ‘the smallest possible’ torsion, that is the torsion
of the pure three-dimensional type. In Theorems 5.4 and 5.5 we prove that the Ricci tensor for such structures satisfies the
remarkable identities:

R(3) =
1
4
dA(3), R(7) =

3
2
dA(7), R(9) = 0.

Here the third equation is equivalent to

R(ij) =
1
5
Rgij +

2
7
RklΥ klmΥijm.

This closes the part of the paper that is devoted to abstract GL(2,R) geometries.
Section 6 contains the main result of this paper, Theorem 6.3, which links GL(2,R) geometry with the realm of ordinary

differential equations. It can be encapsulated as follows.

Theorem. A 5th order ODE y(5) = F(x, y, y′, y′′, y′′′, y(4)) that satisfies threeWünschmann conditions defines a nearly integrable
irreducible GL(2,R) geometry (M5, [g,Υ , A]) on the space M5 of its solutions. This geometry has the characteristic connection
with torsion of the ‘pure’ type in the 3-dimensional irreducible representation of GL(2,R). Two 5th order ODEs which are
equivalent under contact transformation of variables define equivalent GL(2,R) geometries.

The theorem has numerous applications. For example, we use it to characterise various classes of Wünschmann 5th
order ODEs, by means of the algebraic type of the tensors associated with the corresponding characteristic connection. For
example iff Fy(4)y(4) = 0 the torsion of the characteristic connection vanishes, and iff Fy(4)y(4)y(4) = 0 then we have dA

(7)
= 0.

The proof of the theorem consists of an application of the Cartan method of equivalence. We write an ODE, considered
modulo contact transformation of variables, as a G-structure on the four-order jet space. Starting from this G-structure
we explicitly construct a 9-dimensional manifold P , which is a GL(2,R) bundle over the solution space and carries a certain
distinguished coframe. This construction is only possible provided that theODE satisfies theWünschmann conditions,which
we write down explicitly. By means of Proposition 4.1 the coframe on P defines the nearly integrable geometry on the
solution space of the ODE. It has the characteristic connection with torsion in the 3-dimensional representation.
Section 7 includes examples of 5th order equations in the Wünschmann class. We find equations generating all the

structures with vanishing torsion, equations possessing at least a 6-dimensional group of contact symmetries and yielding
geometries with dA = 0. We also give highly nontrivial examples of equations for which dA 6= 0, including a family of
examples with function F being a solution of a certain second order ODE.
Finally, in Section 8 we consider ODEs of order n > 5. We apply results of the Hilbert theory of algebraic invariants, to

define the tensors responsible for the reduction GL(n,R) → GL(2,R). We also give the explicit formulae for the (n − 2)
third order Wünschmann conditions for n = 6 and n = 7.

2. A peculiar third rank symmetric tensor

Consider Rn equipped with a Riemannianmetric g and a 3rd rank tracefree symmetric tensor Υ ∈ S30R
n satisfying:

(i) Υijk = Υ(ijk) (symmetry)
(ii) g ijΥijk = 0 (tracefree)
(iii) g lm(ΥijlΥkmp + ΥkilΥjmp + ΥjklΥimp) = gijgkp + gklgjp + gjkgip.
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It turns out that the third condition is very restrictive. In particular Cartan has shown [9,10] that for (iii) to be satisfied the
dimension n must be one of the following: n = 5, 8, 14, 26. Moreover Cartan constructed Υ in each of these dimensions
and has shown that it is unique up to an O(n) transformation. Restricting to n = 5, 8, 14, 26, we consider the stabiliser Hn
of Υ under the action of GL(n,R):

Hn = {GL(n,R) 3 a : Υ (aX, aY , aZ) = Υ (X, Y , Z),∀X, Y , Z ∈ Rn}.

Then, one finds that:

• H5 = SO(3) ⊂ SO(5) in the 5-dimensional irreducible representation,
• H8 = SU(3) ⊂ SO(8) in the 8-dimensional irreducible representation,
• H14 = Sp(3) ⊂ SO(14) in the 14-dimensional irreducible representation,
• H26 = F4 ⊂ SO(26) in the 26-dimensional irreducible representation.

The relevance of conditions (i)–(iii) is that they are invariant under the O(n) action on the space of tracefree symmetric
tensors S30R

n. Moreover they totally characterise the orbit O(n)/Hn ⊂ S30 of the tensor Υ under this action [11,12].
The question arises if one can construct tensors satisfying (i)–(iii) for metrics having non-Riemannian signatures.

Below we show how to do it if n = 5 and the metric g has the signature (3, 2). This construction described to us by
Ferapontov [13,14] is as follows.
Consider R5 with coordinates (θ0, θ1, θ2, θ3, θ4), and a curve

γ (x) = (1, x, x2, x3, x4) ⊂ R5.

Associated to the curve γ there are two algebraic varieties in R5:

• The bisecant variety. This is defined to be a set consisting of all the points on all straight lines crossing the curve γ in
precisely two points. It is given parametrically as

B(x, s, u) = (1, x, x2, x3, x4)+ u(0, x− s, x2 − s2, x3 − s3, x4 − s4),

where x, s, u are three real parameters.
• The tangent variety. This is defined to be a set consisting of all the points on all straight lines tangent to the curve γ . It is
given parametrically as

T (x, s) = (1, x, x2, x3, x4)+ s(0, 1, 2x, 3x2, 4x3).

One of many interesting features of these two varieties is that they define (up to a scale) a tri-linear symmetric form

Υ (θ) = 3
√
3(θ0θ2θ4 + 2θ1θ2θ3 − (θ2)3 − θ0(θ3)2 − θ4(θ1)2) (2.1)

and a bi-linear symmetric form

g(θ) = θ0θ4 − 4θ1θ3 + 3(θ2)2. (2.2)

These forms are distinguished by the fact that the bisecant and tangent varieties are contained in their null cones. In the
homogeneous coordinates (θ0, θ1, θ2, θ3, θ4) in R5 all the points θ of B(x, s, u) satisfy

Υ (θ) = 0,

whereas all the points θ of T (x, s) satisfy

Υ (θ) = 0 and g(θ) = 0.

Writing the forms as Υ (θ) = Υijkθ
iθ jθ k, g(θ) = gijθ iθ j, i, j, k = 0, 1, 2, 3, 4 one can check that so defined gij and Υijk

satisfy relations (i)–(iii) of the previous section.
Although it is obvious we remark that the above defined metric gij has the signature (3, 2).
As we have already noted the forms Υ (θ) and g(θ) are defined only up to a scale. We were also able to find a factor, the

3
√
3 in expression (2.1), thatmakes the corresponding gij andΥijk to satisfy (i)–(iii). Note that these conditions are conformal

under the simultaneous change:

gij → e2φgij, Υijk → e3φΥijk.

Thus it is interesting to consider in R5 a class of pairs [g,Υ ], such that:

• in each pair (g,Υ )
– g is a metric of signature (3, 2),
– Υ is a traceless symmetric 3rd rank tensor,
– the metric g and the tensor Υ satisfy the identity

g lm(ΥijlΥkmp + ΥkilΥjmp + ΥjklΥimp) = gijgkp + gklgjp + gjkgip,
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• two pairs (g,Υ ) and (g ′,Υ ′) are in the same class [g,Υ ] if and only if there exists φ ∈ R such that

g ′ = e2φg, Υ ′ = e3φΥ . (2.3)

Given a structure (R5, [g,Υ ]) we define a group CH to be a subgroup of the general linear group GL(5,R) preserving
[Υ ]. This means that, choosing a representative Υ of the class [Υ ], we define CH to be:

CH = {GL(5,R) 3 a : Υ (ax, ax, ax) = (det a)(3/5)Υ (x, x, x)}.
Note that the exponent 35 in the above expression is caused by the fact that the r.h.s. of the equation defining the group
elements must be homogeneous of degree 3 in a, similarly as the l.h.s. is.
This definition does not depend on the choice of a representative Υ ∈ [Υ ]. We have the following

Proposition 2.1. The set CH of 5 × 5 real matrices a ∈ GL(5,R) preserving [Υ ] is the GL(2,R) group in its 5-dimensional
irreducible representation. Moreover, we have natural inclusions

CH = GL(2,R) ⊂ CO(3, 2) ⊂ GL(5,R),

where CO(3, 2) is the 11-dimensional group of homotheties associated with the conformal class [g].

Remark 2.2. According to our Introduction, there is another GL(2,R) invariant symmetric conformal tensor that stabilises
GL(5,R) to the irreducible GL(2,R). This is the tensor 5Iijklpq defined via 5I(θ) = 1

120
5Iijklpqθ iθ jθ kθ lθpθ q with 5I as in (1.10).

We prefer however to work with a pair (gij,Υijk) rather then with 5Iijklpq, because of the lower rank, and more importantly,
because of the evident conformalmetric properties of the (gij,Υijk) approach. Also, it isworthwhile noting that the invariants
gij, Υijk and 5Iijklpq are not independent. Indeed, one can easily check that 5I of (1.10), Υ of (2.1) and g of (2.2) are related by
5I = Υ 2 − g3. We interpret this relation as the definition of 5I in terms of more primitive quantities g and Υ .

The isotropy condition for the group elements a of CH has its obvious counterpart at the level of the Lie algebra gl(2,R) =
(R ⊕ sl(2,R)) ⊂ co(3, 2) ⊂ gl(5,R) of CH = GL(2,R). Writing a = exp(tΓ ) we find that the infinitesimal version of the
isotropy condition, written in terms of the 5× 5 matrices Γ = (Γ i j) is:

Γ l iΥljk + Γ
l
jΥilk + Γ

l
kΥijl =

3
5
Tr(Γ )Υijk, (2.4)

where Tr(Γ ) = Γ mm. Given Υijk, these linear equations can be solved for Γ . Taking the most general matrix Γ ∈ GL(5,R)
and Υijk given by Υ (x, x, x) = Υijkxixjxk of (2.1) we find the explicit realisation of the 5-dimensional representation of the
gl(2,R) Lie algebra as:

Γ = Γ−E− + Γ+E+ + Γ0E0 + Γ1E1, (2.5)

where Γ−,Γ+,Γ0,Γ1 are free real parameters, and (E−, E+, E0, E1) are 5× 5 matrices given by:

E+ =


0 4 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1
0 0 0 0 0

 , E− =


0 0 0 0 0
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

 , (2.6)

E0 =


−4 0 0 0 0
0 −2 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 4

 , E1 = −4


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .
The commutator in

gl(2,R) = SpanR(E−, E+, E0, E1)

is the usual commutator of matrices. In particular, the non-vanishing commutators are:

[E0, E+] = −2E+, [E0, E−] = 2E−, [E+, E−] = −E0.

Note that

sl(2,R) = SpanR(E−, E+, E0)

is a subalgebra of gl(2,R) isomorphic to sl(2,R). It provides the 5-dimensional irreducible representation of sl(2,R).

3. Irreducible GL(2, R) geometries in dimension five

In this section we describe 5-dimensional manifolds whose tangent space at each point is equipped with the structure
[g,Υ ] of the previous section. We will analyse such manifolds in terms of an appropriately chosen connection. We will
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describe connections on a manifoldM in terms of Lie-algebra-valued 1-forms onM . To be more specific, let dimM = n and
let g denote an n-dimensional representation of some Lie algebra. The connection 1-forms Γ i j on M are the matrix entries
of an element Γ ∈ g ⊗ Λ1M . They define the covariant exterior derivative D. This acts on tensor-valued-forms via the
extension to the higher order tensors of the formula:

Dvi = dvi + Γ i j ∧ v
i.

Now suppose that we have a 5-dimensional manifold M5 equipped with a class of pairs [g,Υ ] such that g is a metric,
Υ is a 3rd rank tensor related to the metric via properties (i)–(iii) of the previous section, and two pairs (g,Υ ) and (g ′,Υ ′)
are in the same pair iff they are related by (2.3), where φ is now a function on M5. If we want to associate a connection
with such a structure we have to specify how this connection is related to the pair [g,Υ ]. A possible approach is to choose
a representative (g,Υ ) of [g,Υ ] and declare what is Dg and DΥ . A first possible choice Dg = 0 or DΥ = 0 is definitely
not good since, in general, Dg ′ and DΥ ′ would not be vanishing for another choice of the representative of [g,Υ ]. A remedy
for this situation comes from Weyl geometry where, given a conformal class (M, [g]), a 1-form A is introduced so that
the connection satisfies Dgij = −Agij. In our case we introduce a 1-form A on M5 and require that Dgij = −Agij and
DΥijk = − 32AΥijk. Then, if we transform (g,Υ ) according to (2.3), the transformed objects will satisfy Dg

′

ij = −A
′g ′ij and

DΥ ′ijk = −
3
2A
′Υ ′ijk provided that A

′
= A− 2dφ. This motivates the following

Definition 3.1. An irreducible GL(2,R) structure in dimension five is a 5-dimensional manifold M5 equipped with a class
of triples [g,Υ , A] such that onM5:

(a) g is a metric of signature (3, 2),
(b) Υ is a traceless symmetric 3rd rank tensor,
(c) A is a 1-form,
(d) the metric g and the tensor Υ satisfy the identity

g lm(ΥijlΥkmp + ΥkilΥjmp + ΥjklΥimp) = gijgkp + gklgjp + gjkgip,

(e) two triples (g,Υ , A) and (g ′,Υ ′, A′) are in the same class [g,Υ , A] if and only if there exists a function φ : M5 → R
such that

g ′ = e2φg, Υ ′ = e3φΥ , A′ = A− 2dφ.

If M5 was only equipped with a class of pairs [g, A] satisfying conditions (a), (c) and (e) (with Υ , Υ ′ omitted), then
(M5, [g, A]) would define a Weyl geometry. Such a geometry, which has the structure group CO(3, 2), is usually studied
in terms of the Weyl connection. This is the unique torsion-free connection preserving the conformal structure [g, A]. It is
defined by the following two equations:

W
D gij = −Agij (preservation of the class [g, A]), (3.1)
W
D θ i = 0 (no torsion), (3.2)

where θ i is a coframe related to the representative g of the class [g] by g = gijθ iθ j. We describe the Weyl connection in

terms of the Weyl connection 1-forms
W
Γ i j, i, j = 0, 1, 2, 3, 4.

Take a representative (g, A) of the Weyl structure [g, A] on M5. Choose a coframe (θ i), i = 0, 1, 2, 3, 4, such that

g = gijθ iθ j, with all the metric coefficients gij being constant. Then the above two equations define
W
Γ i j together with

W
Γ ij = gik

W
Γ k j to be 1-forms onM5 satisfying

W
Γ ij +

W
Γ ji = Agij (preservation of the class [g, A]), (3.3)

dθ i +
W

Γ i j ∧ θ
j
= 0 (no torsion). (3.4)

It follows that once the representative (g, A) and the coframe θ i is chosen the above equations uniquely determine theWeyl

connection 1-forms
W
Γ i j.

We note that, due to condition (3.3), matrix
W
Γ = (

W
Γ i j) of the Weyl connection 1-forms belongs to the 5-dimensional

defining representation of the Lie algebra co(3, 2) ⊂ End(5,R) of the Lie group CO(3, 2) ⊂ GL(5,R). Consequently, the

Weyl connection coefficients
W
Γ ijk, defined by

W
Γ i j =

W
Γ i jkθ

k belong to the tensor product co(3, 2)⊗R5, the vector space of
dimension (1+ 10)5 = 55.
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Nowweassume thatwehave an irreducibleGL(2,R) structure [g,Υ , A] on a 5-manifoldM5. Forgetting aboutΥ gives the

Weyl geometry as before. In particular there is the uniqueWeyl connection
W
Γ associated with [g,Υ , A]. But the existence of

ametric compatible class of tensorsΥ makes thisWeyl geometrymore special. To analyse it we introduce a new connection,
which will be respecting the entire structure [g,Υ , A]. This is rather a complicated procedure which we describe below.
First we require that the new connection preserves [g] and [Υ ]:
Dgij = −Agij (3.5)

DΥijk = −
3
2
AΥijk. (3.6)

This does not determine the connection uniquely — to have the uniqueness we need to specify what the torsion of D is.
We need some preparations to discuss it.

