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Motivation
In type Il B string theory one considers:

e 1 = 6-dimensional compact Riemannian manifold (X, g) which, in addition
to the Levi-Civita connection V' is equipped with:

x a metric conection V! with totally skew-symmetric torsion T,
* a spinor field ¥ on X

e special Riemannian structure (X, g, V1, T, ¥) should satisfy a number of
field equations including:

VI =0, §(T)=0, T -¥=puW, Ric¥ =0

Question: How to construct solutions to the above equations in n dimensions?
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e Let T be an object (e.g. a tensor), whose isotropy under the action of
SO(n)is H C SO(n). Infinitesimaly, such an object determines the
inclusion of the Lie algebra h of H in so(n).

e If (X, g) is endowed with such a T we can decompose the Levi-Civita

Lc
connection 1-form T € so(n) ® R™ onto I' € h ® R™ and the rest:

LC
T =I+3T.

e Then the first Cartan structure equation df + (I' + 27') A § = 0 for the

LC
Levi-Civita connection T' may be rewriten to the form

dd+T ANO=—-3T N6
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dd+TAO=—2T A0

and may be interpreted as the first structure equation for a metric
connection I" € h @ R™ with torsion T' € so(n) @ R™.

e Curvature of this connection K € h ® /\2 R™ - via the second structure
equation:
K=dI'+ T AT.
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How to escape from the ambiguity in the split
LC
[ =T +377

String theory suggests, that 1" should be totally skew-symmetric.

Are there geometries (X, g, T) admitting the unique split
LC
[ =T +iT with TE€A’R"andT € h@R"™?

If so, for which n and H C SO(n)?

What is T which reduces SO(n) to H?
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Special geometries (X,q, VL, T =0, )

LC
o IfT € /\3R” was identically zero, then since h @ R 5 1' = T, the
holonomy group of (X, g) would be reduced to H € SO(n).

o All irreducible compact Riemannian manifolds (X, g) with the reduced
holonomy group are classified (Berger).
e These are:

* either symmetric spaces G/H, with the holonomy group H C SO(n)
* or they are contained in the Berger’s list:
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Berger's list

Holonomy group for g | Dimension of X | Type of X Remarks
SO(n) n generic

U(n) 2n, n > 2 Kahler manifold Kahler

SU(n) 2n, n > 2 Calabi-Yau manifold | Ricci-flat,Kahler
Sp(n) - Sp(1) dn, n > 2 quaternionic Kahler | Einstein

Sp(n) dn, n > 2 hyperkahler manifold | Ricci-flat,Kahler
Go 7 G manifold Ricci-flat
Spin(7) 8 Spin(7) manifold Ricci-flat
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At least two possibilities:

e relax 1" = 0 condition to T" € /\3 R™ for H from the Berger’s list. This
approach leads e.g. to nearly Kahler geometries for H = U(n), special
nonintegrable SU(3) geometries in dimension 6, special nonintegrable G
geometries in dimension 7, etc.

e relax 1" = 0 condition to T' € /\3 R™ for H corresponding to the irreducible
symmetric spaces G/ H from Cartan’s list.
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The simplest case for the G/H possibilities

The first entry in the Cartan's list of the irreducible symmetric spaces:

G/H = SU(3)/SO(3).

Here: X = SU(3)/S0O(3), dim X = 5 and the SO(3) acts irreducibly on

each 5-dimensional tangent space at every point of X

X =SU(3)/SO(3) is the integrable (T = 0) model for the irreducible
SO(3) geometries in dimension 5.

Th. Friedrich: Is it possible to have 5-dimensional Riemannian geometries for

which the torsionless model would be X = SU(3)/SO(3)?

In other words, following Friedrich, we propose to study irreducible SO(3)
geometries 1n dimension d.
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Irreducible SO(3) geometries in dimension 5

e Tensor T whose isotropy group under the action of SO(5) is the irreducible
SO(3) is determined by the following conditions (Bobienski-+PN):

i) Tije = Tiijn), (totally symmetric)
i) Wsas =0, (trace-free)
i) YikiYimi + Y10 Y kmi + Yrti L jmi = GikGim + 9159km + JkiGim.

e A 5-dimensional Riemannian manifold (X, g) equipped with a tensor field T
satisfying conditions i)-iii) and admitting a unique decomposition
LC
[ =T+ 3T, with T € A’R5 and T' € 50(3) @ R is called nearly
integrable irreducible SO(3) structure.
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e \We have examples of such geometries. All our examples admit transitive
symmetry group (which may be of dimension 8, 6 and 5)

e In particular, we have a 7-parameter family of nonequivalent examples which
satisfy

