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LETTER TO THE EDITOR
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Abstract. We construct an example of Ricci-flat almoséfer non-Kahler structure in four
dimensions.

PACS numbers: 0420, 0420C

1. Let M be a 4-manifold equipped with a metgoof signature (++++). The pait\t, g) is
called a Riemannian 4-manifold.

An almost-Hermitian structure on\{, g) is a tensor field/ : TM — T M such that
J? = —id andg(JX,JY) = g(X,Y). An almost-Hermitian structureM(, g, J) is called
Hermitian if J is integrable. Due to the Newlander—Nirenberg theorem this is equivalent to the
vanishing of the Nijenhuis tenso¥; (X, Y) = [JX, JY] — [X, Y] — J[JX, Y] — J[X, JY]
for J.

Given an almost-Hermitian structuréf, g, J) one defines the fundamental 2-fotrby
w(X,Y) = g(X, JY). An almost-Hermitian structureM, g, J) is called almost-Khler if
its fundamental 2-form is closed. If, in additios,is integrable then such structure is called
Kahler.

This letter is motivated by the following conjecture [6].

Goldberg’s conjecture
The almost Khler structure of a compact Einstein manifold is necessaréflir.

The conjecture was proven in the case of non-negative scalar curvature of the Einstein
manifold by Sekigawa in [11]. In recent work [12] he has additionally shown that Goldberg’s
conjecture holds in four dimensions. This result is relevant for gravitational instantons (see,
e.g.,[9]), sinceitimplies that any compact Einstein gravitational instanton admitting an almost-
Kahler structure is necessarilyaller.

In this letter we show that the assumption about compactness of the Einstein manifold is
essential for the Goldberg conjecture. In particular, we give an explicit example of a Ricci-flat
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almost-Kahler non-Kahler structure on a non-compact 4-manifold. This result is given by
theorem 1 of point 4.

2. LetU be an open_subset @‘4 Letd’ = (M, M, N, N) be four complex-valued 1-forms
onl{ suchthatM A M A N A N # 0. Usingd’ we define a metrig on/ by

g=2MM+NN)=MOM+MM+NQN+N®N.
Clearly 4, g) is a Riemannian 4-manifold.

The Weyl tensoW of the metricg splits into self-duakW™*) and anti-self-dua(w )
parts. (U, g) is said to be (anti-)self-dual ifff * = 0) W~ = 0. If (W* £ 0) W~ #£ O theniin
every point ofi/ it defines at most two spinor directions{], 87]) [«~, 87]; see e.g. [7, 10].
(W*) W~ is said to be of typeD if («*) ™ coincides with g*) g~.

Lete; = (m,m,n,n) be a basis dual t6' = (M, M, N,N). For anyé € C itis
convenient to consider 1-forms

u M —EN N N+EM
= /= £ = =
V1+EE 1+&&
and vector fields
m—E&n n+&m

T Vv T Jiee

The following lemma is well known (see for example [7, 10]).

Lemma 1.
(a) For any value of the complex parametee C U {oco} the expressions
J{ = (Mg ® g — Mg @ mg + N @ i — Ny @ ne)
Jo =i(Ms @ mg — My @ mg + N; ® i — N ® ng)
define almost-Hermitian structures @, g).
(b) The fundamental 2-forms corresponding/foand J,” are given by, respectively
wf =1(Mg A Mg + Ng A N)
wf_ = |(E/\M§ +N§ /\VE)
(c) Any almost-Hermitian structure o@¢, g) is given either by one ofg or by one of/; .
Structures/;” are different fromJ,; also, different's correspond to different structures.
(d) If the metricg is not self-dual then among+s only at most four structures, corresponding

to specific four values of the parametermay be integrable. Analogously, if the metric
g is not anti-self-dual then only at most fouir s may be integrable.

3. Let(x1, x2, x3, x*) be Euclidean coordinates oh Define
71 = x1+ix2 0= x3+ixt 1)
Letd, = d/dz andd; = 9/9zx, k = 1, 2.
Consider two 1-formg/ and N oni/ defined by

1
M = f(dzy +hdzp) N = 7 dzo, 2

where f # 0 (real) and: (complex) are functions a. . .
SinceM AM AN AN =dzg A dzy A dzz A dzy # O then the metrig = 2(MM + NN)
equips{ with the Riemannian structure. Consider almost-Hermitian structlgrefsr such
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U, g). Itis interesting to note that = €% = constant then the corresponding fundamental
2-formwy, reads

w;¢ = i(e‘“’ dzo A dzg — e'¢ dzo A dzy)

and is closed. Thus, for any?ec S* we constructed an almostaler structurel, g, J3s):

If the functionsf andh are general enough, then the mejibas no chance to be self-dual.
Moreover, since in such a case there are a finite number of Hermitian structures @&fmong
then most of our structures must be noakter. Summing up we have the following lemma.

Lemma 2. Let (z1, 71, z2, Z2) be coordinates off as in (1). Then for each value of the real
constantp € [0, 2| the metric

- 1
g = 2f?(dzy + h dz2)(dzy + h dz2) + 25 dz dz, 3)
and the almost-complex structure
i - 1
J;,) = ZRG{I e'¢ [fz(dzl +hdz) ® (85 — hoy) — F dz; ® 31]} (4)

defines an almost#&hler structure ori/.
If the functionsf and i are general enough to prevent the metric from being self-dual
then these structures are noréller for almost all values ap.

