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Abstract
A contact twisted cubic structure (M, C, γ) is a 5-dimensional manifoldM together
with a contact distribution C and a bundle of twisted cubics γ ⊂ P(C) compatible with
the conformal symplectic form on C. The simplest contact twisted cubic structure is
referred to as the contact Engel structure; its symmetry group is the exceptional group
G2. In the present paper we equip the contact Engel structure with a smooth section
σ : M → γ, which “marks” a point in each fibre γx . We study the local geometry of
the resulting structures (M, C, γ, σ ), which we call marked contact Engel structures.
Equivalently, our study can be viewed as a study of foliations ofM by curves whose
tangent directions are everywhere contained in γ. We provide a complete set of local
invariants of marked contact Engel structures, we classify all homogeneous models
with symmetry groups of dimension ≥ 6 up to local equivalence, and we prove an
analogue of the classical Kerr theorem from Relativity.

Keywords Special contact structures · Foliations · G2 · Double fibration · Cartan’s
equivalence method · Local invariants · Tanaka prolongation

1 The G2-Geometries of Cartan and Engel

In 1893 Cartan and Engel, in the same journal but independent articles [4,7], provided
explicit realizations of the Lie algebra of the exceptional Lie group G2 as infinitesimal
automorphisms of differential geometric structures on 5-dimensional manifolds. (In
this paperG2 denotes aLie groupwhoseLie algebra is the split real formof the complex
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exceptional simple Lie algebra g2.) One of these structures was the simplest (2, 3, 5)
distribution, that is, rank 2 distributionD ⊂ TN 5 on a 5-manifoldN 5 such that [D,D]
is a rank 3 distribution and [D, [D,D]] = TN 5. These non-integrable distributions
form an interesting and well studied (local) geometry, see Cartan’s classical paper [5]
and e.g. [11] for more recent work and the associated conformal geometry.

The other structure was the simplest contact twisted cubic structure. Consider a
smooth 5-dimensional manifold M5 together with a contact distribution, i.e., a rank
4 subbundle C ⊂ TM5 such that the Levi bracket

L : �2C → TM5/C, ξx ∧ ηx �→ [ξ, η]xmodCx (1.1)

is non-degenerate at each point x ∈ M5. Then Lx endows each fibre Cx with the
structure of a conformal symplectic vector space. Consider further a sub-bundle γ ⊂
P(C) in the projectivization of C such that each fibre γx ⊂ P(Cx ) is the image of a
map

RP
1 → P(Cx ) ∼= RP

3, [t, s] �→ [t3, t2s, ts2, s3] ;
such a curve γx is called a twisted cubic curve (or rational normal curve of degree
three). Assume that the twisted cubic is Legendrian, which means that it is compatible
with the conformal symplectic structure on the contact plane (see Sect. 2.2 for details).
Then (M5, C, γ) is called a contact twisted cubic structure.

Both geometries, (2, 3, 5) distributions as well as contact twisted cubic structures,
are examples of parabolic geometries, see [6]. As such, they admit canonical Cartan
connections, whose curvature gives rise to the fundamental invariants of these struc-
tures. If the curvature of a given structure identically vanishes, then the structure is
locally equivalent to the flat model of the geometry under consideration: In case of a
(2, 3, 5) distribution this is the G2-invariant (2, 3, 5) distribution on the flag manifold
G2/P1 and in case of a contact twisted cubic structure this is the G2-invariant contact
twisted cubic structure on the flag manifold G2/P2. Here we use the standard nota-
tion P1 and P2 for the two 9-dimensional maximal parabolic subgroups of G2. The
geometric structures presented by Cartan and Engel are local coordinate description
of the two flat models.

Engel’s description of the G2-invariant contact twisted cubic structure was (up to a
different choice of coordinates) as follows:Let (x0, x1, x2, x3, x4)be local coordinates
U ⊂ R

5 and consider the coframe

α0 = dx0 + x1dx4 − 3x2dx3, α1 = dx1, α2 = dx2,

α3 = dx3, α4 = dx4, (1.2)

with dual frame

X0 = ∂x0 , X1 = ∂x1 , X2 = ∂x2 , X3 = 3x2∂x0 + ∂x3,

X4 = −x1∂x0 + ∂x4 . (1.3)

Hereα0 is a contact form and defines a contact distribution C = ker(α0). Now consider
the set of horizontal null vectors
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γ̂ = { Y ∈ C : g1(Y ,Y ) = g2(Y ,Y ) = g3(Y ,Y ) = 0 }

of the three degenerate metrics

g1 = α1α3 − (α2)2, g2 = α2α4 − (α3)2, g3 = α2α3 − α1α4, (1.4)

where αiα j = 1
2 (α

i ⊗ α j + α j ⊗ αi ). Then Y ∈ �(C) takes values in γ̂ if and only if
is of the form

Y = t3X1 + t2sX2 + ts2X3 + s3X4.

Hence the projectivization γx ⊂ P(Cx ) of γ̂x is a twisted cubic curve, and it is straight-
forward to verify that it is Legendrian. A contact twisted cubic structure that is locally
equivalent to the G2-invariant structure (U , C, γ) described above will be called a
contact Engel structure.1

2 Marked Contact Engel Structures and a Kerr Theorem

On a contact Engel structure there is, at each point x ∈ M5, a distinguished set of
directions, namely those corresponding to points p ∈ γx . In this work, we equip the
contact Engel structure (possibly after restricting to an open subset of M5) with a
section σ that marks a point ∗ = σ(x) in each twisted cubic γx .

Definition 1 Amarked contact Engel structure (U , C, γ, σ ) is a contact Engel structure
together with a smooth section

σ : U → γ ⊂ P(C)

of the bundle RP
1 → γ → U of twisted cubics.

Since γx ⊂ P(Cx ) is cut out by the three polynomials (1.4) and because of the anal-
ogy with Lorentzian geometry to be discussed below, we refer to directions in γ as null
directions.2 A marked contact Engel structure can be thought of as a null congruence
structure, that is, a (local) foliation of the contact Engel structure by horizontal null
curves. For each x ∈ U , the point σ(x) ∈ γx corresponds to a null direction 	σ

x in the
contact plane Cx . Therefore the section σ defines a rank one distribution 	σ ⊂ TU
whose integral curves define the null congruence.

2.1 Analogy with Null Congruence Structures in Lorentzian Geometry

Conformal Lorentzian geometries (M4, [g]) in 4-dimensions are the geometries stud-
ied in General Relativity when the related physics is concerned with massless particles

1 Contact Engel structures should not be confused with Engel distributions, sometimes also called Engel
structures, which are maximally non-integrable rank 2 distributions on 4-dimensional manifolds.
2 The analogy is even more striking if one realizes that a contact Engel structures can be equivalently
defined by the conformal class of the fourth rank tensor ϒ = 3(α2)2(α3)2 − 4α1(α3)3 − 4(α2)3α4 +
6α1α2α3α4 − (α1)2(α4)2 on C. The null directions defined here are special null directions for this tensor.
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only. Conformal geometries are also examples of parabolic geometries, just like con-
tact twisted cubic structures, which are the background geometries of this paper.

