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the structure group reduced from CO(3, 2) to GL(2, R). The reduction is obtained by means
of a conformal class of totally symmetric 3-tensors. Among all GL(2, R) geometries we
distinguish a subclass which we term ‘nearly integrable GL(2, R) geometries’. These define
a unique gl(2, R) connection which has totally skew symmetric torsion. This torsion splits

2/13,5,310 onto the GL(2, R) irreducible components having respective dimensions three and seven.
53B05 We prove that on the solution space of every 5th order ODE satisfying certain three
53C10 nonlinear differential conditions there exists a nearly integrable GL(2, R) geometry such
34C30 that the skew symmetric torsion of its unique gl(2, R) connection is very special. In contrast
Keywords: to an arbitrary nearly integrable GL(2, R) geometry, it belongs to the 3-dimensional

. irreducible representation of GL(2, R).
Geometrization of ODEs . . P .
Cartan method of equivalence . We prowde qqnmwal gxan?ples of 5th .order ODEs satlsfymg the three nonlinear
Wiinschmann invariants differential conditions, which in turn provide examples of inhomogeneous GL(2, R)
geometries in dimension five, with torsion in R3.

We also outline the theory and the basic properties of GL(2, R) geometries associated
with n-dimensional irreducible representations of GL(2, R) in 6 < n < 9. In particular we
give conditions for an nth order ODE to possess this geometry on its solution space.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let us start with an elementary algebraic geometry in R>. Every point on a curve (1, x, x*) in R? defines a straight line
passing through the origin in the dual space (R*)* via the relation:

0° +20'x +6°x* =0 (1.1)
o'+ 6% =0.

Here (8°, 61, §2) parameterize points of (R*)*. When moving along the curve (1, x, x*) in R?, the corresponding lines in the
dual space (R*)* sweep out a ruled surface there, which is the cone

©H? —0%% =0 (1.2)

with the tip in the origin. The points (8%, ', #2) lying on this cone may be thought as those, and only those, which admit a
common root x for the pair of Egs. (1.1). A standard method for determining if two polynomials have a common root is to
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equate to zero their resultant. In the case of Egs. (1.1) the resultant is:
6% 20" 6> 0 o0
0 6° 20" 6% o0
Ry=det| 0 0 6° 20" 97
' * 0 0 O
0o 6" #* 0 o0
It vanishes if and only if condition (1.2) holds.
Before passing to R" with general n > 3, it is instructive to repeat the above considerations in the cases of n = 4 and
n=>5.
A point on a curve (1, x, x%, x>) in R* defines a plane passing through the origin in the dual space (R*)* via the relation:

0% +30x + 3022 + 63> =0 (1.3)
0! +20% + 0°x* = 0.
Now (0°, 81,62, 0) parameterize points of the dual (R*)* and when moving along the curve (1,x, x2, x*) in R%, the

corresponding planes in (R*)* sweep out a ruled hypersurface there, which is defined by the vanishing of the resultant
of the two polynomials defined in (1.3). This is given by

—3MH%(6°%)% + 46°(6%)° + 4(6)%0% — 66°61626° + (0°)2(6%)? = 0, (1.4)
as can be easily calculated.
Forn = 5, a point on a curve (1, x, x2, x>, x*) in R° defines a 3-plane passing through the origin in the dual space (R>)*
via the relation:
0° + 40'x + 60%2x* + 4603 + 0%x* =0 (1.5)
0! +30%x +30°x* + 6*%* = 0,
where (9°, 6,602, 63, 6%) parameterize points of the dual (R°)* as before. And now, when moving along the curve
(1, x, x*, x3,x*) in R>, the corresponding 3-planes in (R*)* sweep out a ruled hypersurface there, which is again defined
by the vanishing of the resultant of the two polynomials defined in (1.5). The algebraic expression for this hypersurface in
terms of the 6 coordinates is quite complicated:
—36(01)%(0%)%(6%)2 + 540°(6%)%(6%) + 64(61)%(6%)® — 1080°0102(6°)3
+27(0%20%)* + 54(6H)%(62)%0* — 810°(6*)*9* — 108(61)%02030*
+1800°01(6%)20%0* + 60°(81)%(83)%0* — 54(6°)20%(6%)20* + 27(61)*(6*)?
—540%01202(6%)2 + 18(8°)%(8%)%(6M)* + 12(8°)%20'6° (6% — (8%)3(6*)3 =0, (1.6)
but easily calculable.
The beauty of the hypersurfaces (1.2), (1.4) and (1.6) consists of this that they are given by means of homogeneous
equations, and thus they descend to the corresponding projective spaces. From the point of view of the present paper, even

more important is the fact, that they are GL(2, R) invariant. By this we mean the following:
Consider a real polynomial of (n — 1)-th degree

n—1
w(x):Z("?l)e"x" (17)

i=0

in the real variable x with real coefficients (9%, 6', ..., 8" 1). The n-dimensional vector space (R")* of such polynomials
may be identified with the space of their coefficients. Now, replacing the variable x by a new variable x" such that

ax' + B
= s s — 0, 1.8
X )/X/ + F) o IBV ?é ( )
we define a new covector (6'%, 6'", ..., 6" ") which is related to (6°, 61, ..., 8" ) of (1.7) via
n—1
-1 o
> (n - ) 0"x" = (yx +8)" 'w().
i=0 !
It is obvious that &’ = (0’°, 6", ..., 6" 1) is linearly expressible in terms of 6 = (8°, 61, ..., 6" 1):
’_ . _ [« B
0= 0. pu(a), a= (y 5)' (1.9)
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Here a corresponds to the GL(2, R) transformation (1.8), and the map
pn : GL(2, R) — GL((R")*) = GL(n, R)

defines the real n-dimensional irreducible representation of GL(2, R). For example, if n = 2, we have w(x) = 6°4-201x4+02x?,
and we easily get

82 J/(S yz
0° o' o) =" o' 0*) 285 as+By 2ay|,
,32 aﬁ aZ

so that p, is given by

« B 8 vy
02 <)/ 8) =288 ad+By 22ay
,32 Olﬂ az
Now, let us define g(8, 6), 410, 6, 6,0) and°1(8, 6,0, 6,6, 0) by
g(0, 6) = the left hand side of (1.2)

410, 0,6, 6) = the left hand side of (1.4) (1.10)
51(9, 0,0,0,0,0) = the left hand side of (1.6).
We will often abbreviate this notation to the respective: g(6), 41(6) and >I(9).
To explain our comment about the GL(2, R) invariance of the respective hypersurfacesg() = 0,%I(8) = 0and>I(0) = 0
we calculate g(6”), *1(8’) and °I(9’) with 6’ as in (1.9). The result is
g = (@8 —By)* g®)
1) = (a8 — By)* 1(0)
*10) = (a8 — By)°°1(6).
Thus the vanishing of the expressions g(6), I(9) and >I1(8) is invariant under the action (1.9) of the irreducible GL(2, R) on
RM*.
We are now ready to discuss the general case n > 3 of the rational normal curve (1, x, x?, ..., x"~1) in R". Associated
with this curve is a pair of polynomials, namely w(x) as in (1.7), and its derivative %’j. We consider the relation

dw
wkx)=0 & — =0. (1.11)

dx
This gives a correspondence between the points on the curve (1, x, x%, ..., x™ 1) in R" and the (n—2)-planes passing through
the origin in the dual space (R")* parameterized by (6°, 6!, ..., 6" ). When moving along the rational normal curve in

R", the corresponding (n — 2)-planes in (R")* sweep out a ruled hypersurface there. This is defined by the vanishing of the
resultant, R(w(x), %), of the two polynomials in (1.11). The algebraic expression for this hypersurface is the vanishing of
a homogeneous polynomial, let us call it 1(9), of order 2(n — 2), in the coordinates (6°, 01, ..., 6" ). The hypersurface
I1(#) = 0in (R™)* is GL(2, R) invariant, since the property of the two polynomials w(x) and % to have a common root is
independent of the choice (1.8) of the coordinate x. Thus GL(2, R) is included in the stabiliser G; of I under the action of
the full GL(n, R) group. This stabiliser, by definition, is a subgroup of GL(n, R) with elements b € G; C GL(n, R) such that

1(6 - b) = (detb) e 1(0). Moreover, in n = 4, 5, it turns out that G; is precisely the group GL(2, R) in the corresponding
irreducible representation p,. Thus if n = 4, 5 one can characterise the irreducible GL(2, R) in n dimensions as the stabiliser
of the polynomial I(6).

Crucial for the present paper is an observation of Karl Wiinschmann that the algebraic geometry and the correspondences
we were describing above, naturally appear in the analysis of solutions of the ODE y™ = 0. Indeed, following Wiinschmann!
(see the Introduction in his Ph.D. thesis [1], pp. 5-6), we note the following:

Consider the third order ODE: y” = 0. Its general solution is y = ¢y + 2c1x + c2x?, where cg, ¢1, ¢, are the integration
constants. Thus, the solution space of the ODE y"” = 0 is R* with solutions identified with points ¢ = (co, ¢1, ¢;) € R3. The
solutions to the ODE y” = 0 may be also identified with curves y(x) = ¢y 4+ 2c1x + cx?, actually parabolas, in the plane
(x, ). Suppose now, that we take two solutions of y”” = 0 corresponding to two neighbouring points ¢ = (cg, ¢1, ¢3) and
¢ + dc = (co + dcg, ¢; + dcy, ¢ + dcy) in R®. Among all pairs of neighbouring solutions we choose only those, which have
the property that their corresponding curves y = y(x) and y + dy = y(x) + dy(x) touch each other, at some point (xg, yo)

1 We are very grateful to Niels Schuman, who found a copy of Wiinschmann'’s thesis in the city library of Berlin and sent it to us. It was this copy, which
after translation from German by Denson Hill, led us to write this introduction.
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in the plane (x, y). If we do not require anything more about the properties of this incidence of the two curves, we say that
solutions ¢ and ¢ + dc have zero order contact at (xg, Yo).

In this ‘baby’ example everything is very simple: To get the criterion for the solutions to have zero order contact we first
write the curves y = ¢y + 2c1x + ¢ox? and y + dy = ¢y + dco + 2(c; + dcp)x + (¢ + dcy)x? corresponding to ¢ and ¢ + dc.
Thus the solutions have zero order contact at (xg, ¥(xo)) provided that dy(xy) = 0, i.e. if and only if

dcg + 2xpdcy + xédcz =0.
This shows that such a contact is possible if and only if the determinant
g(dc, de) = (dcy)? — deodc,

is non-negative, since otherwise the quadratic equation for xy has no solutions. Unexpectedly, we find that the requirement
for the two neighbouring solution curves of y”” = 0 to have zero order contact at some point is equivalent to the requirement
that the corresponding two neighbouring points ¢ and ¢ 4 dc in R? be spacelike separated in the Minkowski metric g in R3.
This is the discovery of Wiinschmann that is quoted in Elie Cartan’s 1941 year’s paper? [4].

Now we consider the neighbouring solutions ¢ and ¢ + dc of y”” = 0 which are null separated in the metric ds?>. What
we can say about the corresponding curves in the plane (x, y)?

To answer this we need the notion of a first order contact: Two neighbouring solution curves y = ¢y + 2c;x + cx* and
y+dy = cg + 21X + cox% + (dcg + 2xdc; + x*dcy) of y” = 0, corresponding to ¢ and ¢ + dc in R3, have first order contact
at (xg, yo) iff they have zero order contact at (xo, ¥o) and, in addition, their curves of first derivatives, y’ = 2c¢; + 2cx and
y'+dy’ = 2(c;+dcq) +2(c; +dcy)x, have zero order contact at (g, yo). Thus the condition of first order contact at (xo, ¥(Xg))
is equivalent to dy(xg) = 0 and dy’'(xo) = 0, i.e. to the condition that xq is a simultaneous root for

dco + 2xodc; + x5dc; = 0 (1.12)
dC1 +X0dC2 =0.

Solving the second of these equations for xg, and inserting it into the first, after an obvious simplification, we conclude that
(dcq1)? — dcgdc, = 0. Thus we get the interpretation of the null separated neighbouring points in R* as the solutions of
y"” = 0 whose curves in the (x, y) plane are neighbouring and have first order contact at some point.

Wiinschmann notes that the procedure described here for the equation y””” = 0 can be repeated for the equation y™ = 0
for arbitrary n > 3.In the cases of n = 4and n = 5 he however passes to the discussion of the solutions that have contact of
order (n — 2) rather then one. This is an interesting possibility, complementary in a sense to the one in which the solutions
have first order contact. Wiinschmann spends rest of the thesis studying it. But we will not discuss it here.

Since Wiinschmann does not discuss the first order contact of the solutions in n = 4, 5, let us look closer into these two
cases:

The general solution to y¥ = 0isy = c¢o + 3c1x + 3c2%* + c3x°, and the general solution to y® = 0isy =
Co + 4c1x + 6c2%% + 4csx® + c4x*. Thus now the solutions are points ¢ in R and R®, respectively. The condition that the
neighbouring solutions ¢ = (cy, ¢4, €2, ¢3) and € + de = (cy + dcg, ¢ + dcy, ¢, + dca, 3 + dez) of y® = 0 have first order
contact at (Xg, y(xo)) is equivalent to the requirement that the system

dcg + 3xpdcy + 3xédcz + ngC3 =0 (1.13)
dc; + 2xodc; + x5dcs = 0

have a common root xg. Similarly, the condition that the neighbouring solutions ¢ = (cg, c1, ¢2, €3, ¢4) and ¢ + dc =
(co + dcg, ¢ + dcq, ¢ + dcz, ¢35 + des, ¢4 + dcg) of Y = 0 have first order contact at (xo, y(Xo)) is equivalent to the
requirement that the system

dcg + 4xpdcy + 6xgdc2 + 4xgdc3 + xédc4 =0 (1.14)
dc; + 3xpdc + 3x%dcs + x3dcy = 0
have a common root xq. Calculating the resultants for the systems (1.12)-(1.14) we get:

e R3 = g(dc,dc)dc, ifn=3,
e Ry =%*I(dc, dc, dc, dc)dc;  ifn = 4,
e Rs =°I(dc, dc, dc, dc, dc, de)dc,  ifn =5,

where g, 4I and °I are as in (1.10).

2 1t is worthwhile remarking, that Wiinschmann thesis is dated ‘1905’, the same year in which Einstein published his famous special relativity theory
paper [2]. It was not until three years later when Minkowski gave the geometric interpretation of Einstein’s theory in terms of his metric [3]. Perhaps
Wiinschmann was the first who ever wrote such a metric in a scientific paper. This is a very interesting feature of Wiinschmann'’s thesis: he calls the
expressions like (dc;)? — dcydc, = 0, a Mongesche Gleichung rather than a cone in the metric, because the notion of a metric with signature different than
the Riemannian one was not yet abstracted!
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This confirms our earlier statement that two neighbouring solutions of y”” = 0 have first order contact iff g(dc, dc) = 0,
since if dc; = 0 the system (1.12) collapses to dc; = dcg = 0. Similarly, one can prove that two neighbouring solutions of
y@ = 0ory® = 0 have first order contact if and only if they are null separated in the respective symmetric multilinear
forms I or >I. Our previous discussion of the invariant properties of these forms, shows that in the solution space of an ODE
y™ =0, for n > 4, there is a naturally defined action of the the GL(2, R) group. This group is the stabiliser of the invariant
polynomial I(dc) which distinguishes neighbouring solutions having first order contact.
First question one can ask in this context is if one can retain this GL(2, R) structure in the solution space for more
complicated ODEs. In other words, one may asks the following: What does one have to assume about the function F, defining
an ODE

vy =Fx, .y, ..., y" ),

in order to have a well defined conformal tensor g, 4I or °I, in the respective cases n = 3, 4, 5, on the solution space of the
ODE? The same question can be repeated for any n > 5 and the invariant I.