Definition 3.2. Let (g,Υ , A) be a representative of an irreducible GL(2,R) structure on a 5-dimensional manifold M5. A
coframe θ i, i = 0, 1, 2, 3, 4, onM5 is called adapted to the representative (g,Υ , A) if

g = gijθ iθ j = θ0θ4 − 4θ1θ3 + 3(θ2)2

and

Υ = Υijkθ
iθ jθ k = 3

√
3(θ0θ2θ4 + 2θ1θ2θ3 − (θ2)3 − θ0(θ3)2 − θ4(θ1)2).

Locally such a coframe always exists and is given up to a GL(2,R) transformation.
Let us now choose an adapted coframe θ i to a representative (g,Υ , A) of [g,Υ , A]. In this coframe equations (3.5)–(3.6)

can be rewritten in terms of the connection 1-forms Γ i j as

Γ l iglj + Γ
l
jgli = Agij (3.7)

Γ l iΥljk + Γ
l
jΥilk + Γ

l
kΥijl =

3
2
AΥijk. (3.8)

When we contract the first equation in indices i and jwe get

A =
2
5
Γ l l =

2
5
Tr(Γ ). (3.9)

Inserting this into (3.8) we get

Γ l iΥljk + Γ
l
jΥilk + Γ

l
kΥijl =

3
5
Γ l lΥijk. (3.10)

Comparing this with (2.4) we see that the general solution for the connection 1-forms Γ i j are given by (2.5), i.e.
Γ = Γ−E− + Γ+E+ + Γ0E0 + Γ1E1,

where (Γ−,Γ+,Γ0,Γ1) are four 1-forms onM5 such that

Γ1 = −
1
8
A. (3.11)

To fix the remaining three 1-forms (Γ−,Γ+,Γ1)we introduce an operator
Ῡ : co(3, 2)⊗ R5 → S4R5

defined by:

Ῡ (
W
Γ )ijkm = Υl(ij

W

Γ l km) −
1
5

W

Γ l l(mΥijk),

and analyse its kernel ker Ῡ .
Writing Eq. (3.10) in terms of the coefficients Γ l im ∈ gl(2,R) ⊗ R5 and symmetrising it over the indices {imjk}, we see

that the whole gl(2,R)⊗ R5 is included in ker Ῡ .
We use the metric to identify R5 with (R5)∗, and more generally to identify tensor spaces

⊗k
(R5)∗

⊗l R5 with⊗(k+l)
(R5)∗. This enables us to identify the objects with upper indices with the corresponding objects with lower indices,

e.g. Tijk = gilT l jk. Having in mind these identifications we easily see that, due to antisymmetry in last two indices, every
3-form Tijk = T[ijk] is included in ker Ῡ .
Thus we have:

gl(2,R)⊗ R5 ⊂ ker Ῡ ,∧3
R5 ⊂ ker Ῡ .

The following proposition can be checked by a direct calculation involving the explicit form of the gl(2,R) representation
given in (2.5), (2.6).
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Proposition 3.3. The vector space ker Ῡ has the following properties:

ker Ῡ = (gl(2,R)⊗ R5)⊕
∧3

R5

and

dim ker Ῡ = 30.

Now we interpret the condition
W
Γ l im ∈ ker Ῡ , i. e. the equation

Υl(ij

W

Γ l km) =
1
5

W

Γ l l(mΥijk), (3.12)

as a restriction on possible Weyl connections. Let us assume that we have a structure (M5, [g,Υ , A]) with the Weyl

connection coefficients
W
Γ l im satisfying (3.12). The coefficients

W
Γ l im are written in a coframe adapted to some choice

(g,Υ , A). It is easy to see, using (3.3) and contracting (3.12) over all the free indices with a vector field X i, that the restriction
on the Weyl connection (3.12) in coordinate-free language is equivalent to

(
W
∇XΥ )(X, X, X) = −

1
2
A(X)Υ (X, X, X). (3.13)

Here
W
∇ denotes the Weyl connection in the Koszul notation.

Definition 3.4. An irreducible GL(2,R) structure (M5, [g,Υ , A]) is called nearly integrable iff its Weyl connection
W
∇

associated to the class [g, A] satisfies (3.13).

3.1. Nearly integrable GL(2,R) structures

A nice feature of nearly integrable structures (M5, [g,Υ , A]) is that they define a unique gl(2,R)-valued connection Γ .
This follows from the above discussion about the kernel of Ῡ . Indeed, given a nearly integrable structure (M5, [g,Υ , A]) it is

enough to choose a representative (g,Υ , A) and to write the Eq. (3.13) for theWeyl connection
W
Γ in an adapted coframe θ i.

Then the uniquely givenWeyl connection coefficients
W
Γ ijk are by definition in ker Ῡ = (gl(2,R)⊗R5)⊕

∧3 R5, whichmeans
that they uniquely split ontoΓijk ∈ gl(2,R)⊗R5 and 12Tijk ∈

∧3 R5. Thus, for all nearly integrable structures (M5, [g,Υ , A]),
in a coframe adapted to (g,Υ , A), we have

W
Γ ijk = Γijk +

1
2
Tijk, (3.14)

and both Γijk ∈ gl(2,R) ⊗ R5 and Tijk ∈
∧3 R5 are uniquely determined in terms of

W
Γ ijk. Now we rewrite the torsion-free

condition (3.4) for the Weyl connection in the form

dθ i + Γ i j ∧ θ
j
=
1
2
T ijkθ

j
∧ θ k. (3.15)

It can be interpreted as follows: The nearly integrable structure (M5, [g,Υ , A]), via (3.14), uniquely determines the gl(2,R)-
valued connection Γijk which respects the structure [g,Υ , A] due to (3.5), (3.6), and has totally skew symmetric torsion Tijk
due to (3.15). We summarise this part of our considerations in the following

Proposition 3.5. Every nearly integrable GL(2,R) structure (M5, [g,Υ , A]) defines a unique gl(2,R)-valued connection which
has totally skew symmetric torsion.

Also the converse is true:

Proposition 3.6. Let (M5, [g,Υ , A]) be an irreducibleGL(2,R) structure and
W
Γ ijk be theWeyl connection coefficients associated,

in an adapted coframe θ i, with the Weyl structure [g, A]. Assume that the Weyl structure [g, A] admits a split
W
Γ ijk = Γijk +

1
2
Tijk,

in which Γijk ∈ gl(2,R) ⊗ R5 and Tijk ∈
∧3 R5. Then [g,Υ , A] is nearly integrable, the split is unique and Γij = Γijkθ

k is a
gl(2,R)-valued connection with the totally skew symmetric torsionΘi = 1

2Tijkθ
j
∧ θ k.

Definition 3.7. The unique gl(2,R)-valued connection with totally skew symmetric torsion naturally associated with a
nearly integrable structure (M5, [g,Υ , A]) is called the characteristic connection.
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3.2. Arbitrary GL(2,R) structures

So far we have only been able to introduce a unique gl(2,R)-valued connection for a nearly integrable (M5, [g,Υ , A]).
Nevertheless such a connection can be always introduced. To see this consider a GL(2,R)-invariant conformal pairing in
co(3, 2)⊗ R5 given by

(
W
Γ ,

W
Γ ′) = g ilg jmgkp

W
Γ ijk

W
Γ ′ lmp,

where
W
Γ ,

W
Γ ′∈ co(3, 2)⊗ R5. We use the orthogonal complement of ker Ῡ ⊂ co(3, 2)⊗ R5 with respect to this pairing:

ker Ῡ ⊥ = {
W
Γ ∈ co(3, 2)⊗ R5 s.t (ker Ῡ ,

W
Γ ) = 0}.

This vector space is 30-dimensional. It contains a 5-dimensional subspace spanned by gijAm, which is related to the R factor
in the split gl(2,R) = R⊕ sl(2,R) ⊂ co(3, 2) = R⊕ so(3, 2). Thus it is reasonable to consider the intersection, say V25, of
this 30-dimensional space with so(3, 2)⊗ R5. This 25-dimensional space

V25 = ker Ῡ ⊥ ∩ (so(3, 2)⊗ R5)

has, in turn, zero intersection with (gl(2,R) ⊗ R5) ⊕
∧3 R5 and provides the GL(2,R) invariant decomposition of

co(3, 2)⊗ R5:

co(3, 2)⊗ R5 = (gl(2,R)⊗ R5)⊕
∧3

R5 ⊕ V25.

Therefore, if we choose a coframe adapted to a representative (g,Υ , A) we can uniquely decompose the Weyl connection

coefficients
W
Γ ijk ∈ co(3, 2)⊗ R5 of our arbitrary GL(2,R) structure according to

W
Γ ijk = Γijk +

1
2
Bijk.

Now Γijk ∈ gl(2,R) ⊗ R5, and they are interpreted as new connection coefficients; the tensor Bijk belongs to
∧3 R5 ⊕ V25

and its antisymmetrisation Tijk = Bi[jk] is now interpreted as the torsion of Γ . Thus, every GL(2,R) structure (M5, [g,Υ , A])
uniquely defines a gl(2,R)-valued connection with torsion in

∧3 R5 ⊕ V25. The torsion is not totally skew anymore. Space
V25 further decomposes onto the GL(2,R)-irreducible components according to V25 =

⊙
5⊕

⊙
9⊕

⊙
11. The GL(2,R)

structures equippedwith the unique gl(2,R) connectionwhich has torsion in V25 find application in the theory of integrable
equations of the hydrodynamic type [14].

4. GL(2, R) bundle

First, we describe an irreducible GL(2,R) structure [g,Υ , A] onM5 in the language of principal bundles.
Every irreducible GL(2,R) structure [g,Υ , A] on a 5-manifold M5 defines the 9-dimensional bundle GL(2,R) → P →

M5, the GL(2,R) reduction of the bundle of linear frames GL(5,R)→ F(M5)→ M5. If [g,Υ , A] is equipped with a gl(2,R)
connection Γ , then the structural equations onM5 read

dωi + Γ i j ∧ ω
j
=
1
2
T i jkω

j
∧ ωk,

dΓ i j + Γ
i
k ∧ Γ

k
j =
1
2
Ri jklω

k
∧ ωl.

Here (ωi) is an adapted coframe and Γ = (Γ i j) is written in the representation (2.5). We lift these structural equations to
P obtaining:

dθ0 = 4(Γ1 + Γ0) ∧ θ0 − 4Γ+ ∧ θ1 +
1
2
T 0ijθ

i
∧ θ j,

dθ1 = −Γ− ∧ θ0 + (4Γ1 + 2Γ0) ∧ θ1 − 3Γ+ ∧ θ2 +
1
2
T 1ijθ

i
∧ θ j,

dθ2 = −2Γ− ∧ θ1 + 4Γ1 ∧ θ2 − 2Γ+ ∧ θ3 +
1
2
T 2ijθ

i
∧ θ j,

dθ3 = −3Γ− ∧ θ2 + (4Γ1 − 2Γ0) ∧ θ3 − Γ+ ∧ θ4 +
1
2
T 3ijθ

i
∧ θ j,

dθ4 = −4Γ− ∧ θ3 + 4(Γ1 − Γ0) ∧ θ4 +
1
2
T 4ijθ

i
∧ θ j, (4.1)
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dΓ+ = 2Γ0 ∧ Γ+ +
1
2
R+ijθ i ∧ θ j,

dΓ− = −2Γ0 ∧ Γ− +
1
2
R−ijθ i ∧ θ j,

dΓ0 = Γ+ ∧ Γ− +
1
2
R0ijθ i ∧ θ j,

dΓ1 =
1
2
R1ijθ i ∧ θ j,

with the forms θ i being the components of the canonical R5-valued form θ on P , c.f. [15]. In a coordinate system (x, a) on P ,
x ∈ M5, a ∈ GL(2,R), which is compatible with the local trivialisation P ∼= M5 × GL(2,R) they are given by

θ i(x, a) = (a−1)i jω
j(x).

The connection forms (Γ−,Γ+,Γ0,Γ1) are defined in terms of (2.6) via

Γ−(E−)i j + Γ+(E+)
i
j + Γ0(E0)

i
j + Γ1(E1)

i
j = (a

−1)i kΓ
k
l(x)a

l
j + (a

−1)i kda
k
j.

Note that (θ1, θ1, θ2, θ3, θ4,Γ−,Γ+,Γ0,Γ1) is a coframe on P and the class of 1-forms [A] lifts to a 1-form Ã = −8Γ1. By
some abuse of notation T and R denote torsion and curvature both onM5 and on P .
Second, we change the point of view. Suppose that we are given a nine dimensional manifold P equipped with a coframe

of nine 1-forms (θ0, θ1, θ2, θ3, θ4,Γ−,Γ+,Γ0,Γ1) on it. Suppose that these linearly independent forms, togetherwith some
functions T i jk, R

l
ijk, satisfy the system (4.1) on P . What we can say about such a 9-dimensional manifold P?

To answer this question consider a distribution h on P which annihilates the forms (θ0, θ1, θ2, θ3, θ4):

h = {X ∈ TP s.t. Xyθ i = 0, i = 0, 1, 2, 3, 4}.

Then the first five equations of the system (4.1) guarantee that the forms (θ0, θ1, θ2, θ3, θ4) satisfy the Fröbenius condition,

dθ i ∧ θ0 ∧ θ1 ∧ θ2 ∧ θ3 ∧ θ4 = 0, ∀ i = 0, 1, 2, 3, 4

and that, in turn, the distribution h is integrable. Thus manifold P is foliated by 4-dimensional leaves tangent to the
distribution h.
Now on P we consider two multilinear symmetric forms. The bilinear one, defined by

g̃ = θ0θ4 − 4θ1θ3 + 3(θ2)2, (4.2)

and the three-linear one given by

Υ̃ = 3
√
3(θ0θ2θ4 + 2θ1θ2θ3 − (θ2)3 − θ0(θ3)2 − θ4(θ1)2). (4.3)

Of course, since the 1-forms(Γ−,Γ+,Γ0,Γ1) are not present in the definitions (4.2) and (4.3), then g̃ and Υ̃ are
degenerate. For example, the signature of the bilinear form g̃ is (+,+,+,−,−, 0, 0, 0, 0). The degenerate directions
for these two forms are just the directions tangent to the leaves of the foliation generated by h. Let us denote by
(X0, X1, X2, X3, X4, X5, X6, X7, X8) the frame of vector fields on P dual to the 1-forms (θ0, θ1, θ2, θ3, θ4,Γ−,Γ+,Γ0,Γ1). In
particular (X5, X6, X7, X8) constitutes a basis for h, and we have Xµyθ i = 0 for eachµ = 5, 6, 7, 8 and i = 0, 1, 2, 3, 4. Using
this, and the exterior derivatives of θ i given in the first five Eqs. (4.1), we easily find the Lie derivatives of g̃ and Υ̃ along the
directions tangent to the leaves of h. These are:

LXµ g̃ = 8(XµyΓ1)g̃, LXµ Υ̃ = 12(XµyΓ1)Υ̃ , ∀µ = 5, 6, 7, 8.

Moreover, if we denote

Ã = −8Γ1, (4.4)

and we use the last of Eq. (4.1), we also find that

LXµ Ã = −8d(XµyΓ1), ∀µ = 5, 6, 7, 8.

This is enough to deduce that the objects (g̃, Υ̃ , Ã) descend to the 5-dimensional leaf space M5 = P/h. There they define
a conformal class of triples (g,Υ , A) with the transformation rules g → e2φg , Υ → e3φΥ , A → A − 2dφ. Due to the
fact that, when passing to the quotient M5 = P/h, we reduced the degenerate directions of g̃ and Υ̃ to points of M5,
the resulting descended triples (g,Υ , A) have non-degenerate g of signature (3, 2) and non-degenerate Υ . It is clear that
together with A they define an irreducible GL(2,R) structure onM5: a section s:M5 → P is an adapted coframe onM5, the
triple (s∗g̃, s∗Υ̃ , s∗Ã) is a representative of the structure, the forms s∗Γ−, s∗Γ+, s∗Γ0, s∗Γ1 are gl(2,R) connection 1-forms
onM5 and s∗T , s∗R are torsion and curvature of this connection, respectively. We have the following

Proposition 4.1. Every 9-dimensional manifold P equipped with nine 1-forms (θ0, θ1, θ2, θ3, θ4,Γ−,Γ+,Γ0,Γ1) which
• are linearly independent at every point of P,
• satisfy system (4.1) with some functions T i jk, R

i
jkl on P,
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is foliated by 4-dimensional leaves over a 5-dimensional space M5, which is the base for the fibration P → M5. The manifold M5
is equipped with a natural irreducible GL(2,R) structure [g,Υ , A] and a gl(2,R) connection compatible with it. The torsion and
the curvature of this connection is given by T i jk and R

i
jkl.