Of particular importance in General Relativity are null congruences, i.e. foliations
of (M4, [g]) by null curves. A conformal Lorentzian manifold equipped with a null
congruence is called a null congruence structure. We want to point out here that many
well-known results from General Relativity that are concerned with null congruences
(such as the Kerr theorem and the Goldberg-Sachs theorem, see e.g. [12,14,15,17])
have interesting analogies in the general framework of parabolic geometries. For the
reader familiar with the results from Relativity, we note that in the case considered
here the analogy is as follows:

Conformal spacetime Contact twisted cubic structure
Conformally flat spacetime Engel structure
Conformally flat null congruence structure Marked contact Engel structure
Conformally flat null congruence
structure of geodesics

Integrable marked contact Engel structure (see Definition 2)

Conformally flat null
congruence structure of
shearfree geodesics

Integrable marked contact Engel structure

Robinson congruence Maximal and submaximal models (see Sect. 2.7)

Before introducing the central notion of an integrable marked contact Engel struc-
ture, we summarize the following algebraic preliminaries about Legendrian twisted
cubics.

2.2 Algebraic Preliminaries

The twisted cubic γ ⊂ RP
3 is the image of the Veronese map

RP
1 = P(R2) → P(

⊙3
R
2) = RP

3, [w] �→ [w � w � w]. (2.1)

In coordinates with respect to bases (e1, e2) of R
2 and (E1, E2, E3, E4) of

⊙3
R
2,

where E = e1 � e1 � e1, E2 = 3e1 � e1 � e2, E3 = 3e1 � e2 � e2, E4 = e2 � e2 �
e2, it can be parameterized as [s, t] �→ [s3, s2t, st2, t3]. Alternatively, denoting by
(E1, E2, E3, E4) the dual basis, the twisted cubic is given by the zero locus of

g1 = E1E3 − (E2)2, g2 = E2E4 − (E3)2, g3 = E2E3 − E1E4. (2.2)

With respect to the introduced bases, the irreducible representation

φ : GL(2, R) → GL(4, R) = Aut(
⊙3

R
2), (2.3)
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of GL(2, R) is of the form

(
α β

ρ δ

)

�→

⎛

⎜
⎜
⎝

α3 3α2β 3αβ2 β3

α2ρ α2δ + 2αβρ 2αβδ + β2ρ β2δ

αρ2 2αδρ + βρ2 αδ2 + 2βδρ βδ2

ρ3 3δρ2 3δ2ρ δ3

⎞

⎟
⎟
⎠ . (2.4)

The GL(2, R)-decomposition
∧2

(
⊙3

R
2) ∼= ⊙4

R
2 ⊕ R shows that there is a

unique (up to scalars) skew-symmetric bilinear form on R
4 = ⊙3

R
2 preserved by

the GL(2, R)-action up to scalars. It is given by

ω = E1 ∧ E4 − 3E2 ∧ E3. (2.5)

In order to characterize the GL(2, R)-invariant conformal class of the symplectic form
(2.5) in terms of the twisted cubic, we shall introduce some more terminology: Let ω
be a symplectic form onR

4 and let [ω] be the conformal class of all non-zero multiples
of ω. Recall that a maximal subspace W on which a symplectic form ω (and then any
ω′ ∈ [ω]) vanishes identically is called Lagrangian. A twisted cubic γ ⊂ P(R4) is
called Legendrian with respect to [ω], see [3], if the cone

γ̂ = { w � w � w : w ∈ R
2 } ⊂ R

4

is Lagrangian, i.e., the tangent space at each point p̂ of γ̂\{0} is a Lagrangian subspace
of Tp̂R

4 ∼= R
4. The conformal symplectic structure [ω] generated by ω = E1 ∧ E4 −

3E2 ∧ E3 is the unique conformal symplectic structure such that γ = [s3, s2t, st2, t3]
is Legendrian with respect to [ω].

2.3 The Contact Engel Structure in the Root Diagram

A reader familiar with reading root diagrams, can see the G2-invariant contact Engel
structure on G2/P2 in the root diagram for G2.

p2 = g0 ⊕ g1 ⊕ g2
g2

g−2

g1

g−1 ∼= ⊙3
R

2 ⊃ γ̂ = {w � w � w}
g0 ∼= gl(2,R)

E13

E11E10E9

E7

E12

E8

E4E3E2E1

E5 E6

E0

On the right, the Ei denote root vectors in the corresponding root spaces. The
parabolic subalgebra p2 ⊂ g is spanned by the root vectors E5, . . . , E13. The tangent
space of G2/P2 at the identity can be identified with g/p2. As a representation of
the Levi factor G0 ∼= GL(2, R) of P2, we have g/p2 ∼= g−2 ⊕ g−1. Here g−1 =
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span(E1, E2, E3, E4) is an irreducible subrepresentation, which can be identifiedwith⊙3
R
2. It corresponds to the G2-invariant contact distribution C ⊂ T (G2/P2). The

bundle of twisted cubics γ ⊂ P(C) then corresponds to the highest weight orbit in
P(g−1) consisting of lines through simple vectors in

⊙3
R
2.

2.4 The Osculating Filtration and Integrability

Now suppose the twisted cubic is marked, that is, a point p ∈ γ ⊂ P(R4) is distin-
guished. The point p corresponds to a line 	 ⊂ γ̂ ⊂ R

4 ∼= ⊙3
R
2, which is of the

form 	 = Span({l � l � l : l ∈ L}) for a unique 1-dimensional subspace L ⊂ R
2. It

further determines a 2-dimensional subspace D = Span({l � l � e : l ∈ L, e ∈ R
2}),

and a 3-dimensional subspace H = Span({l � e � f : l ∈ L, e, f ∈ R
2}) of

R
4 = ⊙3

R
2. Geometrically, D is the de-projectivized tangent line to γ at p and

H is the de-projectivized osculating plane to γ at p. Thus we refer to the filtration

	 ⊂ D ⊂ H ⊂ R
4. (2.6)

as the osculating filtration to γ at p. If γ is Legendrian, thenD is a Lagrangian subspace
and H is the symplectic orthogonal to 	. Since GL(2, R) acts transitively on γ, we may
choose 	 to be spanned by the first basis vector e1 � e1 � e1. Its stabilizer

B := {g ∈ GL(2, R) : φ(g)(	) ⊂ 	} (2.7)

is given by those matrices in (2.4) for which the parameter ρ = 0. The block form of
B reflects the fact that B preserves the filtration (2.6).

Remark 1 Thefiltration (2.6) is also visible in theG2 root diagram.Let the line 	 ⊂ g−1
be spanned by E4. The subalgebra of g0 ∼= gl(2, R) that preserves this line via the
adjoint representation on g−1 is b = span(E5, E6, E8). It is visible that this subalgebra
preserves the filtration

span(E4) ⊂ span(E4, E3) ⊂ span(E4, E3, E2) ⊂ span(E4, E3, E2, E1) = g−1.

Applying the algebraic observations point by point to γ = γx ⊂ Cx and p = σ(x),
x ∈ U , gives rise to the following proposition.

Proposition 1 A marked contact Engel structure (U , C, γ, σ ) is equipped with a flag
of distributions

	σ ⊂ Dσ ⊂ Hσ ⊂ C ⊂ TU , (2.8)

where the rank 2 distribution Dσ ⊂ C is Legendrian (i.e., totally null with respect
to the conformal symplectic structure on C) and the rank 3 distribution Hσ is the
symplectic orthogonal to 	σ .

