Distinguished dimensions for special Riemannian geometries

Paweł Nurowski Instytut Fizyki Teoretycznej Uniwersytet Warszawski

Auckland, 30 January 2007

In type II B string theory one considers:

In type II B string theory one considers:

- n = 6-dimensional compact Riemannian manifold (X, g) which, in addition to the Levi-Civita connection ∇^{LC} , is equipped with:
 - \star a metric connection ∇^T with totally skew-symmetric torsion T,
 - \star a spinor field Ψ on X

In type II B string theory one considers:

- n = 6-dimensional compact Riemannian manifold (X, g) which, in addition to the Levi-Civita connection ∇^{LC} , is equipped with:
 - \star a *metric* conection ∇^T with *totally skew-symmetric torsion* T,
 - \star a spinor field Ψ on X
- special Riemannian structure $(X, g, \nabla^T, T, \Psi)$ should satisfy a number of field equations including:

$$\nabla^T \Psi = 0, \quad \delta(T) = 0, \quad T \cdot \Psi = \mu \Psi, \quad Ric^{\nabla^T} = 0$$

In type II B string theory one considers:

- n = 6-dimensional compact Riemannian manifold (X, g) which, in addition to the Levi-Civita connection ∇^{LC} , is equipped with:
 - \star a *metric* conection ∇^T with *totally skew-symmetric torsion* T,
 - \star a spinor field Ψ on X
- special Riemannian structure $(X, g, \nabla^T, T, \Psi)$ should satisfy a number of field equations including:

$$\nabla^T \Psi = 0, \quad \delta(T) = 0, \quad T \cdot \Psi = \mu \Psi, \quad Ric^{\nabla^T} = 0$$

Question: How to construct solutions to the above equations in n dimensions?

Let Υ be an object (e.g. a tensor), whose isotropy under the action of SO(n) is H ⊂ SO(n). Infinitesimaly, such an object determines the inclusion of the Lie algebra ħ of H in so(n).

• Let Υ be an object (e.g. a tensor), whose isotropy under the action of $\mathbf{SO}(n)$ is $H \subset \mathbf{SO}(n)$. Infinitesimaly, such an object determines the inclusion of the Lie algebra \mathfrak{h} of H in $\mathfrak{so}(n)$.

• If (X, g) is endowed with such a Υ we can decompose the Levi-Civita connection 1-form $\overset{LC}{\Gamma} \in \mathfrak{so}(n) \otimes \mathbb{R}^n$ onto $\Gamma \in \mathfrak{h} \otimes \mathbb{R}^n$ and the rest:

$${}_{\Gamma}^{LC} = \Gamma + \frac{1}{2}T.$$

- Let Y be an object (e.g. a tensor), whose isotropy under the action of SO(n) is H ⊂ SO(n). Infinitesimaly, such an object determines the inclusion of the Lie algebra h of H in so(n).
- If (X, g) is endowed with such a Υ we can decompose the Levi-Civita connection 1-form $\Gamma \in \mathfrak{so}(n) \otimes \mathbb{R}^n$ onto $\Gamma \in \mathfrak{h} \otimes \mathbb{R}^n$ and the rest:

$$\Gamma^{LC} = \Gamma + \frac{1}{2}T.$$

• Then the first Cartan structure equation $d\theta + (\Gamma + \frac{1}{2}T) \wedge \theta = 0$ for the Levi-Civita connection ΓT may be rewriten to the form

$$\mathrm{d}\theta + \Gamma \wedge \theta = -\frac{1}{2}T \wedge \theta$$

$$\mathrm{d}\theta + \Gamma \wedge \theta = -\frac{1}{2}T \wedge \theta$$

and may be interpreted as the first structure equation for a *metric* connection $\Gamma \in \mathfrak{h} \otimes \mathbb{R}^n$ with torsion $T \in \mathfrak{so}(n) \otimes \mathbb{R}^n$.

$$\mathrm{d}\theta + \Gamma \wedge \theta = -\frac{1}{2}T \wedge \theta$$

and may be interpreted as the first structure equation for a *metric* connection $\Gamma \in \mathfrak{h} \otimes \mathbb{R}^n$ with torsion $T \in \mathfrak{so}(n) \otimes \mathbb{R}^n$.

• Curvature of this connection $K \in \mathfrak{h} \otimes \bigwedge^2 \mathbb{R}^n$ - via the second structure equation:

 $K = \mathrm{d}\Gamma + \Gamma \wedge \Gamma.$

How to escape from the ambiguity in the split $\Gamma^{LC} = \Gamma + \frac{1}{2}T?$

How to escape from the ambiguity in the split $\frac{LC}{\Gamma} = \Gamma + \frac{1}{2}T?$

• String theory suggests, that *T* should be totally skew-symmetric.

How to escape from the ambiguity in the split $\frac{LC}{\Gamma} = \Gamma + \frac{1}{2}T?$

• String theory suggests, that T should be totally skew-symmetric.

• Are there geometries (X, g, Υ) admitting the *unique* split $\frac{{}^{LC}}{\Gamma} = \Gamma + \frac{1}{2}T \quad \text{with} \quad T \in \bigwedge^3 \mathbb{R}^n \text{ and } \Gamma \in \mathfrak{h} \otimes \mathbb{R}^n?$

How to escape from the ambiguity in the split $\frac{LC}{\Gamma} = \Gamma + \frac{1}{2}T?$

• String theory suggests, that *T* should be totally skew-symmetric.

- Are there geometries (X, g, Υ) admitting the *unique* split $\prod_{\Gamma}^{LC} = \Gamma + \frac{1}{2}T \quad \text{with} \quad T \in \bigwedge^{3} \mathbb{R}^{n} \text{ and } \Gamma \in \mathfrak{h} \otimes \mathbb{R}^{n}?$
- If so, for which n and $H \subset \mathbf{SO}(n)$?

How to escape from the ambiguity in the split $\frac{LC}{\Gamma} = \Gamma + \frac{1}{2}T?$

- String theory suggests, that *T* should be totally skew-symmetric.
- Are there geometries (X, g, Υ) admitting the *unique* split $\frac{{}^{LC}}{\Gamma} = \Gamma + \frac{1}{2}T \quad \text{with} \quad T \in \bigwedge^3 \mathbb{R}^n \text{ and } \Gamma \in \mathfrak{h} \otimes \mathbb{R}^n?$
- If so, for which n and $H \subset SO(n)$?
- What is Υ which reduces $\mathbf{SO}(n)$ to H?