The answer to this question in the n = 4 case was found by Robert Bryant in [5]. Our paper, among other things, gives a
geometric background and an effective method for answering this question for n > 4. It follows that for every n > 3, one
has (n — 2) contact invariant conditions for F, whose vanishing is necessary and sufficient for defining a conformal tensor
I on the solution space of the ODE. Each of these (n — 2) conditions is of third order in the derivatives of F. In dimension
n = 4 our (4 — 2) = 2 conditions agree with the Bryant ones. Since Wiinschman was the first who obtained these types
of conditions in n = 3, we call the (n — 2) conditions for F the generalised Wiinschmann’s conditions, or Wiinschmann'’s
conditions, for short. We also mention that they are lower order equivalents of the conditions discussed recently in [6-8].

The main objective of the paper is a thorough study of the irreducible GL(2, R) geometry in dimension five. This is done
from two points of view: first as a study of an abstract geometry on a manifold and, second, as a study of a contact geometry
of fifth order ODEs. In the latter case we also describe the GL(2, R) geometry in the language of contact invariants of the ODE
and construct the Wiinschmann conditions.

We define an abstract 5-dimensional GL(2, R) geometry in two steps. First, in Section 2, we show how to construct the
algebraic model for the GL(2, R) geometry in dimension five utilising the properties of a rational normal curve. Second,
instead of obtaining the reduction from GL(5, R) to GL(2, R) by stabilising the 6-tensor °I, we get the desired reduction by
stabilising a conformal metric g; — ezd’gij of signature (3, 2) and a conformal totally symmetric 3-tensor Vi — e3¢Tgk.
These tensors are supposed to be related by the following algebraic constraint:

glm(’rllekmp + Tkily}'mp + Tjkl’rimp) = gijgkp + gklgjp + gjkgip' (1-]5)

It is worthwhile noting that condition (1.15) is a non-Riemannian counterpart of the condition considered by Elie Cartan in
the context of isoparametric surfaces [9,10]. Our main object of study is then defined in Section 3 as follows:

Definition. An irreducible GL(2, R) geometry in dimension five is a 5-dimensional manifold M> equipped with a class of
triples [g, T, A] such that on M°:

(a) g is a metric of signature (3, 2),

(b) 7 is a traceless symmetric 3rd rank tensor,

(c) Ais a 1-form,

(d) the metric g and the tensor 7" satisfy the identity (1.15),

(e) two triples (g, ', A) and (g’, Y’, A') are in the same class [g, T, A] if and only if there exists a function ¢ : M°> — R
such that

g =e¥g, T =¥, A =A—2d¢.

This definition places GL(2, R) geometries in dimension five among the Weyl geometries [g, A]. They are special Weyl
geometries i.e. such for which the structure group is reduced from CO(3, 2) to GL(2, R). A natural description of such
geometries should be then obtained in terms of a certain gl(2, R)-valued connection. However, unlike in the usual Weyl
case, the choice of a gl(2, R) connection is ambiguous, due to the fact that such a connection has non-vanishing torsion in

general, and one must find admissible conditions for the torsion that specifies a connection uniquely. Pursuing this problem
in Section 3 we find an interesting subclass of GL(2, R) geometries.

w
Definition. A GL(2, R) geometry [g, 7, A] is called nearly integrable if the Weyl connection V of [g, A] satisfies

(ng)(X,X,X) = —%A(X)T(X,X,X).

Next we prove the following property of nearly integrable geometries.

Proposition. A nearly integrable GL(2, R) geometry uniquely defines a gl(2, R) connection D. This is characterised by the two
following requirements:

Please cite this article in press as: M. Godlinski, P. Nurowski, GL(2, R) geometry of ODE’s, Journal of Geometry and Physics (2010),
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e D preserves the structural tensors:
Dgij = —Agij,
3
DY = _EATijk,
e and D has totally skew symmetric torsion.

We call this unique connection the characteristic connection for the nearly integrable GL(2, R) structure.

In Section 4 we briefly describe GL(2, R) geometry in the language of the bundle GL(2, R) — P — M?>. We also show how
an appropriate coframe defined on a nine-dimensional manifold P turns this manifold into a bundle GL(2, R) — P — M®
and generates the GL(2, R) geometry on M>. The bundle approach is useful in proofs of results in Sections 5 and 6.

Section 5 is devoted to studying the algebraic structure of the torsion and the curvature of the characteristic connection
of a nearly integrable GL(2, R) structure. Since the tensor products of tangent spaces are reducible under the action of
GL(2, R), we decompose the torsion and the curvature tensors into components belonging to the irreducible representations.
In particular, the skew symmetric torsion T has two components, T and T, lying in the three-dimensional and the seven-
dimensional irreducible representations respectively. Likewise the Maxwell 2-form dA and the Ricci tensor R decompose
according to dA = dA® + dA® and R = RV + R® 4+ R® 4+ R? 4+ R The last problem we address in Section 5 concerns
with the properties of geometries whose characteristic connections have ‘the smallest possible’ torsion, that is the torsion
of the pure three-dimensional type. In Theorems 5.4 and 5.5 we prove that the Ricci tensor for such structures satisfies the
remarkable identities:

R = Lga® RD — 2da® RO — 0.
4 ’ 2 ’
Here the third equation is equivalent to
1 2
Ry = Rej+ §Rk,r"’mrgm.

This closes the part of the paper that is devoted to abstract GL(2, R) geometries.
Section 6 contains the main result of this paper, Theorem 6.3, which links GL(2, R) geometry with the realm of ordinary
differential equations. It can be encapsulated as follows.

Theorem. A5thorder ODEy® =F(x,y,y,y",y", y®) that satisfies three Wiinschmann conditions defines a nearly integrable
irreducible GL(2, R) geometry (M°, [g, T, A]) on the space M? of its solutions. This geometry has the characteristic connection
with torsion of the ‘pure’ type in the 3-dimensional irreducible representation of GL(2, R). Two 5th order ODEs which are
equivalent under contact transformation of variables define equivalent GL(2, R) geometries.

The theorem has numerous applications. For example, we use it to characterise various classes of Wiinschmann 5th
order ODEs, by means of the algebraic type of the tensors associated with the corresponding characteristic connection. For
example iff Fyay@ =0 the torsion of the characteristic connection vanishes, and iff Fay@y@e =0 then we have dA?) = 0.

The proof of the theorem consists of an application of the Cartan method of equivalence. We write an ODE, considered
modulo contact transformation of variables, as a G-structure on the four-order jet space. Starting from this G-structure
we explicitly construct a 9-dimensional manifold P, which is a GL(2, R) bundle over the solution space and carries a certain
distinguished coframe. This construction is only possible provided that the ODE satisfies the Wiinschmann conditions, which
we write down explicitly. By means of Proposition 4.1 the coframe on P defines the nearly integrable geometry on the
solution space of the ODE. It has the characteristic connection with torsion in the 3-dimensional representation.

Section 7 includes examples of 5th order equations in the Wiinschmann class. We find equations generating all the
structures with vanishing torsion, equations possessing at least a 6-dimensional group of contact symmetries and yielding
geometries with dA = 0. We also give highly nontrivial examples of equations for which dA # 0, including a family of
examples with function F being a solution of a certain second order ODE.

Finally, in Section 8 we consider ODEs of order n > 5. We apply results of the Hilbert theory of algebraic invariants, to
define the tensors responsible for the reduction GL(n, R) — GL(2, R). We also give the explicit formulae for the (n — 2)
third order Wiinschmann conditions forn = 6 and n = 7.

2. A peculiar third rank symmetric tensor

Consider R" equipped with a Riemannian metric g and a 3rd rank tracefree symmetric tensor ¥ € S3R" satisfying:
(i) Yy = Yy (symmetry)
(i) g'%k = 0 (tracefree)
(iii) 8" (i Yimp + Vi Vimp + Yiia Yimp) = Ziip + Siuip + &iSip-

Please cite this article in press as: M. Godlinski, P. Nurowski, GL(2, R) geometry of ODE’s, Journal of Geometry and Physics (2010),
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It turns out that the third condition is very restrictive. In particular Cartan has shown [9,10] that for (iii) to be satisfied the
dimension n must be one of the following: n = 5, 8, 14, 26. Moreover Cartan constructed 7" in each of these dimensions
and has shown that it is unique up to an O(n) transformation. Restricting ton = 5, 8, 14, 26, we consider the stabiliser H,
of T under the action of GL(n, R):

H,={GL(,R) > a: Y (aX,aY,aZ) =T (X,Y,Z),VX,Y,Z € R"}.
Then, one finds that:

e Hs; = SO(3) C SO(5) in the 5-dimensional irreducible representation,
e Hg = SU(3) C SO(8) in the 8-dimensional irreducible representation,
e Hyy = Sp(3) C SO(14) in the 14-dimensional irreducible representation,
e H,s; = F4 C SO(26) in the 26-dimensional irreducible representation.

The relevance of conditions (i)-(iii) is that they are invariant under the O(n) action on the space of tracefree symmetric
tensors SSR”. Moreover they totally characterise the orbit O(n)/H, C 53 of the tensor 7" under this action [11,12].

The question arises if one can construct tensors satisfying (i)-(iii) for metrics having non-Riemannian signatures.
Below we show how to do it if n = 5 and the metric g has the signature (3, 2). This construction described to us by
Ferapontov [13,14] is as follows.

Consider R° with coordinates (6°, 81, 62, 63, %), and a curve

Y = (1,x2,%,x%) C R
Associated to the curve y there are two algebraic varieties in R>:

e The bisecant variety. This is defined to be a set consisting of all the points on all straight lines crossing the curve y in
precisely two points. It is given parametrically as

B(x,s,u) = (1,x, %%, %>, %) + u(0,x — s, x¥* —s%, x> — s, x* — s,

where X, s, u are three real parameters.
e The tangent variety. This is defined to be a set consisting of all the points on all straight lines tangent to the curve y. It is
given parametrically as

T(x,s) = (1,x, %%, x>, x*) +5(0, 1, 2x, 3x%, 4x°).
One of many interesting features of these two varieties is that they define (up to a scale) a tri-linear symmetric form
T(0) = 3v3(0°0%0% + 20'6%0° — (6%)° — 6°(6°)? — 6*(8")?) (2.1)
and a bi-linear symmetric form
2(0) = 6°9* — 40'0° 4 3(pH)% (2.2)

These forms are distinguished by the fact that the bisecant and tangent varieties are contained in their null cones. In the
homogeneous coordinates (9°, 8', 62, 63, 64) in R all the points 6 of B(x, s, u) satisfy

T) =0,
whereas all the points 6 of T (x, s) satisfy
T@®)=0 and g(@) =0.

Writing the forms as Y'(9) = Y0'¢/6%, g(0) = gi0'¢V,1,j,k = 0, 1,2, 3, 4 one can check that so defined g; and T,
satisfy relations (i)-(iii) of the previous section.

Although it is obvious we remark that the above defined metric g;; has the signature (3, 2).

As we have already noted the forms 7°(6) and g (0) are defined only up to a scale. We were also able to find a factor, the
34/3in expression (2.1), that makes the corresponding g;; and Tj; to satisfy (i)-(iii). Note that these conditions are conformal
under the simultaneous change:

2 3
g — g, T — Ty
Thus it is interesting to consider in R® a class of pairs [g, 7°], such that:

e ineach pair (g, 7)
- g is a metric of signature (3, 2),
- T is a traceless symmetric 3rd rank tensor,
- the metric g and the tensor 7" satisfy the identity

™ (Vi Vimp + Ve Limp + Vi Vimp) = 8ii&kp + SuaGip + G&ip
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e two pairs (g, T) and (g’, T’) are in the same class [g, 7] if and only if there exists ¢ € R such that
g =g, T =e¥T. (2.3)

Given a structure (R, [g, 7']) we define a group CH to be a subgroup of the general linear group GL(5, R) preserving
[7']. This means that, choosing a representative 1" of the class [7"], we define CH to be:
CH = {GL(5,R) > a: T(ax, ax, ax) = (deta) /> 1 (x, x, x)}.

Note that the exponent % in the above expression is caused by the fact that the r.h.s. of the equation defining the group
elements must be homogeneous of degree 3 in a, similarly as the Lh.s. is.
This definition does not depend on the choice of a representative T € [T"]. We have the following

Proposition 2.1. The set CH of 5 x 5 real matrices a € GL(5, R) preserving [Y'] is the GL(2, R) group in its 5-dimensional
irreducible representation. Moreover, we have natural inclusions

CH =GL(2,R) C CO(3,2) C GL(5, R),

where CO(3, 2) is the 11-dimensional group of homotheties associated with the conformal class [g].

Remark 2.2. According to our Introduction, there is another GL(2, R) invariant symmetric conformal tensor that stabilises
GL(5, R) to the irreducible GL(2, R). This is the tensor °Jjyyq defined via *1(0) = 135 ljiipg?'6°66'670% with I as in (1.10).
We prefer however to work with a pair (g, Tj;) rather then with Sl,jklpq, because of the lower rank, and more importantly,
because of the evident conformal metric properties of the (g, Yjx) approach. Also, it is worthwhile noting that the invariants
gij» Tijk and Sl,jklpq are not independent. Indeed, one can easily check that °I of (1.10), 7" of (2.1) and g of (2.2) are related by
51 = T2 — g3, We interpret this relation as the definition of °I in terms of more primitive quantities g and 7.

The isotropy condition for the group elements a of CH has its obvious counterpart at the level of the Lie algebra gl(2, R) =
(R @ sl(2,R)) C co(3,2) C gl(5,R) of CH = GL(2, R). Writing a = exp(tI") we find that the infinitesimal version of the
isotropy condition, written in terms of the 5 x 5 matrices I" = (I'")) is:

3
'Yy + r' Y+ 'y = STr (1) Ty (2.4)

where Tr(I") = I'™ . Given 7Tjj, these linear equations can be solved for I". Taking the most general matrix I € GL(5, R)
and i given by T (x, x,X) = ﬁjkxfxfx" of (2.1) we find the explicit realisation of the 5-dimensional representation of the
gl(2, R) Lie algebra as:

I' = T_E_ + I'VE, + IoEo + IEs, (2.5)
where I'_, I'y, Iy, I'7 are free real parameters, and (E_, E., Eg, E1) are 5 x 5 matrices given by:
0 4 0 0 O 0 0 0 0 O
0 0 3 0 O 1 0 0 0 O
E,=]0 0 0 2 o], E=|02 0 0 of, (2.6)
0O 0 0 0 1 0 0 3 0 O
0 0 0 0O 0 00 40
-4 0 0 0 O 1 0 0 0 O
0 -2 0 0 O 0 1 0 0 O
EE=]l0 0 0 0 0], E=-4|/0 0 1 0 0
0 0 0 2 0 0 0 010
0 0 0 0 4 0 0 0 0 1

The commutator in
gl(2, R) = Spang(E_, Ey, Eo, E1)
is the usual commutator of matrices. In particular, the non-vanishing commutators are:
(Eo.E+l= —2E.,  [Eo,E_-]=2E_, [E;,E_]=—E,.
Note that
s[(2, R) = Spang (E_, E4, Eo)
is a subalgebra of gl(2, R) isomorphic to s[(2, R). It provides the 5-dimensional irreducible representation of s[(2, R).

3. Irreducible GL(2, R) geometries in dimension five

In this section we describe 5-dimensional manifolds whose tangent space at each point is equipped with the structure
[g, T'] of the previous section. We will analyse such manifolds in terms of an appropriately chosen connection. We will
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describe connections on a manifold M in terms of Lie-algebra-valued 1-forms on M. To be more specific, let dimM = n and
let g denote an n-dimensional representation of some Lie algebra. The connection 1-forms I”j on M are the matrix entries

of an element I € g ® A'M. They define the covariant exterior derivative D. This acts on tensor-valued-forms via the
extension to the higher order tensors of the formula:

Dvl = dv' + I“ij AV

Now suppose that we have a 5-dimensional manifold M° equipped with a class of pairs [g, 7] such that g is a metric,
T is a 3rd rank tensor related to the metric via properties (i)-(iii) of the previous section, and two pairs (g, 7") and (g’, ")
are in the same pair iff they are related by (2.3), where ¢ is now a function on M>. If we want to associate a connection
with such a structure we have to specify how this connection is related to the pair [g, T"]. A possible approach is to choose
a representative (g, ") of [g, T"] and declare what is Dg and DT". A first possible choice Dg = 0 or DT = 0 is definitely
not good since, in general, Dg’ and DY’ would not be vanishing for another choice of the representative of [g, 7']. A remedy
for this situation comes from Weyl geometry where, given a conformal class (M, [g]), a 1-form A is introduced so that

the connection satisfies Dg; = —Ag;. In our case we introduce a 1-form A on M? and require that Dg; = —Ag; and
DYk = —%A?’Uk. Then, if we transform (g, ") according to (2.3), the transformed objects will satisfy Dgi;- = —A’glg- and
DY}, = —3A'Y, provided that A" = A — 2d¢. This motivates the following

Definition 3.1. An irreducible GL(2, R) structure in dimension five is a 5-dimensional manifold M> equipped with a class
of triples [g, T', A] such that on M>:

(a) g is a metric of signature (3, 2),
(b) 7 is a traceless symmetric 3rd rank tensor,
(c) Ais a 1-form,
(d) the metric g and the tensor 7" satisfy the identity
g™ (Vi Vimp + Ve Vimp + Vit Vimp) = 8ii&kp + Saip + Gikips

(e) two triples (g, T, A) and (g’, T', A') are in the same class [g, 7", A] if and only if there exists a function ¢ : M> — R
such that

g/:e2¢g’ T’:e3¢T, A/:A—2d¢.