Definition 2 A marked contact Engel structure is called integrable if the rank two
distribution Dσ is integrable. In this case σ is called an integrable section.
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2.5 A Convenient Coordinate Representation

A convenient way to represent amarked contact Engel structure is in terms of a smooth
function t = t(x0, x1, x2, x3, x4), where {xi } are coordinates on U as in Sect. 1. Let
(X0, X1, X2, X3, X4) denote the frame (1.3) dual to (α0, α1, α2, α3, α4) as in (1.2).
We may assume that the section σ : U → γ defining the marked contact Engel
structure is of the form

σ = [−t3X1 + t2X2 − t X3 + X4], (2.9)

for a smooth function t = t(x0, x1, x2, x3, x4).3 Then the filtration from Proposition
1 is of the form

	σ = Span(ξ4) ⊂ Dσ = Span(ξ4, ξ3) ⊂ Hσ = Span(ξ4, ξ3, ξ2)

⊂ C = Span(ξ4, ξ3, ξ2, ξ1), (2.10)

where

ξ0 := X0 = ∂x0

ξ1 := X1 = ∂x1

ξ2 := −3t X1 + X2 = −3t∂x1 + ∂x2

ξ3 := 3t2X1 − 2t X2 + X3 = 3x2∂x0 + 3t2∂x1 − 2t∂x2 + ∂x3

ξ4 := −t3X1 + t2X2 − t X3 + X4 = −(x1 + 3t x2)∂x0 − t3∂x1
+ t2∂x2 − t∂x3 + ∂x4 .

(2.11)

The coframe dual to the frame (ξ0, ξ1, ξ2, ξ3, ξ4) is of the form

⎛

⎜
⎜
⎜
⎜
⎝

ω0

ω1

ω2

ω3

ω4

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

dx0 + x1dx4 − 3x2dx3

dx1 + 3tdx2 + 3t2dx3 + t3dx4

dx2 + 2tdx3 + t2dx4

dx3 + tdx4

dx4

⎞

⎟
⎟
⎟
⎟
⎠

. (2.12)

The osculating filtration (2.10) is given in terms of this coframe as

	σ = ker(ω0, ω1, ω2, ω3) ⊂ Dσ = ker(ω0, ω1, ω2) ⊂ Hσ = ker(ω0, ω1)

⊂ C = ker(ω0). (2.13)

Proposition 2 The marked contact Engel structure represented by t is integrable if
and only if

J = (x1 + 3t x2)tx0 + t3tx1 − t2tx2 + t tx3 − tx4 = 0, where txi = ∂xi t .

3 The choice of sign of the function t we use to parameterize marked Engel structures comes from the fact
that for this paper we primarily care about the coframe (2.11) adapted to the structure.

123



G. Manno et al.

Proof A straightforward calculation gives dωi ∧ ω0 ∧ ω1 ∧ ω2 = 0, for i = 0, 1, and
dω2 ∧ ω0 ∧ ω1 ∧ ω2 = 2 J ω0 ∧ ω1 ∧ ω2 ∧ ω3 ∧ ω4. ��

2.6 The G2-Double Fibration and a Kerr Theorem

The integrability condition introduced in Definition 2 is analogous to a theorem from
Relativity attributed to Kerr [14,17], as the following theorem shows.4

Theorem 1 (Kerr theorem for contact Engel structures) The general smooth solution
to the equation

J = (x1 + 3t x2)tx0 + t3tx1 − t2tx2 + t tx3 − tx4 = 0 (2.14)

is obtainable locally by choosing an arbitrary smooth function F of five variables and
solving, for t in terms of x0, x1, x2, x3, x4, the equation

F(x0 + x1x4 + 3t x2x4 − t3(x4)2, x1 + t3x4, x2 − t2x4, x3 + t x4, t) = 0 .

Proof We introduce the following variables

y0 = x0 + x1x4 + 3t x2x4 − t3(x4)2, y1 = x1 + t3x4, y2 = x2 − t2x4,

y3 = x3 + t x4. (2.15)

Then dω0 ∧ ω0 ∧ ω1 ∧ ω2 = 0, dω1 ∧ ω0 ∧ ω1 ∧ ω2 = 0 and in the new variables we
have dω2 ∧ ω0 ∧ ω1 ∧ ω2 = −2 dt ∧ dy0 ∧ dy1 ∧ dy2 ∧ dy3. The latter expression
vanishes if and only if there exists a smooth function F of five variables such that
F(t, y0, y1, y2, y3) = 0. On the other hand, vanishing of dω2 ∧ ω0 ∧ ω1 ∧ ω2 is
equivalent to integrability of Dσ , which we have seen is equivalent to J = 0 in
Proposition 2. ��

Similarly to the classical Kerr Theorem, also Theorem 1 can be understood in terms
of a twistorial correspondence. The two 5-dimensional homogeneous spaces of G2
are related by a double fibration of the following form. Here P1,2 = P1 ∩ P2 is the
8-dimensional Borel subgroup of G2.

G2/P1,2

(x0, x1, x2, x3, x4, x5)

(y0 , y1, y2, y3, y4, y5)

G2/P2

(x0, x1, x2, x3, x4)

G2/P1

(y0, y1, y2, y3, y4)

π 2

∂ x
5

π
1

∂
y 5

4 We state our theorem in parallel to Penrose’s formulation of the original Kerr theorem, as in [14][Theorem
7.4.8].
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The total space γ ⊂ P(C) of the twisted cubic bundle can be identified with the 6-
dimensional homogeneous space G2/P1,2 (see [9] for details). Thus, a marked contact
Engel structure is given by an open subset U ⊂ G2/P2 together with a smooth section
σ of π2|U ,

G2/P2 ⊃ U σ−→ σ(U) ⊂ G2/P1,2.

We now consider two sets of local coordinates {xi }i=1,...,5 and {yi }i=1,...,5 on
G2/P1,2 adapted to the two legs of the double fibration. In terms of {xi }i=1,...,5, we
have

π2 : (x0, x1, x2, x3, x4, x5) �→ (x0, x1, x2, x3, x4),

where {xi }i=1,...,4 are coordinates onU ⊂ G2/P2 as introduced in Sect. 1. The vertical
bundle for π2 is spanned by ξ7 = −∂x5 and the vertical bundle for π1 is spanned by

ξ4 = −(x1 + 3x5x2)∂x0 − (x5)3∂x1 + (x5)2∂x2 − (x5)∂x3 + ∂x4 .

In terms of {yi }i=1,...,5, the field ξ4 spanning the vertical bundle for π1 is rectified, i.e.,
ξ4 = ∂y5 , and ξ7 = −3y5y2∂y0 − 3(y4)2y5∂y1 + 2y4y5∂y2 − y5∂y3 − ∂y4 .

The coordinate systems are related by

y0 = x0 + x1x4 + 3x5x2x4 − (x5)3(x4)2, y1 = x1 + (x5)3x4,

y2 = x2 − (x5)2x4, y3 = x3 + x5x4, y4 = x5, y5 = x4. (2.16)

The geometrical interpretation of Theorem 1 is now almost immediate.

Corollary 1 There is a local bijective correspondence between integrable sections of
π2 and hypersurfaces � ⊂ G2/P1 that are generic in the sense that their preimages
π1

−1(�) intersect the fibres π2
−1(x) transversally.

Proof A section σ : U → G2/P1,2, represented by a function t ∈ C∞(U) on U ⊂
G2/P2, defines a hypersurface in G2/P1,2, given

by its graph x5 = t(x0, x1, x2, x3, x4). By Proposition 2, the condition that σ be
integrable reads

0 = −(x1 + 3t x2)tx0 − t3tx1 + t2tx2 − t tx3 + tx4 = ξ4(t)|σ(U).

Since ξ4 spans the vertical bundle of π1, this means that σ(U) is tangential to the fibres
of π1, which implies that σ defines a hypersurface in G2/P1.

