Distinguished dimensions for special Riemannian geometries

Paweł Nurowski
Instytut Fizyki Teoretycznej
Uniwersytet Warszawski

Auckland, 30 January 2007

Motivation

Motivation

In type II B string theory one considers:

Motivation

In type II B string theory one considers:

- $n=6$-dimensional compact Riemannian manifold (X, g) which, in addition to the Levi-Civita connection $\nabla^{L C}$, is equipped with:
\star a metric conection ∇^{T} with totally skew-symmetric torsion T,
\star a spinor field Ψ on X

Motivation

In type II B string theory one considers:

- $n=6$-dimensional compact Riemannian manifold (X, g) which, in addition to the Levi-Civita connection $\nabla^{L C}$, is equipped with:
\star a metric conection ∇^{T} with totally skew-symmetric torsion T,
\star a spinor field Ψ on X
- special Riemannian structure $\left(X, g, \nabla^{T}, T, \Psi\right)$ should satisfy a number of field equations including:

$$
\nabla^{T} \Psi=0, \quad \delta(T)=0, \quad T \cdot \Psi=\mu \Psi, \quad \operatorname{Ric}^{\nabla^{T}}=0
$$

Motivation

In type II B string theory one considers:

- $n=6$-dimensional compact Riemannian manifold (X, g) which, in addition to the Levi-Civita connection $\nabla^{L C}$, is equipped with:
\star a metric conection ∇^{T} with totally skew-symmetric torsion T,
\star a spinor field Ψ on X
- special Riemannian structure $\left(X, g, \nabla^{T}, T, \Psi\right)$ should satisfy a number of field equations including:

$$
\nabla^{T} \Psi=0, \quad \delta(T)=0, \quad T \cdot \Psi=\mu \Psi, \quad \operatorname{Ric}^{\nabla^{T}}=0
$$

Question: How to construct solutions to the above equations in n dimensions?

Special geometries $\left(X, g, \nabla^{T}, T, \Psi\right)$

Special geometries $\left(X, g, \nabla^{T}, T, \Psi\right)$

- Let Υ be an object (e.g. a tensor), whose isotropy under the action of $\mathbf{S O}(n)$ is $H \subset \mathbf{S O}(n)$. Infinitesimaly, such an object determines the inclusion of the Lie algebra \mathfrak{h} of H in $\mathfrak{s o}(n)$.

Special geometries $\left(X, g, \nabla^{T}, T, \Psi\right)$

- Let Υ be an object (e.g. a tensor), whose isotropy under the action of $\mathbf{S O}(n)$ is $H \subset \mathbf{S O}(n)$. Infinitesimaly, such an object determines the inclusion of the Lie algebra \mathfrak{h} of H in $\mathfrak{s o}(n)$.
- If (X, g) is endowed with such a Υ we can decompose the Levi-Civita connection 1 -form $\Gamma \in \mathfrak{s o}(n) \otimes \mathbb{R}^{n}$ onto $\Gamma \in \mathfrak{h} \otimes \mathbb{R}^{n}$ and the rest:

$$
{ }_{\Gamma}^{L C}=\Gamma+\frac{1}{2} T .
$$

Special geometries $\left(X, g, \nabla^{T}, T, \Psi\right)$

- Let Υ be an object (e.g. a tensor), whose isotropy under the action of $\mathbf{S O}(n)$ is $H \subset \mathbf{S O}(n)$. Infinitesimaly, such an object determines the inclusion of the Lie algebra \mathfrak{h} of H in $\mathfrak{s o}(n)$.
- If (X, g) is endowed with such a Υ we can decompose the Levi-Civita connection 1-form $\Gamma \in \mathfrak{s o}(n) \otimes \mathbb{R}^{n}$ onto $\Gamma \in \mathfrak{h} \otimes \mathbb{R}^{n}$ and the rest:

$$
{ }_{\Gamma}^{L C}=\Gamma+\frac{1}{2} T .
$$

- Then the first Cartan structure equation $\mathrm{d} \theta+\left(\Gamma+\frac{1}{2} T\right) \wedge \theta=0$ for the Levi-Civita connection Γ may be rewriten to the form

$$
\mathrm{d} \theta+\Gamma \wedge \theta=-\frac{1}{2} T \wedge \theta
$$

$$
\mathrm{d} \theta+\Gamma \wedge \theta=-\frac{1}{2} T \wedge \theta
$$

and may be interpreted as the first structure equation for a metric connection $\Gamma \in \mathfrak{h} \otimes \mathbb{R}^{n}$ with torsion $T \in \mathfrak{s o}(n) \otimes \mathbb{R}^{n}$.