If M> was only equipped with a class of pairs [g, A] satisfying conditions (a), (c) and (e) (with 7", 7’ omitted), then
(M?, [g, A]) would define a Weyl geometry. Such a geometry, which has the structure group CO(3, 2), is usually studied
in terms of the Weyl connection. This is the unique torsion-free connection preserving the conformal structure [g, A]. It is
defined by the following two equations:

w
D gj = —Ag; (preservation of the class [g, A]), (3.1)

w .
D &' =0 (no torsion), (3.2)

where 6! is a coframe related to the representative g of the class [g] by g = g,j6i9j. We describe the Weyl connection in
w
terms of the Weyl connection 1-forms I ;,i,j = 0, 1, 2, 3, 4.

Take a representative (g, A) of the Weyl structure [g, A] on M>. Choose a coframe (0)),i = 0,1, 2, 3, 4, such that
w
g = g,-j-Oin, with all the metric coefficients g; being constant. Then the above two equations define It j together with

w w
rj= gikl*"j to be 1-forms on M satisfying

woow .

Iij+ i = Agy  (preservation of the class [g, A]), (3.3)

w
d9'+TI'" ;A6 =0 (no torsion). (34)

It follows that once the representative (g, A) and the coframe 6' is chosen the above equations uniquely determine the Weyl
w

connection 1-forms I’ ;.
w

w )

We note that, due to condition (3.3), matrix "= (I"' ;) of the Weyl connection 1-forms belongs to the 5-dimensional

defining representation of the Lie algebra co(3,2) C End(5, R) of the Lie group CO(3, 2) C GL(5, R). Consequently, the
w w w

Weyl connection coefficients I"', defined by I'' j = I'' 46" belong to the tensor product co(3, 2) ® R>, the vector space of
dimension (1 + 10)5 = 55.
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Now we assume that we have anirreducible GL(2, R) structure [g, 7, A] on a 5-manifold M°. Forgetting about 7" gives the

Weyl geometry as before. In particular there is the unique Weyl connection 1\1/ associated with [g, T°, A]. But the existence of

a metric compatible class of tensors 7" makes this Weyl geometry more special. To analyse it we introduce a new connection,

which will be respecting the entire structure [g, 7", A]. This is rather a complicated procedure which we describe below.
First we require that the new connection preserves [g] and [T]:

Dg,-j = —Ag,-j (35)

3
DYj = — EATW' (3.6)

This does not determine the connection uniquely — to have the uniqueness we need to specify what the torsion of D is.
We need some preparations to discuss it.

Definition 3.2. Let (g, 7", A) be a representative of an irreducible GL(2, R) structure on a 5-dimensional manifold M. A
coframe #',i = 0, 1, 2, 3, 4, on M” is called adapted to the representative (g, 7, A) if

g = gi0'0) = 0°0* — 40'0° + 3(6%)*
and
T = Tyb'00" = 3/3(0°6%0" 4 2010%0° — (6%)> — 0°(6%)2 — 0%(9")?).
Locally such a coframe always exists and is given up to a GL(2, R) transformation.

Let us now choose an adapted coframe 6’ to a representative (g, 7', A) of [g, T, A]. In this coframe equations (3.5)-(3.6)
can be rewritten in terms of the connection 1-forms I ;as

g+ I'gi = Ag; (37)
3
T X+ T+ I Ty = S AT (38)
When we contract the first equation in indices i and j we get
2, 2
A = g[‘l = gTr(F). (3.9)

Inserting this into (3.8) we get
3
'+ Flenk + Iy = gflm'jk~ (3.10)

Comparing this with (2.4) we see that the general solution for the connection 1-forms Fij are given by (2.5), i.e.
I' =T E_+ TI'E, + [LEy + IEq,
where (I"_, I', I, I) are four 1-forms on M> such that

1
Ni=—gA (3.11)

To fix the remaining three 1-forms (I"_, I\, I';) we introduce an operator
T :c0(3,2) ®R® — S'R®
defined by:
o w w 1 w
T(Dim = Vi) T tomy — grl 1 Tijky
and analyse its kernel ker 7.
Writing Eq. (3.10) in terms of the coefficients Flim € gl(2, R) ® R> and symmetrising it over the indices {imjk}, we see
that the whole gl(2, R) ® R’ is included in ker 7.
We use the metric to identify RS with (R%)*, and more generally to identify tensor spaces *(R%)* ®'R5 with

®(k+l) (R>)*. This enables us to identify the objects with upper indices with the corresponding objects with lower indices,
e.g. Tk = giT! ik Having in mind these identifications we easily see that, due to antisymmetry in last two indices, every

3-form Ty, = Ty is included in ker 7.
Thus we have:
gl(2,R) @ R® C ker 7,
/\3 R> C ker 7.
The following proposition can be checked by a direct calculation involving the explicit form of the g[(2, R) representation
given in (2.5), (2.6).
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Proposition 3.3. The vector space ker T has the following properties:

ker 7 = @2, R) @ R) @ 'R
and
dimker T = 30.

w
Now we interpret the condition I"! ;;, € ker 7', i. e. the equation

w w
1
T kmy = grl 1m Y » (3.12)

as a restriction on possible Weyl connections. Let us assume that we have a structure (M>, [g, T, A]) with the Weyl

w w
connection coefficients I"! ;, satisfying (3.12). The coefficients I"! ;, are written in a coframe adapted to some choice
(g, T, A).Itis easy to see, using (3.3) and contracting (3.12) over all the free indices with a vector field X', that the restriction
on the Weyl connection (3.12) in coordinate-free language is equivalent to

(VxT)X. X, X) = —%A(xmx,x,xm (3.13)

w
Here V denotes the Weyl connection in the Koszul notation.

w
Definition 3.4. An irreducible GL(2, R) structure (M>, [g, 7", A]) is called nearly integrable iff its Weyl connection V
associated to the class [g, A] satisfies (3.13).

3.1. Nearly integrable GL(2, R) structures
A nice feature of nearly integrable structures (M°, [g, T, A)]) is that they define a unique g((2, R)-valued connection I".
This follows from the above discussion about the kernel of 7. Indeed, given a nearly integrable structure (M°, [g, T, A]) itis
w .
enough to choose a representative (g, 7", A) and to write the Eq. (3.13) for the Weyl connection I” in an adapted coframe 6'.

w _
Then the uniquely given Weyl connection coefficients " are by definitioninker ¥ = (gl(2, R)®R%)® A’ R®, which means
that they uniquely split onto I} € gl(2, R)®R> and %T,-jk € /\3 R>. Thus, for all nearly integrable structures (M°, [g, T, A]),
in a coframe adapted to (g, 7", A), we have

w 1
T = N + ETijk, (3.14)

w
and both Iy € gl(2,R) ® R’ and Ty € /\3 R® are uniquely determined in terms of Tij.. Now we rewrite the torsion-free
condition (3.4) for the Weyl connection in the form

. . . 1 . .
do'+ Iy £ 0 = ST N (3.15)

It can be interpreted as follows: The nearly integrable structure (M>, [g, 7, A]), via (3.14), uniquely determines the g((2, R)-
valued connection I, which respects the structure [g, 7", A] due to (3.5), (3.6), and has totally skew symmetric torsion T
due to (3.15). We summarise this part of our considerations in the following

Proposition 3.5. Every nearly integrable GL(2, R) structure (M°, [g, T, A]) defines a unique gl(2, R)-valued connection which
has totally skew symmetric torsion.

Also the converse is true:

w
Proposition 3.6. Let (M°, [g, T, A]) be an irreducible GL(2, R) structure and Tijx be the Weyl connection coefficients associated,
in an adapted coframe 6', with the Weyl structure [g, A]. Assume that the Weyl structure [g, A] admits a split

w 1
Tije = L + ETijk,

in which Iy € gl(2,R) ® R> and Ty € /\3 R>. Then [g, T, A] is nearly integrable, the split is unique and Iy = 1’,]-,(9" isa
gl(2, R)-valued connection with the totally skew symmetric torsion ®; = % UkGf A

Definition 3.7. The unique gl(2, R)-valued connection with totally skew symmetric torsion naturally associated with a
nearly integrable structure (M°, [g, 7", A)]) is called the characteristic connection.
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3.2. Arbitrary GL(2, R) structures

So far we have only been able to introduce a unique gl(2, R)-valued connection for a nearly integrable (M°, [g, 7", A)]).
Nevertheless such a connection can be always introduced. To see this consider a GL(2, R)-invariant conformal pairing in
c0(3, 2) ® R’ given by

w W o w W
(I, ') = g"¢"g" Ll imp,
w W _
where I', I''e ¢0(3, 2) ® R>. We use the orthogonal complement of ker T C ¢0(3, 2) ® R’ with respect to this pairing:

_ w - W
ker Y+ ={I' € ¢0(3,2) @ R’ s.t (ker ', I") = 0}.

This vector space is 30-dimensional. It contains a 5-dimensional subspace spanned by g;An,, which is related to the R factor
in the split gl(2, R) = R @ sl(2, R) C co(3, 2) = R @ s0(3, 2). Thus it is reasonable to consider the intersection, say V5s, of
this 30-dimensional space with so0(3, 2) ® R>. This 25-dimensional space

Vos = ker 71 N (s50(3, 2) ® R)
has, in turn, zero intersection with (gl(2, R) ® R*) @ /\3 R’ and provides the GL(2, R) invariant decomposition of
0(3,2) ® R
5 5 355
©0(3,2) @R’ = (gl2,R) R*) & /\ R* @ Vas.
Therefore, if we choose a coframe adapted to a representative (g, 7", A) we can uniquely decompose the Weyl connection

w
coefficients ' € c0(3,2) ® R of our arbitrary GL(2, R) structure according to
w 1
i = T + EBijk-

Now I € gl(2,R) ® R, and they are interpreted as new connection coefficients; the tensor Bjjx belongs to /\3 R> & Vo5
and its antisymmetrisation Ty = Byji is now interpreted as the torsion of I'. Thus, every GL(2, R) structure (M>, [g, T, A])

uniquely defines a gl(2, R)-valued connection with torsion in /\3 R’ @ V5. The torsion is not totally skew anymore. Space
V,5 further decomposes onto the GL(2, R)-irreducible components according to Vos = (s @ (Dg ® (O4;. The GL(2, R)
structures equipped with the unique gl(2, R) connection which has torsion in V55 find application in the theory of integrable
equations of the hydrodynamic type [14].

4. GL(2, R) bundle

First, we describe an irreducible GL(2, R) structure [g, 7", A] on M° in the language of principal bundles.

Every irreducible GL(2, R) structure [g, 7, A] on a 5-manifold M> defines the 9-dimensional bundle GL(2, R) — P —
M?, the GL(2, R) reduction of the bundle of linear frames GL(5, R) — F(M°) — M°.If [g, T, A] is equipped with a g[(2, R)
connection I, then the structural equations on M° read

dw’—f—l"'j/\w’ = 5T'jka)]/\a)k,

) ) 1
dri,+ ri, ATk = oK PN

Here (') is an adapted coframe and I" = (Fij) is written in the representation (2.5). We lift these structural equations to
P obtaining:

1 ) .
d6® = 4(I' + o) AO° —4r, A" + ETf’,.jel A,

1 0 1 2 1 1 pi j
do' = —T_AB°+ AN +20) A0 —3L A6 +§T 0 A,

1 ; :

do? = -2 AO'+ 4 A0* =2 A 6OP + Erzﬁel N
1 . )
d6 = —3I_ A 0% + (47 —2I) A0 — T A6 + 5T3,.j9' A,

1 ; ;
do* = —4I'_ A 0> +4(I' — Ty) A 60 + ET“UG' N (4.1)
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1 ; ;
dF+:2FO/\F++§R+u9 /\9],
1 . .
dr- = —2F0AF_+5R_1']'9'/\9],
1 . .
dF0:F+/\F_+§R0ij91/\9‘I,
1 ; :
dr, = 5R1,-j49 AN,
with the forms 6/ being the components of the canonical R>-valued form € on P, c.f. [15]. In a coordinate system (x, a) on P,
x € M°, a € GL(2, R), which is compatible with the local trivialisation P = M> x GL(2, R) they are given by
0'x.a) = (@ ;& (x).
The connection forms (I'"_, I'y, Iy, I'7) are defined in terms of (2.6) via
FL(E) 4+ Te(Ed) 4 ToEo) j + MED' = (@ ) L@ + (@' da
Note that (', 8", 62,063,604 I'_, I'y, I, I'}) is a coframe on P and the class of 1-forms [A] lifts to a 1-form A = —81I7. By
some abuse of notation T and R denote torsion and curvature both on M> and on P.
Second, we change the point of view. Suppose that we are given a nine dimensional manifold P equipped with a coframe

of nine 1-forms (6%, 6', 02,603,604, I'_, I',, Iy, I') onit. Suppose that these linearly independent forms, together with some
functions T' ., R' ..., satisfy the system (4.1) on P. What we can say about such a 9-dimensional manifold P?
Jjk ijk

To answer this question consider a distribution § on P which annihilates the forms (6°, 1, 62, 63, 6%):
h={XeTPst.X0'=0,i=0,1,2,3,4}.
Then the first five equations of the system (4.1) guarantee that the forms (9°, 8', 62, 63, 64) satisfy the Frobenius condition,
do' AP AOTAOPAOP NG =0, Vi=0,1,2,3,4
and that, in turn, the distribution b is integrable. Thus manifold P is foliated by 4-dimensional leaves tangent to the

distribution b.
Now on P we consider two multilinear symmetric forms. The bilinear one, defined by

g =0%"*—40'0% + 362, (4.2)

and the three-linear one given by
T =3v3(0%%6* +20'626° — (6%)°> — 6°(6%)% — 6%4(61)?). (4.3)
Of course, since the 1-forms(/_, I'y, Iy, I7) are not present in the definitions (4.2) and (4.3), then & and T are
degenerate. For example, the signature of the bilinear form g is (+, +, +, —, —, 0, 0, 0, 0). The degenerate directions

for these two forms are just the directions tangent to the leaves of the foliation generated by . Let us denote by
(Xo, X1, X2, X3, X4, X5, X, X7, Xg) the frame of vector fields on P dual to the 1-forms (6°, 01, 62%,03,0%, I'_, Iy, I, I7).In
particular (Xs, Xs, X7, Xg) constitutes a basis for b, and we have Xuﬁi = 0foreachpu =5,6,7,8andi =0, 1, 2, 3, 4. Using
this, and the exterior derivatives of 6! given in the first five Egs. (4.1), we easily find the Lie derivatives of g and 7 along the
directions tangent to the leaves of h. These are:

Lx, & =8(XoIE,  Lx,T = 12X, )T, Yu=5,6,7,8.
Moreover, if we denote

A= -8, (4.4)
and we use the last of Eq. (4.1), we also find that

Ly, A= —8d(X,.I"), Yu=5,6,7,8.