5. Torsion and curvature of characteristic connection

5.1. Torsion

Let (M5, [g,Υ , A]) be a nearly integrable GL(2,R) structure and let Γ be its characteristic connection. Then the GL(2,R)
invariant information about (M5, [g,Υ , A]) is encoded in its totally skew symmetric torsion Θi = 1

2Tijkθ
i
∧ θ k and its

curvature

Ωij =
1
2
Rijklθ k ∧ θ l = dΓij + Γik ∧ Γ kj.

The spaces
∧3 R5 and gl(2,R)⊗

∧2 R5 are reducible under the action of GL(2,R). Their decompositions into the GL(2,R)
irreducible components may be used to classify the torsion types, in the case of

∧3 R5, and the curvature types, in the
case of gl(2,R) ⊗

∧2 R5. In particular, to decompose
∧3 R5 we use the Hodge star operation associated with one of the

metrics g from the class [g,Υ , A]. This identifies
∧3 R5 with

∧2 R5. The GL(2,R) invariant decomposition of
∧3 R5 is then

transformed to the decomposition of
∧2 R5. This is achieved in terms of the operator

Yijkl = 4ΥijmΥklpgmp.

This, viewed as an endomorphism of
⊗2 R5 given by

Y (w)ik = gmjgplYijklwmp,

has the following eigenspaces:⊙
1
=

{
S ∈

⊗2
R5 | Y (S) = 14 · S

}
= {S = λ · g, λ ∈ R} ,∧

3
=

{
F ∈

⊗2
R5 | Y (F) = 7 · F

}
= sl(2,R),⊙

5
=

{
S ∈

⊗2
R5 | Y (S) = −3 · S

}
,∧

7
=

{
F ∈

⊗2
R5 | Y (F) = −8 · F

}
,⊙

9
=

{
S ∈

⊗2
R5 | Y (S) = 4 · S

}
.

Here the index k in
⊙
k or

∧
k denotes the dimension of the eigenspace.

The decomposition⊗2
R5 =

⊙
1
⊕

⊙
5
⊕

⊙
9
⊕

∧
3
⊕

∧
7

(5.1)

is GL(2,R) invariant. All the components in this decomposition are GL(2,R)-irreducible. We have the following

Proposition 5.1. Under the action of GL(2,R) the irreducible components of
∧3 R5 = ∗

∧2 R5 are∧3
R5 =

∧
3
⊕

∧
7
.

At this stage an interesting question arises: Can we give examples of nearly integrable GL(2,R) structures whose
characteristic connection has torsion of a ‘pure’ type Tijk ∈

∧
3?

In Section 6 we give an affirmative answer to this question. Here we only state a useful

Lemma 5.2. The 3-dimensional vector space
∧
3, when expressed in terms of an adapted coframe θ

i of Definition 3.2 is∧
3
= SpanR

{
θ0 ∧ θ3 − 3θ1 ∧ θ2, θ0 ∧ θ4 − 2θ1 ∧ θ3, θ1 ∧ θ4 − 3θ2 ∧ θ3

}
.

Similarly, in an adapted coframe θ i, the Hodge dual ∗
∧
3 of

∧
3 is

∗

∧
3
= SpanR

{
−θ0 ∧ θ1 ∧ θ4 + 2θ0 ∧ θ2 ∧ θ3,−θ0 ∧ θ2 ∧ θ4 + 8θ1 ∧ θ2 ∧ θ3,−θ0∧ θ3∧ θ4 + 2θ1 ∧ θ2 ∧ θ4

}
.

In particular, torsion T i jk of the characteristic connection Γ in system (3.15) is of pure type in
∧
3 if and only if, in an adapted

coframe θ i, we have gilT l jk = T[ijk], and its corresponding 3-form T =
1
6gilT

l
jkθ
i
∧ θ j ∧ θ k ∈ ∗

∧
3.
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5.2. Curvature

Now we turn to analysis of curvature. The curvature tensor Ri jkl of a characteristic connection
3 defines the following

objects:
Rij = Rk ikj the Ricci tensor,

R = Rijg ij the Ricci scalar,

Riv = Υ
ijkRjk the Ricci vector,

(dA)ij =
2
5
Rk kij the Maxwell 2-form.

The Ricci tensor belongs to the space
⊗2 R5 and decomposes according to (5.1). The Ricci symmetric tensor reads

R(ij) =
1
5
Rgij +

2
7
RkvΥijk + R

(9)
ij , (5.2)

where 15Rgij is its
⊙
1 part,

2
7R
k
vΥijk is its

⊙
5 part and R

(9)
ij is its

⊙
9 part defined by (5.2). The antisymmetric Ricci tensor

decomposes into

R[ij] = R
(3)
ij + R

(7)
ij

with the respective
∧
3 and

∧
7 components given by

R(3)ij =
8
15
R[ij] +

1
15
Y (R[ ])ij,

R(7)ij =
7
15
R[ij] −

1
15
Y (R[ ])ij.

Here Y (R[ ]) denotes the value of the operator Y on R[ij]. Likewise, for the Maxwell form we have

(dA)ij = dA
(3)
ij + dA

(7)
ij

and

dA(3)ij =
8
15
(dA)ij +

1
15
Y (dA)ij,

dA(7)ij =
7
15
(dA)ij −

1
15
Y (dA)ij.

The Ricci tensor and and the Maxwell 2-form have 25 + 10 = 35 coefficients out of total number of 40 coefficients of the
curvature. Since, c.f. [16],

gl(2,R)⊗
∧2

R5 =
⊙

1
⊕2

∧
3
⊕2

⊙
5
⊕2

∧
7
⊕

⊙
9
,

the remaining 5 parameters are related to the coefficients of a vector field Km, which is independent of the Ricci tensor. It is
defined in terms of the totally skew symmetric part of the curvature. Using the volume form ηijklm, we have

Km = Rijklηijklm,
and the so defined Km yields the missing five components of the curvature. Thus we have the following

Proposition 5.3. The irreducible components of the curvature Rijkl of a characteristic connection are given by

R, Riv, R(9)ij , R(3)ij , R(7)ij , dA(3)ij , dA(7)ij , K i.

5.3. Curvature of characteristic connection with torsion of type
∧
3

It is interesting to ask what is the decomposition of the curvature if the characteristic connection has torsion in the
three-dimensional representation

∧
3. It appears that it has a very special algebraic form. Its properties are summarised in:

Theorem 5.4. Let Γ be a characteristic connection with torsion in
∧
3. Then

• The Ricci tensor component R(9)ij = 0, which means that

R(ij) =
1
5
Rgij +

2
7
RkvΥijk.

• The skew symmetric Ricci tensor and the Maxwell 2-form are related by

dA(3) = 4R(3), dA(7) =
2
3
R(7).

3 Results of this section are also valid for an arbitrary gl(2,R) connection.
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• The Ricci vector Rv is fully determined by T :

Riv = (40)
2(∗T )jk(∗T )lmgklΥ jmi.

Thus, the curvature is fully described by tensors T , dA, K and the scalar R.

Theorem 5.4 is implied by the following more detailed result.

Theorem 5.5. Let M5 be a nearly integrable GL(2,R) geometry such that torsion of the characteristic connection belongs to
∧
3.

Let GL(2,R)→ P → M5 be the reduction of the frame bundle defined by the geometry. Then:
(1) First structural equations for the characteristic connection on P are the following:

dθ0 = 4(Γ1 + Γ0) ∧ θ0 − 4Γ+ ∧ θ1 −
1
3
t1θ0 ∧ θ1 −

1
3
t2θ0 ∧ θ2 − t3θ0 ∧ θ3 + 2t3θ1 ∧ θ2,

dθ1 = −Γ− ∧ θ0 + (4Γ1 + 2Γ0) ∧ θ1 − 3Γ+ ∧ θ2 −
1
6
t1θ0 ∧ θ2 −

1
4
t3θ0 ∧ θ4 −

2
3
t2θ1 ∧ θ2,

dθ2 = −2Γ− ∧ θ1 + 4Γ1 ∧ θ2 − 2Γ+ ∧ θ3 −
1
9
t1θ0 ∧ θ3 +

1
18
t2θ0 ∧ θ4 −

4
9
t2θ1 ∧ θ3 −

1
3
t3θ1 ∧ θ4,

dθ3 = −3Γ− ∧ θ2 + (4Γ1 − 2Γ0) ∧ θ3 − Γ+ ∧ θ4 +
1
12
t1θ0 ∧ θ4 −

2
3
t2θ2 ∧ θ3 −

1
2
t3θ2 ∧ θ4,

dθ4 = −4Γ− ∧ θ3 + 4(Γ1 − Γ0) ∧ θ4 −
1
3
t1θ1 ∧ θ4 +

2
3
t1θ2 ∧ θ3 −

1
3
t2θ2 ∧ θ4 − t3θ3 ∧ θ4,

where t1, t2 and t3 are coefficients of the torsion.
(2) Second structural equations on P are the following:

dΓ+ = 2Γ0 ∧ Γ+ +
(
1
6
b2 −

1
81
t21 +

5
3
f5

)
θ0 ∧ θ1 +

(
−
2
81
t1t2 −

10
3
f4 +

5
12
b3

)
θ0 ∧ θ2

+

(
−
1
243
t22 −

1
162
t1t3 +

10
3
f3 −

1
30
R+ b4 −

1
4
a2

)
θ0 ∧ θ3

+

(
1
54
t2t3 −

1
8
a3 −

5
3
f2 +

1
12
b5

)
θ0 ∧ θ4

+

(
−
1
27
t22 −

1
18
t1t3 +

1
10
R+ 2b4 +

3
4
a2

)
θ1 ∧ θ2

+

(
−
1
9
t2t3 +

1
4
a3 +

2
3
b5

)
θ1 ∧ θ3 +

(
1
18
t23 +

5
3
f1 +

1
6
b6

)
θ1 ∧ θ4

+

(
−
5
18
t23 −

10
3
f1 +

1
3
b6

)
θ2 ∧ θ3 +

1
4
b7θ2 ∧ θ4,

dΓ− = −2Γ0 ∧ Γ− +
1
4
b1θ0 ∧ θ2 +

(
1
6
b2 −

1
162
t21 −

5
3
f5

)
θ0 ∧ θ3

+

(
−
1
162
t1t2 +

5
3
f4 +

1
12
b3 −

1
8
a1

)
θ0 ∧ θ4

+

(
5
162
t21 +

1
3
b2 +

10
3
f5

)
θ1 ∧ θ2 +

(
1
27
t1t2 +

2
3
b3 +

1
4
a1

)
θ1 ∧ θ3

+

(
b4 −

1
4
a2 +

1
162
t1t3 +

1
243
t22 −

10
3
f3 +

1
30
R
)
θ1 ∧ θ4

+

(
1
27
t22 +

1
18
t1t3 −

1
10
R+ 2b4 +

3
4
a2

)
θ2 ∧ θ3

+

(
2
27
t2t3 +

10
3
f2 +

5
12
b5

)
θ2 ∧ θ4 +

(
1
9
t23 −

5
3
f1 +

1
6
b6

)
θ3 ∧ θ4

dΓ0 = Γ+ ∧ Γ− −
1
4
b1θ0 ∧ θ1 +

(
−
1
6
b2 −

1
162
t21 +

5
6
f5

)
θ0 ∧ θ2 +

(
−
1
54
t1t2 −

1
12
b3 +

1
8
a1

)
θ0 ∧ θ3

−

(
1
81
t1t3 +

2
243
t22 +

5
6
f3 +

1
60
R
)
θ0 ∧ θ4 +

(
1
162
t1t2 −

20
3
f4 −

1
6
b3 −

3
8
a1

)
θ1 ∧ θ2

+

(
−
1
81
t1t3 −

2
243
t22 +

20
3
f3 +

1
30
R
)
θ1 ∧ θ3 +

(
−
1
18
t2t3 −

1
8
a3 +

1
12
b5

)
θ1 ∧ θ4

+

(
1
54
t2t3 +

3
8
a3 −

20
3
f2 +

1
6
b5

)
θ2 ∧ θ3 +

(
−
1
18
t23 +

5
6
f1 +

1
6
b6

)
θ2 ∧ θ4 +

1
4
b7θ3 ∧ θ4,
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dΓ1 = −
1
8
b1θ0 ∧ θ1 −

1
8
b2θ0 ∧ θ2 −

1
8
(b3 + a1) θ0 ∧ θ3 −

1
8
(b4 + a2) θ0 ∧ θ4 +

(
3
8
a1 −

1
4
b3

)
θ1 ∧ θ2

+

(
1
4
a2 − b4

)
θ1 ∧ θ3 −

1
8
(a3 + b5) θ1 ∧ θ4 +

(
3
8
a3 −

1
4
b5

)
θ2 ∧ θ3 −

1
8
b6θ2 ∧ θ4−

1
8
b7θ3 ∧ θ4.

(3) Functions t1, t2, t3, a1, a2, a3, b1, b2, b3, b4, b5, b6, b7, f1, f2, f3, f4, f5 and R above have the following properties.
(a) R is the Ricci scalar of the connection.
(b) The irreducible component dA(3) is given by

dA(3) =


0 0 0 a1 a2
0 0 −3a1 −2a2 a3
0 3a1 0 −3a3 0
−a1 2a2 3a3 0 0
−a2 −a3 0 0 0

 .
(c) The irreducible component dA(7) is given by

dA(7) =


0 b1 b2 b3 b4
−b1 0 2b3 8b4 b5
−b2 −2b3 0 2b5 b6
−b3 −8b4 −2b5 0 b7
−b4 −b5 −b6 −b7 0

 .
(d) The irreducible component K is given by

K =

√
3
3

(
f1 f2 f3 f4 f5

)T
.

(e) The Ricci vector is given by

Riv =
7
6

√
3
(
t23 , −

1
3
t2t3,

1
9
t1t3 +

2
27
t22 , −

1
9
t1t2,

1
9
t21

)
.

(4) All the components of the curvature but R are determined by the differentials of torsion:

dt1 = 2t2Γ− − 2t1Γ0 − 4t1Γ1 +
3
2
b1θ0 +

(
2b2 −

4
27
t21 + 20f5

)
θ1 +

(
−
4
9
t1t2 − 60f4 + 3b3 −

9
2
a1

)
θ2

+

(
−
4
9
t1t3 −

8
27
t22 + 60f3 + 6b4 − 9a2

)
θ3 +

(
−
4
9
t2t3 −

9
2
a3 − 20f2 +

1
2
b5

)
θ4,

dt2 = 3t3Γ− + t1Γ+ − 4t2Γ1 +
(
1
2
b2 +

2
27
t21 − 10f5

)
θ0

+

(
4
27
t1t2 + 20f4 + 2b3 +

9
2
a1

)
θ1 + 9 (a2 + b4) θ2

+

(
−
4
9
t2t3 +

9
2
a3 − 20f2 + 2b5

)
θ3 +

(
−
2
3
t23 + 10f1 +

1
2
b6

)
θ4,

dt3 = 2t3Γ0 +
2
3
t2Γ+ − 4t3Γ1 +

(
4
81
t1t2 +

20
3
f4 +

1
6
b3 −

3
2
a1

)
θ0

+

(
4
27
t1t3 +

8
81
t22 − 20f3 + 2b4 − 3a2

)
θ1

+

(
4
9
t2t3 −

3
2
a3 + 20f2 + b5

)
θ2 +

(
4
9
t23 −

20
3
f1 +

2
3
b6

)
θ3 +

1
2
b7θ4.