• If $T \in \bigwedge^{3} \mathbb{R}^{n}$ was *identically zero*, then since $\mathfrak{h} \otimes \mathbb{R}^{n} \ni \Gamma = \overset{LC}{\Gamma}$, the holonomy group of (X, g) would be *reduced* to $H \in \mathbf{SO}(n)$.

- If $T \in \bigwedge^{3} \mathbb{R}^{n}$ was *identically zero*, then since $\mathfrak{h} \otimes \mathbb{R}^{n} \ni \Gamma = \overset{LC}{\Gamma}$, the holonomy group of (X, g) would be *reduced* to $H \in \mathbf{SO}(n)$.
- All irreducible compact Riemannian manifolds (X, g) with the reduced holonomy group are classified (Berger).

- If $T \in \bigwedge^{3} \mathbb{R}^{n}$ was *identically zero*, then since $\mathfrak{h} \otimes \mathbb{R}^{n} \ni \Gamma = \overset{LC}{\Gamma}$, the holonomy group of (X, g) would be *reduced* to $H \in \mathbf{SO}(n)$.
- All irreducible compact Riemannian manifolds (X, g) with the reduced holonomy group are classified (Berger).

• These are:

- \star either symmetric spaces G/H, with the holonomy group $H \subset \mathbf{SO}(n)$
- \star or they are contained in the *Berger's list*:

Berger's list

Berger's list

Holonomy group for $m{g}$	Dimension of X	Type of X	Remarks
$\mathbf{SO}(n)$	n	generic	
$\mathbf{U}(n)$	$2n$, $n\geq 2$	Kähler manifold	Kähler
$\mathbf{SU}(n)$	$2n$, $n\geq 2$	Calabi-Yau manifold	Ricci-flat,Kähler
$\mathbf{Sp}(n) \cdot \mathbf{Sp}(1)$	$4n$, $n\geq 2$	quaternionic Kähler	Einstein
$\mathbf{Sp}(n)$	$4n$, $n\geq 2$	hyperkähler manifold	Ricci-flat,Kähler
\mathbf{G}_2	7	\mathbf{G}_2 manifold	Ricci-flat
$\mathbf{Spin}(7)$	8	$\mathbf{Spin}(7)$ manifold	Ricci-flat

At least two possibilities:

At least two possibilities:

• relax T = 0 condition to $T \in \bigwedge^3 \mathbb{R}^n$ for H from the Berger's list. This approach leads e.g. to nearly Kähler geometries for H = U(n), special nonintegrable SU(3) geometries in dimension 6, special nonintegrable G_2 geometries in dimension 7, etc.

At least two possibilities:

- relax T = 0 condition to $T \in \bigwedge^3 \mathbb{R}^n$ for H from the Berger's list. This approach leads e.g. to nearly Kähler geometries for H = U(n), special nonintegrable SU(3) geometries in dimension 6, special nonintegrable G_2 geometries in dimension 7, etc.
- relax T = 0 condition to $T \in \bigwedge^3 \mathbb{R}^n$ for H corresponding to the irreducible symmetric spaces G/H from *Cartan's list*.

• The first entry in the Cartan's list of the irreducible symmetric spaces: G/H = SU(3)/SO(3).

- The first entry in the Cartan's list of the irreducible symmetric spaces: $G/H = \mathbf{SU}(3)/\mathbf{SO}(3).$
- Here: X = SU(3)/SO(3), dim X = 5 and the SO(3) acts irreducibly on each 5-dimensional tangent space at every point of X.

- The first entry in the Cartan's list of the irreducible symmetric spaces: $G/H = \mathbf{SU}(3)/\mathbf{SO}(3).$
- Here: X = SU(3)/SO(3), dim X = 5 and the SO(3) acts irreducibly on each 5-dimensional tangent space at every point of X.
- X = SU(3)/SO(3) is the *integrable* (T = 0) model for the irreducible SO(3) geometries in dimension 5.

- The first entry in the Cartan's list of the irreducible symmetric spaces: $G/H = \mathbf{SU}(3)/\mathbf{SO}(3).$
- Here: X = SU(3)/SO(3), dim X = 5 and the SO(3) acts irreducibly on each 5-dimensional tangent space at every point of X.
- X = SU(3)/SO(3) is the *integrable* (T = 0) model for the irreducible SO(3) geometries in dimension 5.
- Th. Friedrich: Is it possible to have 5-dimensional Riemannian geometries for which the torsionless model would be X = SU(3)/SO(3)?

- The first entry in the Cartan's list of the irreducible symmetric spaces: $G/H = \mathbf{SU}(3)/\mathbf{SO}(3).$
- Here: X = SU(3)/SO(3), dim X = 5 and the SO(3) acts irreducibly on each 5-dimensional tangent space at every point of X.
- X = SU(3)/SO(3) is the *integrable* (T = 0) model for the irreducible SO(3) geometries in dimension 5.
- Th. Friedrich: Is it possible to have 5-dimensional Riemannian geometries for which the torsionless model would be X = SU(3)/SO(3)?
- In other words, following Friedrich, we propose to study *irreducible* SO(3) geometries in dimension 5.

Irreducible SO(3) geometries in dimension 5

Irreducible SO(3) geometries in dimension 5

- Tensor Υ whose isotropy group under the action of SO(5) is the irreducible SO(3) is determined by the following conditions (Bobieński+PN):
 - $\begin{array}{ll} \text{i)} & \Upsilon_{ijk} = \Upsilon_{(ijk)}, & (\text{totally } symmetric) \\ \text{ii)} & \Upsilon_{ijj} = 0, & (\text{trace-free}) \\ \text{iii)} & \Upsilon_{jki}\Upsilon_{lmi} + \Upsilon_{lji}\Upsilon_{kmi} + \Upsilon_{kli}\Upsilon_{jmi} = g_{jk}g_{lm} + g_{lj}g_{km} + g_{kl}g_{jm}. \end{array}$

Irreducible SO(3) geometries in dimension 5

 Tensor Υ whose isotropy group under the action of SO(5) is the irreducible SO(3) is determined by the following conditions (Bobieński+PN):

i)
$$\Upsilon_{ijk} = \Upsilon_{(ijk)}$$
, (totally *symmetric*)
ii) $\Upsilon_{ijj} = 0$, (trace-free)
iii) $\Upsilon_{jki}\Upsilon_{lmi} + \Upsilon_{lji}\Upsilon_{kmi} + \Upsilon_{kli}\Upsilon_{jmi} = g_{jk}g_{lm} + g_{lj}g_{km} + g_{kl}g_{jm}$.