This is enough to deduce that the objects (g, 7, A) descend to the 5-dimensional leaf space M> = P/b. There they define
a conformal class of triples (g, 7", A) with the transformation rules g — e*g, 7 — e*¥7,A - A — 2d¢. Due to the
fact that, when passing to the quotient M®> = P/, we reduced the degenerate directions of & and 7" to points of M,
the resulting descended triples (g, 7", A) have non-degenerate g of signature (3, 2) and non-degenerate 7. It is clear that
together with A they define an irreducible GL(2, R) structure on M°: a section s: M®> — P is an adapted coframe on M?, the
triple (s*g, s* 7T, s*;\) is a representative of the structure, the forms s*I"_, s*I",, s* I, s*I'y are gl(2, R) connection 1-forms
on M and s*T, s*R are torsion and curvature of this connection, respectively. We have the following

Proposition 4.1. Every 9-dimensional manifold P equipped with nine 1-forms (6°, 61,602, 03,0%, I'_, Iy, Iy, I'}) which

e are linearly independent at every point of P,

o satisfy system (4.1) with some functions T’jk, R ik OnP,
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is foliated by 4-dimensional leaves over a 5-dimensional space M>, which is the base for the fibration P — M?®. The manifold M°
is equipped with a natural irreducible GL(2, R) structure [g, 7", A] and a gl(2, R) connection compatible with it. The torsion and

the curvature of this connection is given by T';, and R' .

5. Torsion and curvature of characteristic connection
5.1. Torsion

Let (M°, [g, T, A]) be a nearly integrable GL(2, R) structure and let I" be its characteristic connection. Then the GL(2, R)
invariant information about (M?, [g, T, A]) is encoded in its totally skew symmetric torsion @; = % iik0" A 6% and its
curvature

1
§2 = 5Rijk19k AO'=dIy+ i A T,
The spaces /\3 R’ and g((2, R) ® /\2 R® are reducible under the action of GL(2, R). Their decompositions into the GL(2, R)
irreducible components may be used to classify the torsion types, in the case of /\3 R>, and the curvature types, in the
case of gl(2, R) ® /\2 R°. In particular, to decompose /\3 R> we use the Hodge star operation associated with one of the

metrics g from the class [g, 7, A]. This identifies /\3 R> with /\2 R’. The GL(2, R) invariant decomposition of /\3 R’ is then
transformed to the decomposition of /\2 R°. This is achieved in terms of the operator

Yijkl = 47‘1’]’m ’rklpgmp~
This, viewed as an endomorphism of ®2 R’ given by

Y(w)ik = gmjgplyijklwmp,

has the following eigenspaces:
Ql=[Se®2R5|Y(S)=14.s}={s=k.g, A €R),
A, = {Fe®2R5 | Y(F) :7~F] — (2, R),
0. = {Se®2R5|Y(S):—3-S},
N, = [FE®ZR5 | Y(F)=—8~F],
O, = [56®2R5|Y(5)=4-s].

Here the index k in (), or /\, denotes the dimension of the eigenspace.
The decomposition

2.5
®R :Ql@©5®®9@A3@/\7 (5.1)
is GL(2, R) invariant. All the components in this decomposition are GL(2, R)-irreducible. We have the following
Proposition 5.1. Under the action of GL(2, R) the irreducible components of /\3 R = % /\2 R’ are

/\3R5 :/\369/\7'

At this stage an interesting question arises: Can we give examples of nearly integrable GL(2, R) structures whose
characteristic connection has torsion of a ‘pure’ type Ty € /\3?
In Section 6 we give an affirmative answer to this question. Here we only state a useful
Lemma 5.2. The 3-dimensional vector space /\,, when expressed in terms of an adapted coframe 0! of Definition 3.2 is
A, = Spanm{eo AOY =30 AO% 00 A% —20" A6, 01 MO —30% A 93].
Similarly, in an adapted coframe 6', the Hodge dual % Nsof N\sis
+\,= SpanR{—GO AOTAO 200 A 02 A 03— AOP A O +80' AO% AR —60N B3N 6% +20" A6 A 94}.
In particu{ar, torsion T' ik of the characteristic connection I' in system (3.15) i; of pyre type in /\5 if and only if, in an adapted
coframe 0', we have gyT';, = Ty, and its corresponding 3-form T = ég,-lTIijI NCNCARE Y\
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5.2. Curvature

Now we turn to analysis of curvature. The curvature tensor R' ju OF @ characteristic connection® defines the following
objects:

Rj = R, the Ricci tensor,
R = Ryg" the Ricci scalar,
R = 1Ry the Ricci vector,
2
(dA); = ngkij the Maxwell 2-form.
The Ricci tensor belongs to the space ®2 R> and decomposes according to (5.1). The Ricci symmetric tensor reads
1 2 ok ©
R = gRgij + ;R\,Tijk +R;", (5.2)
where %Rg,-j is its (O, patrt, %R{jTUk is its ()5 part and Rfjg) is its (4 part defined by (5.2). The antisymmetric Ricci tensor
decomposes into
(3) (7)
Rij = R + Ry
with the respective /\; and /\, components given by

3) 8 1
Ry = ER[U] + EY(R[])U’

Ry = ERm] - EY(R[ Dij-

Here Y (R ;) denotes the value of the operator Y on Ry;;. Likewise, for the Maxwell form we have
(dA); = A} + A
and

8 1
3
A = 5 (@A) + Y (@A),

@ 7 1

The Ricci tensor and and the Maxwell 2-form have 25 + 10 = 35 coefficients out of total number of 40 coefficients of the
curvature. Since, c.f. [16],

g2, R) ® /\2 R® = Ol 2 /\3 &2 Os @2 /\7 © 09’

the remaining 5 parameters are related to the coefficients of a vector field K™, which is independent of the Ricci tensor. It is
defined in terms of the totally skew symmetric part of the curvature. Using the volume form 5™ we have

K™ = Rijklnijklms
and the so defined K™ yields the missing five components of the curvature. Thus we have the following

Proposition 5.3. The irreducible components of the curvature R;jq of a characteristic connection are given by

dA®  da?

@) i
R" ), KL

R. R, RS, RY., RY.

[j’ lj’

5.3. Curvature of characteristic connection with torsion of type /\5

It is interesting to ask what is the decomposition of the curvature if the characteristic connection has torsion in the
three-dimensional representation /\ ;. It appears that it has a very special algebraic form. Its properties are summarised in:

Theorem 5.4. Let I" be a characteristic connection with torsion in /\ ;. Then
o The Ricci tensor component Ri(jg) = 0, which means that
1 2 .
Ry = SRgij + 2R Y-
e The skew symmetric Ricci tensor and the Maxwell 2-form are related by

A = 4RD. 4D = §R<7>_

3 Results of this section are also valid for an arbitrary gl(2, R) connection.
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e The Ricci vector Ry is fully determined by T:
R, = (40)* ) (+T)img T/
Thus, the curvature is fully described by tensors T, dA, K and the scalar R.

Theorem 5.4 is implied by the following more detailed result.

Theorem 5.5. Let M> be a nearly integrable GL(2, R) geometry such that torsion of the characteristic connection belongs to Ns-
Let GL(2, R) — P — M? be the reduction of the frame bundle defined by the geometry. Then:

(1) First structural equations for the characteristic connection on P are the following:

do® =4 + Ty) A0 — 4, A O — %tle(’ N %Q@O AOE — 1509 A O3+ 26501 A 62,

do' = —I'_ A0° + (4 +2I) A0 =3I, AH% — %ueO N %@00 N %tzel A 62,

do%? = =2 AOY 4+ 4 A0? — 2T A 6> — %rlef’ AO3 + %tﬁo AOY— gt291 A3 — %@91 A 04,
do® = —3r_ A0* 4+ 4N —2I) A3 — Iy A 0% + :—2t190 N %tzez AO3 — %@92 N

1 2 1
d0* = -4 A0 + 4 — ) N 6% — gtlel A0% + §t192 NG — §t292 A0 — 303 A 64,

where t1, t; and t3 are coefficients of the torsion.
(2) Second structural equations on P are the following:

11 . 2 10, 5 N\ .
dF+ = 2F0/\F++ Ebz 8]t1+ f5 6 /\9 + | ——titp — f4+ﬁb3 0" NGO

81
+ —1t —1tt+ f 1R+b ! AN
— —fi — — —-a
243 2 16213 > 30 4Ty
1 1
—tyts — —az — — —b 0° A 6*
+(5423 8 as fz 5)
1
——t2 tyt R 2bs+ Zay | 0! A 62
+( 27 1813-1- 10 + 204 + 2)
1
+(—9t2t3+ —as + b5> 0 A B> + (—8t3+ Zfi+ b5>6’1/\94
+ 5 f+ b 62 /\93-1-11392/\94
18 1 6 47 5
dI- = =2 ATl +7b190/\92+ 1bz—irz—éf5 0% A 63
N T4 6 1621 3
+ 1tt+5f lb L 0% A 0%
—-—— = —b3 — -a
162 12 4t gh
5 1
— 24+ —by+ —f5 ) 0! A 62 —tit,+ =b ' A 63
+(1621+ 2+ f5> +(2712+ 3+ al)

1 1 1
b—fa —tgt e p— —R|o'A0*
4 y+ ——tits + — 3f3-i-30>

+ 162 243"

2 1 5 1
—bht; + fz 3b5> 0> AO* + (5@ - *fl + 6b6> AN

+
27

+ 1t+1tt 1R+2b+3a NG
27 2 18” 10 1Ty
0 1 1 1 0 2 1 1 0 3
drp, = 1—'+/\F,—*b]9 NG+ —*bz ]62t1+ f5 N0+ ——t1ty — —bs+ —a; |6 A6

Lot 22y f lR 070+ (bt 2Of Ly~ 2a, )0 ne?
— R —_ [E— [ _7a
8113 32 3 60 1t2 4 3 81

+ 1tt 2 + f ! R)O' A O + 1tt ! +1b o' A 0%
b et —
81 2432 31 3R 18°° g° >

1 3 1 1
—+ (54f2t3+ —asz — f2+gb5)92/\93+<—7t3+ f1+ b6>92/\94+ b 03/\94
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1 0 1 1 0 2 1 0 3 1 0 4 3 1 1 2
dri = —gble N6 —gbzg N —g(b3+a1)9 N6 —g(b4+az)9 NO" + §a1—2b3 TN

1 1 3 1 1 1
—ay — by )0 A0 — — (a3 +bs) O AO* +( Zas — —bs | 02 AO> — —beh? A O — —b;60° A O%.
+(42 4) 8(3+5) +83 2D gPe g
(3) Functions ty, ty, t3, ay, o, a3, by, by, b3, by, bs, be, by, f1, f>, f3, fa, fs and R above have the following properties.

(a) Ris the Ricci scalar of the connection.

(b) The irreducible component dA® is given by
0 0 0 a a

0 0 —3(11 —2a, das

dA® =1 0 3q 0 —3a; 0
—a;  2ay 3as 0 0

—a; —das 0 0 0

(c) The irreducible component dA” is given by

0 b, b, b3 by
—b, 0 2bs  8by bs
dA? = | —-b, —2bs 0  2bs b
—bs —8bs —2bs 0 by
—by —bs —bs —b; O
(d) The irreducible component K is given by

K:?(] s fa fs)T~

(e) The Ricci vector is given by

6 9 9 9
(4) All the components of the curvature but R are determined by the differentials of torsion:

: 7 1 1 2 1 1
R'v = 7«/§<t32, — §t2t3, —tits + Etzz’ — —thty, 7t12>

3 0 4, 1 4 9 2
dﬁ = 21’21—‘,—21'1110—4['11—‘1-}—5[)19 + sz—ﬁfl +20f5 6" + —§t1t2—60f4+3b3—501 0
4 8 , , 4 9 1\
——ti1t3 — —t 60 6bs — 9a, | 6 ——thit3 — —az — 20 —bs ) 67,
+(913 272+ )f3 + 6by 2) +<923 593 f2+25>
1 2, 0
dtz = 3t31—‘7+t11—‘+—4t21ﬂ] + 5b2+Et] —10f5 0
4 9
+ (Ehtz + 20f; + 2bs + 5a]) 61 4+ 9 (a; + by) 62
4 9 3 2, 1 4
—+ —§t2t3 + 5(13 — 20f2 =+ 2b5 [ =+ —§t3 + ]Of] =+ 51)5 [ s

dt—2tF+2tF 4tsT + 4tt+20f+1b 3 0°
_ z _ il D 2,
3 340 32+ 341 8112 34 63 21

+ 4tt + Stz 20f; + 2bs — 3a; ) 6!
7B T g1k 3 4 2
4 3 4 20 2 1
+ ( =tats — =a3 +20f, + bs ) 0> + | =t — —fi + =bs ) 0> + =by0*.
<923 543 f 5) (93 3f1 376 577

Proof. Letindicesi, j, k, [ run through {0, 1, 2, 3, 4}, index A run through {—, 0, +, 1} and u run through {1, 2, 3}.

The structural equations for an arbitrary gl(2, R)-connection on P are given by Egs. (4.1). Torsion Ty in /\5 on P is given
by (see Lemma 5.2)

1 1
T = Er1(—9° ANOTABY 200 A 02 A O + Etz(—e" ANO%AO+ 80" AOEAGD
1
+ Zt3(—9° ANOPAO 20" AO2AGY),

and we obtain (1) by putting T'; = Tj;g" into Eqgs. (4.1).

In order to obtain (2), (3) and (4) we must close first Bianchi identities, that is solve equations d20' = 0 with respect to
torsion coefficients t,,, curvature coefficients Rs; (defined by (4.1)) and derivatives of torsion. We denote

A i
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Next we calculate the exterior derivatives d20' = 0 and insert in them the formulae for dt,,, and the formulae for dI’; given
by four last Egs. (4.1). In this manner first Bianchi identities become a set of partial differential equations involving t,,, tMA,

t,i and Ray. These equations are linear in tuA and t;, all of which we eliminate from the equations and express as functions
of t,, and R,;;. However, after the elimination there are still many unsolved equations, which now are algebraic in Ry and t,,.
We solve them with respect to Ry;; (due to the fact that most of them are linear with respect to curvature coefficients) and
we obtain that only 21 out of 40 functions Ra;; do not vanish. Among these 21 there are 5 which are quadratic functions of
t, and remaining 16 are functionally independent of t,.