Conversely, let � be a hypersurface in G2/P1 such that π−1
1 (�) is transversal to

the fibres of π2.
Because of this genericity assumption on �, we may apply the implicit function

theoremandwriteπ−1
1 (�), locally, as the graphof a section x5 = t(x0, x1, x2, x3, x4).

By construction ξ4 · t |σ(U) = 0, i.e., the section is integrable. ��
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2.7 Maximal and Submaximal Models

The correspondence from Corollary 1 gives rise to geometric descriptions of the most
symmetrical marked contact Engel structures.

It is well known that G2 can be realized as the subgroup in GL(7, R) that fixes a
generic three-form � ∈ �3(R7)∗. (There are two open GL(7, R)-orbits in �3(R7)∗
with stabilizer subgroups the split real form and compact real form of the complex
group G2

C respectively.) The three-form � determines a G2-invariant bilinear form
h ∈ ⊙2

(R7)∗ of signature (3, 4). The homogeneous spaces occurring in theG2-double
fibration admit the following descriptions (see e.g. [2,8] for details):

A fibre π2
−1(�) can be identified with the set of all 1-dimensional subspaces

contained in � and is thus isomorphic to RP
1. A fibre π1

−1(L) can be identified
with the set of all totally null 2-dimensional subspaces � that insert trivially into �

and contain L; this is the set of 2-dimensional subspaces of the 3-dimensional null
subspace Ann�(L) = {X ∈ R

7 | �(L, X , ·) = 0} ⊂ R
7, and hence also isomorphic

to RP
1.

Viewing G2/P1 as a projectivized null cone, the simplest kinds of hypersurfaces in
G2/P1 are obtained by intersecting the null cone with a 6-dimensional vector subspace
W ⊂ R

7 and projectivizing. Such hyperplanes W = L
⊥ split into three classes

according to whether its annihilator L is a lightlike, timelike or spacelike line with
respect to h. It is further known that the group G2 acts transitively on the set of,
respectively, lightlike, timelike, spacelike lines L ⊂ R

7 and that

• StabG2(L) = P1 iff 〈L, L〉 = 0,
• StabG2(L) = SU(1, 2) iff 〈L, L〉 > 0,
• StabG2(L) = SL(3, R) iff 〈L, L〉 < 0.

Each of these groups has a unique open orbit �L ⊂ G2/P1, see [16].
According to Corollary 1, there are correspondingmarked contact Engel structures:

These are defined on the subsetsML := {� ∈ G2/P2 | dim(�∩L
⊥) = 1} ⊂ G2/P2.

The section σ given by

σ(�) := (�,� ∩ L
⊥) ∈ G2/P1,2 . (2.17)

equips such a subset with a StabG2(L)-invariant marked contact Engel structure. It
follows from the analysis of the next section that the symmetry algebras of these
structures can’t be bigger, so they are exactly p1, sl(3, R), and su(1, 2), respectively
(note that these are maximal subalgebras of the Lie algebra of G2).

Utilizing Theorem 1, a function t locally defining all these three structures can be
chosen to be t = x1−εx3

−x2+εx4
. Here ε = 0,±1, and t with ε = 0 corresponds to the

marked contact Engel structure with p1 symmetry, and functions t with ε = 1 or
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ε = −1 correspond to the two nonequivalent models with 8-dimensional symmetry
algebras.

3 Local Invariants and HomogeneousModels of Marked Contact
Engel Structures via Cartan’s EquivalenceMethod

In order to obtain a complete picture of the local invariants of marked contact Engel
structures, we now applyCartan’smethod (see e.g. [13] for an introduction) to the local
equivalence problem of these structures. In particular, we obtain a classification of all
homogeneous marked contact Engel structures with symmetry algebras of dimension
≥ 6 up to local equivalence. Additional computational details are provided in the
arXiv version [9] of the article.

3.1 Adapted Coframes

Let (U , C, γ, σ ) be a marked contact Engel structure. In order to apply Cartan’s equiv-
alence method, we need to formulate the notion of (local) equivalence of two such
structures in terms of adapted coframes.

Definition 3 A (local) coframe ! = (ω0, ω1, ω2, ω3, ω4) is called 0-adapted to the
marked contact Engel structure (U , C, γ, σ ) if and only if

(1) the 1-form ω0 is a contact form such that

C = ker(ω0),

(2) γ ⊂ P(C) is the projectivization of the set of all tangent vectors contained in C
that are simultaneously null for the three symmetric tensor fields

g1 = ω1ω3 − (ω2)2, g2 = ω2ω4 − (ω3)2, g3 = ω2ω3 − ω1ω4,

(3) the line field 	σ is given by

	σ = ker(ω0, ω1, ω2, ω3).

Definition 4 Consider two marked contact Engel structures (U , C, γ, σ ) and (Ū, C̄,
γ̄, σ̄ ). Let ω and ω̄ be 0-adapted coframes of the respective structures. Then the two
marked contact Engel structures are (locally) equivalent if there exists a (local) dif-
feomorphism f : U → Ū and a function A = (Ai

j ) : U → A taking values in the
group

A =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎝

s0 0 0 0 0
s1 s53 0 0 0
s2 s52s7 s52s8 0 0
s3 s5s72 2s7s5s8 s5s82 0
s4 s73 3s72s8 3s7s82 s83

⎞

⎟
⎟
⎟
⎟
⎠

: s0s5
6s8

6 �= 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (3.1)
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such that f ∗ω̄i = Ai
jω

j . The groupA is called the structure group for marked contact
Engel structures.

The bottom right 4 × 4 block matrices in A form a group isomorphic to the Borel
subgroup B ⊂ GL(2, R), defined in (2.7), in the irreducible representation (2.4). In
particular, A ∼= B � R

5.
We proceed with a number of technical, but important lemmas. Consider the most

general marked contact Engel structure locally represented by a smooth function t =
t(x0, x1, x2, x3, x4) ∈ C∞(U) and its 0-adapted coframe (2.12). Differentiating the
coframe and then expanding dt in terms of the coframe we obtain that the coframe
(2.12) moreover satisfies structure equations of the below form (3.2), which shows
that:

Lemma 1 Any marked contact Engel structure admits a 0-adapted coframe (ω0,

ω1, ω2, ω3, ω4) satisfying

dω0 = ω1 ∧ ω4 − 3ω2 ∧ ω3

dω1 = 3
4 (b

2 − 4ac + M − P)ω0 ∧ ω2 + 3cω1 ∧ ω2 − 3aω2 ∧ ω3 + 3Jω2 ∧ ω4

dω2 = 1
2 (b

2 − 4ac + M − P)ω0 ∧ ω3 + 2cω1 ∧ ω3 − 2bω2 ∧ ω3 + 2Jω3 ∧ ω4

dω3 = 1
4 (b

2 − 4ac + M − P)ω0 ∧ ω4 + cω1 ∧ ω4 − bω2 ∧ ω4 + aω3 ∧ ω4

dω4 = 0
(3.2)

for functions a, b, c, J , M, P on U .
Definition 5 A coframe as in Lemma 1 is called 1-adapted.

Applying the exterior derivative on both sides of (3.2) we get information about
the exterior derivatives of the functions a, b, c and J . A subscript ωi denotes the i th
frame derivative, i.e., dF = Fωi ωi .