• A 5-dimensional Riemannian manifold (X, g) equipped with a tensor field Υ satisfying conditions i)-iii) and admitting a unique decomposition $\Gamma = \Gamma + \frac{1}{2}T$, with $T \in \bigwedge^3 \mathbb{R}^5$ and $\Gamma \in \mathfrak{so}(3) \otimes \mathbb{R}^5$ is called *nearly* integrable irreducible **SO**(3) structure. • We have examples of such geometries. All our examples admit transitive symmetry group (which may be of dimension 8, 6 and 5)
- We have examples of such geometries. All our examples admit transitive symmetry group (which may be of dimension 8, 6 and 5)
- In particular, we have a 7-parameter family of nonequivalent examples which satisfy

$$abla^T \Psi = 0, \quad \delta(T) = 0, \quad T \cdot \Psi = \mu \Psi$$

i.e. equations of type IIB string theory (but in wrong dimension!). For this family of examples $T \neq 0$ and, at every point of X, we have two 2-dimensional vector spaces of ∇^T -covariantly constant spinors Ψ . Moreover, since for this family K = 0, we also have $Ric^{\nabla^T} = 0$.

Question

Question

What are the possible dimensions n in which there exists a tensor Υ satisfying:

- i) $\Upsilon_{ijk} = \Upsilon_{(ijk)}$, (total symmetry)
- ii) $\Upsilon_{ijj} = 0$, (no trace)
- $\text{iii)} \Upsilon_{jki}\Upsilon_{lmi} + \Upsilon_{lji}\Upsilon_{kmi} + \Upsilon_{kli}\Upsilon_{jmi} = g_{jk}g_{lm} + g_{lj}g_{km} + g_{kl}g_{jm}?$

• Given Υ_{ijk} we consider a 3rd order polynomial $w(a) = \Upsilon_{ijk}a_ia_ja_k$, where $a_i \in \mathbb{R}$, i = 1, 2, 3, 4, 5.

- Given Υ_{ijk} we consider a 3rd order polynomial $w(a) = \Upsilon_{ijk}a_ia_ja_k$, where $a_i \in \mathbb{R}$, i = 1, 2, 3, 4, 5.
- Then the tensor Υ which brakes SO(5) to the irreducible SO(3) gives:

$$w(a) = 6\sqrt{3}a_1a_2a_3 + 3\sqrt{3}(a_1^2 - a_2^2)a_4 - \left(3a_1^2 + 3a_2^2 - 6a_3^2 - 6a_4^2 + 2a_5^2\right)a_5$$

- Given Υ_{ijk} we consider a 3rd order polynomial $w(a) = \Upsilon_{ijk}a_ia_ja_k$, where $a_i \in \mathbb{R}$, i = 1, 2, 3, 4, 5.
- Then the tensor Υ which brakes $\mathbf{SO}(5)$ to the irreducible $\mathbf{SO}(3)$ gives: $w(a) = 6\sqrt{3}a_1a_2a_3 + 3\sqrt{3}(a_1^2 - a_2^2)a_4 - (3a_1^2 + 3a_2^2 - 6a_3^2 - 6a_4^2 + 2a_5^2)a_5$
- Note that:

$$w(a) = \det \begin{pmatrix} a_5 - \sqrt{3}a_4 & \sqrt{3}a_3 & \sqrt{3}a_2 \\ \sqrt{3}a_3 & a_5 + \sqrt{3}a_4 & \sqrt{3}a_1 \\ \sqrt{3}a_2 & \sqrt{3}a_1 & -2a_5 \end{pmatrix}$$

• because ...

• because ... besides \mathbb{R} , we have \mathbb{C} , \mathbb{H} , \mathbb{O} .

• because ... besides \mathbb{R} , we have \mathbb{C} , \mathbb{H} , \mathbb{O} .

• if n = 5 the tensor Υ is given by: $\Upsilon_{ijk}a_ia_ja_k = w(a) = \det \begin{pmatrix} a_5 - \sqrt{3}a_4 & \sqrt{3}a_3 & \sqrt{3}a_2 \\ \sqrt{3}a_3 & a_5 + \sqrt{3}a_4 & \sqrt{3}a_1 \\ \sqrt{3}a_2 & \sqrt{3}a_1 & -2a_5 \end{pmatrix}$

• because ... besides \mathbb{R} , we have \mathbb{C} , \mathbb{H} , \mathbb{O} .

• if n = 5, 8, 14 and 26 we take:

$$w(a) = \det \begin{pmatrix} a_5 - \sqrt{3}a_4 & \sqrt{3}\alpha_3 & \sqrt{3}\alpha_2 \\ \sqrt{3}\overline{\alpha}_3 & a_5 + \sqrt{3}a_4 & \sqrt{3}\alpha_1 \\ \sqrt{3}\overline{\alpha}_2 & \sqrt{3}\overline{\alpha}_1 & -2a_5 \end{pmatrix}$$

where

• because ... besides \mathbb{R} , we have \mathbb{C} , \mathbb{H} , \mathbb{O} .

• if n = 5, 8, 14 and 26 we take: $w(a) = \det \begin{pmatrix} a_5 - \sqrt{3}a_4 & \sqrt{3}\alpha_3 & \sqrt{3}\alpha_2 \\ \sqrt{3}\overline{\alpha}_3 & a_5 + \sqrt{3}a_4 & \sqrt{3}\alpha_1 \\ \sqrt{3}\overline{\alpha}_2 & \sqrt{3}\overline{\alpha}_1 & -2a_5 \end{pmatrix}$ where for n = 5: $\alpha_1 = a_1$ $\alpha_2 = a_2$ $\alpha_3 = a_3$

• because ... besides \mathbb{R} , we have \mathbb{C} , \mathbb{H} , \mathbb{O} .

 $\alpha_3 = a_3 + a_8 i$

• if n = 5, 8, 14 and 26 we take: $w(a) = \det \begin{pmatrix} a_5 - \sqrt{3}a_4 & \sqrt{3}\alpha_3 & \sqrt{3}\alpha_2 \\ \sqrt{3}\overline{\alpha}_3 & a_5 + \sqrt{3}a_4 & \sqrt{3}\alpha_1 \\ \sqrt{3}\overline{\alpha}_2 & \sqrt{3}\overline{\alpha}_1 & -2a_5 \end{pmatrix}$ where for n = 8: $\alpha_1 = a_1 + a_6 i$ $\alpha_2 = a_2 + a_7 i$

• because ... besides \mathbb{R} , we have \mathbb{C} , \mathbb{H} , \mathbb{O} .