VIw =0, §(T)=0, T -V =pV
i.e. equations of type IIB string theory (but in wrong dimension!). For this
family of examples T" = 0 and, at every point of X, we have two
2-dimensional vector spaces of V''-covariantly constant spinors ¥. Moreover,
T
since for this family K = 0, we also have RicY = 0.
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Question

What are the possible dimensions n in which there exists a tensor T satisfying:
36t = ) (total symmetry)
M) Cean =0 (no trace)

i) ki Limi + Y15 Yomi + Teti Limi = GjeGim + gijGkm + grigjm”
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A closer look to n = 5 case

e Given Y;;; we consider a 3rd order polynomial w(a) = Y xa;a;ar, where
a; €R i=1,2345

e Then the tensor T which brakes SO(5) to the irreducible SO(3) gives:

w(a) = 6fa1a2a3+3\f( a,2)a4— ( 3a%+3a§ —6a§ —6ai+2a§ )a,5
e Note that:
as — \/§a4 \/§a3 \/gag
w(a) = det V3as as +V3as V3a
v/3as V3aq —2as
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Bryant: if n =5, then also n =8, n =14 and n = 26

e because ... besides R, we have C, H, O.

o if n=2>5 8 14 and 26 we take:
a5 — \/§a4 \/3043 \/3042
w(a) = det V3003 as +V3as V3o
V3 V3o —2as
where for n = 26:

a1 = a1+ael +ag] + ajok +a15p + a16q + a17r + a;ss,

Qo = as +a7i +a11] + a9k +a19p + as0q + asir + as9s,

a3 = a3 +agl +a13] + a4k +ag3p + ag4q + assr + ages.
e For eachn =5,8,14 i 26 tensor T given by

Tiikaiaar = w(a)

satisfies i)-iii)!
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O(n) to a subgroup H,,, where:

e form =05 group Hs is the irreducible SO(3) in SO(5);
the torsionless compact model: SU(3)/SO(3)

o form =8 group Hg is the irreducible SU(3) in SO(8);
the torsionless compact model: SU(3)

e for n = 14 group Hyy4 is the irreducible Sp(3) in SO(14);
the torsionless model: SU(6)/Sp(3)

o for n = 26 group Hog is the irreducible Fy in SO(26);
the torsionless compact model: Eg/F4






Theorem 2

e The only dimensions in which conditions i)-iii) have solutions for Y, are
n=>58,14,26.

e Modulo the action of O(n) all such tensors are given by det A, where A is a
3 X 3 traceless hermitian matrix with entries in R, C, H, O, for the respective

dimensions 5,8 14 .26.

|dea of the proof



Theorem 2

e The only dimensions in which conditions i)-iii) have solutions for Y, are
n=>58,14,26.

e Modulo the action of O(n) all such tensors are given by det A, where A is a
3 X 3 traceless hermitian matrix with entries in R, C, H, O, for the respective

dimensions 5,8 14 .26.
|dea of the proof

e |t follows from Cartan's work on isoparametric hypersurfaces in spheres.



Theorem 2

e The only dimensions in which conditions i)-iii) have solutions for Y, are
n=>58,14,26.

e Modulo the action of O(n) all such tensors are given by det A, where A is a
3 X 3 traceless hermitian matrix with entries in R, C, H, O, for the respective
dimensions 5,8 14 .26.

|dea of the proof

e |t follows from Cartan's work on isoparametric hypersurfaces in spheres.

o A hypersurface S is isoparametric in S 1 iff all its principal curvatures are
constant.



Theorem 2

e The only dimensions in which conditions i)-iii) have solutions for Y, are
n=>58,14,26.

e Modulo the action of O(n) all such tensors are given by det A, where A is a
3 X 3 traceless hermitian matrix with entries in R, C, H, O, for the respective
dimensions 5,8 14 .26.

|dea of the proof

e |t follows from Cartan's work on isoparametric hypersurfaces in spheres.

o A hypersurface S is isoparametric in S 1 iff all its principal curvatures are
constant.



e Cartan proved that S is isoparametric in
Sn—l — {al c Rn ‘ (al)Q _|_ (a2)2 + + (an)Z — 1}

and has 3 distinct principal curvatures iff S = S™~1 N P., where
P.={a' € R" | w(a) = ¢ = const € R}



e Cartan proved that S is isoparametric in
Sn—l — {al c Rn ‘ (al)Q _|_ (a2)2 + + (an)Z — 1}

and has 3 distinct principal curvatures iff S = S™~1 N P., where
P.={a' € R" | w(a) = ¢ = const € R}
and w = w(a) is a homogeneous 3rd order polynomial in variables (a*) such
that
i)  Aw=0
i) IVw|? =9 [ (a')? + (a®)* + ... + (a™)? ]%.