Proof. Let indices i, j, k, l run through {0, 1, 2, 3, 4}, index A run through {−, 0,+, 1} and µ run through {1, 2, 3}.
The structural equations for an arbitrary gl(2,R)-connection on P are given by Eqs. (4.1). Torsion Tijk in

∧
3 on P is given

by (see Lemma 5.2)

T =
1
12
t1(−θ0 ∧ θ1 ∧ θ4 + 2θ0 ∧ θ2 ∧ θ3)+

1
12
t2(−θ0 ∧ θ2 ∧ θ4 + 8θ1 ∧ θ2 ∧ θ3)

+
1
4
t3(−θ0 ∧ θ3 ∧ θ4 + 2θ1 ∧ θ2 ∧ θ4),

and we obtain (1) by putting T i jk = Tljkg
li into Eqs. (4.1).

In order to obtain (2), (3) and (4) we must close first Bianchi identities, that is solve equations d2θ i = 0 with respect to
torsion coefficients tµ, curvature coefficients RAij (defined by (4.1)) and derivatives of torsion. We denote

dtµ =
∑
A

t Aµ ΓA +
∑
i

tµiθ i.
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Next we calculate the exterior derivatives d2θ i ≡ 0 and insert in them the formulae for dtµ, and the formulae for dΓA given
by four last Eqs. (4.1). In this manner first Bianchi identities become a set of partial differential equations involving tµ, t Aµ ,
tµi and RAkl. These equations are linear in t Aµ and tµi, all of which we eliminate from the equations and express as functions
of tµ and RAij. However, after the elimination there are still many unsolved equations, which now are algebraic in RAij and tµ.
We solve them with respect to RAij (due to the fact that most of them are linear with respect to curvature coefficients) and
we obtain that only 21 out of 40 functions RAij do not vanish. Among these 21 there are 5 which are quadratic functions of
tµ and remaining 16 are functionally independent of tµ.
We decompose the so-obtained curvature into the irreducible components of Proposition 5.3. We notice that (i) onemay

choose a base a1, a2, a3, b1, b2, b3, b4, b5, b6, b7, f1, f2, f3, f4 and f5 for 16 the functionally independent curvature coefficients so
that (3a)–3(d) hold, and (ii) five curvature coefficients which are quadratic functions of torsion constitute the Ricci vector as
in (3e). But in this notation second structural equations become (2) and expressions for torsion coefficients are as in (4). �

Theorem 5.4 follows immediately from the structural equations of Theorem 5.5. We can also express the Ricci tensor
(Ric)i j = g

ikRkj in terms of the endomorphisms E−, E0, E+, E1 of (2.5):

Corollary 5.6. The Ricci tensor of a characteristic connection with torsion in
∧
3 has the following form in any adapted coframe

Ric =
(
1
54
t22 +

1
36
t1t3 −

1
20
R
)
E1 +

1
8
b1E3− +

1
108
t21E

2
−

+

(
−
1
54
t1t2 +

1
8
a1 −

1
2
b3

)
E− +

5
16
b4E30 +

(
1
108
t22 +

1
72
t1t3

)
E20

+

(
1
8
a2 −

17
4
b4

)
E0 −

1
8
b7E3+ +

1
12
t23E

2
+
+

(
1
2
b5 −

1
8
a3 −

1
18
t2t3

)
E+

−
5
32
b5E0E+E0 +

1
8
b6E+E0E+ +

1
54
t1t2E0E− +

5
32
b3E0E−E0 +

1
8
b2E−E0E− −

1
18
t2t3E0E+.

6. 5th order ODE as nearly integrable GL(2, R) geometry with ‘small’ torsion. Main theorem

A large number of examples of nearly integrable GL(2,R) structures in dimension five is related to 5th order ODEs. This
is mainly due to the following, well known,

Proposition 6.1. An ordinary differential equation y(5) = 0 has GL(2,R)×ρ5 R5 as its group of contact symmetries. Here
ρ5 : GL(2,R)→ GL(5,R) is the 5-dimensional irreducible representation of GL(2,R).

To explain the above statement we consider a general 5th order ODE

y(5) = F(x, y, y′, y′′, y(3), y(4)) (6.1)

for a real function R 3 x 7→ y(x) ∈ R. Let us introduce the notation y1 = y′, y2 = y′′, y3 = y(3), y4 = y(4) and Fi = ∂F
∂yi
,

i = 1, 2, 3, 4, Fy = ∂F
∂y . The functions (x, y, y1, y2, y3, y4) form a local coordinate system in the 4-order jet space J of curves

in R2. Define the total derivative, which is a vector field in J

D = ∂x + y1∂y + y2∂y1 + y3∂y2 + y4∂y3 + F∂y4 . (6.2)

With the help ofD the derivatives are given by formulae y1 = Dy/Dx, y2 = Dy1/Dx and so on, up to y5 = Dy4/Dx.
A contact transformation of variables in a 5-order ODE is a transformation that mixes the independent variable x, the

dependent variable y and the first derivative y1 in such a way that the meaning of the first derivative is retained:

Definition 6.2. A contact transformation of variables is an invertible, sufficiently smooth transformation of the form( x
y
y1

)
7→

( x̄
ȳ
ȳ1

)
=

( x̄(x, y, y1)
ȳ(x, y, y1)
ȳ1(x, y, y1)

)
(6.3)

satisfying the condition

ȳ1 =
D ȳ
D x̄

. (preservation of first derivative)

The higher order derivatives are given by the iterative formula

yn+1 7→ ȳn+1 =
D ȳn
D x̄

, i = 1, 2, 3, 4.
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Let us now consider the equation y(5) = 0. We show how the flat torsion-free 5-dimensional irreducible GL(2,R)
structure is naturally generated on its space of solutions by means of the symmetry group. A solution to y(5) = 0 is of
the form

y(x) = c4x4 + 4c3x3 + 6c2x2 + 4c1x+ c0 (6.4)

with five integration constants c0, c1, c2, c3, c4. Then a solution of y(5) = 0 may be identified with a point c =
(c0, c1, c2, c3, c4)T in R5. A contact symmetry of y(5) = 0 is a contact transformation of variables that transforms its
solutions into solutions. The group of contact symmetries of y(5) = 0 is generated by the following one-parameter groups
of transformations on the xy-plane:

ϕ0t (x, y) = (x, y+ t), ϕ1t (x, y) = (x, y+ 4xt),

ϕ2t (x, y) = (x, y+ 6x
2t), ϕ3t (x, y) = (x, y+ 4x

3t),

ϕ4t (x, y) = (x, y+ x
4t), ϕ5t (x, y) = (xe

2t , ye4t),

ϕ6t (x, y) = (x, ye
4t), ϕ7t (x, y) = (x+ t, y),

ϕ8t (x, y) =
(

x
1+ xt

,
y

(1+ xt)4

)
and the transformation rules for y1 are given by ϕA(y1) = D(ϕA(y))/D(ϕA(x)), A = 0, . . . , 8.
Transforming (6.4) according to the above formulae we find that ϕ0t , . . . , ϕ

4
t are translations in the space of solutions:

ϕ0t (c) = (c0 − t, c1, c2, c3, c4)
T , . . . , ϕ4t (c) = (c0, c1, c2, c3, c4 − t)

T ,

while transformations ϕ5t , . . . , ϕ
8
t generate GL(2,R) and act through the 5-dimensional irreducible representation (2.6):

ϕ5t (c) = exp(tE0)c, ϕ6t (c) = exp(tE1)c,

ϕ7t (c) = exp(tE+)c, ϕ8t (c) = exp(tE−)c.

Of course,GL(2,R) stabilises the origin (0, 0, 0, 0, 0) inR5, thus the space of solutions is the homogeneous spaceGL(2,R)→
GL(2,R)×ρ5 R5 → R5. The total space of this bundle is equipped with the Maurer–Cartan form ωMC of GL(2,R)×ρ5 R5.
Choosing an appropriate base in gl(2,R) and writing explicitly the structural equations dωMC + ωMC ∧ ωMC = 0 we get

dθ0 = 4(Γ1 + Γ0) ∧ θ0 − 4Γ+ ∧ θ1,
dθ1 = −Γ− ∧ θ0 + (4Γ1 + 2Γ0) ∧ θ1 − 3Γ+ ∧ θ2,
dθ2 = −2Γ− ∧ θ1 + 4Γ1 ∧ θ2 − 2Γ+ ∧ θ3,
dθ3 = −3Γ− ∧ θ2 + (4Γ1 − 2Γ0) ∧ θ3 − Γ+ ∧ θ4,
dθ4 = −4Γ− ∧ θ3 + 4(Γ1 − Γ0) ∧ θ4,
dΓ+ = 2Γ0 ∧ Γ+,
dΓ− = −2Γ0 ∧ Γ−,
dΓ0 = Γ+ ∧ Γ−,
dΓ1 = 0,

which is the system (4.1) with all the torsion and curvature coefficients equal to zero. According to Proposition 4.1 it yields a
flat and torsion-free irreducible GL(2,R) structure on the space of solutions of y(5) = 0. Again, as in the case of the algebraic
geometric realisation of Section 2, we learned about that from Ferapontow [13].
We now pass to a more general situation, namely to the Eq. (6.1) with a general F . The following questions are in order:
What shall one assume about F to be able to construct an irreducible GL(2,R) structure on the solution space of the

corresponding ODE? Is the case F = 0 very special, or there are other ODEs, contact nonequivalent to the F = 0 case, which
define a GL(2,R) geometry on the solution space? If the answer is affirmative, how do we find such Fs and what can we say
about the corresponding GL(2,R) structures?
The answer to these questions is given by the following

Theorem 6.3 (Main Theorem). Every contact equivalence class of 5th order ODEs satisfying the Wünschmann conditions

50D2F4 − 75DF3 + 50F2 − 60F4DF4 + 30F3F4 + 8F 34 = 0,

375D2F3 − 1000DF2 + 350DF 24 + 1250F1 − 650F3DF4 + 200F
2
3

−150F4DF3 + 200F2F4 − 140F 24DF4 + 130F3F
2
4 + 14F

4
4 = 0, (6.5)

1250D2F2 − 6250DF1 + 1750DF3DF4 − 2750F2DF4 − 875F3DF3 + 1250F2F3 − 500F4DF2 + 700(DF4)2F4
+1250F1F4− 1050F3F4DF4 +350F 23 F4 −350F

2
4DF3 + 550F2F

2
4 −280F

3
4DF4 + 210F3F

3
4 + 28F

5
4 +18750Fy = 0
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defines a nearly integrable irreducible GL(2,R) geometry (M5, [g,Υ , A]) on the space M5 of its solutions. This geometry has
the characteristic connection with torsion T of the ‘pure’ type in the 3-dimensional irreducible representation

∧
3. Properties of

curvature and structural equations of this geometry are given by Theorems 5.4 and 5.5, with the torsion coefficients given by

t3 =
6(α55)

2

5α11
F44,

t2 =
9α55
50(α11)2

(
α11(10DF44 + 3F4F44)+ 5α

1
0F44

)
,

t1 =
1

1000(α11)3

(
225(α10)

2F44 + 90α10α
1
1(10DF44 + 3F4F44)

− 9(α11)
2(20(5DF34 + 20F24 − 15F33 + 3F4DF44 − 11F4F34)+ F44(−120DF4 + 340F3 + 51F 24 ))),

where (y, y1, y2, y3, y4, x, α11, α
1
0, α

5
5) is a local coordinate system on GL(2,R)→ P → M5.

Before presenting the proof let us notice several facts.
The theorem guarantees that every equivalence class of ODEs satisfying conditions (6.5) has its corresponding nearly

integrable GL(2,R) geometry (M5, [g,Υ , A]) with torsion in
∧
3. It may happen, however, that there are contact non-

equivalent classes of ODEs defining the same GL(2,R) geometries. (See also Remark 6.8).
The Wünschmann conditions, although very complicated, possess nontrivial solutions. For example the equation

y(5) = c
(5y(3)3(5− 27cy′′2)

9(1+ cy′′2)2
+ 10

y′′y(3)y(4)

1+ cy′′2
)
,

where c = ±1 satisfies theWünschmann conditions and is not contact equivalent to F = 0. Other examples are considered
in Section 7.
Of course, since the geometry is constructed from an ODE determined by the choice of F = F(x, y, y1, y2, y3, y4), the

coefficients a1, . . . , a3, b1, . . . , b7, R are expressible in terms of F and its derivatives. Given the connection of Theorem 6.3
we calculated the explicit formulae for these coefficients and obtained the following

Corollary 6.4. A GL(2,R) geometry generated by a 5th order ODE satisfying Wünschmann conditions (6.5) has the following
properties.
The torsion T vanishes iff

F44 = 0.

The 2-form dA(3) vanishes iff

(DF4)34 − (DF3)44 −
3
5
(DF4)4F44 −

4
5

DF4F444 +
6
25
F 244F4 +

4
25
F 24 F444

+
3
10
F34F44 −

1
5
F4F344 +

3
5
F3F444 + F244 −

1
2
F433 = 0.

The 2-form dA(7) vanishes iff

F444 = 0.

The Ricci vector Rv is aligned with the vector K , i.e. K = uRv, u ∈ R, iff

(DF4)44 −
1
2
F344 −

2
5
F4F444 −

8
15
F 244 + 7uF

2
44 = 0.

We skip writing the formula for the Ricci scalar since it is very complicated.
We now pass to the proof of Theorem 6.3. On doing this wewill apply a variant of the Cartanmethod of equivalence. This

will be a rather long and complicated procedure. Thus, for clarity of the presentation, we will divide the proof into three
main steps, each of which will occupy its own respective Sections 6.1–6.3. First, in Section 6.1 we will prove Lemma 6.5,
which assures that a class of contact equivalent 5th order ODEs is a G-structure on a 4-order jet space J . Thus, we will
have a bundle G → J × G → J , a reduction of the frame bundle F(J). In the second step, in Section 6.2, we will use the
Cartan method of equivalence in order to construct a submanifold P ⊂ J × G together with a coframe on P which fulfills
the requirements of Proposition 4.1. This coframe, via Proposition 4.1, will define an irreducible GL(2,R) structure for us
and simultaneously will provide us with a gl(2,R) connection on the space of solutions of the ODE. The obstructions for an
ODE to possess this structure, Wünschmann’s expressions for F , will appear automatically in the course of the construction.
This part of considerations is summarised in Theorem 6.6. The GL(2,R) structure obtained in this way will turn out to be
nearly integrable, but the connection constructed will differ from the characteristic one. Therefore, in Section 6.3, we will
construct the characteristic connection associated with the GL(2,R) structure obtained. This will have torsion in

∧
3. This

construction is described by Lemma 6.7.
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6.1. 5th order ODE modulo contact transformations

Let us consider a general 5th order ODE (6.1). We define the following coframe

ω0 = dy− y1dx,
ω1 = dy1 − y2dx,

ω2 = dy2 − y3dx, (6.6)
ω3 = dy3 − y4dx,
ω4 = dy4 − F(x, y, y1, y2, y3, y4)dx,
ω+ = dx

on J . We see that every solution of (6.1) is a curve c(x) = (x, y(x), y1(x), y2(x), y3(x), y4(x)) ⊂ J and the vector fieldD on J
has curves c(x) as the integral curves. The 1-forms (ω0, ω1, ω2, ω3, ω4) annihilateD whereasDyω+ = 1. The 5-dimensional
spaceM5 of integral curves ofD is clearly the space of solutions of (6.1) and we have a fibration R→ J → M5.
Suppose now, that Eq. (6.1) undergoes a contact transformation (6.3), which brings it to ȳ5 = F̄(x̄, ȳ, ȳ1, ȳ2, ȳ3, ȳ4). Then

the coframe transforms according to
ω0

ω1

ω2

ω3

ω4

ω+

 7→

ω̄0

ω̄1

ω̄2

ω̄3

ω̄4

ω̄+

 =

α00 0 0 0 0 0
α10 α11 0 0 0 0
α20 α21 α22 0 0 0
α30 α31 α32 α33 0 0
α40 α41 α42 α43 α44 0
α50 α51 0 0 0 α55




ω0

ω1

ω2

ω3

ω4

ω+

 . (6.7)

Hereαi j, i, j = 0, 1, 2, 3, 4, 5, are real functions on J defined by the formulae (6.3). They satisfy the nondegeneracy condition

α00α
1
1α
2
2α
3
3α
4
4α
5
5 6= 0.