We decompose the so-obtained curvature into the irreducible components of Proposition 5.3. We notice that (i) one may
choose a base a4, ay, as, by, by, bs, ba, bs, bg, b7, f1, f, f3, f4 and f5 for 16 the functionally independent curvature coefficients so
that (3a)-3(d) hold, and (ii) five curvature coefficients which are quadratic functions of torsion constitute the Ricci vector as
in (3e). But in this notation second structural equations become (2) and expressions for torsion coefficients are asin (4). O

Theorem 5.4 follows immediately from the structural equations of Theorem 5.5. We can also express the Ricci tensor
(Ric)'j = g"‘Rkj in terms of the endomorphisms E_, Eg, E, E; of (2.5):

Corollary 5.6. The Ricci tensor of a characteristic connection with torsion in /\5 has the following form in any adapted coframe

Ric = (itzz + lt1t3 - iR) E; + 1b1E3 + ithz
542" 36 20 g~ 108"
+ <—itlt2 + o - 1bz) E_+ ib4E3 + (itf + ln@) Eg
54 8 2 16 1082 ' 72

+ ! l7b E 1b E3 + 1t2E2+ 1b ! 1“ E
Za — L _ = - b — Sga— —
82 44 0 87+ 123+ 25 83 ]823 +

5 1 1 5 1 1
— —bsEoE_E —beELEoE —t1tpEgE_ + —b3EoE_E, —byE_EgE_ — —tyt3EQE...
3250+0+86+0++54120 +3230 0+82 0 1g 203FoE+

6. 5th order ODE as nearly integrable GL(2, R) geometry with ‘small’ torsion. Main theorem

A large number of examples of nearly integrable GL(2, R) structures in dimension five is related to 5th order ODEs. This
is mainly due to the following, well known,

Proposition 6.1. An ordinary differential equation y® = 0 has GL(2, R) x s R> as its group of contact symmetries. Here
ps : GL(2, R) — GL(5, R) is the 5-dimensional irreducible representation of GL(2, R).
To explain the above statement we consider a general 5th order ODE

¥ =Fx .5,y y?, y®) (6.1)
for a real function R 3 x — y(x) € R. Let us introduce the notationy; =y, y, =y, y3 =y, ys = y? and F; = gTF,
i=1,2,34F = % The functions (x, y, y1, ¥2, ¥3, Y4) form a local coordinate system in the 4-order jet space J of curves
in R?. Define the total derivative, which is a vector field in J

D = 8x +y13y —|—y28y1 —|—y33y2 +y43y3 —|—F8y4. (62)

With the help of O the derivatives are given by formulae y; = Dy/Dx,y, = Dy;/Dx and so on, up to ys = Dy4/DX.
A contact transformation of variables in a 5-order ODE is a transformation that mixes the independent variable x, the
dependent variable y and the first derivative y; in such a way that the meaning of the first derivative is retained:

Definition 6.2. A contact transformation of variables is an invertible, sufficiently smooth transformation of the form

x X X(X, ¥, y1)
y)= |y )= ¥xy.y) (6.3)
1 1 1%, ¥, ¥1)
satisfying the condition
Dy , -

V= e (preservation of first derivative)

X
The higher order derivatives are given by the iterative formula

- Dy,
Ynt1 = Vo1 = —, 1=1,2,3,4.
DX
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Let us now consider the equation y® = 0. We show how the flat torsion-free 5-dimensional irreducible GL(2, R)
structure is naturally generated on its space of solutions by means of the symmetry group. A solution to y® = 0 is of
the form

Y(X) = cax* + 4c3x> + 602%% + 401 + ¢ (6.4)
with five integration constants cg, ¢, 3, C3, C4. Then a solution of y® = 0 may be identified with a point ¢ =
(o, €1, €2, 3, c4)T in R®. A contact symmetry of y® = 0 is a contact transformation of variables that transforms its

solutions into solutions. The group of contact symmetries of y® = 0 is generated by the following one-parameter groups
of transformations on the xy-plane:

QL y) =X y+1), of (%, y) = (x, y +4xt),
PE(x, ) = (x, y + 6x%0), P (x, y) = (x, y + 4x°1),
pix, y) = x, y+x*0), @ (%, y) = (xe*, ye*),
PP (x, y) = (x, ye'), Pl(x, y)=(x+1, ),

pix,y) = " A
£ 1+xt° (14 xt)?

and the transformation rules for y; are given by ¢ (y1) = D(¢"*¥))/D(¢*(x),A=0,...,8.

Transforming (6.4) according to the above formulae we find that (p?, e, (pfl are translations in the space of solutions:
pl©) =(co—t.cr. e 03.c)" ..., @f(©) = (co. €1, 2 C3,c4 — 1),
while transformations <pf, e <pf generate GL(2, R) and act through the 5-dimensional irreducible representation (2.6):
@7 (c) = exp(tEo)c, 97 (c) = exp(tEq)c,

¢/ () = exp(tEy)c,  ¢f(c) = exp(tE-)c.

Of course, GL(2, R) stabilises the origin (0, 0, 0, 0, 0) in R>, thus the space of solutions is the homogeneous space GL(2, R) —
GL(2, R) X s R> — RR°. The total space of this bundle is equipped with the Maurer-Cartan form wyc of GL(2, R) x 05 R°.
Choosing an appropriate base in gl(2, R) and writing explicitly the structural equations dwyc + wyc A wyc = 0 we get
do® =4y + ) AO° — 4 A 61,
do' = —I'_ A0° 4+ (4 4+ 2I) A0 — 317, A 62,
do? = —2I_ A Q' + 4 AO* — 257, A 63,
do® = —3I_ A 02 + (4 —2I) A O3 — Ty A 6%,
do* = —4I_ A 03 +4(Iy — Ty) A 6%,
dF+ = ZFO VAN F+,
dIr. = -2 AT,
divy =Ty AT,
dr, =0,
which is the system (4.1) with all the torsion and curvature coefficients equal to zero. According to Proposition 4.1 it yields a
flat and torsion-free irreducible GL(2, R) structure on the space of solutions of y® = 0. Again, as in the case of the algebraic
geometric realisation of Section 2, we learned about that from Ferapontow [13].
We now pass to a more general situation, namely to the Eq. (6.1) with a general F. The following questions are in order:
What shall one assume about F to be able to construct an irreducible GL(2, R) structure on the solution space of the
corresponding ODE? [s the case F = 0 very special, or there are other ODEs, contact nonequivalent to the F = 0 case, which
define a GL(2, R) geometry on the solution space? If the answer is affirmative, how do we find such Fs and what can we say

about the corresponding GL(2, R) structures?
The answer to these questions is given by the following

Theorem 6.3 (Main Theorem). Every contact equivalence class of 5th order ODEs satisfying the Wiinschmann conditions
50D°F, — 75DF; + 50F, — 60F4DF, + 30F;F, + 8F; = 0,
375D°F; — 1000DF, + 350DF; + 1250F; — 650F; DF, + 200F;
—150F,DF3 + 200F,F, — 140F; DF, + 130F;F; + 14F} = 0, (6.5)

1250D°F, — 6250DF; + 1750DF3DF, — 2750F, DF; — 875F;DF; + 1250F,F; — 500F;DF, + 700(DF4)*F,
+1250F F4y — 1050F3F4 DFy +350F; F4 —350F7 DF; + 550F,F; —280F; DFy + 210F;F; + 28F; +18750F, = 0
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defines a nearly integrable irreducible GL(2, R) geometry (M>, [g, T, A]) on the space M? of its solutions. This geometry has
the characteristic connection with torsion T of the ‘pure’ type in the 3-dimensional irreducible representation /\ ;. Properties of
curvature and structural equations of this geometry are given by Theorems 5.4 and 5.5, with the torsion coefficients given by

6(0{55)2
t3 = T Faa4,
S,
t = ﬁ (051 (10DF44 + 3F4F44) + 50 F44)
50(a’)? V! o
f = 7(225 @' )?Fas + 900! o' (10DF sy + 3F4F.
1 1000(a’,)? (') Faq 0@ 1 ( 44 4Fas)

—9(a'))?(20(5DFs4 + 20F54 — 15F33 + 3F4DFay — 11FaFs4) + Faa(—120DF, + 340F; + 51Fj))),

where (y, y1, Y2, ¥3, Ya. X, @', &'y, o) is a local coordinate system on GL(2, R) — P — M>.

Before presenting the proof let us notice several facts.

The theorem guarantees that every equivalence class of ODEs satisfying conditions (6.5) has its corresponding nearly
integrable GL(2, R) geometry (M>, [g, T, A]) with torsion in /\s. It may happen, however, that there are contact non-
equivalent classes of ODEs defining the same GL(2, R) geometries. (See also Remark 6.8).

The Wiinschmann conditions, although very complicated, possess nontrivial solutions. For example the equation

) — C(sy“”(s —27y?) LYYy )
9(1 + Cy//z)z 1+ Cy//Z
where ¢ = +1 satisfies the Wiinschmann conditions and is not contact equivalent to F = 0. Other examples are considered
in Section 7.
Of course, since the geometry is constructed from an ODE determined by the choice of F = F(x, y, y1, 2, V3, Y1), the
coefficients aq, ..., as, by, ..., b7, R are expressible in terms of F and its derivatives. Given the connection of Theorem 6.3
we calculated the explicit formulae for these coefficients and obtained the following

Corollary 6.4. A GL(2, R) geometry generated by a 5th order ODE satisfying Wiinschmann conditions (6.5) has the following

properties.
The torsion T vanishes iff
F44 =0.

The 2-form dA® vanishes iff
3 4 6 , 4 ,
(DF4)34 — (DF3)ag — g(JDF4)4F44 - chF4F444 + £F44F4 + £F4F444

3 1 3 1
4+ —F34F44 — —FsF344 + —F3Fsa4 + Foa4 — —F433 = 0.
10 34h4a = SFal3aa T Shsbass T Foas — 5 Fass

The 2-form dA” vanishes iff
Faq4 = 0.
The Ricci vector R, is aligned with the vector K, i.e. K = uRy, u € R, iff

1 2 8 , 5
(DF4) 44 — 2F344 - 5F4F444 - 15F44 + 7uF,, = 0.
We skip writing the formula for the Ricci scalar since it is very complicated.

We now pass to the proof of Theorem 6.3. On doing this we will apply a variant of the Cartan method of equivalence. This
will be a rather long and complicated procedure. Thus, for clarity of the presentation, we will divide the proof into three
main steps, each of which will occupy its own respective Sections 6.1-6.3. First, in Section 6.1 we will prove Lemma 6.5,
which assures that a class of contact equivalent 5th order ODEs is a G-structure on a 4-order jet space J. Thus, we will
have a bundle G — | x G — ], a reduction of the frame bundle F(J). In the second step, in Section 6.2, we will use the
Cartan method of equivalence in order to construct a submanifold P C J x G together with a coframe on P which fulfills
the requirements of Proposition 4.1. This coframe, via Proposition 4.1, will define an irreducible GL(2, R) structure for us
and simultaneously will provide us with a gl(2, R) connection on the space of solutions of the ODE. The obstructions for an
ODE to possess this structure, Wiinschmann'’s expressions for F, will appear automatically in the course of the construction.
This part of considerations is summarised in Theorem 6.6. The GL(2, R) structure obtained in this way will turn out to be
nearly integrable, but the connection constructed will differ from the characteristic one. Therefore, in Section 6.3, we will
construct the characteristic connection associated with the GL(2, R) structure obtained. This will have torsion in /\3. This
construction is described by Lemma 6.7.
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6.1. 5th order ODE modulo contact transformations

Let us consider a general 5th order ODE (6.1). We define the following coframe
o’ =dy — y;dx,
o' =dy; — yodx,
®* = dy, — y3dx, (6.6)
o’ = dys — yadx,
o' =dys — F(X, ¥, Y1, Y2, Y3, ya)dx,
wy =dx

on J. We see that every solution of (6.1) is a curve c(x) = (x, y(x), y1(X), y2(x), y3(x), ya(x)) C J and the vector field D onJ
has curves c(x) as the integral curves. The 1-forms (o, 0!, w?, »*, ®*) annihilate D whereas £ _.w, = 1.The 5-dimensional
space M® of integral curves of D is clearly the space of solutions of (6.1) and we have a fibration R—]— M>.

Suppose now, that Eq. (6.1) undergoes a contact transformation (6.3), which brings it to ys = F(X, ¥, ¥1, ¥2, ¥3, ¥4). Then

the coframe transforms according to

o’ @° % 0 0 0 0 O o’
o' o' @'y @', 0 0 0 o0 o'
w? @* oy o*, o*, 0 0 0 w?
s -3 ]| = 3 3 3 3 3 (6.7)
13 3] a’y, a’y a, a; 0 0 13
- 4 4 4 4 4
ot o* oty ot ot oty ot 0 ot
- 5 5 5
wy w4 a’y a’y 0 0 o’ Wy

Here oz"j, i,j =0,1,2,3,4,5,arereal functions onJ defined by the formulae (6.3). They satisfy the nondegeneracy condition
oyl a?,0’ a0’ # 0.

The transformed coframe encodes all the contact invariant information about the ODE. In particular, it preserves the simple
ideal (°, ..., %), from which we can recover solutions of the transformed equation. Hence we have

Lemma 6.5. A5thorder ODE ys = F(x, Y, y1,Y2, Y3, Y4) considered modulo contact transformations of variables is a G-structure
on the 4-jet space J, such that the coframe (0°, o', ®?, @*, 0*, w,) of (6.6) belongs to it and the group G is given by the matrix
in (6.7).

6.2. GL(2, R) bundle over space of solutions

Using the Cartan method we explicitly construct a submanifold P C J x G and a coframe (8°, 61, 02,63, 04, I'_, I, Iy,
I'1) on P satisfying Proposition 4.1. This part of the proof is divided into eight steps.

Step (1) We observe that there is a natural choice for the forms (6°, 81, 62, 63, 6%) of the coframe. Since we are going to
build a GL(2, R) structure on the space of solutions, P must be a bundle over M>, and the forms (9°, 8!, 62, 63, 64) must
annihilate vectors tangent to leaves of the projection P — M?. But onJ x G there are six distinguished 1-forms given
by

6° o®y?

g1 ol o? —{—a]la)l

02| 2.0 —{—0[2](1)1 +a22a)2 6s
03 | = | &30’ + o0 + a%y0? + P50 (6.8)
9% a40a)0 + oz4la)] + oz42a)2 + O5430)3 + oz44a)4

0, aSOwO + oz51w1 + a55w+

These forms are the components of the canonical R® valued 1-form on ] x G. Five among these forms, 0°, 81, 62, 3, 64
also annihilate vectors tangent to the projection ] x G — M. We choose them to be the members of the sought coframe
6°,01,02,0%,0% I'_, I'y, Iy, I). Now we must construct a 9-dimensional submanifold P on which ' satisfy Eq. (4.1)
with some linearly independent forms I'"_, I'y, Ig, I7.

Step (2) We calculate d9° and get

da® o! of o’
d6° = ( —5% — %04 | A+ 50, A0 — -0 N6
LN} AT CA ] o0
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For this equation to match (4.1) we define

F+ = 0+ (69)
dOlOO alo
4+ Iy) = -

0 1T 5
LN} o0

6, modf' (6.10)

with yet unspecified 6’ terms in (6.10), and set

o’y = —4da' 0 (6.11)
to get —4 coefficient in the I, A 8! term. Thereby

do® =4I + Ty) AO° — 4, AO' mod ' A &

on the 23-dimensional subbundle of ] x G — M? given by (6.11). We see that the form 6, plays naturally the role of the
connection 1-form 7.

Step (3) We calculate d9! on the 23-dimensional bundle. In order to get
do' = —I"_ A0 + (45 +2I0) A — 3 A6? mod 6 A&

we set
do! al o?, —al a? ;
AN 42y =—"+—"2-—1-16. modd', (6.12)
oy o707
o dalo (Xlod(Jl]l (a10)2a22 + (a11)2a20 _ 0‘11“21(“10)29 d@[ 6.13
*__415 4(al )28 Aol )20 (a5.)2 + modo, (6.13)
o075 (0[1)0[5 (Oll)OlZ(OlS)
and
ol
o, = ! (6.14)

B 30{55
obtaining a 22-dimensional subbundle of ] x G — M? on which d6° and d@' are in the desired form.
Step (4) At this point all four connection 1-forms I'_, I, Iy, I'y are fixed up to the 6’ terms. They are determined by the
Egs. (6.9), (6.10), (6.12) and (6.13). Thus we cannot introduce any new 1-forms to bring d4? into the desired form. Now to

get d0? in the form as in Theorem 6.3, we may only use the yet unspecified coefficients «s. That is why d9? imposes more
conditions on «s. It follows that for d4°, d6' and d8? to be of the form (4.1) the subbundle P must satisfy

aoo = —40(110155,

) —75('y)? + (a',)*(—20DF4 + 20F; + 7F7)
o, = s

0 30000,
o — —15a'y + o' Fy

! 300°,
ol = el

2 3a 5’

o’y = [1800(a’ 0 5)?] ™!
x[1125(a’ ))* + 45a ", (@' ) > (20DF, — 20F;— 7F}) + 2(a',)? (100D2F; — 200F, — 30F,DF,; — 60F3F,— 11F})],
5 225(a’))? —30a'ja' Fs + (a',)*(80DFs — 100F; — 31F})

a ;= , 6.15
! 12000, (a°,)2 (6.13)
3 50[10 — Oll1F4
oy = Tonr5 2
20(a”s)
3 al,

o= —,
P 6
ot = [18000(a’))*(a®5)*]™ " x [—1125(a’ )’ + 225(a’ )’ Fs — 150", (@' )*(80DF, — 100F; — 31Fy)
+ (a',)*(—400D%F, + 1400F, + 240F,DF, + 180F;F, + 11F;)],
ot —75(ct'y)? + 30a o' \Fs + (a',)*(—40DF, + 80F; + 17F})
2 600a’, (a’5)3 ’
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4 —50(10—1—30(111:4
oy = ——
30(a’s)
o, = — 0[1] .
4 6(a’5)3

The necessity of these conditions can be checked by direct, quite lengthy calculations. We performed these calculations
using the symbolic computation programs Maple and Mathematica.