4. We look for not-self-dual Ricci-flat metrics among the metrics of lemma 2. For this purpose
it is convenient to restrict to the metrics (3) whose anti-self-dual part of the Weyl tensor is
strictly of type D. Such a restriction guarantees that all structures (4) are able#{7, 10].

We recall a useful lemma [8].

Lemma 3.Letg be a Ricci-flat Riemannian metric in four dimensions. Assume that the anti-
self-dual part of the Weyl tensor f@ris strictly of type D. Then, locally there always exist
complex coordinate&;, z2) and a real functionk = K (v, z2, Z2), v = z1 + z3 such that the
metric can be written as

g= (SKKW (dzl + % dzz) (dzl + iz de) +4ek (’:K)l/z dzz dz2, (5)
wherek 5 = 3°K /(dv 37») etc. The functiork satisfies
KKy — KK — 26 5 (K, +2(K,)?) =0, (6)
K, >0, eK,, >0 (7)

whereg is either plus or minus one.
Also, every functiolk = K (v, z», 72) satisfying (6) and (7) defines, via (5), a Ricci-flat
metric. This metric has the anti-self-dual part of the Weyl tensor of strictly type D.

We ask when the metric (3) can be written in the form (5). Identifying coordiriates,)
in both metrics we see that it is possible if
va 2 KU 12
2p2=° and —=4e‘K¥.
(Ky)3/2 f? eKyy
These two equations are compatible onlykif e = 1. It is a matter of straightforward
integration that, modulo the coordinate transformations, the general solution of this equation
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which simultaneously satisfies equation (6) i log(v — 2z272). Using suchk we easily
find that in the region

U = {U 3 (z1, z2) such thaty — 2z,7> > 0}

the metric (3) with
1
f= Sy — Dz 1/A
V2(v — 22272)Y
is Ricci-flat and strictly of type D on the anti-self-dual side of its Weyl tensor. The explicit
expression for such reads

h = =275,

= ——————(dz; — 27, dz2)(dz1 — 222d75) + 4(v — 22272) % dzp Az 8
8= 0o 222Z2)1/2( 1 2dz2)(dzy 2dzp) +4( 222) 2dz2 ®)
To gain a better insight into this metric we choose new coordinates
_ _ . 1—2
x = (v — 2272) ", y=z2+22 =1z — 22), q=%

onU’. These coordinates are real. The metric (8) in these coordinates reads
1
g = x(dx®+dy?+dz?) + =(3zdy — 2y dz + dq)z.
X
This shows that it belongs to the Gibbons—Hawking class [4] and that its self-dual part of the
Weyl tensor vanishes.
We also recall [9] that a suitable Lie—Backlund transformation brings equation (6) to the
Boyer—Finley—Plehaski [2, 3] equationi
Fyy+F +(e") =0
for one real functionF = F(x, y, z) of three real variables. It is interesting to note that the

metric (8) corresponds to the simplest solutior= 0 of this equation.
Summing up we have the following theorem.

Theorem 1.Let (z1, 71, 22, Z2) be coordinates oty ¢ R* = C2. The Riemannian manifold
', g), where

U = {U > (z1, z2) such thaty — 2757, > 0, v = z1 + 71}
and
. 1
T (v — 2227p) Y2
is Ricci-flat, anti-self-dual and has the anti-self-dual part of the Weyl tensor of type D. Moreover,
(U’, g) admits a circle of almost-&hler non-Kahler structures

g (dz1 — 272 dzp)(dZ1 — 272 0Z2) + 4(v — 22272) 2 dzp dZ2,

+ N 1 =
35 = 2|16 | g 1 = 2 @ Gy 22

—2(v — 227) % dz; ® 31] }

These structures are parametrized by the real congtan{O, 2[. Their fundamental 2-forms
are given by
wg, =1(€9dza A dzg — €79 dZz A dZ1).

T This solution was already known to Stawomir Biatecki in 1984 [1].
1 Also known to describe th8U (c0) Toda lattice.
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5. Interestingly, our examples can be globalized.
Indeed, the transformation
21—
2i
brings the structureg, Jg,, wg,) of theorem 1 to a form which is regular for all the values of
the real parameters, y, z, ) € R%.

t = 3log(v — 222%2), y=22%22, z=1(22 — 22), q=

6. Finally, we observe that the metric (8), as being anti-self-dual, possesses a sttty K
structure. This is given by

J =1[(dz1 — 272 dz2) ® 91 — (dz1 — 22, d7Z) ® 91 + dz2 ® (95 + 22207)
—dzo ® (92 + 22201)]

and belongs to structures of opposite orientatiod Jo It is interesting whether there exist
Ricci-flat metrics that admit almostdhler non-Kahler structures but do not admit any strictly
Kahler structure.

We are very grateful to Wiodek Jelonek for bringing to our attention the problem of existence of
almost-Kahler non-Kahler Einstein metrics. We also wish to thank John Armstrong and Simon
Salamon for information about their proof of existence of such metrics in four dimensions.
This work was completed during the workshop ‘Spaces of geodesics and complex methods in
general relativity and differential geometry’ held in Vienna at the Erwin 8dimger Institute.
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