• if n = 5, 8, 14 and 26 we take: $w(a) = \det \begin{pmatrix} a_5 - \sqrt{3}a_4 & \sqrt{3}\alpha_3 & \sqrt{3}\alpha_2 \\ \sqrt{3}\overline{\alpha}_3 & a_5 + \sqrt{3}a_4 & \sqrt{3}\alpha_1 \\ \sqrt{3}\overline{\alpha}_2 & \sqrt{3}\overline{\alpha}_1 & -2a_5 \end{pmatrix}$ where for n = 14: $\alpha_1 = a_1 + a_6 i + a_9 j + a_{10} k$ $\alpha_2 = a_2 + a_7 i + a_{11} j + a_{12} k$ $\alpha_3 = a_3 + a_8 i + a_{13} j + a_{14} k$

• because ... besides \mathbb{R} , we have \mathbb{C} , \mathbb{H} , \mathbb{O} .

• if n = 5, 8, 14 and 26 we take:

$$w(a) = \det \begin{pmatrix} a_5 - \sqrt{3}a_4 & \sqrt{3}\alpha_3 & \sqrt{3}\alpha_2 \\ \sqrt{3}\overline{\alpha}_3 & a_5 + \sqrt{3}a_4 & \sqrt{3}\alpha_1 \\ \sqrt{3}\overline{\alpha}_2 & \sqrt{3}\overline{\alpha}_1 & -2a_5 \end{pmatrix}$$

where for n = 26: $\alpha_1 = a_1 + a_6 i + a_9 j + a_{10} k + a_{15} p + a_{16} q + a_{17} r + a_{18} s$, $\alpha_2 = a_2 + a_7 i + a_{11} j + a_{12} k + a_{19} p + a_{20} q + a_{21} r + a_{22} s$, $\alpha_3 = a_3 + a_8 i + a_{13} j + a_{14} k + a_{23} p + a_{24} q + a_{25} r + a_{26} s$.

• because ... besides \mathbb{R} , we have \mathbb{C} , \mathbb{H} , \mathbb{O} .

• if n = 5, 8, 14 and 26 we take:

$$w(a) = \det \begin{pmatrix} a_5 - \sqrt{3}a_4 & \sqrt{3}\alpha_3 & \sqrt{3}\alpha_2 \\ \sqrt{3}\overline{\alpha}_3 & a_5 + \sqrt{3}a_4 & \sqrt{3}\alpha_1 \\ \sqrt{3}\overline{\alpha}_2 & \sqrt{3}\overline{\alpha}_1 & -2a_5 \end{pmatrix}$$

where for
$$n = 26$$
:
 $\alpha_1 = a_1 + a_6 i + a_9 j + a_{10} k + a_{15} p + a_{16} q + a_{17} r + a_{18} s$,
 $\alpha_2 = a_2 + a_7 i + a_{11} j + a_{12} k + a_{19} p + a_{20} q + a_{21} r + a_{22} s$,
 $\alpha_3 = a_3 + a_8 i + a_{13} j + a_{14} k + a_{23} p + a_{24} q + a_{25} r + a_{26} s$.

• For each n=5,8,14 i 26 tensor Υ given by

$$\Upsilon_{ijk}a_ia_ja_k = w(a)$$

satisfies i)-iii)!

Theorem 1

In dimensions n = 5, 8, 14 i 26 tensor Υ reduces the $\mathbf{GL}(n, \mathbb{R})$ group via $\mathbf{O}(n)$ to a subgroup H_n , where:

• for n = 5 group H_5 is the irreducible SO(3) in SO(5); the torsionless compact model: SU(3)/SO(3)

Theorem 1

In dimensions n = 5, 8, 14 i 26 tensor Υ reduces the $\mathbf{GL}(n, \mathbb{R})$ group via $\mathbf{O}(n)$ to a subgroup H_n , where:

- for n = 5 group H_5 is the irreducible SO(3) in SO(5); the torsionless compact model: SU(3)/SO(3)
- for n = 8 group H_8 is the irreducible SU(3) in SO(8); the torsionless compact model: SU(3)

Theorem 1

In dimensions n = 5, 8, 14 i 26 tensor Υ reduces the $\mathbf{GL}(n, \mathbb{R})$ group via $\mathbf{O}(n)$ to a subgroup H_n , where:

- for n = 5 group H_5 is the irreducible SO(3) in SO(5); the torsionless compact model: SU(3)/SO(3)
- for n = 8 group H_8 is the irreducible SU(3) in SO(8); the torsionless compact model: SU(3)
- for n = 14 group H_{14} is the irreducible $\mathbf{Sp}(3)$ in $\mathbf{SO}(14)$; the torsionless model: $\mathbf{SU}(6)/\mathbf{Sp}(3)$

Theorem 1

In dimensions n = 5, 8, 14 i 26 tensor Υ reduces the $\mathbf{GL}(n, \mathbb{R})$ group via $\mathbf{O}(n)$ to a subgroup H_n , where:

- for n = 5 group H_5 is the irreducible SO(3) in SO(5); the torsionless compact model: SU(3)/SO(3)
- for n = 8 group H_8 is the irreducible SU(3) in SO(8); the torsionless compact model: SU(3)
- for n = 14 group H_{14} is the irreducible $\mathbf{Sp}(3)$ in $\mathbf{SO}(14)$; the torsionless model: $\mathbf{SU}(6)/\mathbf{Sp}(3)$
- for n = 26 group H_{26} is the irreducible \mathbf{F}_4 in $\mathbf{SO}(26)$; the torsionless compact model: $\mathbf{E}_6/\mathbf{F}_4$

- The only dimensions in which conditions i)-iii) have solutions for Υ_{ijk} are n=5,8,14,26.
- Modulo the action of O(n) all such tensors are given by det A, where A is a 3 × 3 traceless hermitian matrix with entries in ℝ, ℂ, ℍ, O, for the respective dimensions 5,8,14,26.

Idea of the proof

- The only dimensions in which conditions i)-iii) have solutions for Υ_{ijk} are n=5,8,14,26.
- Modulo the action of O(n) all such tensors are given by det A, where A is a 3 × 3 traceless hermitian matrix with entries in ℝ, ℂ, ℍ, O, for the respective dimensions 5,8,14,26.

Idea of the proof

• It follows from Cartan's work on *isoparametric hypersurfaces in spheres*.

- The only dimensions in which conditions i)-iii) have solutions for Υ_{ijk} are n=5,8,14,26.
- Modulo the action of O(n) all such tensors are given by det A, where A is a 3 × 3 traceless hermitian matrix with entries in ℝ, ℂ, ℍ, O, for the respective dimensions 5,8,14,26.

Idea of the proof

- It follows from Cartan's work on *isoparametric hypersurfaces in spheres*.
- A hypersurface S is isoparametric in S^{n-1} iff all its *principal curvatures* are *constant*.