The transformed coframe encodes all the contact invariant information about the ODE. In particular, it preserves the simple
ideal (ω0, . . . , ω4), from which we can recover solutions of the transformed equation. Hence we have

Lemma 6.5. A 5th order ODE y5 = F(x, y, y1, y2, y3, y4) consideredmodulo contact transformations of variables is a G-structure
on the 4-jet space J, such that the coframe (ω0, ω1, ω2, ω3, ω4, ω+) of (6.6) belongs to it and the group G is given by the matrix
in (6.7).

6.2. GL(2,R) bundle over space of solutions

Using the Cartan method we explicitly construct a submanifold P ⊂ J × G and a coframe (θ0, θ1, θ2, θ3, θ4,Γ−,Γ+,Γ0,
Γ1) on P satisfying Proposition 4.1. This part of the proof is divided into eight steps.
Step (1)We observe that there is a natural choice for the forms (θ0, θ1, θ2, θ3, θ4) of the coframe. Since we are going to
build a GL(2,R) structure on the space of solutions, P must be a bundle over M5, and the forms (θ0, θ1, θ2, θ3, θ4) must
annihilate vectors tangent to leaves of the projection P → M5. But on J × G there are six distinguished 1-forms given
by 

θ0

θ1

θ2

θ3

θ4

θ+

 =

α00ω

0

α10ω
0
+ α11ω

1

α20ω
0
+ α21ω

1
+ α22ω

2

α30ω
0
+ α31ω

1
+ α32ω

2
+ α33ω

3

α40ω
0
+ α41ω

1
+ α42ω

2
+ α43ω

3
+ α44ω

4

α50ω0 + α
5
1ω
1
+ α55ω+

 . (6.8)

These forms are the components of the canonical R6 valued 1-form on J × G. Five among these forms, θ0, θ1, θ2, θ3, θ4
also annihilate vectors tangent to the projection J × G → M5. We choose them to be the members of the sought coframe
(θ0, θ1, θ2, θ3, θ4,Γ−,Γ+,Γ0,Γ1). Now we must construct a 9-dimensional submanifold P on which θ i satisfy Eq. (4.1)
with some linearly independent forms Γ−,Γ+,Γ0,Γ1.
Step (2)We calculate dθ0 and get

dθ0 =
(
dα00
α00
−

α10

α11α
5
5
θ+

)
∧ θ0 +

α00

α11α
5
5
θ+ ∧ θ

1
−

α50

α11α
5
5
θ0 ∧ θ1.
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For this equation to match (4.1) we define

Γ+ = θ+ (6.9)

4(Γ1 + Γ0) =
dα00
α00
−

α10

α11α
5
5
θ+ mod θ i, (6.10)

with yet unspecified θ i terms in (6.10), and set

α00 = −4α
1
1α
5
5 (6.11)

to get−4 coefficient in the Γ+ ∧ θ1 term. Thereby

dθ0 = 4(Γ1 + Γ0) ∧ θ0 − 4Γ+ ∧ θ1 mod θ i ∧ θ j

on the 23-dimensional subbundle of J × G → M5 given by (6.11). We see that the form θ+ plays naturally the role of the
connection 1-form Γ+.
Step (3)We calculate dθ1 on the 23-dimensional bundle. In order to get

dθ1 = −Γ− ∧ θ0 + (4Γ1 + 2Γ0) ∧ θ1 − 3Γ+ ∧ θ2 mod θ i ∧ θ j

we set

4Γ1 + 2Γ0 =
dα11
α11
+
α10α

2
2 − α

1
1α
2
1

α11α
2
2α
5
5

θ+ mod θ i, (6.12)

Γ− = −
dα10
4α11α

5
5
+

α10dα
1
1

4(α11)2α
5
5
+
(α10)

2α22 + (α
1
1)
2α20 − α

1
1α
2
1(α

1
0)
2

4(α11)2α
2
2(α

5
5)
2

θ+ mod θ i, (6.13)

and

α22 = −
α11

3α55
(6.14)

obtaining a 22-dimensional subbundle of J × G→ M5 on which dθ0 and dθ1 are in the desired form.
Step (4) At this point all four connection 1-forms Γ−,Γ+,Γ0,Γ1 are fixed up to the θ i terms. They are determined by the
Eqs. (6.9), (6.10), (6.12) and (6.13). Thus we cannot introduce any new 1-forms to bring dθ2 into the desired form. Now to
get dθ2 in the form as in Theorem 6.3, we may only use the yet unspecified coefficients αs. That is why dθ2 imposes more
conditions on αs. It follows that for dθ0, dθ1 and dθ2 to be of the form (4.1) the subbundle P must satisfy

α00 = −4α
1
1α
5
5,

α20 =
−75(α10)

2
+ (α11)

2(−20DF4 + 20F3 + 7F 24 )
300α11α

5
5

,

α21 =
−15α10 + α

1
1F4

30α55
,

α22 = −
α11

3α55
,

α30 = [1800(α
1
1α
5
5)
2
]
−1

×[1125(α10)
3
+ 45α10(α

1
1)
2(20DF4− 20F3− 7F 24 )+ 2(α

1
1)
3(100D2F4− 200F2− 30F4DF4 − 60F3F4− 11F 34 )],

α31 =
225(α10)

2
− 30α10α

1
1F4 + (α

1
1)
2(80DF4 − 100F3 − 31F 24 )

1200α11(α
5
5)
2

, (6.15)

α32 =
5α10 − α

1
1F4

20(α55)2
,

α33 =
α11

6(α55)2
,

α41 = [18 000(α
1
1)
2(α55)

3
]
−1
× [−1125(α10)

3
+ 225(α10)

2α11F4 − 15α
1
0(α

1
1)
2(80DF4 − 100F3 − 31F 24 )

+ (α11)
3(−400D2F4 + 1400F2 + 240F4DF4 + 180F3F4 + 11F 34 )],

α42 =
−75(α10)

2
+ 30α10α

1
1F4 + (α

1
1)
2(−40DF4 + 80F3 + 17F 24 )

600α11(α
5
5)
3

,
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α43 =
−5α10 + 3α

1
1F4

30(α55)3
,

α44 = −
α11

6(α55)3
.

The necessity of these conditions can be checked by direct, quite lengthy calculations. We performed these calculations
using the symbolic computation programs Maple and Mathematica.
We stress that conditions (6.15) are only necessary for dθ2 to satisfy (4.1). It is because certain unwanted terms cannot

be removed by any choice of subbundle P . Vanishing of these unwanted terms is a property of the ODE itself, and this is the
reason for the Wünschmann conditions to appear.
More specifically, to achieve

dθ2 = −2Γ− ∧ θ1 + 4Γ1 ∧ θ2 − 2Γ+ ∧ θ3 mod θ i ∧ θ j

on the bundle defined by (6.11), (6.14) and (6.15) an ODE must satisfy

50D2F4 − 75DF3 + 50F2 − 60F4DF4 + 30F3F4 + 8F 34 = 0. (6.16)

It follows from the construction that this condition, the first of (6.5), is invariant under the contact transformation of
variables.
From now on we restrict our considerations only to a contact equivalence class of ODEs satisfying (6.16). If (6.15) and

(6.16) are satisfied then the three differentials dθ0, dθ1 and dθ2 are precisely in the form (4.1).
Step (5) The requirement that also dθ3 be in the form (4.1) is equivalent to the following equation for α40:

α40 = [120 000(α
1
1α
5
5)
3
]
−1
×

[
−1875(α10)

4
− 150(α10α

1
1)
2(20DF4 − 20F3 − 7F 24 )

− 40α10(α
1
1)
3(50DF3 − 100F2 + 30F4DF4 − 40F3F4 − 9F 34 )+ (α

1
1)
4

×

(
400(−5D2F3 + 10DF2 − 6(DF4)2 + 10F3DF4 − 3F 23 + F4DF3)+ 120F

2
4 (7DF4 − 5F3)− 63F

4
4

)]
. (6.17)

Step (6) If condition (6.17) is also imposed we have
(dθ4 + 4Γ− ∧ θ3 − 4(Γ − Γ0) ∧ θ4) ∧ θ0 ∧ θ1 = 0 mod θ i.

However,

dθ4 ∧ θ0 ∧ θ2 ∧ θ3 ∧ θ4 = 0

if and only if second condition of (6.5) is satisfied:

375D2F3 − 1000DF2 + 350DF 24 + 1250F1 − 650F3DF4 + 200F
2
3

−150F4DF3 + 200F2F4 − 140F 24DF4 + 130F3F
2
4 + 14F

4
4 = 0. (6.18)

Again it follows from the construction that condition (6.18), considered simultaneously with (6.16), is invariant under
contact transformations of the variables. From now on, we assume that all our 5th order ODEs (6.1) satisfy both conditions
(6.16), (6.18). It follows that it is still not sufficient to force dθ4 to satisfy the system (4.1), since without further assumptions
on F , we do not have dθ4 ∧ θ1 ∧ θ2 ∧ θ3 ∧ θ4 = 0. To achieve this it is necessary and sufficient to impose the last restriction
on F :

1250D2F2 − 6250DF1 + 1750DF3DF4 − 2750F2DF4 − 875F3DF3 + 1250F2F3 − 500F4DF2 + 700(DF4)2F4
+ 1250F1F4 − 1050F3F4DF4 + 350F 23 F4 − 350F

2
4DF3

+ 550F2F 24 − 280F
3
4DF4 + 210F3F

3
4 + 28F

5
4 + 18 750Fy = 0. (6.19)

Step (7) Assuming that F satisfies conditions (6.5) and fixing coefficients αi j according to (6.15), (6.17) we are remained
with a 11-dimensional subbundle of J × G → M5 parameterised by (x, y, y1, y2, y3, y4, α10, α

1
1, α

5
5, α

5
0, α

5
1). It follows

that the forms Γ0,Γ1,Γ−,Γ+ on this bundle are

Γ+ = θ+,

Γ0 =
dα55
2α55

−
5α10 + α

1
1F4

20α11α
5
5
θ+ mod θ i,

Γ1 =
dα11
4α11

−
dα55
4α55

+
F4
20α55

θ+ mod θ i, (6.20)

Γ− =
dα10
4α11α

5
5
−

α10dα
1
1

4(α11)2α
5
5
−
25(α10)

2
+ 10α10α

1
1F4 + (α

1
1)
2(20DF4 − 20F3 − 7F 24 )

400(α11α
5
5)
2

θ+ mod θ i.
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Step (8) In order to construct a 9-dimensional bundle and find the θ i terms in (6.20) we need to consider the dΓA part of
Eqs. (4.1). Forcing dΓA not to have ΓA ∧ θ i terms we uniquely specify the θ i terms in (6.20). This requirement, in particular,
fixes the coefficients α51 and α

5
0 to be:

α51 =
α55(10DF44 + 5F34 + 6F4F44)

50
,

α50 =
α55

250
[50(DF34 + 7F24 − 5F33)+ 5F4(6DF44 − 37F34)+ 2F44(−60DF4 + 145F3 + 21F 24 )]. (6.21)

Now all the forms (θ0, θ1, θ2, θ3, θ4,Γ+,Γ−,Γ0,Γ1) are well defined and independent on a 9-dimensional manifold P
parameterised by (y, y1, y2, y3, y4, x, α10, α

1
1, α

5
5). We calculate structural equations (4.1) for these forms and have the

following

Theorem 6.6. A 5th order ODE y(5) = F(x, y, y′, y′′, y(3), y(4)) considered modulo contact transformation of variables has an
irreducible GL(2,R) structure on the space of its solution M5 together with a gl(2,R) connection Γ if and only if its defining
function F = F(x, y, y1, y2, y3, y4) satisfies the contact invariant Wünschmann conditions (6.5). The bundle GL(2,R)→ P →
M5 is given by the Eqs. (6.15), (6.17) and (6.21). The first structural equations for the connection Γ = (Γ+,Γ−,Γ0,Γ1) on P
read

dθ0 = 4(Γ1 + Γ0) ∧ θ0 − 4Γ+ ∧ θ1 + t1θ0 ∧ θ1 + t2θ0 ∧ θ2 + t3θ0 ∧ θ3,

dθ1 = −Γ− ∧ θ0 + (4Γ1 + 2Γ0) ∧ θ1 − 3Γ+ ∧ θ2 +
1
2
t1θ0 ∧ θ2

+
1
3
t2θ0 ∧ θ3 +

1
4
t3θ0 ∧ θ4 + t2θ1 ∧ θ2 + t3θ1 ∧ θ3,

dθ2 = −2Γ− ∧ θ1 + 4Γ1 ∧ θ2 − 2Γ+ ∧ θ3 +
2
9
t1θ0 ∧ θ3 +

1
18
t2θ0 ∧ θ4

+
1
3
t1θ1 ∧ θ2 +

8
9
t2θ1 ∧ θ3 +

2
3
t3θ1 ∧ θ4 + t3θ2 ∧ θ3, (6.22)

dθ3 = −3Γ− ∧ θ2 + (4Γ1 − 2Γ0) ∧ θ3 − Γ+ ∧ θ4 +
1
12
t1θ0 ∧ θ4 +

1
3
t1θ1 ∧ θ3

+
1
3
t2θ1 ∧ θ4 + t2θ2 ∧ θ3 +

3
2
t3θ2 ∧ θ4,

dθ4 = −4Γ− ∧ θ3 + 4(Γ1 − Γ0) ∧ θ4 +
1
3
t1θ1 ∧ θ4 + t2θ2 ∧ θ4 + 3t3θ3 ∧ θ4,

with the torsion coefficients

t3 =
6(α55)

2

5α11
F44,

t2 =
9α55
50(α11)2

[α11(10DF44 + 3F4F44)+ 5α
1
0F44],

t1 = [1000(α11)
3
]
−1
×

(
225(α10)

2F44 + 90α10α
1
1(10DF44 + 3F4F44)

− 9(α11)
2
[20(5DF34 + 20F24 − 15F33 + 3F4DF44 − 11F4F34)+ F44(−120DF4 + 340F3 + 51F 24 )]

)
.

Also the second structural equations are easily calculable but we skip them due to their complexity.
It is remarkable that the above gl(2,R) connection has torsion with not more than three functionally independent

coefficients t1, t2, t3. This suggests that the GL(2,R) geometry on the 5-dimensional solution spaceM5 of the ODE is nearly
integrable with torsion in the irreducible part

∧
3 only. That it is really the case will be shown below.

6.3. Characteristic connection with torsion in
∧
3

As we know from Section 3, given an irreducible GL(2,R)-structure (M5, [g,Υ , A]), we can ask if such a structure is
nearly integrable. According to Propositions 3.5 and 3.6, the necessary and sufficient condition for nearly integrability is
that the structure admits a gl(2,R)-valued connection with totally skew symmetric torsion.
In our case of ODEs satisfying Wünschmann conditions we have a gl(2,R)-valued connection of Theorem 6.6, whose

torsion is expressible in terms of three independent functions. This torsion, however, has quite a complicated algebraic
structure, in particular it is not totally skew symmetric.
It appears that an irreducible GL(2,R) structure (M5, [g,Υ , A]) associated with any 5th order ODE satisfying conditions

(6.5) admits another gl(2,R)-valued connection that has totally skew symmetric torsion. Thus all structures (M5, [g,Υ , A])
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originating fromWünschmann 5th order ODEs are nearly integrable; the new connection is their characteristic connection.
Even more interesting is the fact that its torsion is still more special: it is always in

∧
3.

One way of seeing this is to calculate the Weyl connection
W
Γ for the corresponding (M5, [g,Υ , A]) and to decompose it

according to (3.14). Here we prefer another method — the analysis in terms of the Cartan bundle P of Theorem 6.6.

Lemma 6.7. Consider a contact equivalence class of 5th order ODEs satisfying conditions (6.5). Let θ0, θ1, θ2, θ3, θ4,Γ+,
Γ−,Γ0,Γ1 and t1, t2, t3 be the objects of Theorem 6.6. Then there is a gl(2,R) connection Γ̃ = (Γ̃+, Γ̃−, Γ̃0, Γ̃1) whose torsion
T̃ i jk is totally skew symmetric and has its associated 3-form in T̃ ∈ ∗

∧
3. Explicitly:

T̃ =
1
12
t1(−θ0 ∧ θ1 ∧ θ4 + 2θ0 ∧ θ2 ∧ θ3)+

1
12
t2(−θ0 ∧ θ2 ∧ θ4 + 8θ1 ∧ θ2 ∧ θ3)

+
1
4
t3(−θ0 ∧ θ3 ∧ θ4 + 2θ1 ∧ θ2 ∧ θ4).