We stress that conditions (6.15) are only necessary for d9? to satisfy (4.1). It is because certain unwanted terms cannot
be removed by any choice of subbundle P. Vanishing of these unwanted terms is a property of the ODE itself, and this is the
reason for the Wiinschmann conditions to appear.

More specifically, to achieve

do? = —2I_ A0 + 4 A0* — 2T A6 mod6' A ¢
on the bundle defined by (6.11), (6.14) and (6.15) an ODE must satisfy
50D°F; — 75DF; + 50F, — 60F,DF, + 30F;F, + 8F; = 0. (6.16)

It follows from the construction that this condition, the first of (6.5), is invariant under the contact transformation of
variables.

From now on we restrict our considerations only to a contact equivalence class of ODEs satisfying (6.16). If (6.15) and
(6.16) are satisfied then the three differentials d6°, d6' and d#? are precisely in the form (4.1).

Step (5) The requirement that also d93 be in the form (4.1) is equivalent to the following equation for a40:
ay = [120000(a’;@%5)°] 7" x [—1875(a10)4 —150(aya',)*(20DF, — 20F; — 7F})
— 400 j(a')? (50DF; — 100F, + 30F;DF4 — 40F3F4 — 9F;) + (a'))*
x (400(—5:02F3 + 10DF, — 6(DF;) + 10F3 DF; — 3F2 + F4DF3) + 120F2(7DF; — 5F;) — 63F;‘)]. (6.17)

Step (6) If condition (6.17) is also imposed we have

dO* +4I_ ANO> —4(M = T) AOH AP AO' =0 modé'.
However,

do* AP AOPABP RO =0
if and only if second condition of (6.5) is satisfied:

375D°F; — 1000DF, + 350DF; + 1250F; — 650F; DF, + 200F;

—150F;DF3 + 200F,F, — 140F; DF, + 130F;F; + 14F} = 0. (6.18)

Again it follows from the construction that condition (6.18), considered simultaneously with (6.16), is invariant under
contact transformations of the variables. From now on, we assume that all our 5th order ODEs (6.1) satisfy both conditions
(6.16), (6.18). It follows that it is still not sufficient to force d9* to satisfy the system (4.1), since without further assumptions
on F, we do not have d9* A 8! A 62 A 63 A 9% = 0. To achieve this it is necessary and sufficient to impose the last restriction
onF:

1250D%F, — 6250DF; + 1750DF; DF, — 2750F, DF4 — 875F3DF; 4+ 1250F,F; — 500F,DF, + 700(DF4)*F,

+ 1250F;F4 — 1050F3F4DF; + 350F;F4 — 350F; DF;
+ 550F,F; — 280F; DF4 + 210F;F; + 28F; + 18 750F, = 0. (6.19)

Step (7) Assuming that F satisfies conditions (6.5) and fixing coefficients o' i according to (6.15), (6.17) we are remained

with a 11-dimensional subbundle of ] x G — M?® parameterised by (X, y, Y1, Y2, Y3, Ya. &', a1, @5, &°, @ )). It follows
that the forms Iy, I'y, I, Iy on this bundle are

F+ == 9+,
de® 5al +a'F. ;

L=_—-="7— *0. modé,
20° 200 ;a5
da';  do’ F i

e a11 _ a55 + 45 6, modo', (6.20)
4o’ 4o’ 2007,

qo_ oy o'yl 5@+ 100"l i+ (@'))2Q0DF, —20F —7ED)

T T d' b, A, 400(a'’5)? ’
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Step (8) In order to construct a 9-dimensional bundle and find the ot terms in (6.20) we need to consider the d/’s part of
Egs. (4.1). Forcing dI'; not to have I'y A 6' terms we uniquely specify the 6' terms in (6.20). This requirement, in particular,
fixes the coefficients «°, and &° ; to be:

s @°5(10DFyy + 5F34 + 6F4Fs)

Y= 50 ’

5

o, = ;‘5—(5) [50(DF34 + 7Fyq — 5F33) 4 5F4(6DF 44 — 37F34) + 2F44(—60DF, + 145F; + 21F2)]. (6.21)

Now all the forms (6°, 81, 62, 63, 6%, r,, I, Iy, I) are well defined and independent on a 9-dimensional manifold P
parameterised by (y, y1, ¥2, ¥3, Va, X, alo, all, oz55). We calculate structural equations (4.1) for these forms and have the
following

Theorem 6.6. A 5th order ODE y® = F(x,y,y,y",y®, y®) considered modulo contact transformation of variables has an
irreducible GL(2, R) structure on the space of its solution M° together with a gl(2, R) connection I" if and only if its defining
function F = F(x,y, y1, Y2, V3, Ya) satisfies the contact invariant Wiinschmann conditions (6.5). The bundle GL(2,R) — P —
M? is given by the Egs. (6.15), (6.17) and (6.21). The first structural equations for the connection I' = (I'"y, I'_, Iy, I'}) on P
read

do® =4y + To) A0 — 4 A0 +16° A0+ 1650° A 0% +150° A 63,
1
do' = —T_ AO° + (@I +2I) AOT =3I AO% + 5t19° NE

1 1
+ 5@90 AO3+ nge" A0+ 601 AO% + 1501 A 63,

2 1
d6? = —2I_ AO' + 4 AO? =2, AO® + §t19° A ﬁtﬂo A6
1 8 2
+§t191 ABO? + §t291 ABO>+ §r301 A6% 4302 A 63, (6.22)
1 1
do® = —3I_ A@*+ (4@ —2I) AO> — T A% + Eme" AR §t191 N

1 3
+ 5@91 AO*+ 16,02 A 03+ 5[’392 A 6%,
1
do* = —4r_ A% +4(ny — ) A 6% + §t19] AB* +6,0% A 6% + 3650° A 04,

with the torsion coefficients

6(0{5 )2
3= 15 Fya,
S,
t 95 [ (10DFyy + 3F4Faq) + 5"  Fau]
= ——- | o )
2 50@)? 4 44 4Faq ofaa

t; = [1000(a')?]7! x (225(a10)2F44 +90a' yar' | (10DFy4 + 3F4Faq)

—9(a')*[20(5DF34 + 20F24 — 15F33 + 3F4DFaq — 11F4F34) + Faa(—120DF; + 340F; + 515{)]).

Also the second structural equations are easily calculable but we skip them due to their complexity.

It is remarkable that the above gl(2, R) connection has torsion with not more than three functionally independent
coefficients ty, t, t3. This suggests that the GL(2, R) geometry on the 5-dimensional solution space M? of the ODE is nearly
integrable with torsion in the irreducible part /\; only. That it is really the case will be shown below.

6.3. Characteristic connection with torsion in /\,

As we know from Section 3, given an irreducible GL(2, R)-structure (M°, [g, T, A]), we can ask if such a structure is
nearly integrable. According to Propositions 3.5 and 3.6, the necessary and sufficient condition for nearly integrability is
that the structure admits a gl(2, R)-valued connection with totally skew symmetric torsion.

In our case of ODEs satisfying Wiinschmann conditions we have a gl(2, R)-valued connection of Theorem 6.6, whose
torsion is expressible in terms of three independent functions. This torsion, however, has quite a complicated algebraic
structure, in particular it is not totally skew symmetric.

It appears that an irreducible GL(2, R) structure (M>, [g, T°, A]) associated with any 5th order ODE satisfying conditions
(6.5) admits another gl(2, R)-valued connection that has totally skew symmetric torsion. Thus all structures (M>, [g, 7', A])
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originating from Wiinschmann 5th order ODEs are nearly integrable; the new connection is their characteristic connection.
Even more interesting is the fact that its torsion is still more special: it is always in /\5.

w
One way of seeing this is to calculate the Weyl connection I” for the corresponding (M°, [g, 7", A]) and to decompose it
according to (3.14). Here we prefer another method — the analysis in terms of the Cartan bundle P of Theorem 6.6.

Lemma 6.7. Consider a contact equivalence class of 5th order ODEs satisfying conditions (6.5). Let 8°,61,62%,63,6% I,
I'_, Iy, I and tq, t, t3 be the objects of Theorem 6.6. Then there is a gl(2, R) connection I’ = (I, I'_, Iy, I'1) whose torsion
T"j,< is totally skew symmetric and has its associated 3-form in T € * /\. Explicitly:

. 1 1
T = Et1(—9° ANOVAOY 200062 A 6% + Etz(—eo ANO%2AO* 80T A B2 ABD
1
+ Zt3(—9° ANO3 NG+ 20" A O AOY.

Proof. Any gl(2, R) connection I” = (1~"+, I, Iy, Ty) compatible with the GL(2, R) structure of Theorem 6.6 is given by

Fa=Ta+) ywt'. A€(+.0,-}i=0.....4 (6.23)
i

h=r

with arbitrary functions y,;. We calculate the structural equations d6 + I'AO =Tfor utilising Eqs. (6.22), and ask if
there exists a choice of 4 such that the new torsion T."jk satisfies gy T';, = Ty and T = gT';,0' A 69 A 6% € % \\,. Using
Lemma 5.2 we easily find that the unique solution is given by

8 1 4, 1 . 1
F+:F+—Et19 _§t29 —Etge,

I =r +lt92+1t93—|—1t94
- — 1 61 32 23 5

Fo=rp— t07 = Lpor = lop
0o=1lo—zh b F 807
h=I, O
Lemma 6.7 together with Proposition 4.1 and Theorem 5.5 prove Theorem 6.3.

Remark 6.8. Note that a passage from I} to
- 1 1 1
Iy =T, — -t;0° — —1,0" — —t36?
+ + gl 3b 56

belongs to a larger class of transformations than the contact transformations (6.7), (6.8); it involves a forbidden 62 term. Thus
it may happen that there are nonequivalent classes of ODEs which define the same (M>, [g, T, A]). To distinguish between
nonequivalent ODEs one has to use the connection of Theorem 6.6.

7. Examples of nearly integrable GL(2, R) structures from 5th order ODEs

In this section we provide examples of Wiinschmann ODEs and nearly integrable GL(2, R) structures related to them.
Since such structures have the torsions of their characteristic connections in /\;, then via Theorem 5.4, they are characterised

by the torsion T, the Ricci scalar R, the components of Maxwell 2-forms dA®, dA?, and the vector K all these objects being

w
associated to the characteristic connection I". There is also the unique Weyl connection ™ associated with these structures.

7.1. Torsion-free structures

We see from Corollary 6.4 that
T=0 < F44 =0.

w
Then " = I" and all the curvature components but the Ricci scalar necessarily vanishes. The following proposition can be
checked by direct calculation.

Proposition 7.1. The three nonequivalent differential equations

YO = C(5y(3)3(5 —27cy”?) y”y“)y(“))
9(1 + Cy//Z)Z 1+ Cy//Z ’
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with c = +1, 0, —1, represent the only three contact nonequivalent classes of 5th order ODEs having the corresponding nearly
integrable GL(2, R) structures (M>, [g, T, A]) with the characteristic connection with vanishing torsion. In all three cases the

holonomy of the Weyl connection IV! of structures (M°, [g, T, A]) is reduced to the GL(2, R). For all the three cases the Maxwell 2-
form dA = 0. The corresponding Weyl structure is flat for c = 0. If ¢ = =1, then in the conformal class [g] there is an Einstein
metric of positive (c = +1) or negative (c = —1) Ricci scalar. In the case ¢ = 1 the manifold M® can be identified with the
homogeneous space SU(1, 2) /SL(2, R) with an Einstein g descending from the Killing form on SU(1, 2). Similarly inc = —1 case
the manifold M> can be identified with the homogeneous space SL(3, R) /SL(2, R) with an Einstein g descending from the Killing
form on SL(3, R). In both cases with ¢ # 0 the metric g is not conformally flat.

7.2. Structures with vanishing Maxwell form

From now on we assume that
Faa # 0.
In this section we additionally assume that the Maxwell 2-form vanishes
dA =0.

For such structures both torsion and curvature have at most 9 independent coefficients contained in T, K and the scalar R.
The simplest geometries in this class are those satisfying the additional equality

K'=uR,, ueR.

Putting dA = 0and K’ = uRﬁ, into structural equations of Theorem 5.5 and using Bianchi identities we find that either

_ ! R—35(t2 3t1t3)
T80 To5q2 0 T8
or
2 0
= R = —(t2 — 3t;t3).
105 o7& —3tt)

Thus in these cases R is functionally dependent on tq, t,, t3 and the only invariants for such GL(2, R) structures are u and
the sign of R. For each possible values of u and sgn R we found a generating ODE.

Proposition 7.2. Consider the equations

5 2
F= §y4+ey§“, e=-10,1, (7.1)
3
5 2
Fe 473'4’ (7.2)
Y3
and
5(8y3 — 12 3y1y2
F_ 2(8ys — 12y2y5ys + y1y4)’ (7.3)

6(2y1y3 — 3y3)

where the sign of expression (2y1ys3 — 3y§) is an invariant, and the singular locus 2yys — 3y§ = 0 separates nonequivalent
equations with = signs. The equations generate all the six GL(2, R) structures satisfying dA = 0 and K' = uRi,, ueRr

1
For (7.1 = —— d R=¢,
or (7.1) u 0 and sgn €

2
for (7.2) u= 105 and R=0,

2
for (7.3) u= 1% and sgnR = sgn(3y§ — 2y1Y3).

Moreover, the above ODEs can be also described in a geometric way by means of the symmetry group.

Proposition 7.3. The Egs. (7.1)-(7.3) are the only 5th order Wiinschmann ODEs satisfying F44 # 0, F444 = 0 and possessing

. . . . . . . 5y2 5y2
the maximal group of transitive contact symmetries of dimension greater than five. Equations F = 33:—;‘ and F = 4;/—‘3‘ have 7-
dimensional groups of symmetries, all the remaining have 6-dimensional ones.

Proof. The proof is based on a further application of the Cartan method of equivalence. Let us return to the coframe of
Theorem 6.6, which encodes all the contact invariant information about the ODE. If there are any nonconstant coefficients
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in the structural equations for this coframe we can use them for further reduction of the group GL(2, R) and of the bundle
P. For an ODE satisfying F44 # 0 we normalise t3 = 1, t; = 0, which implies

1 6 5.2 1 6 5.2
al, = g(oz 5)Fu, o= —E(OI 5) (10DF44 + 3FsFaq).
Now the coframe of Theorem 6.6 is reduced to a 7-dimensional manifold P; parameterised by (x, ¥, ¥1, V2, ¥3, Va4, oz55),

three 1-forms (I, I'_, I'1) become dependent on each other and we can use only one of them, our choice is I, to
supplement (68°, 01, 62, 63, 64, I'}) to an invariant coframe on P;. Next we calculate structural equations for the new

coframe. The coefficients in these equations are built from a55 and 16 functions Aq, ..., A1g of X, ¥, ¥1, . . ., ¥4. In particular
A A
d6° = 6o A8 — A A O + 00 A O + 2600 A 62 + A30° A6 + hga®s6° A 62,
(a’5)? o’
where for example
5F344F44 + 10DF44F444 + 6F4F44F 444 Faaq
)"3 = - 3 s )\,4 = 572
Fyy Fiy

Let us assume Fyqq = 0 and consider two possibilities: A3 # const and A3 = const. If A3 # const then it follows
from the equations d?6' = 0, d*Iy = 0 that A, may not be a constant. Thus A, /a55 and A3 are two functionally independent
coefficients in structural equations for the 7-dimensional coframe (0°, 8, 62, 3, 64, I',, I). According to the procedure of
finding symmetries of ODEs, which is described in [17], the dimension of the group of contact symmetries of a corresponding
5-order ODE is not larger than the dimension of the coframe minus the number of the independent coefficients in the
structural equations, thatis 7—2 = 5. It follows that ODEs possessing a contact symmetry group greater than 5-dimensional
necessarily satisfy A3 = const. Let us assume A3 = const then, and we get from identities d20' = 0, d>I; = 0 that (i) either
A3 = 20rA3 = % and (ii) for both admissible values of A3 all the remaining nonvanishing functions A; are expressible by

A1. For example, the system corresponding to A3 = % is the following

A 3
d0° =6y A 0% — A A0+ ——0° A O+ Z6° A 6
(a’5)? 2
21 31 3
' =4 A O + =T AB° =3I AO2+ —— =00 A O? + 20T A1
7(a”5)? 7(a”5)? 2
4 202 4
d0? = 2L AO* + —— =T A0 — 2T A0 — L0 A0+ ————0° A 6?
7(a’s) 49(a’s) 21(a’s)
A 1 3
e L LNl LN o LN
7(a5)? 6 2
6 3)2 X A 3
N R A e Al s B Ly S L N A S LN
7(a”s)? 49(>5)* 14(a>5)? 7(a”s)? 4
81 4)? A 3
A0t = 2N A0+ Ty A0 — 10O NG> + 0" A0+ 20° A6
7(a”s)? 49(” )4 7(a”5)? 2

3A3 X 1
dIy =200 AT+ ———0° A0+ ———0° N 0> + -0 A O*
TTEOTTT T 988, 14(a’;)? 8
A7 1 33

A A 3
o AGO—ZF+A94+ 92+719°/\94+7191A93+E92A94.