Lemma 2 The functions a, b, c and J from Lemma 1 satisfy

dJ = Jω0ω0 + Jω1ω1 + Jω2ω2 + Jω3ω3 + Jω4ω4

da = aω0ω0 + aω1ω1 + 1
4 (−3b2 + M + 3P)ω2 + Lω3 + (a2 − 2bJ − Jω3)ω4

db = 1
4 (−4aω1b + 6b2c − 8ac2 + 4cM − Mω2 + Pω2 + 2bQ − 4aR)ω0

+(2c2 + R)ω1 + (2aω1 − 3bc − Q)ω2 + 1
2 (−b2 + M − 3P)ω3

+(ab − 3cJ + Jω2)ω4

dc = cω0ω0 + Sω1 + (c2 − R)ω2 + (aω1 − 2bc)ω3

+ 1
4 (b

2 − 4Jω1 + M − P)ω4,

(3.3)
for functions L, Q, R, S on U .
Lemma 3 The functions a, b, c, J , L, M, P, Q, R, S are uniquely determined by (3.2)
and (3.3). Explicitly, for a marked contact Engel structure determined by a function
t ∈ C∞(U),

a = tω3, b = −tω2 , c = tω1, J = −tω4 , L = tω3ω3, M = 6tω0
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− 2(tω2)2 + 6tω3 tω1 + tω2ω3,

P = 2tω0 − (tω2)2 + 2tω3 tω1 + tω2ω3, Q = 2tω3ω1

+ tω2ω2 + 3tω2 tω1, R = −tω2ω1 − 2(tω1)2, S = tω1ω1 .

3.2 The Associated Invariant Coframe

Our next goal is to construct an invariant coframe (i.e., an e-structure) on a 9-
dimensional bundle associated with any marked contact Engel structure.

We start by choosing a 1-adapted coframe !
and we lift it to the 5 well-defined (tautological) 1-forms

θ i = Ai
jω

j , i = 0, 1, 2, 3, 4,

on U ×A, where A is the structure group (3.1). Writing equations (3.2) symbolically
as

dωi = − 1
2 F

i
jkω

j ∧ ωk, (3.4)

we express the differentials dθ0, ..., dθ4 as

dθ i = d(Ai
jω

j ) = dAi
j ∧ ω j + Ai

jdω
j

= dAi
k(A−1)kl ∧ θ l − 1

2A
i
j F

j
kl(A−1)kn(A−1)lmθn ∧ θm .

For computational reasons we set δ = −s5s8.
Since dθ0 ∧ θ0 = − s0

δ3
θ1 ∧ θ4 ∧ θ0 + 3s0

δ3
θ2 ∧ θ3 ∧ θ0, we can normalize the

coefficient of the θ1 ∧ θ4–term in the expansion of dθ0 to 1 by setting

s0 = −δ3. (3.5)

Then there exists a 1-form θ5, which is uniquely defined up to addition of multiples
of θ0, satisfying

dθ0 = −6θ0 ∧ θ5 + θ1 ∧ θ4 − 3θ2 ∧ θ3.

Computing dθ1 ∧ θ0 ∧ θ1 ∧ θ4 = 3(s1δ+as53δ−3Js54s7)
δ4

θ0 ∧ θ1 ∧ θ2 ∧ θ3 ∧ θ4 shows

that we can further normalize the θ2 ∧ θ3–coefficient in the expansion of dθ1 to 0 by
setting

s1 = −aδs53+3Js54s7
δ

. (3.6)

Then there exists a 1-form θ8, uniquely defined up to addition of multiples of θ0 and
θ1, satisfying

dθ1 ∧ θ0 = −3θ0 ∧ θ1 ∧ θ5 − 3θ0 ∧ θ1 ∧ θ8 + 3Js55

δ4
θ0 ∧ θ2 ∧ θ4.

Now dθ2 ∧ θ0 ∧ θ1 = 2(2δs2−bδ2s5+2aδs52s7−3Js53s72)
δ4

θ0 ∧ θ1 ∧ θ2 ∧ θ3 − 3θ0 ∧ θ1 ∧
θ2 ∧ θ5 − θ0 ∧ θ1 ∧ θ2 ∧ θ8 + 2Js55

δ4
θ0 ∧ θ1 ∧ θ3 ∧ θ4 shows that we can normalize
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the θ2 ∧ θ3–term in the expansion of dθ2 to 0 by setting

s2 = s5
2δ (bδ

2 − 2aδs5s7 + 3Js5
2s7

2), (3.7)

and dθ3 ∧ θ0 ∧ θ2 ∧ θ3 = − cδ3+δs3s5−bδ2s5s7+aδs52s72−Js53s73

δ4s5
θ0 ∧ θ1 ∧ θ2 ∧ θ3 ∧ θ4

shows that we can normalize the θ1 ∧ θ4–term in the expansion of dθ3 to 0 by setting

s3 = − 1
δs5

(cδ3 − bδ2s5s7 + aδs5
2s7

2 − Js5
3s7

3). (3.8)

Having performed these normalizations, on G9 ⊂ (U × A) defined by (3.5), (3.6),
(3.7), (3.8), we now have

θ0 = −δ3ω0

θ1 = s53(3Js5s7−aδ)
δ

ω0 + s5
3ω1

θ2 = s5(bδ2−2aδs5s7+3Js52s72)
2δ ω0 + s5

2s7ω
1 − δs5ω

2

θ3 = −cδ3+bδ2s5s7−aδs52s72+Js53s73

s5
ω0 + s5s7

2ω1 − 2δs7ω
2 + δ2

s5
ω3

θ4 = s4ω
0 + s7

3ω1 − 3δs72

s5
ω2 + 3δ2s7

s52
ω3 − δ3

s53
ω4. (3.9)

Wehave further introduced two additional forms θ5 and θ8, but on the 9-dimensional
bundle G9 given by (3.5), (3.6), (3.7), (3.8) they are defined up to a certain freedom. It
turns out that imposing further normalizations determines forms θ5, θ8 uniquely and
in addition picks up unique 1-forms θ6 and θ12 that together with the five 1-forms (3.9)
constitute a coframe on G9. The normalizations needed are included in the following
proposition5:

Proposition 3 The five forms (3.9) on the 9-dimensional subbundle G9 ⊂ U × A
given by (3.5), (3.6), (3.7), (3.8) can be supplemented to an invariant coframe
(θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ8, θ12), which is uniquely determined by the fact that it
satisfies

dθ0 = −6θ0 ∧ θ5 + θ1 ∧ θ4 − 3θ2 ∧ θ3

dθ1 = −3θ1 ∧ θ5 − 3θ1 ∧ θ8 + T 1
02θ

0 ∧ θ2 + T 1
03θ

0 ∧ θ3 + T 1
04θ

0 ∧ θ4

+ T 1
06θ

0 ∧ θ6 + T 1
24θ

2 ∧ θ4

dθ2 = θ1 ∧ θ6 − 3θ2 ∧ θ5 − θ2 ∧ θ8 + T 2
03θ

0 ∧ θ3 − T 2
04θ

0 ∧ θ4 + T 2
34θ

3 ∧ θ4

dθ3 = 2θ2 ∧ θ6 − 3θ3 ∧ θ5 + θ3 ∧ θ8 + T 3
01θ

0 ∧ θ1

+ T 3
02θ

0 ∧ θ2 − T 3
03θ

0 ∧ θ3 + T 3
04θ

0 ∧ θ4

dθ4 = 6θ0 ∧ θ12 + 3θ3 ∧ θ6 − 3θ4 ∧ θ5 + 3θ4 ∧ θ8, (3.10)

5 For the reason behind the seemingly unreasonable numbering of the 1-forms θ i see Sect. 3.4.1 about the
maximally symmetric model and the root diagram from Sect. 2.3.
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for some functions T i
jk , and the additional normalization that dθ5, when written with

respect to the basis of forms θ i ∧ θ j , has zero coefficient at the θ0 ∧ θ1 term. We have

T 1
24 = −T 1

06 = 3
2T

2
34 = 3Js55

δ4
. (3.11)

In particular, J is a relative invariant for marked contact Engel structures.