- The only dimensions in which conditions i)-iii) have solutions for Υ_{ijk} are n=5,8,14,26.
- Modulo the action of O(n) all such tensors are given by det A, where A is a 3 × 3 traceless hermitian matrix with entries in ℝ, ℂ, ℍ, O, for the respective dimensions 5,8,14,26.

Idea of the proof

- It follows from Cartan's work on *isoparametric hypersurfaces in spheres*.
- A hypersurface S is isoparametric in S^{n-1} iff all its *principal curvatures* are *constant*.

$$\mathbf{S}^{n-1} = \{ a^i \in \mathbb{R}^n \mid (a^1)^2 + (a^2)^2 + \dots + (a^n)^2 = 1 \}$$

and has 3 distinct principal curvatures iff $S = \mathbf{S}^{n-1} \cap P_c$, where $P_c = \{a^i \in \mathbb{R}^n \mid w(a) = c = const \in \mathbb{R}\}$

$$\mathbf{S}^{n-1} = \{ a^i \in \mathbb{R}^n \mid (a^1)^2 + (a^2)^2 + \dots + (a^n)^2 = 1 \}$$

and has 3 distinct principal curvatures iff $S = \mathbf{S}^{n-1} \cap P_c$, where

$$P_c = \{a^i \in \mathbb{R}^n \mid w(a) = c = const \in \mathbb{R}\}$$

and w = w(a) is a homogeneous 3rd order *polynomial* in variables (a^i) such that

ii)
$$\triangle w = 0$$

iii) $|\nabla w|^2 = 9 [(a^1)^2 + (a^2)^2 + ... + (a^n)^2]^2.$

$$\mathbf{S}^{n-1} = \{ a^i \in \mathbb{R}^n \mid (a^1)^2 + (a^2)^2 + \dots + (a^n)^2 = 1 \}$$

and has $3 \ distinct$ principal curvatures iff $S = \mathbf{S}^{n-1} \cap P_c$, where

$$P_c = \{a^i \in \mathbb{R}^n \mid w(a) = c = const \in \mathbb{R}\}$$

and w = w(a) is a homogeneous 3rd order *polynomial* in variables (a^i) such that

ii)
$$\bigtriangleup w = 0$$

iii) $|\nabla w|^2 = 9 [(a^1)^2 + (a^2)^2 + ... + (a^n)^2]^2.$

• He reduced the above differential equations for w = w(a) to equations for a certain function with the properties of a function he encountered when solving the problem of paralelizability of spheres.

$$\mathbf{S}^{n-1} = \{ a^i \in \mathbb{R}^n \mid (a^1)^2 + (a^2)^2 + \dots + (a^n)^2 = 1 \}$$

and has 3 distinct principal curvatures iff $S = \mathbf{S}^{n-1} \cap P_c$, where

$$P_c = \{a^i \in \mathbb{R}^n \mid w(a) = c = const \in \mathbb{R}\}$$

and w = w(a) is a homogeneous 3rd order *polynomial* in variables (a^i) such that

ii)
$$\bigtriangleup w = 0$$

iii) $|\nabla w|^2 = 9 [(a^1)^2 + (a^2)^2 + ... + (a^n)^2]^2.$

- He reduced the above differential equations for w = w(a) to equations for a certain function with the properties of a function he encountered when solving the problem of paralelizability of spheres.
- He concluded that the problem is equivalent to the problem of existence and the possible dimensions for the normed division algebras. Thus n = 3k + 2, where k = 1, 2, 4, 8 are dimensions of ℝ, ℂ, ℍ, O.

H_k structures in dimensions $n_k = 5, 8, 14, 26$

H_k structures in dimensions $n_k = 5, 8, 14, 26$

Definition

An H_k structure on a n_k -dimensional Riemannian manifold (M,g) is a structure defined by means of a rank 3 tensor field Υ satisfying

- i) $\Upsilon_{ijk} = \Upsilon_{(ijk)}$,
- ii) $\Upsilon_{ijj} = 0$,
- $\text{iii}) \ \Upsilon_{jki}\Upsilon_{lmi} + \Upsilon_{lji}\Upsilon_{kmi} + \Upsilon_{kli}\Upsilon_{jmi} = g_{jk}g_{lm} + g_{lj}g_{km} + g_{kl}g_{jm}.$

H_k structures in dimensions $n_k = 5, \overline{8, 14, 26}$

Definition

An H_k structure on a n_k -dimensional Riemannian manifold (M,g) is a structure defined by means of a rank 3 tensor field Υ satisfying

- i) $\Upsilon_{ijk} = \Upsilon_{(ijk)}$,
- ii) $\Upsilon_{ijj} = 0$,
- iii) $\Upsilon_{jki}\Upsilon_{lmi} + \Upsilon_{lji}\Upsilon_{kmi} + \Upsilon_{kli}\Upsilon_{jmi} = g_{jk}g_{lm} + g_{lj}g_{km} + g_{kl}g_{jm}$.

An H_k structure is called *nearly integrable* iff $\nabla^{LC}_X \Upsilon(X, X, X) = 0, \quad \forall X \in \Gamma(TM)$

Nearly integrable H_k structures and characteristic connection

Nearly integrable H_k structures and characteristic connection

Question: What are the neccessary and sufficient conditions for a H_k structure to admit a unique decomposition

with
$$\Gamma \in \mathfrak{h}_k \otimes \mathbb{R}^k$$
 and $T \in \bigwedge^3 \mathbb{R}^{n_k}$?

Nearly integrable H_k structures and characteristic connection

Question: What are the neccessary and sufficient conditions for a H_k structure to admit a unique decomposition

with
$$\Gamma \in \mathfrak{h}_k \otimes \mathbb{R}^k$$
 and $T \in \bigwedge^3 \mathbb{R}^{n_k}$?

If such a unique decomposition exists, the connection Γ is called *characteristic* connection of the H_k structure.
Nearly integrable H_k structures and characteristic connection

Question: What are the neccessary and sufficient conditions for a H_k structure to admit a unique decomposition

with
$$\Gamma \in \mathfrak{h}_k \otimes \mathbb{R}^k$$
 and $T \in \bigwedge^3 \mathbb{R}^{n_k}$?

If such a unique decomposition exists, the connection Γ is called *characteristic* connection of the H_k structure.

Proposition1

Every H_k structure that admits a characteristic connection must be *nearly integrable*.

• There are *real* irreducible representations of the group **SO**(3) in odd dimensions: 1, 3, 5, 7, 9...

• There are *real* irreducible representations of the group **SO**(3) in odd dimensions: 1, 3, 5, 7, 9...

• There are *real* irreducible representations of the group **SU**(3) in dimensions: 1, 8, 20, 27, 70...