e Cartan proved that S is isoparametric in
Sn—l — {CLZ c Rn ‘ (al)Q _|_ (@2)2 + _|_ (an)Z — 1}

and has 3 distinct principal curvatures iff S = S™~1 N P., where
P.={a' € R" | w(a) = ¢ = const € R}
and w = w(a) is a homogeneous 3rd order polynomial in variables (a*) such
that
i)  Aw=0
i) IVw|? =9 [ (a')? + (a®)* + ... + (a™)? ]%.

e He reduced the above differential equations for w = w(a) to equations for a
certain function with the properties of a function he encountered when solving
the problem of paralelizability of spheres.



e Cartan proved that S is isoparametric in
Sn—l — {al c Rn ‘ (al)Q _|_ (@2)2 + _|_ (an)Z — 1}

and has 3 distinct principal curvatures iff S = S™~1 N P., where
P.={a' € R" | w(a) = ¢ = const € R}
and w = w(a) is a homogeneous 3rd order polynomial in variables (a*) such
that
i)  Aw=0
i) IVw|? =9 [ (a')? + (a®)* + ... + (a™)? ]%.

e He reduced the above differential equations for w = w(a) to equations for a
certain function with the properties of a function he encountered when solving
the problem of paralelizability of spheres.

e He concluded that the problem is equivalent to the problem of existence and

the possible dimensions for the normed division algebras. Thus n = 3k + 2,
where k = 1,2, 4, 8 are dimensions of R, C, H, O.
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H,. structures in dimensions n; = 5,8, 14, 26

Definition
An Hj. structure on a ng-dimensional Riemannian manifold (M, g) is a structure
defined by means of a rank 3 tensor field T satistying

) Tijr = Tigny.
i) Yij; =0,
1) ik Loms + T Timi + TrtiLimi = gjxGim + GijGkm + grigim-

An Hj. structure is called nearly integrable itf
VIEYT(X, X, X)=0, VX eI(TM)
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Nearly integrable H; structures and characteristic
connection

Question: What are the neccessary and sufficient conditions for a H}, structure
to admit a unique decomposition

LC
T =0+3T
with I' € b, @ R¥ and T € /\SR”R?

If such a unique decomposition exists, the connection I' is called characteristic
connection of the Hj, structure.

Propositionl

Every H}. structure that admits a characteristic connection must be nearly
integrable.
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Representations

There are real irreducible representations of the group SO(3) in odd
dimensions: 1,3,5,7,9...

There are real irreducible representations of the group SU(3) in dimensions:

1,8,20,27,70...

There are real irreducible representations of the group Sp(3) in dimensions:

1,14,21, 70,84, 90, 126, 189, 512, 525...

There are real irreducible representations of the group F4 in dimensions:

1,26,52, 273,324, 1053, 1274, 4096, 8424...
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Proposition 2

e In dimensions 5 and 14 the nearly integrable condition is also sufficient for the
existence of the characteristic connection.

e In dimension 8 the spaces fh;, ® R* and /\3R”k have 1-dimensional

intersection V7.In this dimension a sufficient condition for the existence of
LC

characteristic connection I is that the Levi-Civita connection T" of a nearly
integrable SU(3) structure does not have V; components in the SU(3)
decomposition of 50(8) ® R® onto the irreducibles.

LC
e In dimension 26 the Levi-Civita connection T of a nearly integrable F4

structure may have values in 52-dimensional irreducible representation V59 of
F4, which is not present in the algebraic sum of {4 ® R* and /\SR”k.The

- . N . . N . N LC
sufficient condition for such structures to admit characteristic I' is that T" has
not componenets in Vso.
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Restricted nearly integrable H; structures

Definition
The nearly integrable H}, structures described by Proposition 2 are called
restricted nearly integrable.
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What the restricted nearly integrable condition
means for a Hj structure?

It np. = 5 then, out of the a priori 50 independent components of the
LC
Levi-Civita connection T, the restricted nearly integrable condition excludes

25.Thus, heuristically, the restricted nearly integrable SO(3) structures
constitute ‘a half’ of all the possible SO(3) structures in dimension 5.

If ni. = 8 the Levi-Civita connection has 224 components. The restricted
nearly integrable condition reduces it to 118.

For n. = 14 these numbers reduce from 1274 to 658.