$$
\mathrm{d} \theta+\Gamma \wedge \theta=-\frac{1}{2} T \wedge \theta
$$

and may be interpreted as the first structure equation for a metric connection $\Gamma \in \mathfrak{h} \otimes \mathbb{R}^{n}$ with torsion $T \in \mathfrak{s o}(n) \otimes \mathbb{R}^{n}$.

- Curvature of this connection $K \in \mathfrak{h} \otimes \bigwedge^{2} \mathbb{R}^{n}$ - via the second structure equation:

$$
K=\mathrm{d} \Gamma+\Gamma \wedge \Gamma .
$$

How to escape from the ambiguity in the split

$$
{ }_{\Gamma}^{L C}=\Gamma+\frac{1}{2} T ?
$$

How to escape from the ambiguity in the split $\stackrel{L C}{\Gamma}=\Gamma+\frac{1}{2} T ?$

- String theory suggests, that T should be totally skew-symmetric.

How to escape from the ambiguity in the split $\stackrel{L C}{\Gamma}=\Gamma+\frac{1}{2} T ?$

- String theory suggests, that T should be totally skew-symmetric.
- Are there geometries (X, g, Υ) admitting the unique split

$$
{ }^{L C}=\Gamma+\frac{1}{2} T \quad \text { with } \quad T \in \Lambda^{3} \mathbb{R}^{n} \text { and } \Gamma \in \mathfrak{h} \otimes \mathbb{R}^{n} ?
$$

How to escape from the ambiguity in the split

$$
{ }_{\Gamma}^{L C}=\Gamma+\frac{1}{2} T ?
$$

- String theory suggests, that T should be totally skew-symmetric.
- Are there geometries (X, g, Υ) admitting the unique split

$$
{ }^{L C}=\Gamma+\frac{1}{2} T \quad \text { with } \quad T \in \Lambda^{3} \mathbb{R}^{n} \text { and } \Gamma \in \mathfrak{h} \otimes \mathbb{R}^{n} \text { ? }
$$

- If so, for which n and $H \subset \mathbf{S O}(n)$?

How to escape from the ambiguity in the split

$$
{ }_{\Gamma}^{L C}=\Gamma+\frac{1}{2} T ?
$$

- String theory suggests, that T should be totally skew-symmetric.
- Are there geometries (X, g, Υ) admitting the unique split

$$
{ }^{L C}=\Gamma+\frac{1}{2} T \quad \text { with } \quad T \in \bigwedge^{3} \mathbb{R}^{n} \text { and } \Gamma \in \mathfrak{h} \otimes \mathbb{R}^{n} ?
$$

- If so, for which n and $H \subset \mathbf{S O}(n)$?
- What is Υ which reduces $\mathbf{S O}(n)$ to H ?

Special geometries $\left(X, g, \nabla^{T}, T \equiv 0, \Psi\right)$

- If $T \in \bigwedge^{3} \mathbb{R}^{n}$ was identically zero, then since $\mathfrak{h} \otimes \mathbb{R}^{n} \ni \Gamma={ }_{\Gamma}^{L C}$, the holonomy group of (X, g) would be reduced to $H \in \mathbf{S O}(n)$.

Special geometries $\left(X, g, \nabla^{T}, T \equiv 0, \Psi\right)$

- If $T \in \bigwedge^{3} \mathbb{R}^{n}$ was identically zero, then since $\mathfrak{h} \otimes \mathbb{R}^{n} \ni \Gamma={ }_{\Gamma}^{L C}$, the holonomy group of (X, g) would be reduced to $H \in \mathbf{S O}(n)$.
- All irreducible compact Riemannian manifolds (X, g) with the reduced holonomy group are classified (Berger).