- There are *real* irreducible representations of the group **SO**(3) in odd dimensions: 1, 3, 5, 7, 9...
- There are *real* irreducible representations of the group **SU**(3) in dimensions: 1, 8, 20, 27, 70...
- There are *real* irreducible representations of the group $\mathbf{Sp}(3)$ in dimensions: 1, 14, 21, 70, 84, 90, 126, 189, 512, 525...

- There are *real* irreducible representations of the group **SO**(3) in odd dimensions: 1, 3, 5, 7, 9...
- There are *real* irreducible representations of the group **SU**(3) in dimensions: 1, 8, 20, 27, 70...
- There are *real* irreducible representations of the group $\mathbf{Sp}(3)$ in dimensions: 1, 14, 21, 70, 84, 90, 126, 189, 512, 525...
- There are *real* irreducible representations of the group \mathbf{F}_4 in dimensions: 1, 26, 52, 273, 324, 1053, 1274, 4096, 8424...

• In dimensions 5 and 14 the nearly integrable condition is also sufficient for the existence of the characteristic connection.

- In dimensions 5 and 14 the nearly integrable condition is also sufficient for the existence of the characteristic connection.
- In dimension 8 the spaces $\mathfrak{h}_k\otimes\mathbb{R}^k$ and $\bigwedge^3\mathbb{R}^{n_k}$ have 1-dimensional intersection V_1 .

- In dimensions 5 and 14 the nearly integrable condition is also sufficient for the existence of the characteristic connection.
- In dimension 8 the spaces $\mathfrak{h}_k \otimes \mathbb{R}^k$ and $\bigwedge^3 \mathbb{R}^{n_k}$ have 1-dimensional intersection V_1 . In this dimension a sufficient condition for the existence of characteristic connection Γ is that the Levi-Civita connection $\overset{LC}{\Gamma}$ of a nearly integrable $\mathbf{SU}(3)$ structure does not have V_1 components in the $\mathbf{SU}(3)$ decomposition of $\mathfrak{so}(8) \otimes \mathbb{R}^8$ onto the irreducibles.

- In dimensions 5 and 14 the nearly integrable condition is also sufficient for the existence of the characteristic connection.
- In dimension 8 the spaces $\mathfrak{h}_k \otimes \mathbb{R}^k$ and $\bigwedge^3 \mathbb{R}^{n_k}$ have 1-dimensional intersection V_1 . In this dimension a sufficient condition for the existence of characteristic connection Γ is that the Levi-Civita connection $\overset{LC}{\Gamma}$ of a nearly integrable $\mathbf{SU}(3)$ structure does not have V_1 components in the $\mathbf{SU}(3)$ decomposition of $\mathfrak{so}(8) \otimes \mathbb{R}^8$ onto the irreducibles.
- In dimension 26 the Levi-Civita connection Γ^{LC} of a nearly integrable \mathbf{F}_4 structure may have values in 52-dimensional irreducible representation V_{52} of \mathbf{F}_4 , which is not present in the algebraic sum of $\mathbf{f}_4 \otimes \mathbb{R}^k$ and $\bigwedge^3 \mathbb{R}^{n_k}$.

- In dimensions 5 and 14 the nearly integrable condition is also sufficient for the existence of the characteristic connection.
- In dimension 8 the spaces $\mathfrak{h}_k \otimes \mathbb{R}^k$ and $\bigwedge^3 \mathbb{R}^{n_k}$ have 1-dimensional intersection V_1 . In this dimension a sufficient condition for the existence of characteristic connection Γ is that the Levi-Civita connection $\overset{LC}{\Gamma}$ of a nearly integrable $\mathbf{SU}(3)$ structure does not have V_1 components in the $\mathbf{SU}(3)$ decomposition of $\mathfrak{so}(8) \otimes \mathbb{R}^8$ onto the irreducibles.
- In dimension 26 the Levi-Civita connection Γ^{LC} of a nearly integrable \mathbf{F}_4 structure may have values in 52-dimensional irreducible representation V_{52} of \mathbf{F}_4 , which is not present in the algebraic sum of $\mathbf{f}_4 \otimes \mathbb{R}^k$ and $\bigwedge^3 \mathbb{R}^{n_k}$. The sufficient condition for such structures to admit characteristic Γ is that Γ^{LC} has not componenets in V_{52} .

Restricted nearly integrable H_k structures

Restricted nearly integrable H_k structures

Definition

The nearly integrable H_k structures described by Proposition 2 are called *restricted* nearly integrable.

• If $n_k = 5$ then, out of the *a priori* 50 independent components of the Levi-Civita connection Γ , the restricted nearly integrable condition excludes 25.

• If $n_k = 5$ then, out of the *a priori* 50 independent components of the Levi-Civita connection Γ , the restricted nearly integrable condition excludes 25. Thus, heuristically, the restricted nearly integrable SO(3) structures constitute 'a half' of all the possible SO(3) structures in dimension 5.

- If $n_k = 5$ then, out of the *a priori* 50 independent components of the Levi-Civita connection Γ , the restricted nearly integrable condition excludes 25. Thus, heuristically, the restricted nearly integrable SO(3) structures constitute 'a half' of all the possible SO(3) structures in dimension 5.
- If $n_k = 8$ the Levi-Civita connection has 224 components. The restricted nearly integrable condition reduces it to 118.

- If $n_k = 5$ then, out of the *a priori* 50 independent components of the Levi-Civita connection Γ , the restricted nearly integrable condition excludes 25. Thus, heuristically, the restricted nearly integrable SO(3) structures constitute 'a half' of all the possible SO(3) structures in dimension 5.
- If $n_k = 8$ the Levi-Civita connection has 224 components. The restricted nearly integrable condition reduces it to 118.
- For $n_k = 14$ these numbers reduce from 1274 to 658.

- If $n_k = 5$ then, out of the *a priori* 50 independent components of the Levi-Civita connection Γ , the restricted nearly integrable condition excludes 25. Thus, heuristically, the restricted nearly integrable SO(3) structures constitute 'a half' of all the possible SO(3) structures in dimension 5.
- If $n_k = 8$ the Levi-Civita connection has 224 components. The restricted nearly integrable condition reduces it to 118.
- For $n_k = 14$ these numbers reduce from 1274 to 658.
- For $n_k = 26$ the reduction is from 8450 to 3952.