196(c°5)* 56(c’)> 14(a’5)2

If 11 = 0 then to this system there corresponds a unique equivalence class of ODEs satisfying the Wiinschmann conditions
and having a 7-dimensional transitive contact symmetry group. The class is represented by

_ 1
T 495t T

_5y3
3y3 .

In the case A; # 0 we have next two nonequivalent classes of ODEs enumerated by the sign of A; and possessing 6-
dimensional transitive contact symmetry groups. Representatives of these classes are

F

573"21 + y§/37
3y3
where +1 = sgn A;.

In the similar vein we find that the only ODEs related to the case A; = 2 are (7.2)and (7.3). O

F =
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7.3. Simple structures with nonvanishing Maxwell form

All the previous examples satisfy the contact invariant condition F444 = 0. In this paragraph we give examples of
Wiinschmann ODEs with F444 7 0. As such they will lead to the GL(2, R) structures with the Maxwell form having a nonzero
dA® part. First and the simplest example of such equations is

F = (yq)®?. (7.4)
The GL(2, R) structure associated with this ODE has the following properties
2
dA® =0, dA”#£0 R=0, K=-—R.
105

It is then an example of a structure with nonvanishing dA belonging to the 7-dimensional irreducible representation.
Next example is the ODE given by the formula

1
F=—5——
9?2 + y,)?
+45y4(y] +y2) 2y1y2 +y3) — 4y] — 18yly, — 54y}y5 — 90y3y; + 270y1y,

X (5w(J’? +3y1y2 + 915 — 95 — Ahys + 12y1y2y3 + 4y — Y45 + ¥2))

+15Y8ys + 45¥y2ys — 405¥2y3ys + 45vys + 60YY3 — 180v1y2y3 — 403), (75)

where?

w? = y5 + 3y1y2 + 95y5 — 93 — 4V1ys + 12y1¥2y3 + 4Y5 — 3Y1Va — 3yaya.
Torsion and curvature for the corresponding GL(2, R) structure are complicated and are of general algebraic form. Both
these examples have 6-dimensional transitive group of contact symmetries.

7.4. A remarkable nonhomogeneous example

Finally, we present an example of 5th order ODEs satisfying Wiinschmann conditions (6.5), which are generic, in a sense
that the function F representing it satisfies F444 7% 0, but which have the corresponding group of transitive symmetries of
dimension D < 6. We consider an ansatz in which function F depends in a special way on only two coordinates y3 and y.
Explicitly:

3
F= 09" q(%), (76)
Y3
where q = q(z) is a sufficiently differentiable real function of its argument
va
zZ = e
Y3
It is remarkable that the above F satisfies all Wiinschmann conditions provided that

e either q(z) = 32°/3

e or function q(z) satisfies the following second order ODE:

90z*3(3q — 42°/3)q" — 542*3q"* + 30z'3(6q — 52**)¢' — 25q = 0. (7.7)
2
In the first case F = %% and we recover function (7.1) with 7-dimensional group of symmetries. Note that one of the
2
solutions of Eq. (7.7) isq = 222/3, which corresponds to F = %% Thus also the other solution with seven symmetries, the
solution (7.2), is covered by this ansatz.

We observe that if function q(z) satisfies

25q — 60zq + 27z*3q* =0, (7.8)

then it also satisfies the reduction (7.7) of conditions (6.5). Eq. (7.8) can be solved by first putting it in the form

522" + /(42?2 — 3q))
- 9z2/3

/

4 Note that w = 0 also gives rise to F satisfying conditions (6.5). But since such F has only linear ys-dependence it is equivalent to one of
Proposition 7.1. Actually the one with ¢ < 0.
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and then by integrating, according to the sign 4-1. In the upper sign case the integration gives q in an implicit form:
(2217 + /(42273 — 39))**(2/ (4223 — 3q) — z'/%)?
(2y/(4223 = 3q) +21/3)3(52%/% — 4g)’
In the lower sign case the implicit equation for q is:
(22" + /(42273 — 3q))**(2\/ (4223 — 3q) — 2'/3)3(52%/3 — 4q)?

(2 /(4Z2/3 _ 3(]) + Z1/3)3q24

Inserting these gs into (7.6) we have a quite nontrivial Wiinschmann ODE F = F... We close this section with a remark that
other solutions to the second order ODE (7.7) also provide examples of 5th order Wiinschmann ODEs.

= const.

= const.

8. Higher order ODEs

All our considerations about GL(2, R) structures associated with ODEs of 5th order can be repeated for other orders. This
is due to the following well known fact generalising Proposition 6.1:

Proposition 8.1. For every n > 4, the ordinary differential equation
y(n) =0

has GL(2, R) x,, R" as its group of contact symmetries. Here p, : GL(2, R) — GL(n, R) is the n-dimensional irreducible
representation of GL(2, R).

The representation p,, at the level of Lie algebra g[(2, R), is given in terms of the Lie algebra generators

0 n—1 0 .. 00O 000 0 0 0
0 0 n—-2 .. 00 O 100 0 0 0
020 0 0 0
E.=]0 o 0 300, E=|0o0 3 0 o of,
0 0 0 0 2 0
0 o0 0 0 0 1 000 n—-2 0 0
0 o0 0 0 00 0 00 0 n—1 0
1-n 0 0 .. 0 0 0
0 3-n 0 0 0 0
0 0 5-n .. 0 0 0
Ep = ., E=1-n1,
0 0 0 n—-5 0 0
e 0 n=3 0
0 0 0 .. 0 0 n-1

where 1 is the n x n identity matrix. In case of dimension n = 5 these matrices coincide with (2.6). They also satisfy the
same commutation relations

[Eo, E+] = —2E;, [Eo, E_]1=2E_, [Ef,E_] = —Eo,

where the commutator in the gl(2, R) = Spang(E_, E+, Eg, E1) C End(R") is the usual commutator of matrices.
Now, we consider a general n-th order ODE

YO =Fx, .5,y ¥y, .y, (8.1)

and as before, to simplify the notation, we introduce the coordinates x,y,y1 =y, y> =y, y3=¥®, ..., yn1 =y" Y on
the (n + 1)-dimensional jet space J. Introducing the n contact forms

o’ = dy — y1dx,
o= dy; — yadx,

o' = dy; — yipadx, (8.2)

"= dyn—2 — yn—1dx,
" ' =dyn_1 — FX, ¥, Y1, Y2, - - -, Yn—1)dx
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and the additional 1-form
wy = dx,

we define a contact transformation to be a diffeomorphism ¢ : | — J which transforms the above n 4 1 one-forms via:

i
o' = E oz'kwk, i=0,1...n—1,
k=0
¢*wy ="y’ + " o' + " w,.

Here o ; are functions on J such that [\, &'; # 0 at each point of J.
Therefore, as in the case of n = 5, the contact equivalence problem for the nth order ODEs (8.1) can be studied in terms
of the invariant forms (8°, 81, ..., 0", I';) defined by

i
0'=> a'of, i=01,..n-1, (8.3)
k=0

Iy =a" 0 +a" o' +a"w,.
These forms initially live on an
that ﬁ ol #0.

Ir;t:rooducing gl(2, R)-valued forms
I =T _E_ + I'YE, + IoEg + IEq, (8.4)

%—dimensional manifold G — J x G — J, with the G-factor parameterised by &' ;, such

where (I, I'_, Iy, I'1) are 1-forms on J x G, we can specialise to F = 0, and reformulate Proposition 8.1 to

Proposition 8.2. If F = 0 then one can chose @ parameters ozij, as functions of x,y, ¥1, - . ., Yn—1 and the remaining three
as, say oz”h, a’zjz, a'3j3, so that the (n+4)-dimensional manifold P parameterised by (X, ¥, V1, - - ., Yn—1, a'ljl , oz'zj2 , al3jS) is locally
the contact symmetry group, P = GL(2, R) %, R", of equation y™ = 0. Forms (8.3), after restriction to P, can be supplemented
by three additional 1-forms (I'"_, Iy, 1), so that (8°,61, ...,6" ', I\, I'_, I',, I'}) constitute a basis of the left invariant forms
on the Lie group P. The choice of as and £2s is determined by the requirement that the basis (0°, 61, ...,0" "\, I, I'_, Iy, I')
satisfies
dd+T A6 =0, (8.5)
dr+rAr=o,
where 6 = (0°, 6", ...,0" 1T is a column n-vector, and I is given by (8.4).

The defining Eqgs. (8.5) of the left invariant basis, when written explicitly in terms of #'s and I's, read
d6° = (n— 1)+ To) A0+ (1 —m Iy A6,
do' = —TI_ A0+ [(n— DM+ 0 =3I A0+ 2 — Iy A6

do% = —kI_ A0 '+ [((n— DI+ (n— 2k — DI A+ (1 + k —n) I AOKHT, (8.6)

dO" = (1 —mI_ A" 2+ (n— 1Dy — ) AO™L,
dry =2y A Iy,

dr. = =2y AT,
dly =T, AT,
dr; =o.

This system can be analysed in the same spirit as system (4.1) of Section 4. Thus, we first consider the distribution
h={XeTPst.X 0 =0,i=0,1,2,...,n—1}

annihilating 6.
Then the first n equations of the system (8.6) guarantee that forms (9°, 8!, 62, . .., #"1) satisfy the Frébenius condition,

dOPAOO AT AP A A0 =0, Vi=0,1,2,...n—1
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and that, in turn, the distribution b is integrable. Thus manifold P is foliated by 4-dimensional leaves tangent to the
distribution b. The space of leaves of this distribution P/h can be identified with the solution space M" = P/} of equation
y™ = 0. This in particular means, that all Eqs. (8.5) can be interpreted respectively as the first and the second structure
equations for a gl(2, R)-valued connection I" having vanishing torsion and and vanishing curvature. This gl(2, R)-valued
connection originates from a certain GL(2, R) (conformal) structure on the solution space M".

To make this last statement more precise we have to invoke a few results from Hilbert’s theory of algebraic invariants [ 18]
adapted to our situation of ODEs.

8.1. Results from Hilbert’s theory of algebraic invariants

First we ask if for a given order n > 4 of an ODE (8.1) with F = 0 there exists a bilinear form g on P of Proposition 8.2
such that it projects to a nondegenerate conformal metric on M". This is answered, in a bit more general form, by applying
the reciprocity law of Hermite (see [18], p. 60), and its corollaries, due to Hilbert (see [18], p. 60).

To adapt Hilbert’s results to our paper we introduce a definition of an invariant of degree q. Let t be a totally symmetric
covariant tensor field of rank q defined on the group manifold P of Proposition 8.2.

Definition 8.3. The tensor field f is called a GL(2, R)-invariant of degree g, if and only if, it is degenerate on  and if for every
X € b, there exists a function c(X) on P such that

Lxt = c(X)t.
The degeneracy condition means that (X, ...) = 0, forall X € b.

In the following we will usually abbreviate the term ‘a GL(2, R)-invariant’ to: ‘an invariant’.
The first result from Hilbert’s theory, adapted to our situation, is given by the following

Proposition 8.4. Foreveryn = 2m + 1, m = 2, 3, ... there exists a unique, up to a scale, invariant g of second degree on P.
This invariant, a degenerate symmetric conformal bilinear form g of signature (m + 1, m, 0, 0, 0, 0) on P, satisfies

Lxg =2(n — H(X.IM)E,
forallX €.

In case of even orders n = 2m, Hilbert's theory gives the following

Proposition 8.5. For n = 2m every GL(2, R)-invariant has degree q > 4.

Thus, if n = 2m, we do not have a conformal metric on the solution space M™".
Returning to odd orders, we present the quadratic invariants g, of Proposition 8.4, forn < 10:

5 =3(0%)? — 40103 +0%*, ifn=>5,
75 = —10(0°)% + 150%0* — 600> +6°9° ifn=7, (8.7)
95 = 35(6%)? — 56030° + 280%20° — 80107 +6°9% ifn=09.

These expressions can be generalised to higher (odd) ns. We have the following

Proposition 8.6. If n = 2m + 1and m > 2, the invariant g of Proposition 8.4 is given by:
m—1
B - (2m . : 1 2m
g= Y () oo e (M) enr
P ] 2 m

Remark 8.7. This proposition is also valid for m = 1. For such m, the value of nis n = 3, and we are in the regime of
third order ODEs. Such ODEs were considered by Wiinschmann [1]. Since 3g = 6°9? — (91)? is the only invariant in this
case, the counterpart of the bundle P of Proposition 8.2 is a 10-dimensional bundle P = 0(2, 3), the full conformal group in
Lorentzian signature (1, 2). The counterpart of system (8.5)/ (8.6) is given by Maurer-Cartan equations for O(3, 2):

de® =2(Iy + L) A% —2I", A 61,

do' = —I_ A0+ 2 A0 — I A 62,

do? = =216 + (217 — 2Iy) A 62,

1
dF+=2F0/\F++5F3/\90—|—F4/\9],

1
dr =2 AT+ [ A0 + 15 A6
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1 0 1 2
dr0:F+/\F,_5F2/\9 +5F4/\9,
1 o 1 1 ,
diM=—=IL N0 — =I3 N0 — =T, ANO°,
2 2 2
di =—I3AT_+ 2 AT+ 215 AT,
ng:—ZFZAF+—2F4AF_+2F3AF1,
dF4:—2F4/\F0—F3/\F++2F4/\F1.
Here, apart from #°, ', 62 and I',., I'_, Iy, I'; we have also left invariant forms I3, I's, I's.

Now we pass to the invariants of degree ¢ = 3. The question of their existence was again determined by Hilbert (see [18],
p. 60), in terms of the reciprocity law of Hermite. In the language of our paper we have the following

Proposition 8.8. An invariant of third degree T exists on P if and only if
n=4u+1, pneN

Hilbert’s theory, [ 18], p. 60, implies also the following:

Proposition 8.9. In low dimensions n = 4, + 1, the unique up to a scale cubic invariant is given by
en=>5:
59— (92)3 —20'0%03 + 90(93)2 —9%20% + (91)204
en=09:
9T = 15(6%)° — 360°0%0° + 2402(0°)* + 24(0°)*0° — 220°0%0°
—80'0°0° 4 30°(6°)* — 8026%07 + 120'0%07 — 46°0°07 + 3(62)*0° — 40'0°0® + 0°9*6®.

The rough statement about the even orders, n = 2m, described in Proposition 8.5, can be again refined in terms of the
reciprocity law of Hermite. Following Hilbert we have

Proposition 8.10. If 4 < n = 2m the lowest order invariant tensor 7" on P has degree four. This is unique (up to a scale) only
if n = 4,6,8,12. If n = 10 or n = 14 we have two independent quartic invariants 7'; if n = 16, 18, 20 we have three
independent quartic invariants; and so on.