3.3 Integrable Structures (the J = 0 Case)

The geometric interpretation of the J = 0 condition is immediately visible from
the structure equations (3.10). It means that the contact Engel structure is integrable,
see Definition 2 and Proposition 2. (In the representation of a marked contact Engel
structure given by a function t ∈ C∞(U), the function J coincides with J introduced
in Proposition 2.)

For integrable structures, the structure equations of the invariant coframe from
Proposition 3 simplify, and the first five read as follows:

dθ0 = −6θ0 ∧ θ5 + θ1 ∧ θ4 − 3θ2 ∧ θ3

dθ1 = −3θ1 ∧ θ5 − 3θ1 ∧ θ8 + s52(δM+2Ls5s7)
δ5

θ0 ∧ θ2 − s54L
δ5

θ0 ∧ θ3

dθ2 = θ1 ∧ θ6 − 3θ2 ∧ θ5 − θ2 ∧ θ8 − s52(5δP−3δM+4Ls5s7)
4δ5

θ0 ∧ θ3

dθ3 = 2θ2 ∧ θ6 − 3θ3 ∧ θ5 + θ3 ∧ θ8 − δ4U−2δ3Rs5s7+δ2Qs52s72+2δPs53s73+Ls54s74

δ5s55
θ0

∧ θ1 − 2(δ3R−δ2Qs5s7−3δPs52s72−2Ls53s73)
δ5s52

θ0 ∧ θ2 − δ2Q+6δPs5s7+6Ls52s72

δ3
θ0

∧ θ3 + (M−P)s52

2δ4
θ0 ∧ θ4

dθ4 = 6θ0 ∧ θ12 + 3θ3 ∧ θ6 − 3θ4 ∧ θ5 + 3θ4 ∧ θ8 (3.12)

These structure equations exhibit two new relative invariant for these structures,
namely L and M − P .

Let ω be any 1-adapted coframe for an integrable marked contact Engel structure,
and let θ0, θ1, θ2, θ3, θ4 be the first five forms on G9. Then

θ1 ∧ θ2 ∧ θ3 = δ3s5
3(ω1 ∧ ω2 ∧ ω3 − aω0 ∧ ω2 ∧ ω3 + 1

2bω
0 ∧ ω1 ∧ ω3

− cω0 ∧ ω1 ∧ ω2).

This shows that the kernel of θ1 ∧ θ2 ∧ θ3 descends to a distribution Rσ = ker(φ)

on U , which is independent of the choice of adapted coframe, and thus invariantly
associated to the marked contact twisted cubic structure. One further verifies that:

Proposition 4 The distributionRσ is integrable if and only if M − P = 0.

Further analysis exhibits the following tower of invariant conditions, which will be
crucial for the classification of homogeneous models given in the next section, Sect.
3.4.
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Proposition 5 Let J , L, M, P, Q, R, S be the functions determined by (3.2) and (3.3).
The conditions

(1) J = 0
(2) J = L = 0
(3) J = L = M = 0
(4) J = L = M = P = 0
(5) J = L = M = P = Q = 0
(6) J = L = M = P = Q = R = 0
(7) J = L = M = P = Q = R = S = 0

are invariant under diffeomorphisms and independent of the choice of 1-adapted
coframe.

3.4 A Tree of Homogeneous Models

The remaining goal is to find all locally non-equivalent homogeneous marked contact
Engel structures with symmetry group of dimension ≥ 6. To this end, we utilize
Proposition 5, which divides marked contact Engel structures into classes of mutually
non-equivalent structures. Restricting to structures for which the first i functions from
Proposition 5 vanish, the (i + 1)-st is a relative invariant. E.g. in the branch J = L =
M = 0, the function P defines a relative invariant. Assuming that the invariant is
non-vanishing, we then can use the G-action, where G is the structure group of the
invariant coframe, to bring certain structure functions in (3.12), and further ones that
arise in the reduction procedure, into normal form. The general process is referred to
as Cartan reduction. We provide details of the Cartan reduction procedure in the case
where we assume that marked Engel structure is non-integrable, i.e. J �= 0, see Sect.
3.4.2 and summarize the remaining cases (see [9] for the full analysis).

3.4.1 Structures with Maximal Symmetry

Marked contact Engel structures having a symmetry algebra of maximal possible
dimension are characterized by the fact that all of the structure functions T i

jk in the
structure equations of the invariant coframe (θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ8, θ12) from
Theorem 3 are constants. Then d2θ i = 0 forces them to be zero, which implies that
J = L = M = P = Q = R = S = 0. Conversely, the condition J = L = M =
P = Q = R = S = 0 implies that all of the T i

jk vanish. In this case, the structure
equations are

dθ0 = −6θ0 ∧ θ5 + θ1 ∧ θ4 − 3θ2 ∧ θ3 dθ1 = −3θ1 ∧ θ5 − 3θ1 ∧ θ8

dθ2 = θ1 ∧ θ6 − 3θ2 ∧ θ5 − θ2 ∧ θ8 dθ3 = 2θ2 ∧ θ6 − 3θ3 ∧ θ5 + θ3 ∧ θ8

dθ4 = 6θ0 ∧ θ12

+3θ3 ∧ θ6 − 3θ4 ∧ θ5 + 3θ4 ∧ θ8 dθ5 = −θ1 ∧ θ12

dθ6 = 6θ2 ∧ θ12 + 2θ6 ∧ θ8 dθ8 = −3θ1 ∧ θ12

dθ12 = −3θ5 ∧ θ12 − 3θ8 ∧ θ12 .

(3.13)
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These are the Maurer Cartan equations for the parabolic subalgebra p1 ⊂ g2 spanned
by the root vectors E0, E1, E2, E3, E4, E5, E6, E8, E12 from the diagram in Sect. 2.3.

3.4.2 The Branch J �= 0: Non-integrable Structures

We now assume that J �= 0. Looking at dθ1 in Proposition 3, we see that we can

normalize the coefficient T 1
24 = 3s55

δ4
J to any non-zero value, and we shall normalize

it to 3. We also see that we can normalize the coefficient T 1
02 to zero. This means that

we restrict to a subbundle G7 ⊂ G9 given by

s5 =
(

δ4

J

) 1
5

,

s4 = δ4M−9cδ3 Js5s7−3δ3 J
ω2 s5s7+2δ3Ls5s7−9bδ2 Js52s72−9δ2 J

ω3 s5
2s72+21aδ Js53s73−9δ J

ω4 s5
3s73−27J 2s54s74

6δ Js53
.

We pullback the forms θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ8, θ12 to G7, where they are no
longer independent, and express θ8 and θ12 in terms of the remaining forms. Now we
compute the structure equations of the coframe on G7 given by θ0, . . . , θ6. Inspecting
these structure equations shows that we can now normalize the coefficient of dθ1 at
the θ1 ∧ θ4 term to zero, which determines a 6-dimensional subbundle G6 ⊂ G7 given
by

s7 = δ
1
5 (3a J−J

ω4 )

14J
9
5

.