Let (M, g, Υ) be a nearly integrable H_k structure admitting characteristic connection Γ . The H_k irreducible decomposition of the skew symmetric torsion T of Γ is given by:

• $T \in {}^5 \bigwedge_7^2 \oplus {}^5 \bigwedge_3^2$, for $n_k = 5$,

- $T \in {}^5 \bigwedge_7^2 \oplus {}^5 \bigwedge_3^2$, for $n_k = 5$,
- $T \in {}^8 \bigcirc_{27}^2 \oplus {}^8 \bigwedge_{20}^2 \oplus {}^8 \bigcirc_8^2 \oplus {}^8 \bigcirc_1^2$, for $n_k = 8$,

- $T \in {}^5 \bigwedge_7^2 \oplus {}^5 \bigwedge_3^2$, for $n_k = 5$,
- $T \in {}^8 \bigcirc_{27}^2 \oplus {}^8 \bigwedge_{20}^2 \oplus {}^8 \bigcirc_8^2 \oplus {}^8 \bigcirc_1^2$, for $n_k = 8$,
- $T \in {}^{14}V_{189} \oplus {}^{14}V_{84} \oplus {}^{14}\bigwedge_{70}^2 \oplus {}^{14}\bigwedge_{21}^2$, for $n_k = 14$,

- $T \in {}^5 \bigwedge_7^2 \oplus {}^5 \bigwedge_3^2$, for $n_k = 5$,
- $T \in {}^8 \bigcirc_{27}^2 \oplus {}^8 \bigwedge_{20}^2 \oplus {}^8 \bigcirc_8^2 \oplus {}^8 \bigcirc_1^2$, for $n_k = 8$,
- $T \in {}^{14}V_{189} \oplus {}^{14}V_{84} \oplus {}^{14}\bigwedge_{70}^2 \oplus {}^{14}\bigwedge_{21}^2$, for $n_k = 14$,
- $T \in {}^{26}V_{1274} \oplus {}^{26}V_{1053} \oplus {}^{26}\bigwedge_{273}^2$, for $n_k = 26$.

• We have examples of these structures admitting a characteristic connection with nonzero torsion.

- We have examples of these structures admitting a characteristic connection with nonzero torsion.
- All our examples admit transitive symmetry group, which can has dimension ≤ 16 .

- We have examples of these structures admitting a characteristic connection with nonzero torsion.
- All our examples admit transitive symmetry group, which can has dimension ≤ 16 .
- 2-parameter family with transitive symmetry group of dimension 11, torsion $T \in {}^8 \bigodot_{27}^2$, Ric^{Γ} has 2 different constant eigenvalues of multiplicity 5 and 3

- We have examples of these structures admitting a characteristic connection with nonzero torsion.
- All our examples admit transitive symmetry group, which can has dimension ≤ 16 .
- 2-parameter family with transitive symmetry group of dimension 11, torsion $T \in {}^8 \bigcirc_{27}^2$, Ric^{Γ} has 2 different constant eigenvalues of multiplicity 5 and 3
- 2-parameter family with transitive symmetry group of dimension 9, torsion $T \in {}^8 \bigodot_8^2$, Ric^{Γ} has 2 different constant eigenvalues of multiplicity 4 and 4.

Magic square

$\mathfrak{so}(3)$	$\mathfrak{su}(3)$	$\mathfrak{sp}(3)$	\mathfrak{f}_4
$\mathfrak{su}(3)$	$2\mathfrak{su}(3)$	$\mathfrak{su}(6)$	\mathfrak{e}_6
$\mathfrak{sp}(3)$	$\mathfrak{su}(6)$	$\mathfrak{so}(12)$	\mathfrak{e}_7
\mathfrak{f}_4	\mathfrak{e}_6	\mathfrak{e}_7	\mathfrak{e}_8

Magic square

$\mathfrak{so}(3)$	$\mathfrak{su}(3)$	$\mathfrak{sp}(3)$	\mathfrak{f}_4
$\mathfrak{su}(3)$	$2\mathfrak{su}(3)$	$\mathfrak{su}(6)$	\mathfrak{e}_6
$\mathfrak{sp}(3)$	$\mathfrak{su}(6)$	$\mathfrak{so}(12)$	\mathfrak{e}_7
\mathfrak{f}_4	\mathfrak{e}_6	\mathfrak{e}_7	\mathfrak{e}_8

$\mathfrak{su}(3)\oplus\mathbb{R}$		
$2\mathfrak{su}(3)\oplus\mathbb{R}$		
$\mathfrak{su}(6)\oplus\mathbb{R}$		
$\mathfrak{e}_6\oplus\mathbb{R}$		

Magic square

$\mathfrak{so}(3)$	$\mathfrak{su}(3)$	$\mathfrak{sp}(3)$	\mathfrak{f}_4
$\mathfrak{su}(3)$	$2\mathfrak{su}(3)$	$\mathfrak{su}(6)$	\mathfrak{e}_6
$\mathfrak{sp}(3)$	$\mathfrak{su}(6)$	$\mathfrak{so}(12)$	\mathfrak{e}_7
\mathfrak{f}_4	\mathfrak{f}_4 \mathfrak{e}_6		e ₈

$\mathfrak{su}(3)\oplus\mathbb{R}$	$\mathfrak{sp}(3)\oplus\mathfrak{su}(2)$
$2\mathfrak{su}(3)\oplus\mathbb{R}$	$\mathfrak{su}(6)\oplus\mathfrak{su}(2)$
$\mathfrak{su}(6)\oplus\mathbb{R}$	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$
$\mathfrak{e}_6\oplus\mathbb{R}$	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$

Distinguished dimensions

$\mathbf{SU}(3)/\mathbf{SO}(3)$	$\mathbf{Sp}(3)/\mathbf{U}(3)$	$\mathbf{F}_4/(\mathbf{Sp}(3) imes \mathbf{SU}(2))$
$\mathbf{SU}(3)$	$\mathbf{SU}(6)/\mathbf{S}(\mathbf{U}(3) imes \mathbf{U}(3))$	$\mathbf{E}_6/(\mathbf{SU}(6) imes \mathbf{SU}(2))$
$\mathbf{SU}(6)/\mathbf{Sp}(3)$	$\mathbf{SO}(12)/\mathbf{U}(6)$	$\mathbf{E}_7/(\mathbf{SO}(12) \times \mathbf{SU}(2))$
${f E}_6/{f F}_4$	$\mathbf{E}_7/(\mathbf{E}_6 imes \mathbf{SO}(2))$	$\mathbf{E}_8/(\mathbf{E}_7 imes \mathbf{SU}(2))$

These 12 symmetric spaces can be considered torsionless models for special geometries on Riemannian manifolds M with the following dimensions and structure groups:

Distinguished dimensions (continued)