Proof. Any gl(2,R) connection Γ̃ = (Γ̃+, Γ̃−, Γ̃0, Γ̃1) compatible with the GL(2,R) structure of Theorem 6.6 is given by

Γ̃A = ΓA +
∑
i

γAiθ
i, A ∈ {+, 0,−}, i = 0, . . . , 4, (6.23)

Γ̃1 = Γ1

with arbitrary functions γAi. We calculate the structural equations dθ + Γ̃ ∧ θ = T̃ for Γ̃ utilising Eqs. (6.22), and ask if
there exists a choice of γAi such that the new torsion T̃ i jk satisfies gilT̃

l
jk = T̃[ijk] and T̃ =

1
6gilT̃

l
jkθ
i
∧ θ j ∧ θ k ∈ ∗

∧
3. Using

Lemma 5.2 we easily find that the unique solution is given by

Γ̃+ = Γ+ −
1
6
t1θ0 −

1
3
t2θ1 −

1
2
t3θ2,

Γ̃− = Γ− +
1
6
t1θ2 +

1
3
t2θ3 +

1
2
t3θ4,

Γ̃0 = Γ0 −
1
6
t1θ1 −

1
3
t2θ2 −

1
2
t3θ3,

Γ̃1 = Γ1, �

Lemma 6.7 together with Proposition 4.1 and Theorem 5.5 prove Theorem 6.3.

Remark 6.8. Note that a passage from Γ+ to

Γ̃+ = Γ+ −
1
6
t1θ0 −

1
3
t2θ1 −

1
2
t3θ2

belongs to a larger class of transformations than the contact transformations (6.7), (6.8); it involves a forbidden θ2 term. Thus
it may happen that there are nonequivalent classes of ODEs which define the same (M5, [g,Υ , A]). To distinguish between
nonequivalent ODEs one has to use the connection of Theorem 6.6.

7. Examples of nearly integrable GL(2, R) structures from 5th order ODEs

In this section we provide examples of Wünschmann ODEs and nearly integrable GL(2,R) structures related to them.
Since such structures have the torsions of their characteristic connections in

∧
3, then via Theorem5.4, they are characterised

by the torsion T , the Ricci scalar R, the components of Maxwell 2-forms dA(3), dA(7), and the vector K ; all these objects being

associated to the characteristic connection Γ . There is also the uniqueWeyl connection
W
Γ associated with these structures.

7.1. Torsion-free structures

We see from Corollary 6.4 that
T ≡ 0 ⇐⇒ F44 ≡ 0.

Then
W
Γ = Γ and all the curvature components but the Ricci scalar necessarily vanishes. The following proposition can be

checked by direct calculation.

Proposition 7.1. The three nonequivalent differential equations

y(5) = c
(5y(3)3(5− 27cy′′2)

9(1+ cy′′2)2
+ 10

y′′y(3)y(4)

1+ cy′′2
)
,
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with c = +1, 0,−1, represent the only three contact nonequivalent classes of 5th order ODEs having the corresponding nearly
integrable GL(2,R) structures (M5, [g,Υ , A]) with the characteristic connection with vanishing torsion. In all three cases the

holonomy of theWeyl connection
W
Γ of structures (M5, [g,Υ , A]) is reduced to theGL(2,R). For all the three cases theMaxwell 2-

form dA ≡ 0. The corresponding Weyl structure is flat for c = 0. If c = ±1, then in the conformal class [g] there is an Einstein
metric of positive (c = +1) or negative (c = −1) Ricci scalar. In the case c = 1 the manifold M5 can be identified with the
homogeneous space SU(1, 2)/SL(2,R)with an Einstein g descending from the Killing form on SU(1, 2). Similarly in c = −1 case
the manifold M5 can be identified with the homogeneous space SL(3,R)/SL(2,R)with an Einstein g descending from the Killing
form on SL(3,R). In both cases with c 6= 0 the metric g is not conformally flat.

7.2. Structures with vanishing Maxwell form

From now on we assume that

F44 6= 0.

In this section we additionally assume that the Maxwell 2-form vanishes

dA = 0.

For such structures both torsion and curvature have at most 9 independent coefficients contained in T , K and the scalar R.
The simplest geometries in this class are those satisfying the additional equality

K i = uRiv, u ∈ R.

Putting dA = 0 and K i = uRiv into structural equations of Theorem 5.5 and using Bianchi identities we find that either

u = −
1
420

, R =
35
54
(t22 − 3t1t3)

or

u =
2
105

, R =
10
27
(t22 − 3t1t3).

Thus in these cases R is functionally dependent on t1, t2, t3 and the only invariants for such GL(2,R) structures are u and
the sign of R. For each possible values of u and sgn Rwe found a generating ODE.

Proposition 7.2. Consider the equations

F =
5y24
3y3
+ εy5/33 , ε = −1, 0, 1, (7.1)

F =
5y24
4y3

, (7.2)

and

F =
5(8y33 − 12y2y3y4 + 3y1y

2
4)

6(2y1y3 − 3y22)
, (7.3)

where the sign of expression (2y1y3 − 3y22) is an invariant, and the singular locus 2y1y3 − 3y
2
2 = 0 separates nonequivalent

equations with± signs. The equations generate all the six GL(2,R) structures satisfying dA = 0 and K i = uRiv, u ∈ R.

For (7.1) u = −
1
420

and sgn R = ε,

for (7.2) u =
2
105

and R = 0,

for (7.3) u =
2
105

and sgn R = sgn(3y22 − 2y1y3).

Moreover, the above ODEs can be also described in a geometric way by means of the symmetry group.

Proposition 7.3. The Eqs. (7.1)–(7.3) are the only 5th order Wünschmann ODEs satisfying F44 6= 0, F444 = 0 and possessing
the maximal group of transitive contact symmetries of dimension greater than five. Equations F = 5y24

3y3
and F = 5y24

4y3
have 7-

dimensional groups of symmetries, all the remaining have 6-dimensional ones.

Proof. The proof is based on a further application of the Cartan method of equivalence. Let us return to the coframe of
Theorem 6.6, which encodes all the contact invariant information about the ODE. If there are any nonconstant coefficients
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in the structural equations for this coframe we can use them for further reduction of the group GL(2,R) and of the bundle
P . For an ODE satisfying F44 6= 0 we normalise t3 = 1, t2 = 0, which implies

α11 =
6
5
(α55)

2F44, α10 = −
6
25
(α55)

2(10DF44 + 3F4F44).

Now the coframe of Theorem 6.6 is reduced to a 7-dimensional manifold P7 parameterised by (x, y, y1, y2, y3, y4, α55),
three 1-forms (Γ0,Γ−,Γ1) become dependent on each other and we can use only one of them, our choice is Γ0, to
supplement (θ0, θ1, θ2, θ3, θ4,Γ+) to an invariant coframe on P7. Next we calculate structural equations for the new
coframe. The coefficients in these equations are built from α55 and 16 functions λ1, . . . , λ16 of x, y, y1, . . ., y4. In particular

dθ0 = 6Γ0 ∧ θ0 − 4Γ+ ∧ θ1 +
λ1

(α55)
2
θ0 ∧ θ1 +

λ2

α55
θ0 ∧ θ2 + λ3θ

0
∧ θ3 + λ4α

5
5θ
0
∧ θ4,

where for example

λ3 = −
5F344F44 + 10DF44F444 + 6F4F44F444

F 344
, λ4 = 5

F444
F 244

.

Let us assume F444 = 0 and consider two possibilities: λ3 6= const and λ3 = const . If λ3 6= const then it follows
from the equations d2θ i = 0, d2ΓA = 0 that λ2 may not be a constant. Thus λ2/α55 and λ3 are two functionally independent
coefficients in structural equations for the 7-dimensional coframe (θ0, θ1, θ2, θ3, θ4,Γ+,Γ0). According to the procedure of
finding symmetries of ODEs, which is described in [17], the dimension of the group of contact symmetries of a corresponding
5-order ODE is not larger than the dimension of the coframe minus the number of the independent coefficients in the
structural equations, that is 7−2 = 5. It follows that ODEs possessing a contact symmetry group greater than 5-dimensional
necessarily satisfy λ3 = const . Let us assume λ3 = const then, and we get from identities d2θ i = 0, d2ΓA = 0 that (i) either
λ3 = 2 or λ3 = 3

2 and (ii) for both admissible values of λ3 all the remaining nonvanishing functions λj are expressible by
λ1. For example, the system corresponding to λ3 = 3

2 is the following

dθ0 = 6Γ0 ∧ θ0 − 4Γ+ ∧ θ1 +
λ1

(α55)
2
θ0 ∧ θ1 +

3
2
θ0 ∧ θ3

dθ1 = 4Γ0 ∧ θ1 +
2λ1
7(α55)2

Γ+ ∧ θ
0
− 3Γ+ ∧ θ2 +

3λ1
7(α55)2

θ0 ∧ θ2 +
3
2
θ1 ∧ θ3

dθ2 = 2Γ0 ∧ θ2 +
4λ1
7(α55)2

Γ+ ∧ θ
1
− 2Γ+ ∧ θ3 −

2λ21
49(α55)4

θ0 ∧ θ1 +
4λ1

21(α55)2
θ0 ∧ θ3

+
λ1

7(α55)2
θ1 ∧ θ2 +

1
6
θ1 ∧ θ4 +

3
2
θ2 ∧ θ3

dθ3 =
6λ1
7(α55)2

Γ+ ∧ θ
2
− Γ+ ∧ θ

4
−

3λ21
49(α55)4

θ0 ∧ θ2 +
λ1

14(α55)2
θ0 ∧ θ4 +

λ1

7(α55)2
θ1 ∧ θ3 +

3
4
θ2 ∧ θ4

dθ4 = −2Γ0 ∧ θ4 +
8λ1
7(α55)2

Γ+ ∧ θ
3
−

4λ21
49(α55)4

θ0 ∧ θ3 +
λ1

7(α55)2
θ1 ∧ θ4 +

3
2
θ3 ∧ θ4

dΓ+ = 2Γ0 ∧ Γ+ +
3λ21

98(α55)4
θ0 ∧ θ1 +

λ1

14(α55)2
θ0 ∧ θ3 +

1
8
θ1 ∧ θ4

dΓ0 =
λ21

49(α55)4
Γ+ ∧ θ

0
−
1
4
Γ+ ∧ θ

4
+

3λ21
196(α55)4

θ0 ∧ θ2 +
λ1

56(α55)2
θ0 ∧ θ4 +

λ1

14(α55)2
θ1 ∧ θ3 +

3
16
θ2 ∧ θ4.

If λ1 = 0 then to this system there corresponds a unique equivalence class of ODEs satisfying the Wünschmann conditions
and having a 7-dimensional transitive contact symmetry group. The class is represented by

F =
5y24
3y3

.

In the case λ1 6= 0 we have next two nonequivalent classes of ODEs enumerated by the sign of λ1 and possessing 6-
dimensional transitive contact symmetry groups. Representatives of these classes are

F =
5y24
3y3
± y5/33 ,

where±1 = sgn λ1.
In the similar vein we find that the only ODEs related to the case λ1 = 2 are (7.2) and (7.3). �
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7.3. Simple structures with nonvanishing Maxwell form

All the previous examples satisfy the contact invariant condition F444 = 0. In this paragraph we give examples of
WünschmannODEswith F444 6= 0. As such theywill lead to theGL(2,R) structureswith theMaxwell form having a nonzero
dA(7) part. First and the simplest example of such equations is

F = (y4)(5/4). (7.4)

The GL(2,R) structure associated with this ODE has the following properties

dA(3) = 0, dA(7) 6= 0 R = 0, K =
2
105
Rv.

It is then an example of a structure with nonvanishing dA belonging to the 7-dimensional irreducible representation.
Next example is the ODE given by the formula

F =
1

9(y21 + y2)2
×

(
5w
(
y61 + 3y

4
1y2 + 9y

2
1y
2
2 − 9y

3
2 − 4y

3
1y3 + 12y1y2y3 + 4y

2
3 − 3y4(y

2
1 + y2)

)
+ 45y4(y21 + y2)(2y1y2 + y3)− 4y

9
1 − 18y

7
1y2 − 54y

5
1y
2
2 − 90y

3
1y
3
2 + 270y1y

4
2

+ 15y61y3 + 45y
4
1y2y3 − 405y

2
1y
2
2y3 + 45y

3
2y3 + 60y

3
1y
2
3 − 180y1y2y

2
3 − 40y

3
3

)
, (7.5)

where4

w2 = y61 + 3y
4
1y2 + 9y

2
1y
2
2 − 9y

3
2 − 4y

3
1y3 + 12y1y2y3 + 4y

2
3 − 3y

2
1y4 − 3y2y4.

Torsion and curvature for the corresponding GL(2,R) structure are complicated and are of general algebraic form. Both
these examples have 6-dimensional transitive group of contact symmetries.

7.4. A remarkable nonhomogeneous example

Finally, we present an example of 5th order ODEs satisfyingWünschmann conditions (6.5), which are generic, in a sense
that the function F representing it satisfies F444 6= 0, but which have the corresponding group of transitive symmetries of
dimension D < 6. We consider an ansatz in which function F depends in a special way on only two coordinates y3 and y4.
Explicitly:

F = (y3)5/3 q
(y34
y43

)
, (7.6)

where q = q(z) is a sufficiently differentiable real function of its argument

z =
y34
y43
.

It is remarkable that the above F satisfies all Wünschmann conditions provided that

• either q(z) = 5
3 z
2/3

• or function q(z) satisfies the following second order ODE:

90z4/3(3q− 4z2/3)q′′ − 54z4/3q′2 + 30z1/3(6q− 5z2/3)q′ − 25q = 0. (7.7)

In the first case F = 5
3
y24
y3
, and we recover function (7.1) with 7-dimensional group of symmetries. Note that one of the

solutions of Eq. (7.7) is q = 5
4 z
2/3, which corresponds to F = 5

4
y24
y3
. Thus also the other solution with seven symmetries, the

solution (7.2), is covered by this ansatz.
We observe that if function q(z) satisfies

25q− 60zq′ + 27z4/3q′2 = 0, (7.8)

then it also satisfies the reduction (7.7) of conditions (6.5). Eq. (7.8) can be solved by first putting it in the form

q′ =
5(2z1/3 ±

√
(4z2/3 − 3q))
9z2/3

4 Note that w = 0 also gives rise to F satisfying conditions (6.5). But since such F has only linear y4-dependence it is equivalent to one of
Proposition 7.1. Actually the one with c < 0.
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and then by integrating, according to the sign±1. In the upper sign case the integration gives q in an implicit form:

(2z1/3 +
√
(4z2/3 − 3q))24(2

√
(4z2/3 − 3q)− z1/3)3

(2
√
(4z2/3 − 3q)+ z1/3)3(5z2/3 − 4q)3

= const.

In the lower sign case the implicit equation for q is:

(2z1/3 +
√
(4z2/3 − 3q))24(2

√
(4z2/3 − 3q)− z1/3)3(5z2/3 − 4q)3

(2
√
(4z2/3 − 3q)+ z1/3)3q24

= const.

Inserting these qs into (7.6) we have a quite nontrivial Wünschmann ODE F = F±. We close this section with a remark that
other solutions to the second order ODE (7.7) also provide examples of 5th order Wünschmann ODEs.

8. Higher order ODEs

All our considerations about GL(2,R) structures associated with ODEs of 5th order can be repeated for other orders. This
is due to the following well known fact generalising Proposition 6.1:

Proposition 8.1. For every n ≥ 4, the ordinary differential equation

y(n) = 0

has GL(2,R)×ρn Rn as its group of contact symmetries. Here ρn : GL(2,R) → GL(n,R) is the n-dimensional irreducible
representation of GL(2,R).