On this subbundle, which is parametrized by the coordinates on U and the fibre coor-
dinate δ, the forms θ0, . . . , θ5 define a coframe that satisfies structure equations of the
form

dθ0 = − 6θ0 ∧ θ5 + θ1 ∧ θ4 − 3θ2 ∧ θ3

dθ1 = α1
δ3

θ0 ∧ θ1 + α2

δ
12
5

θ0 ∧ θ2 + α3

δ
9
5
θ0 ∧ θ3 + α4

δ
6
5
θ0 ∧ θ4 + α5

δ
9
5
θ1 ∧ θ2 + α6

δ
6
5
θ1

∧ θ3 − 24
5 θ1 ∧ θ5 + 3θ2 ∧ θ4

dθ2 = α7

δ
18
5

θ0 ∧ θ1 + α8
δ3

θ0 ∧ θ2 + α9

δ
12
5

θ0 ∧ θ3 + 5α5

6δ
9
5
θ0 ∧ θ4 + α10

δ
12
5

θ1 ∧ θ2 + α11

δ
9
5

θ1

∧ θ3 − 3α4+5α6

9δ
6
5

θ1 ∧ θ4 + α6

3δ
6
5
θ2 ∧ θ3 − 18

5 θ2 ∧ θ5 + 2θ3 ∧ θ4

dθ3 = α12

δ
21
5

θ0 ∧ θ1 + α13

δ
18
5

θ0 ∧ θ2 + α14
δ3

θ0 ∧ θ3 + 6α9+75α10+25α2

15δ
12
5

θ0 ∧ θ4 + 2(α1−3α8)
3δ3

θ1

∧ θ2 − 3α10+α2

3δ
12
5

θ1 ∧ θ3 + α5+6α11

3δ
9
5

θ2 ∧ θ3 − 6α4+10α6

9δ
6
5

θ2 ∧ θ4 − 12
5 θ3 ∧ θ5

dθ4 = α15

δ
24
5

θ0 ∧ θ1 + α16

δ
21
5

θ0 ∧ θ2 + α17

δ
18
5

θ0 ∧ θ3 + α18
δ3

θ0 ∧ θ4 + α1−3α8
δ3

θ1 ∧ θ3

− 3α10+α2

δ
12
5

θ1 ∧ θ4

+ α2

δ
12
5

θ2 ∧ θ3 + α5

δ
9
5
θ2 ∧ θ4 − 3α4+2α6

3δ
6
5

θ3 ∧ θ4 − 6
5 θ4 ∧ θ5

dθ5 = α19

δ
27
5

θ0 ∧ θ1 + α20

δ
24
5

θ0 ∧ θ2 + α21

δ
21
5

θ0 ∧ θ3 + α22

δ
18
5

θ0 ∧ θ4

− 3α12+α16

6δ
21
5

θ1 ∧ θ2 − α17−3α7

6δ
18
5

θ1 ∧ θ3
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− α1+α18
6δ3

θ1 ∧ θ4 + α8+α14
2δ3

θ2 ∧ θ3 + 6α9+75α10+20α2

30δ
12
5

θ2 ∧ θ4

− 2α3−5α5

12δ
9
5

θ3 ∧ θ4, (3.14)

where α1, . . . , α21 are the pullbacks of functions on U , that is, as functions on G6 they
do not depend on δ.

Now we are looking for homogeneous structures with six dimensional symmetry
algebra. For such structures all of the structure functions are constants. In particular,
all of those that depend on δ have to be identically zero. On the other hand, one easily
checks that this constant coefficient system

dθ0 = −6θ0 ∧ θ5 + θ1 ∧ θ4 − 3θ2 ∧ θ3 dθ1 = − 24
5 θ1 ∧ θ5 + 3θ2 ∧ θ4

dθ2 = − 18
5 θ2 ∧ θ5 + 2θ3 ∧ θ4 dθ3 = − 12

5 θ3 ∧ θ5

dθ4 = − 6
5θ

4 ∧ θ5 dθ5 = 0
(3.15)

is closed, that is, d2θ i = 0, for all i = 0, 1, 2, 3, 4, 5. This means that there is a unique
local model with 6-dimensional symmetry algebra in this branch.

There may be homogeneous models with 5-dimensional symmetry algebra in this
branch as well.

3.4.3 The Branch J = 0, L �= 0

There is a locally unique homogeneous model in this branch. It has a 5-dimensional
symmetry algebra with Maurer–Cartan equations of the form

dθ0 = − 5
6θ

0 ∧ θ3 − 24θ0 ∧ θ4

+ θ1 ∧ θ4 − 3θ2 ∧ θ3dθ1 = θ0 ∧ θ3 − 2
3θ

1 ∧ θ3 − 30θ1 ∧ θ4

dθ2 = − 1
2θ

2 ∧ θ3 − 18θ2 ∧ θ4dθ3 = −6θ3 ∧ θ4

dθ4 = 1
6θ

3 ∧ θ4.

(3.16)

3.4.4 The Branch J = L = 0,M �= 0, P �= 0

There are exactly two locally non-equivalent homogeneousmodels in this branch.They
have 5-dimensional symmetry algebras with Maurer–Cartan equations (ε = ±1)

dθ0 = − 15
2 θ0 ∧ θ2 − 1

6εθ
0 ∧ θ4 + θ1 ∧ θ4 − 3θ2 ∧ θ3

dθ1 = εθ0 ∧ θ2 − 3θ1 ∧ θ2 − 1
3εθ

1 ∧ θ4

dθ2 = 1
4θ

0 ∧ θ1 − 1
12εθ

0 ∧ θ3 − 1
2θ

1 ∧ θ3 − 1
6εθ

2 ∧ θ4

dθ3 = 9
2θ

0 ∧ θ2 + 1
6εθ

0 ∧ θ4 + 9εθ1 ∧ θ2 + 3θ2 ∧ θ3

dθ4 = − 27
4 εθ0 ∧ θ1 + 9

4θ
0 ∧ θ3 + 27

2 εθ1 ∧ θ3 + 9
2θ

2 ∧ θ4. (3.17)

123



The Geometry of Marked Contact Engel Structures

3.4.5 The Branch J = L = 0,M �= 0, P = 0

There are exactly two locally non-equivalent homogeneous structures in this branch,
which have structure equations

dθ0 = −6θ0 ∧ θ5 + θ1 ∧ θ4 − 3θ2 ∧ θ3 dθ1 = εθ0 ∧ θ2 − 12θ1 ∧ θ5

dθ2 = 3
4 εθ0 ∧ θ3 + θ1 ∧ θ6 − 6θ2 ∧ θ5 dθ3 = 1

2 εθ0 ∧ θ4 + 2θ2 ∧ θ6

dθ4 = 6θ0 ∧ θ12 + 3θ3 ∧ θ6 + 6θ4 ∧ θ5 dθ5 = − 1
12 εθ0 ∧ θ6 − θ1 ∧ θ12 + 1

12 εθ2 ∧ θ4

dθ6 = 6θ2 ∧ θ12 − 3
4 εθ3 ∧ θ4 − 6θ5 ∧ θ6 dθ12 = 1

6 εθ4 ∧ θ6 − 12θ5 ∧ θ12.

(3.18)

These areMaurer–Cartan equations for sl(3, R) if ε < 0 andMaurer–Cartan equations
for su(2, 1) if ε > 0.

3.4.6 The Branch J = L = M = 0, P �= 0

There are no homogeneous models with symmetry algebra of dimension ≥ 6 in this
branch. There may be homogeneous models with 5-dimensional symmetry algebra.