Proposition 8.11. In low dimensions n = 2m, the quartic invariant tensor T on P is given by
o n=4:
4»1? — _3(91)2(92)2 + 490(02)3 _,_4(91)393 _ 690919203 + (90)2(93)2
e n==06:
57 = —32(6%)%(6%)% + 4801 (6%) + 48(6°)30* — 760102630 — 126°(9°)%6* + 9(6")? (6*)?
+1660%62(6%)? — 1201(6)%6° + 16(61)?6°0° + 46°6%6°0° — 100°01640° + (6°)%(6°)?.
e n=2~§:
87 = —375(6%)%(6")% + 6000%(6*)> + 600(0%)30° — 9900263040° — 2400 (64)%6° + 81(6°)%(6°)?
+ 3600103 (6°)? — 24002 (6°)%6° + 360(0?)%6*6° + 500"16°640° + 400°(64)%6° — 234616%6°6°
—600°036°0° + 25(01)%(6%)% + 246°0%(6°)% + 4001 (6°)%67
— 6001020407 — 100°60360407 + 24(61)26°07 + 186°62%6°67 — 140°0'6°97 + (°)%(67)2.
Among the small dimensions n = 7 is quite special, since here the next invariant linearly and functionally independent
of the metric g has g = 4. We have the following

Proposition 8.12. In dimension n = 7, the invariant of the lowest degree is the metric ’g. There are no invariants of degree
q = 3 and only two linearly independent, invariants of degree q¢ = 4. The first of them is 752. The second can be chosen to be
T = 160(9%)* — 4800%(9%)%0* 4 1035(6%)*(8*)* — 1080063 (6*)* + 5400°(6*)*
—1080(9%)%6°0° + 19200 (6°)%0° — 1800'6%0"6°
—10800°6°6%0° — 288(6")*(6°)* + 5400°6%(9°)* + 540(6%)°0° — 10800 '6°6°6° + 4000°(6°)*6°
+540(0")%60%0° — 3300°0°00° — 8460°0'0°60° + 7(6°)*(9°)*.
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8.2. Stabilizers of the irreducible GL(2, R) in dimensions n < 10

In dimensions n < 10 the GL(2, R) invariant tensors of low order ¢ < 4 turn out to be sufficient to reduce the GL(n, R)
group to GL(2, R) in its irreducible n-dimensional representation.
Given an invariant tensor
1

= U1l i
E= a0

of degree g on P and a GL(n, R)-valued function a = (d' j) onP, atevery point p € P, we have a GL(n, R)-action

P ~ i i in ~
(@}, tiyiy..ig) B (P (@D g = ﬂl]jl alzjz - aqjq tiziy...ig-
A subgroup G; of GL(n, R) consisting of a = (a' j) such that

pn(@) = (deta)" i,

is the stabiliser of f at p € P. Since f is an invariant then, obviously GL(2, R) C G:.

This leads to the following question: how many invariants is needed in dimension n so that its common stabiliser is
precisely GL(2, R) in its n dimensional irreducible representation?

Inspecting Hilbert’s results we checked that in dimensions 4 < n < 9 we have

Theorem 8.13. For eachn = 4, 5, 6, 7, 8, 9, the full stabiliser group of the respective invariant tensor ¥ of Propositions 8.9,
8.11 and 8.12, is the group GL(2, R) in the n-dimensional irreducible representation p,. In particular, if n = 5,7,9 these
stabilisers are subgroups of the respective pseudohomothetic groups CO(3, 2), CO(4, 3) and CO(5, 4), each in its defining
representation.

Thus in each of these dimensions it is the lowest order non-quadratic invariant what is responsible for the full reduction
from GL(n, R) to GL(2, R).

Remark 8.14. In dimension n = 5, using (8.7) and Proposition 8.9 we define a conformal metric [Sgij] represented by

5 192

i=-—— , 1,j=0,1,2,3,4
8= 3 5pa1 &) b
and a conformal symmetric tensor of third degree [ Tii] represented by
V39 g
5 5 PR
Tik=—"—"—"7"7""—"(7), i,j,k1=0,1,2,3,4.
=3 sgieaer 1) I
/3

The convenient factor — > in the expression for STijk was chosen so that the pair (Sgij, STUk) satisfies Cartan’s identities
(i)-(iii) of Section 2. This leads to the GL(2, R) geometries in dimension 5 considered in Sections 3-6.

Remark 8.15. In the next odd dimension situation is quite similar, but now we have a quartic invariant ¥ Thus apart from
the conformal metric [7g,»j] represented by

1 92
7 7 ~ P
i=-—("8), i,j=0,1,2,3,4,5,6
&i 2301391(g) J

we have a conformal symmetric tensor of fourth degree [’ Tjju] represented by

1 94

75 .. _
ﬂm(T), i,j,k,1=0,1,2,3,4,5,6. (8.8)

7
Yiju =
Note that 77 of Proposition 8.12 was chosen in such a way that the fourth order 7T,-j,d satisfied
78" 7Yy =0, where’g" gy =5
This choice of the fourth order invariant is nevertheless arbitrary, since we can always get another invariant of the fourth
order by replacing ’Y" with
75 75 75 75
Tijw = ¢1" Vij + €2 "&aij " 8y -
It is interesting to note that the choice

24/5 34

€= S
' /3147 27 /15735
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applied to 77", leads, via formula like (8.8), to 77_’,-1“ satisfying the Cartan-like identity:

"g" 78T Yo Yimm =" 2’ &imy
and
gty 3.7 7 i 7 i
8" i = 5C2"8u.  Where g% gy = 5.

Note also that the above Cartan-like identities are preserved under the conformal transformation
(i "Tyw) > (g > T = (€ gy e* " Ty,

where ¢ € R. _
Thus the GL(2, R) geometries in dimension n = 7 may be defined by a conformal class of pairs of tensors [7g,-]-, 7T,-jk1]
with the properties and transformations as above.

Remark 8.16. By analogy, in dimensions n = 4, 6, 8, the irreducible GL(2, R) geometries may be described in terms of a
conformal tensor ["Tjj] represented by

1 94
24 361960196%0!

and obtained in terms of the respective quartic invariants "7 of Proposition 8.11.

Y = ("7), iik1=0,1,2,...,n—1,

Remark 8.17. Dimension n = 9 is similar to dimension n = 5. A periodicity with period four is a remarkable feature of
Hilbert’s theory of algebraic invariants [18], p. 60.

8.3. Wiinschmann conditions for the existence of GL(2, R) geometries on the solution space of ODEs

An invariant tensor £, by its very definition, has a property that it descends to a nondegenerate conformal tensor [t]
on the solutions space M" = P/} of the equation y™ = 0. In particular in dimensions 4 < n < 9 the conformal class
["T], corresponding to invariant tensors "Y" reduces the structure group of M" to GL(2, R) defining an irreducible GL(2, R)
geometry there. We do not know how many invariant tensors are needed to achieve this reduction forn > 9, butitis obvious
that for a given n this number is finite, say w,. Thus for each n > 3 we have a finite number of invariants"1;,1 = 1, 2, ... wy,
which descend to the solution space M" of the equation y™ = 0 equipping it with a GL(2, R) structure. It is important that
each of the invariants "7 has only constant coefficients when expressed in terms of the invariant coframe ®°, ...,
on P (see, for example, every "7 of the preceding section).

Now, we return to a general n-th order ODE (8.1). Thus we now have a general function F(x, y,y’,y",y®, ...,y D),
which determines the contact forms (°, @', ..., ®" !, w,) by (8.2). Corresponding to these forms we have the invariant
forms (6°, ..., 6" 1, I'}) of (8.3), which live on bundle J x G over J. We can now ask the following question (this generalises
to arbitrary n > 3 the similar question of Section 6): What shall we assume about F defining the contact equivalence class
of ODEs (8.1) that there exists a (4 + n)-dimensional subbundle P of | x G on which the forms (8°, ..., 8", I',) satisfy:

0_ (o 0 N 1 101‘ j
d"=mm—-D(I1+ 1) A+ (A —n)L A6 +2Tij0 N

1 ) .
do' = —T_ A+ [(n— DM+ 0 =3 A0+ @2 —n)I A0% + 5T1ij91 N

1 . .
do¥ = —kI'_ A0V [(n— DI+ (n— 2k — DIGI A+ (1 +k—n) Iy A QKT 4 ET"UOI N (8.9)

1 . .
A" T =(1=mI_ A" 24+ (n=1D)T = T) AO" 1+ Er”glel N
1 . .
dF+ :2F0/\F++§R+[j01/\91,
1 ) .
dIo = =2Ih, AT + ER,UGI N
1 . .
dry =F+/\F_+5R0,'j9l/\ej,

1
dry = SRy6' A6,
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As first observed by Wiinschmann [1] and then successively used by Newman and collaborators [19] this question can
be reformulated into a nicer one. To make this reformulation we repeat our arguments from Proposition 8.1.
Suppose that we are able to satisfy system (8.9) by the forms (8.3). Consider the distribution

h={XeTPst.X 0 =0,i=0,1,2,...,n—1}

annihilating 0s. Despite of the fact that system (8.9) involves new terms, when compared with system (8.6), they do not
destroy the integrability of the distribution b; the first n Eqs. (8.9) still guarantee that § is integrable. Thus manifold P is
foliated by 4-dimensional leaves tangent to the distribution b. The space of leaves of this distribution P/h can be identified
with the solution space M" = P/ of Eq. (8.1). Now, on the manifold P of system (8.9), we define w, tensors "7;, which
formally are given by the same formulae that defined the w, invariants "7, of the flat system (8.6) needed to get the full
reduction to GL(2, R). So, when defining the present "7}, we use the same formulae as for the y™ = 0 case, replacing
forms 6 of the flat case, with forms ¢ satisfying system (8.9). It is now easy to verify that the question about the conditions
on F to admit P with system (8.9) is equivalent to the requirement that all w, tensors "7} transform conformally when Lie
transported along the leaves of distribution §. Infinitesimally this condition is equivalent to the existence of functions ¢;(X)
on P such that

Lx("1) = () "1,
VX € h,andVI = 1, 2, ... wy. If this is satisfied then tensors "7} descend to a conformal class of tensors [ 17, " 7>, . . ., "Y'l
on the solution space M" defining a GL(2, R) there. .
We know that in dimension n = 5 the conformal preservation of >g and >7" is equivalent to the requirement on function
F = F(x,¥,¥1,Y2,¥3,Y4) to satisfy Wiinschmann conditions (6.5). Also in higher dimensions the Wiinschmann conditions
are obtained in this way. They are obstructions for the conformal preservation of tensors ["17," 73, ..., "Ty,] along the
distribution b. In particular, if 4 < n < 10 they are given by the following

Theorem 8.18. Let M™ be the solution space of nth order ODE

Yy =Fy.y. Yy y?, Ly, (8.10)
with4 < n < 10, and let
D = O+ y10y + Y20y, + -+ Yn19y, , +Foy,

be the total derivative. The necessary conditions for a contact equivalence class of ODEs (8.10) to define a principal GL(2, R)-
bundle GL(2, R) — P — M" with invariants forms (8°, ...,6""', I\, I'_, I, I'}) satisfying system (8.9) is that the defining
function F of (8.10) satisfies n — 2 Wiinschmann conditions given below:

on =4:

AD*F; — 8DF, + 8F, — 6DF3F; + 4F,F; + F3 = 0,
160D%F, — 640DF; + 144(DF3)? — 352DF;F, + 144F7 — 80DF,F; + 160F;F3
—72DF;F; + 88F,F; + 9F; + 16000F, = 0,
en =>5:
50D2Fy — 75DF; + 50F, — 60F;DF4 + 30F;F; + 8F; = 0
375D%F; — 1000DF, + 350DF; + 1250F; — 650F;DF,
+ 200F; — 150F;DF; + 200F,F4 — 140F; DF4 + 130F3F; + 14F; = 0
1250D%F, — 6250DF; + 1750DF;DF, — 2750F, DF, — 875F3DF; + 1250F,F; — 500F,DF, + 700(DF4)?F4
+ 1250F; F4 — 1050F3F4 DF4 + 350F2F,— 350F; DF3+550F,F; —280F; DF4 + 210F3F; + 28F; + 18750F, = 0.
en =G06:
45D°Fs — 54DF, + 27F; — 45DFsFs + 18F4Fs + 5F2 945D2F, — 1890DF; + 900(DFs)? + 1575F, — 1350DFsF,
+ 333F; — 315DF4Fs + 315F;Fs — 300DFsFZ + 225F4F2 + 25F, = 0
2835D%F; — 9450DF, + 4320DF,DFs + 14175F; — 5130DFsF; — 1728DF,F4 + 1863F;F, — 945DF;Fs
+ 1800(DFs)*Fs + 1575F,F5 — 2160DFsF4Fs + 576F2Fs — 720DF4F2 + 855F;F2
— 600DFsF; + 360F4F; + 50F; =0
14175D%F, — 85050DF; + 6480(DF4)* + 16200DF; DFs — 31050DFsF, — 9720DF,4F; + 3645F; — 6480DF;F,
+ 5400DF2F, + 11475F,F4 — 4320DFsF; + 864F; — 4725DF;Fs + 10800DF, DFsFs + 14175F;Fs
— 10800DFsF;3F5s — 6480DF4F4Fs + 5940F3F,F5 — 2700DF;F2 + 4500(DFs)*F2 + 5175F,F2
—7200DFsF4F2 + 2340F;F2 — 1800DF4F. + 1800F;F; — 1500DFsF; + 1050F4F. + 125F2 + 297675F, = 0
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en=7:

245D%Fs — 245DFs + 98F; — 210DFgFs + 70FsFs + 20F; = 0

6860D%Fs — 10976DF, + 6615(DFs)* + 6860F; — 8330DFsFs + 1715F2 — 1960DFsFs
+ 1568F4Fs — 1890DFsF + 1190FsF + 135F; = 0

9604D°F, — 24010DF; + 15435DFs DFs + 24010F, — 14749DFcF, — 5145DFsFs + 4459F,F5 — 2744DF,Fg
+ 6615 (DFs)*Fs + 3430F;F; — 6615DFsFsFs + 1470F2Fs — 2205DFsFZ + 2107F,F2
— 1890DFgF; + 945FsF; + 135F; = 0

336140D°F; — 1344560.DF, + 180075(DFs)* + 432180DF;DFs + 2352980F; — 624260DFsF;
— 216090DFsF, + 64827F; — 144060DF,Fs + 154350(DFs)*Fs + 192080F;Fs
—102900DFsFZ + 17150F; — 96040DF3Fs + 308700DFs DFsFs + 192080F,Fs
—246960DFsFaFs — 154350 DFsFsFs + 113190FFsFs — 61740DF4FZ + 132300(DFs)*Fg
+ 89180F;F2 — 176400DFsFsFZ + 47775F2F2 — 44100DFsF; + 35280F,F;
— 37800DFsFg + 22050FsF; + 2700F = 0

2352980D°F, — 16470860DF; + 1512630DF,DFs + 2268945 DF; DFs — 5126135DFsF,

— 1512630DFsF; — 907578 DF4F4 + 648270(DFs)*F4 + 907578F;F; — 756315DF;Fs
+ 1080450 DF5 DFsFs + 1596665F,F5 — 1080450DFgF4F5s — 360150501'"51‘"52 + 288120F4F52 — 672280DF,F¢

+540225(DFs5)*Fs + 1296540DF, DFsFs + 2352980F; Fs — 1620675DFsF3Fs — 864360 DFsF,Fs

+ 324135F,Fs — 648270DF,FsFs + 926100(DFs)FsFs + 756315F;FsFs — 771750 DFsF2Fs

+ 154350F; Fs — 324135DF;F¢ + 926100DFs DFeF; + 732305F,F; — 926100DFsF4F; — 617400DFsFsFg
+ 524790F4FsFZ — 185220DF,F + 396900(DFs)Fg + 231525F3F; — 661500DFsFsF; + 209475F2F;

— 132300DFsF; + 119070F4F; — 113400DFsF; + 75600FsF; + 8100F] + 65883440F, = 0.

Remark 8.19. If n = 3 we have only one Wiinschmann condition [20,1]:
9D%F, — 27DF, — 18DFF, + 18F\F, + 4F; + 54F, = 0.

and, if it satisfied, a conformal Lorentzian geometry associated with a metric
3g = 0%2 — (p1)?

is naturally defined on the solution space.

Remark 8.20. If n = 4 the ODEs satisfying the two Wiinschmann conditions lead to very nontrivial geometries on 4-
dimensional solution spaces. These are a sort of conformal Weyl geometries, which instead of a metric are define in terms
of the conformal rank four tensor 47". These geometries define a characteristic connection, which is gl(2, R) valued and has
an exotic holonomy [5]. By this we mean that the holonomy of this nonmetric but torsionless connection does not appear
on the Berger’s list [5]. See also our account on this subject in [21].
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