The representation ρn, at the level of Lie algebra gl(2,R), is given in terms of the Lie algebra generators

E+ =



0 n− 1 0 ... 0 0 0
0 0 n− 2 ... 0 0 0

...
0 0 0 ... 3 0 0
0 0 0 ... 0 2 0
0 0 0 ... 0 0 1
0 0 0 ... 0 0 0

 , E− =



0 0 0 ... 0 0 0
1 0 0 ... 0 0 0
0 2 0 ... 0 0 0
0 0 3 ... 0 0 0

...
0 0 0 ... n− 2 0 0
0 0 0 ... 0 n− 1 0

 ,

E0 =



1− n 0 0 ... 0 0 0
0 3− n 0 ... 0 0 0
0 0 5− n ... 0 0 0

...
0 0 0 ... n− 5 0 0

... 0 n− 3 0
0 0 0 ... 0 0 n− 1

 , E1 = (1− n)1,

where 1 is the n × n identity matrix. In case of dimension n = 5 these matrices coincide with (2.6). They also satisfy the
same commutation relations

[E0, E+] = −2E+, [E0, E−] = 2E−, [E+, E−] = −E0,

where the commutator in the gl(2,R) = SpanR(E−, E+, E0, E1) ⊂ End(Rn) is the usual commutator of matrices.
Now, we consider a general n-th order ODE

y(n) = F(x, y, y′, y′′, y(3), . . . , y(n−1)), (8.1)

and as before, to simplify the notation, we introduce the coordinates x, y, y1 = y′, y2 = y′′, y3 = y(3), . . . , yn−1 = y(n−1) on
the (n+ 1)-dimensional jet space J . Introducing the n contact forms

ω0 = dy− y1dx,
ω1 = dy1 − y2dx,
...

ωi = dyi − yi+1dx, (8.2)
...

ωn−2 = dyn−2 − yn−1dx,
ωn−1 = dyn−1 − F(x, y, y1, y2, . . . , yn−1)dx
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and the additional 1-form

w+ = dx,

we define a contact transformation to be a diffeomorphism φ : J → J which transforms the above n+ 1 one-forms via:

φ∗ωi =

i∑
k=0

αi kω
k, i = 0, 1, . . . n− 1,

φ∗w+ = α
n
0ω
0
+ αn1ω

1
+ αnnw+.

Here αi j are functions on J such that
∏n
i=0 α

i
i 6= 0 at each point of J .

Therefore, as in the case of n = 5, the contact equivalence problem for the nth order ODEs (8.1) can be studied in terms
of the invariant forms (θ0, θ1, . . . , θn−1,Γ+) defined by

θ i =

i∑
k=0

αi kω
k, i = 0, 1, . . . n− 1, (8.3)

Γ+ = α
n
0ω
0
+ αn1ω

1
+ αnnw+.

These forms initially live on an n
2
+3n+8
2 -dimensional manifold G→ J×G→ J , with the G-factor parameterised by αi j, such

that
n∏
i=0
αi i 6= 0.

Introducing gl(2,R)-valued forms

Γ = Γ−E− + Γ+E+ + Γ0E0 + Γ1E1, (8.4)

where (Γ+,Γ−,Γ0,Γ1) are 1-forms on J × G, we can specialise to F ≡ 0, and reformulate Proposition 8.1 to

Proposition 8.2. If F ≡ 0 then one can chose n(n+1)2 parameters αi j, as functions of x, y, y1, . . . , yn−1 and the remaining three

αs, sayαi1j1 ,α
i2
j2
,αi3j3 , so that the (n+4)-dimensionalmanifold P parameterised by (x, y, y1, . . . , yn−1, α

i1
j1
, α
i2
j2
, α
i3
j3
) is locally

the contact symmetry group, P ∼= GL(2,R)×ρn Rn, of equation y(n) = 0. Forms (8.3), after restriction to P, can be supplemented
by three additional 1-forms (Γ−,Γ0,Γ1), so that (θ0, θ1, . . . , θn−1,Γ+,Γ−,Γ0,Γ1) constitute a basis of the left invariant forms
on the Lie group P. The choice of αs andΩs is determined by the requirement that the basis (θ0, θ1, . . . , θn−1,Γ+,Γ−,Γ0,Γ1)
satisfies

dθ + Γ ∧ θ = 0, (8.5)
dΓ + Γ ∧ Γ = 0,

where θ = (θ0, θ1, . . . , θn−1)T is a column n-vector, and Γ is given by (8.4).

The defining Eqs. (8.5) of the left invariant basis, when written explicitly in terms of θ is and Γ s, read

dθ0 = (n− 1)(Γ1 + Γ0) ∧ θ0 + (1− n)Γ+ ∧ θ1,
dθ1 = −Γ− ∧ θ0 + [(n− 1)Γ1 + (n− 3)Γ0] ∧ θ1 + (2− n)Γ+ ∧ θ2,
...

dθ k = −kΓ− ∧ θ k−1 + [(n− 1)Γ1 + (n− 2k− 1)Γ0] ∧ θ k + (1+ k− n)Γ+ ∧ θ k+1, (8.6)
...

dθn−1 = (1− n)Γ− ∧ θn−2 + (n− 1)(Γ1 − Γ0) ∧ θn−1,
dΓ+ = 2Γ0 ∧ Γ+,
dΓ− = −2Γ0 ∧ Γ−,
dΓ0 = Γ+ ∧ Γ−,
dΓ1 = 0.

This system can be analysed in the same spirit as system (4.1) of Section 4. Thus, we first consider the distribution

h = {X ∈ TP s.t. Xyθ i = 0, i = 0, 1, 2, . . . , n− 1}

annihilating θ .
Then the first n equations of the system (8.6) guarantee that forms (θ0, θ1, θ2, . . . , θn−1) satisfy the Fröbenius condition,

dθ i ∧ θ0 ∧ θ1 ∧ θ2 ∧ · · · ∧ θn−1 = 0, ∀ i = 0, 1, 2, . . . n− 1
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and that, in turn, the distribution h is integrable. Thus manifold P is foliated by 4-dimensional leaves tangent to the
distribution h. The space of leaves of this distribution P/h can be identified with the solution space Mn = P/h of equation
y(n) = 0. This in particular means, that all Eqs. (8.5) can be interpreted respectively as the first and the second structure
equations for a gl(2,R)-valued connection Γ having vanishing torsion and and vanishing curvature. This gl(2,R)-valued
connection originates from a certain GL(2,R) (conformal) structure on the solution spaceMn.
Tomake this last statementmore precisewe have to invoke a few results fromHilbert’s theory of algebraic invariants [18]

adapted to our situation of ODEs.

8.1. Results from Hilbert’s theory of algebraic invariants

First we ask if for a given order n ≥ 4 of an ODE (8.1) with F = 0 there exists a bilinear form g̃ on P of Proposition 8.2
such that it projects to a nondegenerate conformal metric onMn. This is answered, in a bit more general form, by applying
the reciprocity law of Hermite (see [18], p. 60), and its corollaries, due to Hilbert (see [18], p. 60).
To adapt Hilbert’s results to our paper we introduce a definition of an invariant of degree q. Let t̃ be a totally symmetric

covariant tensor field of rank q defined on the group manifold P of Proposition 8.2.

Definition 8.3. The tensor field t̃ is called a GL(2,R)-invariant of degree q, if and only if, it is degenerate on h and if for every
X ∈ h, there exists a function c(X) on P such that

LX t̃ = c(X)t̃.

The degeneracy condition means that t̃(X, . . .) = 0, for all X ∈ h.

In the following we will usually abbreviate the term ‘a GL(2,R)-invariant’ to: ‘an invariant’.
The first result from Hilbert’s theory, adapted to our situation, is given by the following

Proposition 8.4. For every n = 2m + 1, m = 2, 3, . . . there exists a unique, up to a scale, invariant g̃ of second degree on P.
This invariant, a degenerate symmetric conformal bilinear form g̃ of signature (m+ 1,m, 0, 0, 0, 0) on P, satisfies

LX g̃ = 2(n− 1)(XyΓ1)g̃,

for all X ∈ h.

In case of even orders n = 2m, Hilbert’s theory gives the following

Proposition 8.5. For n = 2m every GL(2,R)-invariant has degree q ≥ 4.

Thus, if n = 2m, we do not have a conformal metric on the solution spaceMn.
Returning to odd orders, we present the quadratic invariants g̃ , of Proposition 8.4, for n < 10:

5g̃ = 3(θ2)2 − 4θ1θ3 + θ0θ4, if n = 5,
7g̃ = −10(θ3)2 + 15θ2θ4 − 6θ1θ5 + θ0θ6 if n = 7, (8.7)
9g̃ = 35(θ4)2 − 56θ3θ5 + 28θ2θ6 − 8θ1θ7 + θ0θ8 if n = 9.

These expressions can be generalised to higher (odd) ns. We have the following

Proposition 8.6. If n = 2m+ 1 and m ≥ 2, the invariant g̃ of Proposition 8.4 is given by:

g̃ =
m−1∑
j=0

(−1)j
(
2m
j

)
θ jθ2m−j +

1
2
(−1)m

(
2m
m

)
(θm)2.

Remark 8.7. This proposition is also valid for m = 1. For such m, the value of n is n = 3, and we are in the regime of
third order ODEs. Such ODEs were considered by Wünschmann [1]. Since 3g̃ = θ0θ2 − (θ1)2 is the only invariant in this
case, the counterpart of the bundle P of Proposition 8.2 is a 10-dimensional bundle P ∼= O(2, 3), the full conformal group in
Lorentzian signature (1, 2). The counterpart of system (8.5)/ (8.6) is given by Maurer–Cartan equations for O(3, 2):

dθ0 = 2(Γ1 + Γ0) ∧ θ0 − 2Γ+ ∧ θ1,
dθ1 = −Γ− ∧ θ0 + 2Γ1 ∧ θ1 − Γ+ ∧ θ2,
dθ2 = −2Γ1θ1 + (2Γ1 − 2Γ0) ∧ θ2,

dΓ+ = 2Γ0 ∧ Γ+ +
1
2
Γ3 ∧ θ

0
+ Γ4 ∧ θ

1,

dΓ− = −2Γ0 ∧ Γ− + Γ2 ∧ θ1 +
1
2
Γ3 ∧ θ

2,
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dΓ0 = Γ+ ∧ Γ− −
1
2
Γ2 ∧ θ

0
+
1
2
Γ4 ∧ θ

2,

dΓ1 = −
1
2
Γ2 ∧ θ

0
−
1
2
Γ3 ∧ θ

1
−
1
2
Γ4 ∧ θ

2,

dΓ2 = −Γ3 ∧ Γ− + 2Γ2 ∧ Γ0 + 2Γ2 ∧ Γ1,
dΓ3 = −2Γ2 ∧ Γ+ − 2Γ4 ∧ Γ− + 2Γ3 ∧ Γ1,
dΓ4 = −2Γ4 ∧ Γ0 − Γ3 ∧ Γ+ + 2Γ4 ∧ Γ1.

Here, apart from θ0, θ1, θ2 and Γ+,Γ−,Γ0,Γ1 we have also left invariant forms Γ2,Γ3,Γ4.

Now we pass to the invariants of degree q = 3. The question of their existence was again determined by Hilbert (see [18],
p. 60), in terms of the reciprocity law of Hermite. In the language of our paper we have the following

Proposition 8.8. An invariant of third degree Υ̃ exists on P if and only if

n = 4µ+ 1, µ ∈ N.

Hilbert’s theory, [18], p. 60, implies also the following:

Proposition 8.9. In low dimensions n = 4µ+ 1, the unique up to a scale cubic invariant is given by

• n = 5:
5Υ̃ = (θ2)3 − 2θ1θ2θ3 + θ0(θ3)2 − θ0θ2θ4 + (θ1)2θ4

• n = 9:
9Υ̃ = 15(θ4)3 − 36θ3θ4θ5 + 24θ2(θ5)2 + 24(θ3)2θ6 − 22θ2θ4θ6

− 8θ1θ5θ6 + 3θ0(θ6)2 − 8θ2θ3θ7 + 12θ1θ4θ7 − 4θ0θ5θ7 + 3(θ2)2θ8 − 4θ1θ3θ8 + θ0θ4θ8.

The rough statement about the even orders, n = 2m, described in Proposition 8.5, can be again refined in terms of the
reciprocity law of Hermite. Following Hilbert we have

Proposition 8.10. If 4 ≤ n = 2m the lowest order invariant tensor Υ̃ on P has degree four. This is unique (up to a scale) only
if n = 4, 6, 8, 12. If n = 10 or n = 14 we have two independent quartic invariants Υ̃ ; if n = 16, 18, 20 we have three
independent quartic invariants; and so on.

Proposition 8.11. In low dimensions n = 2m, the quartic invariant tensor Υ̃ on P is given by

• n = 4:
4Υ̃ = −3(θ1)2(θ2)2 + 4θ0(θ2)3 + 4(θ1)3θ3 − 6θ0θ1θ2θ3 + (θ0)2(θ3)2

• n = 6:
6Υ̃ = −32(θ2)2(θ3)2 + 48θ1(θ3)3 + 48(θ2)3θ4 − 76θ1θ2θ3θ4 − 12θ0(θ3)2θ4 + 9(θ1)2(θ4)2

+ 16θ0θ2(θ4)2 − 12θ1(θ2)2θ5 + 16(θ1)2θ3θ5 + 4θ0θ2θ3θ5 − 10θ0θ1θ4θ5 + (θ0)2(θ5)2.

• n = 8:
8Υ̃ = −375(θ3)2(θ4)2 + 600θ2(θ4)3 + 600(θ3)3θ5 − 990θ2θ3θ4θ5 − 240θ1(θ4)2θ5 + 81(θ2)2(θ5)2

+ 360θ1θ3(θ5)2 − 240θ2(θ3)2θ6 + 360(θ2)2θ4θ6 + 50θ1θ3θ4θ6 + 40θ0(θ4)2θ6 − 234θ1θ2θ5θ6

− 60θ0θ3θ5θ6 + 25(θ1)2(θ6)2 + 24θ0θ2(θ6)2 + 40θ1(θ3)2θ7

− 60θ1θ2θ4θ7 − 10θ0θ3θ4θ7 + 24(θ1)2θ5θ7 + 18θ0θ2θ5θ7 − 14θ0θ1θ6θ7 + (θ0)2(θ7)2.

Among the small dimensions n = 7 is quite special, since here the next invariant linearly and functionally independent
of the metric g̃ has q = 4. We have the following

Proposition 8.12. In dimension n = 7, the invariant of the lowest degree is the metric 7g̃ . There are no invariants of degree
q = 3 and only two linearly independent, invariants of degree q = 4. The first of them is 7g̃2. The second can be chosen to be

7Υ̃ = 160(θ3)4 − 480θ2(θ3)2θ4 + 1035(θ2)2(θ4)2 − 1080θ1θ3(θ4)2 + 540θ0(θ4)3

− 1080(θ2)2θ3θ5 + 1920θ1(θ3)2θ5 − 180θ1θ2θ4θ5

− 1080θ0θ3θ4θ5 − 288(θ1)2(θ5)2 + 540θ0θ2(θ5)2 + 540(θ2)3θ6 − 1080θ1θ2θ3θ6 + 400θ0(θ3)2θ6

+ 540(θ1)2θ4θ6 − 330θ0θ2θ4θ6 − 84θ0θ1θ5θ6 + 7(θ0)2(θ6)2.
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8.2. Stabilizers of the irreducible GL(2,R) in dimensions n < 10

In dimensions n ≤ 10 the GL(2,R) invariant tensors of low order q ≤ 4 turn out to be sufficient to reduce the GL(n,R)
group to GL(2,R) in its irreducible n-dimensional representation.
Given an invariant tensor

t̃ =
1
q!
ti1i2...iqθ

i1 ...θ iq

of degree q on P and a GL(n,R)-valued function a = (ai j) on P , at every point p ∈ P , we have a GL(n,R)-action

(ai j, t̃i1 i2...iq) 7→ (ρn(a)t̃)j1j2...jq = a
i1
j1
ai2j2 . . . a

iq
jq t̃i1i2...iq .