3.4.7 The Branch J = 0, L = 0,M = 0, P = 0, Q �= 0

There is a locally unique homogeneous model with symmetry algebra of dimension
≥ 6 in this branch. The structure equations of the model

dθ0 = θ1 ∧ θ4 − 3θ2 ∧ θ3 dθ1 = 1
2θ

0 ∧ θ1 − 3θ1 ∧ θ8

dθ2 = 1
2θ

0 ∧ θ2 − θ2 ∧ θ8 dθ3 = − 1
2θ

0 ∧ θ3 + θ3 ∧ θ8

dθ4 = − 1
2θ

0 ∧ θ4 + 3θ4 ∧ θ8 dθ8 = − 1
2θ

1 ∧ θ4 + 1
2θ

2 ∧ θ3
(3.19)

are the Maurer–Cartan equations for sl(2, R)⊕ sl(2, R) with respect to a basis of left-
invariant forms. There may be homogeneous models with 5-dimensional symmetry
algebras in this branch as well.

3.5 Summary

We summarize the main results of this section in the following theorem (see also
Table 1).

Theorem 2 (1) Up to local equivalence, there exists a unique maximally symmetric
marked contact Engel structure. Its infinitesimal symmetry algebra is isomorphic
to the 9-dimensional parabolic subalgebra p1 of g2. The maximally symmetric
structure is characterized by

J = L = M = P = Q = R = S = 0.

(2) Up to local equivalence, there are precisely two homogeneous marked contact
Engel structures with 8-dimensional infinitesimal symmetry algebra. The infinites-
imal symmetry algebras are isomorphic to sl(3, R) and su(1, 2), respectively. The
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Table 1 The following graph shows the maximal symmetry dimension for homogeneous models in various
branches of marked contact Engel structures

structures are characterized by

J = L = P = Q = 0 and M �= 0.

(3) There are no homogeneous marked contact Engel structures with 7-dimensional
infinitesimal symmetry algebra.

(4) Up to local equivalence, there are precisely two homogeneous marked contact
Engel structures with 6-dimensional infinitesimal symmetry algebras. The respec-
tiveMaurer–Cartan equations are given in (3.15) and (3.19); the second symmetry
algebra is isomorphic to sl(2, R) ⊕ sl(2, R).

(5) There are examples of homogeneous marked contact Engel structures with 5-
dimensional infinitesimal symmetry algebra, whose Maurer–Cartan equations are
given in (3.16) and (3.17).

4 Generalizations

It is clear that the concept of a marked contact Engel structure can be generalized in
several directions. One natural generalization is to replace the contact Engel structure
by a general (curved) contact twisted cubic structure. Such a generalization is analo-
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gous to considering null-congruence structures in a general 4-dimensional spacetime,
rather than restricting to conformally flat ones.

Definition 6 A marked contact twisted cubic structure (M, C, γ, σ ) is a contact
twisted cubic structure (M, C, γ) together with a section σ : M → γ ⊂ P(C) of
the bundle RP

1 → γ → M of twisted cubics.

The detailed study of these structures becomes more involved, but some basic results
can be easily derived using some Tanaka theory [10,18,19] and algebraic facts that
we briefly outline below. In particular, it follows from these considerations that the
marked contact Engel structure with p1-symmetry is a maximally symmetric model
in the class of all marked contact twisted cubic structures.

The Lie algebra g of G2 admits a unique contact grading

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, (4.1)

where m = g−2 ⊕ g−1 is a 5-dimensional Heisenberg Lie algebra (see [6,19] and the
root diagram in Sect. 2.3). We denote by G0 ⊂ G2 the subgroup that preserves the
grading via the adjoint representation; it is isomorphic to GL(2, R) and its Lie algebra
is the grading component g0. As a representation of the semisimple part of G0, we
have g−1 ∼= ⊙3

R
2. In particular, the G0 action on g−1 preserves a unique twisted

cubic cone γ̂ and a unique conformal symplectic structure [ω]; the latter coincides with
the one corresponding to the component of the Lie bracket [, ] : �2g−1 → g−2 ∼= R.
We denote by

B ⊂ GL(2, R) ∼= G0 ⊂ CSp(g−1) (4.2)

the subgroup preserving a line 	 ⊂ γ̂ ⊂ g−1.
A marked contact twisted cubic structure can be equivalently described as a contact

structure C ⊂ TM on a 5-manifold together with a reduction of structure group of the
graded frame bundle of the contact structure with respect to the inclusion (4.2). In the
terminology of [10], it is a filtered G-structures of type m, where G is the subgroup
B ⊂ CSp(g−1) of (4.2) and m = g−2 ⊕ g−1 the 5-dimensional Heisenberg algebra.

Tanaka’s general theory tells us that given any subalgebra q0 ⊂ csp(g−1), there
exists graded Lie algebra g(m, q0) = ⊕

i g(m, q0)i , called the (algebraic) Tanaka
prolongation of the pair (m, q0), uniquely determined by the following conditions:

(1) The non-positive part of g(m, q0) is m ⊕ q0.
(2) If X ∈ g(m, q0)i for some i > 0 satisfies [X ,m−1] = {0}, then X = 0.
(3) g(m, q0) is maximal among the graded Lie algebras satisfying (1) and (2).

It is well known, see [19], that the Tanaka prolongation of the pair (m, g0), where
g0 ⊂ csp(g−1) is the zero graded component in (4.1), recovers the exceptional Lie
algebra g of G2 with its contact grading (4.1). For a subalgebra q0 ⊂ g0, the Tanaka
prolongation q = g(m, q0) of the pair (m, q0) can be identified with a graded subal-
gebra of g = g(m, g0), where qi = gi for i ≤ 0 and qi = {X ∈ gi : [X , g−1] ⊂ qi−1}
for i > 0.

Proposition 6 Let g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 be the Lie algebra of G2 equipped
with its contact grading, m = g−2 ⊕ g−1 the 5-dimensional Heisenberg Lie algebra,
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and let q0 ⊂ g0 ∼= gl(2, R) be the subalgebra preserving a highest weight line
	 ⊂ γ̂ ⊂ g−1. Then the Tanaka prolongation q of (m, q0) is isomorphic to the 9-
dimensional parabolic subalgebra p1 ⊂ g (with the grading depicted below).

Proof Consider the root diagram of G2.

g2

g−2

g1

g−1

g0

q−2

q1

q−1

q0

E13

E11E10E9

E7

E12

E8

E4E3E2E1

E5 E6

E0

Let q = q−2 ⊕ q−1 ⊕ q0 ⊕ q1 be the subalgebra of g spanned by the Cartan
subalgebra and all root spaces corresponding to black nodes. Then q is a graded
Lie algebra satisfying properties (1) and (2) characterizing the Tanaka prolongation.
Moreover, there is no proper subalgebra q′ ⊂ g containing q. This can be deduced
from the above root diagram, by observing that any subalgebra q′ containing q and in
addition a root space corresponding to a white root has to be all of g. Alternatively, it
follows from the fact that a Lie algebra of root type G2 has no subalgebra of dimension
bigger than 9. Hence property (3) is satisfied as well. ��
Having established Proposition 6 and a description of marked contact twisted cubic
structures in the setting of filtered G-structures, Tanaka theory then provides a pro-
cedure to associate to any marked contact twisted cubic structure (M, C, γ, σ ), in a
natural manner, a 9-dimensional bundle G → M together with a coframe ω on G.
This in particular implies the following:

Corollary 2 The infinitesimal symmetries of a marked contact twisted cubic structure
form a Lie algebra of dimension ≤ dim(p1) = 9.
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