For ng = 26 the reduction is from 8450 to 3952.
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Torsion types of the characteristic connection for H;
geometries

Let (M, g, Y) be a nearly integrable Hj, structure admitting characteristic
connection I'. The H}, irreducible decomposition of the skew symmetric torsion
T of I' is given by:

o T€5/\§@5/\§, for ni = 5,
e T €805 85\5 @50 0%Q;, formp=8
o [ € 14V189 $H 14V84 $ 14/\30 . 14/\31, for N = 14,

o ' € 26V1274 D 26V1053 Q¥ 26/\373, for ng = 20.
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SU(3) structures in dimension 8

We have examples of these structures admitting a characteristic connection
with nonzero torsion.

All our examples admit transitive symmetry group, which can has dimension
< 16.

2-parameter family with transitive symmetry group of dimension 11, torsion
T € 8@37, Ric' has 2 different constant eigenvalues of multiplicity 5 and 3

2-parameter family with transitive symmetry group of dimension 9, torsion
T € 8@2, Ric' has 2 different constant eigenvalues of multiplicity 4 and 4.
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50(3) | =u(3) | (3 | 14
su(3) | 2su(3) | su(6) | eq
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Magic square

50(3) | su(3) | sp(3) | fa

su(3) | 2su(3) | su(6) | eg

sp(3) | su(6) | so(12) | ey

f4 €6 (47 s
su(3) &R sp(3) @ su(2)
25u(3) & R su(6) ® su(2)

su(6) &R 50(12) D su(2)

¢e O R e7 D su(2)




Distinguished dimensions

SU(3)/SO(3) Sp(3)/U(3) F4/(Sp(3) x SU(2))
SU(3) SU6)/S(UB) x UB)) | Es/(SU(6) x SU(2)

SU(6)/Sp(3) SO(12)/U(6) E,/(SO(12) x SU(2))
Eq/F, E,/(Eg x SO(2)) Es/(E, x SU(2))

These 12 symmetric spaces can be considered torsionless models for special
geometries on Riemannian manifolds M with the following dimensions and

structure groups:




Distinguished dimensions (continued)

Structure Structure group Structure
ng | group Hy || 2(nk + 1) 4(ng + 2) group
5 SO(3) 12 U(3) 28 Sp(3) x SU(2)
8 SU(3) 18 S(U(3) x U(3)) 40 SU(6) x SU(2)
14 Sp(3) 30 u(6) 04 SO(12) x SU(2)
26 F, b4 Eg x SO(2) 112 E; x SU(2)
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Distinguished dimensions (continued)

Structure Structure group Structure
ng | group Hy || 2(nk + 1) 4(ng + 2) group
5 SO(3) 12 U(3) 28 Sp(3) x SU(2)
8 SU(3) 18 S(U(3) x U(3)) 40 SU(6) x SU(2)
14 Sp(3) 30 u(6) 64 SO(12) x SU(2)
26 F, b4 Eg x SO(2) 112 E; x SU(2)

Two exceptional cases:

1) dim M = 8, with the structure group SU(2) x SU(2) and with the
torsionless model of compact type M = G2 /(SU(2) x SU(2)) .

2) dim M = 32, with the structure group SO(10) x SO(2) and with the
torsionless model of compact type M = Eg/(SO(10) x SO(2))
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SU(3) structures in dimension 8 (continued)

o In the decomposition of A’R® onto the irreducible components under the
action of SU(3) there exists a 1-dimensional SU(3) invariant subspace

2
"O1

e This space, in
an orthonormal coframe adapted to the SU(3) structure is spanned by a 3-form
V=1 N+ ANOT + 13 ANO3+0%A 07 NGB,

where (71, 79, T3) are 2-forms

=0 NG+ 02 A\ 03 4 /301 AP

o =0 NG+ 01 A 0% 4+ /302 A 6P

T3 =6 N0 + 20% A 6°

spanning the 3-dimensional irreducible representation 5/\; ~ 50(3)
associated with SO(3) structure in dimension 5.
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e The 3-form 1 can be considered in R® without any reference to tensor Y.

e |t is remarkable that this 3-form alone reduces the GL(8, R) to the
irreducible SU(3) in the same way as T does.

e Thus, in dimension 8, the H} structure can be defined either in terms of the
totally symmetric T or in terms of the totally skew symmetric ).



In this sense the 3-form v and the 2-forms (71, 72, 73) play the same role in the
relations between SU(3) structures in dimension eight and SO(3) structures in
dimension five as the 3-form

b=, ANO°+ 05N+ o507 +0°N0%N67

and the self-dual 2-forms
o1 =60" NG+ 6% A6
o2 = 0* N O +0° N 6?
0'32691/\92‘1—93/\94
play in the relations between Go structures in dimension seven and SU(2)
structures in dimension four.