	Structure		Structure group		Structure
n_k	group H_k	$2(n_k+1)$		$4(n_k+2)$	group
5	$\mathbf{SO}(3)$	12	$\mathbf{U}(3)$	28	$\mathbf{Sp}(3) \times \mathbf{SU}(2)$
8	$\mathbf{SU}(3)$	18	$\mathbf{S}(\mathbf{U}(3) imes \mathbf{U}(3))$	40	$\mathbf{SU}(6) imes \mathbf{SU}(2)$
14	$\mathbf{Sp}(3)$	30	$\mathbf{U}(6)$	64	$\mathbf{SO}(12) \times \mathbf{SU}(2)$
26	\mathbf{F}_4	54	$\mathbf{E}_6 imes \mathbf{SO}(2)$	112	$\mathbf{E}_7 imes \mathbf{SU}(2)$
Distinguished dimensions (continued)

	Structure		Structure group		Structure
n_k	group H_k	$2(n_k+1)$		$4(n_k+2)$	group
5	$\mathbf{SO}(3)$	12	$\mathbf{U}(3)$	28	$\mathbf{Sp}(3) \times \mathbf{SU}(2)$
8	$\mathbf{SU}(3)$	18	$\mathbf{S}(\mathbf{U}(3) imes \mathbf{U}(3))$	40	$\mathbf{SU}(6) imes \mathbf{SU}(2)$
14	$\mathbf{Sp}(3)$	30	$\mathbf{U}(6)$	64	$\mathbf{SO}(12) \times \mathbf{SU}(2)$
26	${f F}_4$	54	$\mathbf{E}_6 imes \mathbf{SO}(2)$	112	$\mathbf{E}_7 imes \mathbf{SU}(2)$

Two exceptional cases:

1) dim M = 8, with the structure group $\mathbf{SU}(2) \times \mathbf{SU}(2)$ and with the torsionless model of compact type $M = \mathbf{G}_2/(\mathbf{SU}(2) \times \mathbf{SU}(2))$.

Distinguished dimensions (continued)

	Structure		Structure group		Structure
n_k	group H_k	$2(n_k+1)$		$4(n_k+2)$	group
5	$\mathbf{SO}(3)$	12	$\mathbf{U}(3)$	28	$\mathbf{Sp}(3) \times \mathbf{SU}(2)$
8	$\mathbf{SU}(3)$	18	$\mathbf{S}(\mathbf{U}(3) imes \mathbf{U}(3))$	40	$\mathbf{SU}(6) imes \mathbf{SU}(2)$
14	$\mathbf{Sp}(3)$	30	$\mathbf{U}(6)$	64	$\mathbf{SO}(12) \times \mathbf{SU}(2)$
26	\mathbf{F}_4	54	$\mathbf{E}_6 imes \mathbf{SO}(2)$	112	$\mathbf{E}_7 imes \mathbf{SU}(2)$

Two exceptional cases:

- 1) dim M = 8, with the structure group $SU(2) \times SU(2)$ and with the torsionless model of compact type $M = G_2/(SU(2) \times SU(2))$.
- 2) dim M = 32, with the structure group $\mathbf{SO}(10) \times \mathbf{SO}(2)$ and with the torsionless model of compact type $M = \mathbf{E}_6/(\mathbf{SO}(10) \times \mathbf{SO}(2))$

SU(3) structures in dimension 8 (continued)

SU(3) structures in dimension 8 (continued)

• In the decomposition of $\bigwedge^3 \mathbb{R}^8$ onto the irreducible components under the action of $\mathbf{SU}(3)$ there exists a 1-dimensional $\mathbf{SU}(3)$ invariant subspace ${}^8 \bigodot_1^2$.

SU(3) structures in dimension 8 (continued)

- In the decomposition of $\bigwedge^3 \mathbb{R}^8$ onto the irreducible components under the action of $\mathbf{SU}(3)$ there exists a 1-dimensional $\mathbf{SU}(3)$ invariant subspace ${}^8 \bigodot_{1}^2$.
- This space, in

an orthonormal coframe adapted to the $\mathbf{SU}(3)$ structure is spanned by a 3-form $\psi = \tau_1 \wedge \theta^6 + \tau_2 \wedge \theta^7 + \tau_3 \wedge \theta^8 + \theta^6 \wedge \theta^7 \wedge \theta^8$,

where (au_1, au_2, au_3) are 2-forms

$$\tau_1 = \theta^1 \wedge \theta^4 + \theta^2 \wedge \theta^3 + \sqrt{3}\theta^1 \wedge \theta^5$$

$$\tau_2 = \theta^1 \wedge \theta^3 + \theta^4 \wedge \theta^2 + \sqrt{3}\theta^2 \wedge \theta^5$$

$$\tau_3 = \theta^1 \wedge \theta^2 + 2\theta^4 \wedge \theta^3$$

spanning the 3-dimensional irreducible representation ${}^5 \bigwedge_3^2 \simeq \mathfrak{so}(3)$ associated with SO(3) structure in dimension 5.

• The 3-form ψ can be considered in \mathbb{R}^8 without any reference to tensor Υ .

- The 3-form ψ can be considered in \mathbb{R}^8 without any reference to tensor Υ .
- It is remarkable that this 3-form *alone* reduces the $\mathbf{GL}(8,\mathbb{R})$ to the irreducible $\mathbf{SU}(3)$ in the same way as Υ does.

- The 3-form ψ can be considered in \mathbb{R}^8 without any reference to tensor Υ .
- It is remarkable that this 3-form *alone* reduces the $\mathbf{GL}(8,\mathbb{R})$ to the irreducible $\mathbf{SU}(3)$ in the same way as Υ does.
- Thus, in dimension 8, the H_k structure can be defined either in terms of the *totally symmetric* Υ or in terms of the *totally skew symmetric* ψ .

In this sense the 3-form ψ and the 2-forms (τ_1, τ_2, τ_3) play the same role in the relations between **SU**(3) structures in dimension *eight* and **SO**(3) structures in dimension *five* as the 3-form

$$\phi = \sigma_1 \wedge \theta^5 + \sigma_2 \wedge \theta^6 + \sigma_3 \wedge \theta^7 + \theta^5 \wedge \theta^6 \wedge \theta^7$$

and the self-dual 2-forms

$$\sigma_{1} = \theta^{1} \wedge \theta^{3} + \theta^{4} \wedge \theta^{2}$$

$$\sigma_{2} = \theta^{4} \wedge \theta^{1} + \theta^{3} \wedge \theta^{2}$$

$$\sigma_{3} = \theta^{1} \wedge \theta^{2} + \theta^{3} \wedge \theta^{4}$$

play in the relations between G_2 structures in dimension *seven* and SU(2) structures in dimension *four*.