A subgroup Gt̃ of GL(n,R) consisting of a = (ai j) such that

ρn(a)t̃ = (det a)q/n t̃,

is the stabiliser of t̃ at p ∈ P . Since t̃ is an invariant then, obviously GL(2,R) ⊂ Gt̃ .
This leads to the following question: how many invariants is needed in dimension n so that its common stabiliser is

precisely GL(2,R) in its n dimensional irreducible representation?
Inspecting Hilbert’s results we checked that in dimensions 4 ≤ n ≤ 9 we have

Theorem 8.13. For each n = 4, 5, 6, 7, 8, 9, the full stabiliser group of the respective invariant tensor nΥ̃ of Propositions 8.9,
8.11 and 8.12, is the group GL(2,R) in the n-dimensional irreducible representation ρn. In particular, if n = 5, 7, 9 these
stabilisers are subgroups of the respective pseudohomothetic groups CO(3, 2), CO(4, 3) and CO(5, 4), each in its defining
representation.

Thus in each of these dimensions it is the lowest order non-quadratic invariant what is responsible for the full reduction
from GL(n,R) to GL(2,R).

Remark 8.14. In dimension n = 5, using (8.7) and Proposition 8.9 we define a conformal metric [5gij] represented by

5gij =
1
2

∂2

∂θ i∂θ j

(5g̃), i, j = 0, 1, 2, 3, 4

and a conformal symmetric tensor of third degree [5Υijk] represented by

5Υijk = −

√
3
8

∂3

∂θ i∂θ j∂θ k

(5Υ̃ ), i, j, k, l = 0, 1, 2, 3, 4.

The convenient factor−
√
3
8 in the expression for

5Υijk was chosen so that the pair (5gij, 5Υijk) satisfies Cartan’s identities
(i)–(iii) of Section 2. This leads to the GL(2,R) geometries in dimension 5 considered in Sections 3–6.

Remark 8.15. In the next odd dimension situation is quite similar, but nowwe have a quartic invariant 7Υ̃ . Thus apart from
the conformal metric [7gij] represented by

7gij =
1
2

∂2

∂θ i∂θ j

(7g̃), i, j = 0, 1, 2, 3, 4, 5, 6

we have a conformal symmetric tensor of fourth degree [7Υijkl] represented by

7Υijkl =
1
24

∂4

∂θ i∂θ j∂θ k∂θ l

(7Υ̃ ), i, j, k, l = 0, 1, 2, 3, 4, 5, 6. (8.8)

Note that 7Υ̃ of Proposition 8.12 was chosen in such a way that the fourth order 7Υijkl satisfied
7g ij 7Υijkl = 0, where 7g ij 7gjk = δi k.

This choice of the fourth order invariant is nevertheless arbitrary, since we can always get another invariant of the fourth
order by replacing 7Υ with

7Ῡijkl = c17Υ̃ijkl + c2 7g̃(ij 7g̃kl).

It is interesting to note that the choice

c1 =
2
√
5

√
3147

, c2 =
34

√
15 735
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applied to 7Ῡ , leads, via formula like (8.8), to 7Ῡijkl satisfying the Cartan-like identity:
7g ih 7gef 7Ῡie(jk7Ῡlm)fh = 7g(jk7glm)

and

7g ij 7Ῡijkl =
3
2
c2 7gkl, where 7g ij 7gjk = δi k.

Note also that the above Cartan-like identities are preserved under the conformal transformation

(7gij, 7Ῡijkl) 7→ (7g ′ij,
5Ῡ ′ijkl) = (e

2φ 7gij, e4φ 7Ῡijkl),

where φ ∈ R.
Thus the GL(2,R) geometries in dimension n = 7 may be defined by a conformal class of pairs of tensors [7gij, 7Ῡijkl]

with the properties and transformations as above.

Remark 8.16. By analogy, in dimensions n = 4, 6, 8, the irreducible GL(2,R) geometries may be described in terms of a
conformal tensor [nΥijkl] represented by

nΥijkl =
1
24

∂4

∂θ i∂θ j∂θ k∂θ l

(nΥ̃ ), i, j, k, l = 0, 1, 2, . . . , n− 1,

and obtained in terms of the respective quartic invariants nΥ̃ of Proposition 8.11.

Remark 8.17. Dimension n = 9 is similar to dimension n = 5. A periodicity with period four is a remarkable feature of
Hilbert’s theory of algebraic invariants [18], p. 60.

8.3. Wünschmann conditions for the existence of GL(2,R) geometries on the solution space of ODEs

An invariant tensor t̃ , by its very definition, has a property that it descends to a nondegenerate conformal tensor [t]
on the solutions space Mn = P/h of the equation y(n) = 0. In particular in dimensions 4 ≤ n ≤ 9 the conformal class
[
nΥ ], corresponding to invariant tensors nΥ̃ reduces the structure group ofMn to GL(2,R) defining an irreducible GL(2,R)
geometry there.We do not knowhowmany invariant tensors are needed to achieve this reduction for n > 9, but it is obvious
that for a given n this number is finite, saywn. Thus for each n ≥ 3we have a finite number of invariants nΥ̃I , I = 1, 2, . . . wn,
which descend to the solution spaceMn of the equation y(n) = 0 equipping it with a GL(2,R) structure. It is important that
each of the invariants nΥ̃I has only constant coefficients when expressed in terms of the invariant coframe (θ0, . . . , θn−1)
on P (see, for example, every nΥ̃ of the preceding section).
Now, we return to a general n-th order ODE (8.1). Thus we now have a general function F(x, y, y′, y′′, y(3), . . . , y(n−1)),

which determines the contact forms (ω0, ω1, . . . , ωn−1, w+) by (8.2). Corresponding to these forms we have the invariant
forms (θ0, . . . , θn−1,Γ+) of (8.3), which live on bundle J×G over J . We can now ask the following question (this generalises
to arbitrary n > 3 the similar question of Section 6): What shall we assume about F defining the contact equivalence class
of ODEs (8.1) that there exists a (4+ n)-dimensional subbundle P of J × G on which the forms (θ0, . . . , θn−1,Γ+) satisfy:

dθ0 = (n− 1)(Γ1 + Γ0) ∧ θ0 + (1− n)Γ+ ∧ θ1 +
1
2
T 0ijθ

i
∧ θ j,

dθ1 = −Γ− ∧ θ0 + [(n− 1)Γ1 + (n− 3)Γ0] ∧ θ1 + (2− n)Γ+ ∧ θ2 +
1
2
T 1ijθ

i
∧ θ j,

...

dθ k = −kΓ− ∧ θ k−1 + [(n− 1)Γ1 + (n− 2k− 1)Γ0] ∧ θ k + (1+ k− n)Γ+ ∧ θ k+1 +
1
2
T kijθ

i
∧ θ j, (8.9)

...

dθn−1 = (1− n)Γ− ∧ θn−2 + (n− 1)(Γ1 − Γ0) ∧ θn−1 +
1
2
T n−1ij θ

i
∧ θ j,

dΓ+ = 2Γ0 ∧ Γ+ +
1
2
R+ijθ i ∧ θ j,

dΓ− = −2Γ0 ∧ Γ− +
1
2
R−ijθ i ∧ θ j,

dΓ0 = Γ+ ∧ Γ− +
1
2
R0ijθ i ∧ θ j,

dΓ1 =
1
2
Rijθ i ∧ θ j.
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As first observed by Wünschmann [1] and then successively used by Newman and collaborators [19] this question can
be reformulated into a nicer one. To make this reformulation we repeat our arguments from Proposition 8.1.
Suppose that we are able to satisfy system (8.9) by the forms (8.3). Consider the distribution

h = {X ∈ TP s.t. Xyθ i = 0, i = 0, 1, 2, . . . , n− 1}

annihilating θs. Despite of the fact that system (8.9) involves new terms, when compared with system (8.6), they do not
destroy the integrability of the distribution h; the first n Eqs. (8.9) still guarantee that h is integrable. Thus manifold P is
foliated by 4-dimensional leaves tangent to the distribution h. The space of leaves of this distribution P/h can be identified
with the solution space Mn = P/h of Eq. (8.1). Now, on the manifold P of system (8.9), we define wn tensors nΥ̃I , which
formally are given by the same formulae that defined the wn invariants nΥ̃I of the flat system (8.6) needed to get the full
reduction to GL(2,R). So, when defining the present nΥ̃I , we use the same formulae as for the y(n) = 0 case, replacing
forms θ of the flat case, with forms θ satisfying system (8.9). It is now easy to verify that the question about the conditions
on F to admit P with system (8.9) is equivalent to the requirement that all wn tensors nΥ̃I transform conformally when Lie
transported along the leaves of distribution h. Infinitesimally this condition is equivalent to the existence of functions cI(X)
on P such that

LX (
nΥ̃I) = cI(X) nΥ̃I ,

∀X ∈ h, and∀I = 1, 2, . . . wn. If this is satisfied then tensors nΥ̃I descend to a conformal class of tensors [nΥ1, nΥ2, . . . , nΥwn ]
on the solution spaceMn defining a GL(2,R) there.
We know that in dimension n = 5 the conformal preservation of 5g̃ and 5Υ̃ is equivalent to the requirement on function

F = F(x, y, y1, y2, y3, y4) to satisfy Wünschmann conditions (6.5). Also in higher dimensions the Wünschmann conditions
are obtained in this way. They are obstructions for the conformal preservation of tensors [nΥ1, nΥ2, . . . , nΥwn ] along the
distribution h. In particular, if 4 ≤ n < 10 they are given by the following

Theorem 8.18. Let Mn be the solution space of nth order ODE

y(n) = F(x, y, y′, y′′, y(3), . . . , y(n−1)), (8.10)

with 4 ≤ n < 10, and let

D = ∂x + y1∂y + y2∂y1 + · · · + yn−1∂yn−2 + F∂yn−1
be the total derivative. The necessary conditions for a contact equivalence class of ODEs (8.10) to define a principal GL(2,R)-
bundle GL(2,R)→ P → Mn with invariants forms (θ0, . . . , θn−1,Γ+,Γ−,Γ0,Γ1) satisfying system (8.9) is that the defining
function F of (8.10) satisfies n− 2Wünschmann conditions given below:
• n = 4:

4D2F3 − 8DF2 + 8F1 − 6DF3F3 + 4F2F3 + F 33 = 0,

160D2F2 − 640DF1 + 144(DF3)2 − 352DF3F2 + 144F 22 − 80DF2F3 + 160F1F3
−72DF3F 23 + 88F2F

2
3 + 9F

4
3 + 16000Fy = 0,

• n = 5:

50D2F4 − 75DF3 + 50F2 − 60F4DF4 + 30F3F4 + 8F 34 = 0

375D2F3 − 1000DF2 + 350DF 24 + 1250F1 − 650F3DF4
+ 200F 23 − 150F4DF3 + 200F2F4 − 140F

2
4DF4 + 130F3F

2
4 + 14F

4
4 = 0

1250D2F2 − 6250DF1 + 1750DF3DF4 − 2750F2DF4 − 875F3DF3 + 1250F2F3 − 500F4DF2 + 700(DF4)2F4
+ 1250F1F4−1050F3F4DF4 + 350F 23 F4−350F

2
4DF3+550F2F

2
4−280F

3
4DF4 + 210F3F

3
4 + 28F

5
4 + 18750Fy = 0.

• n = 6:

45D2F5 − 54DF4 + 27F3 − 45DF5F5 + 18F4F5 + 5F 35 945D
2F4 − 1890DF3 + 900(DF5)2 + 1575F2 − 1350DF5F4

+ 333F 24 − 315DF4F5 + 315F3F5 − 300DF5F
2
5 + 225F4F

2
5 + 25F

4
5 = 0

2835D2F3 − 9450DF2 + 4320DF4DF5 + 14175F1 − 5130DF5F3 − 1728DF4F4 + 1863F3F4 − 945DF3F5
+ 1800(DF5)2F5 + 1575F2F5 − 2160DF5F4F5 + 576F 24 F5 − 720DF4F

2
5 + 855F3F

2
5

− 600DF5F 35 + 360F4F
3
5 + 50F

5
5 = 0

14175D2F2 − 85050DF1 + 6480(DF4)2 + 16200DF3DF5 − 31050DF5F2 − 9720DF4F3 + 3645F 23 − 6480DF3F4
+ 5400DF 25 F4 + 11475F2F4 − 4320DF5F

2
4 + 864F

3
4 − 4725DF2F5 + 10800DF4DF5F5 + 14175F1F5

− 10800DF5F3F5 − 6480DF4F4F5 + 5940F3F4F5 − 2700DF3F 25 + 4500(DF5)
2F 25 + 5175F2F

2
5

−7200DF5F4F 25 + 2340F
2
4 F
2
5 − 1800DF4F

3
5 + 1800F3F

3
5 − 1500DF5F

4
5 + 1050F4F

4
5 + 125F

6
5 + 297675Fy = 0
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• n = 7:

245D2F6 − 245DF5 + 98F4 − 210DF6F6 + 70F5F6 + 20F 36 = 0

6860D2F5 − 10976DF4 + 6615(DF6)2 + 6860F3 − 8330DF6F5 + 1715F 25 − 1960DF5F6
+ 1568F4F6 − 1890DF6F 26 + 1190F5F

2
6 + 135F

4
6 = 0

9604D2F4 − 24010DF3 + 15435DF5DF6 + 24010F2 − 14749DF6F4 − 5145DF5F5 + 4459F4F5 − 2744DF4F6
+ 6615(DF6)2F6 + 3430F3F6 − 6615DF6F5F6 + 1470F 25 F6 − 2205DF5F

2
6 + 2107F4F

2
6

− 1890DF6F 36 + 945F5F
3
6 + 135F

5
6 = 0

336140D2F3 − 1344560DF2 + 180075(DF5)2 + 432180DF4DF6 + 2352980F1 − 624260DF6F3
− 216090DF5F4 + 64827F 24 − 144060DF4F5 + 154350(DF6)

2F5 + 192080F3F5
− 102900DF6F 25 + 17150F

3
5 − 96040DF3F6 + 308700DF5DF6F6 + 192080F2F6

−246960DF6F4F6 − 154350DF5F5F6 + 113190F4F5F6 − 61740DF4F 26 + 132300(DF6)
2F 26

+ 89180F3F 26 − 176400DF6F5F
2
6 + 47775F

2
5 F
2
6 − 44100DF5F

3
6 + 35280F4F

3
6

− 37800DF6F 46 + 22050F5F
4
6 + 2700F

6
6 = 0

2352980D2F2 − 16470860DF1 + 1512630DF4DF5 + 2268945DF3DF6 − 5126135DF6F2
− 1512630DF5F3 − 907578DF4F4 + 648270(DF6)2F4 + 907578F3F4 − 756315DF3F5
+ 1080450DF5DF6F5 + 1596665F2F5 − 1080450DF6F4F5 − 360150DF5F 25 + 288120F4F

2
5 − 672280DF2F6

+540225(DF5)2F6 + 1296540DF4DF6F6 + 2352980F1F6 − 1620675DF6F3F6 − 864360DF5F4F6
+ 324135F 24 F6 − 648270DF4F5F6 + 926100(DF6)

2F5F6 + 756315F3F5F6 − 771750DF6F 25 F6
+ 154350F 35 F6 − 324135DF3F

2
6 + 926100DF5DF6F

2
6 + 732305F2F

2
6 − 926100DF6F4F

2
6 − 617400DF5F5F

2
6

+ 524790F4F5F 26 − 185220DF4F
3
6 + 396900(DF6)

2F 36 + 231525F3F
3
6 − 661500DF6F5F

3
6 + 209475F

2
5 F
3
6

− 132300DF5F 46 + 119070F4F
4
6 − 113400DF6F

5
6 + 75600F5F

5
6 + 8100F

7
6 + 65883440Fy = 0.

Remark 8.19. If n = 3 we have only one Wünschmann condition [20,1]:

9D2F2 − 27DF1 − 18DF2F2 + 18F1F2 + 4F 32 + 54Fy = 0.

and, if it satisfied, a conformal Lorentzian geometry associated with a metric
3g = θ0θ2 − (θ1)2

is naturally defined on the solution space.

Remark 8.20. If n = 4 the ODEs satisfying the two Wünschmann conditions lead to very nontrivial geometries on 4-
dimensional solution spaces. These are a sort of conformal Weyl geometries, which instead of a metric are define in terms
of the conformal rank four tensor 4Υ . These geometries define a characteristic connection, which is gl(2,R) valued and has
an exotic holonomy [5]. By this we mean that the holonomy of this nonmetric but torsionless connection does not appear
on the Berger’s list [5]. See also our account on this subject in [21].
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