Special geometries $\left(X, g, \nabla^{T}, T \equiv 0, \Psi\right)$

- If $T \in \bigwedge^{3} \mathbb{R}^{n}$ was identically zero, then since $\mathfrak{h} \otimes \mathbb{R}^{n} \ni \Gamma={ }_{\Gamma}^{L C}$, the holonomy group of (X, g) would be reduced to $H \in \mathbf{S O}(n)$.
- All irreducible compact Riemannian manifolds (X, g) with the reduced holonomy group are classified (Berger).
- These are:
\star either symmetric spaces G / H, with the holonomy group $H \subset \mathbf{S O}(n)$
\star or they are contained in the Berger's list:

Berger's list

Berger's list

Holonomy group for g	Dimension of X	Type of X	Remarks
$\mathbf{S O}(n)$	n	generic	
$\mathrm{U}(n)$	$2 n, n \geq 2$	Kähler manifold	Kähler
$\mathrm{SU}(n)$	$2 n, n \geq 2$	Calabi-Yau manifold	Ricci-flat, Kähler
$\mathrm{Sp}(n) \cdot \mathbf{S p}(1)$	$4 n, n \geq 2$	quaternionic Kähler	Einstein
$\mathrm{Sp}(n)$	$4 n, n \geq 2$	hyperkähler manifold	Ricci-flat, Kähler
G_{2}	7	G $_{2}$ manifold	Ricci-flat
$\operatorname{Spin}(7)$	8	Spin(7) manifold	Ricci-flat

Relaxing $T=0$ for H from Berger's theorem

Relaxing $T=0$ for H from Berger's theorem

At least two possibilities:

Relaxing $T=0$ for H from Berger's theorem

At least two possibilities:

- relax $T=0$ condition to $T \in \bigwedge^{3} \mathbb{R}^{n}$ for H from the Berger's list. This approach leads e.g. to nearly Kähler geometries for $H=U(n)$, special nonintegrable $S U(3)$ geometries in dimension 6 , special nonintegrable G_{2} geometries in dimension 7, etc.

Relaxing $T=0$ for H from Berger's theorem

At least two possibilities:

- relax $T=0$ condition to $T \in \bigwedge^{3} \mathbb{R}^{n}$ for H from the Berger's list. This approach leads e.g. to nearly Kähler geometries for $H=U(n)$, special nonintegrable $S U(3)$ geometries in dimension 6 , special nonintegrable G_{2} geometries in dimension 7, etc.
- relax $T=0$ condition to $T \in \bigwedge^{3} \mathbb{R}^{n}$ for H corresponding to the irreducible symmetric spaces G / H from Cartan's list.

The simplest case for the G / H possibilities

The simplest case for the G / H possibilities

- The first entry in the Cartan's list of the irreducible symmetric spaces: $G / H=\mathbf{S U}(3) / \mathbf{S O}(3)$.

The simplest case for the G / H possibilities

- The first entry in the Cartan's list of the irreducible symmetric spaces: $G / H=\mathbf{S U}(3) / \mathbf{S O}(3)$.
- Here: $X=\mathbf{S U}(3) / \mathbf{S O}(3), \operatorname{dim} X=5$ and the $\mathbf{S O}(3)$ acts irreducibly on each 5 -dimensional tangent space at every point of X.

The simplest case for the G / H possibilities

- The first entry in the Cartan's list of the irreducible symmetric spaces: $G / H=\mathbf{S U}(3) / \mathbf{S O}(3)$.
- Here: $X=\mathbf{S U}(3) / \mathbf{S O}(3), \operatorname{dim} X=5$ and the $\mathbf{S O}(3)$ acts irreducibly on each 5 -dimensional tangent space at every point of X.
- $X=\mathbf{S U}(3) / \mathbf{S O}(3)$ is the integrable $(T=0)$ model for the irreducible $\mathbf{S O}(3)$ geometries in dimension 5 .

The simplest case for the G / H possibilities

- The first entry in the Cartan's list of the irreducible symmetric spaces: $G / H=\mathbf{S U}(3) / \mathbf{S O}(3)$.
- Here: $X=\mathbf{S U}(3) / \mathbf{S O}(3), \operatorname{dim} X=5$ and the $\mathbf{S O}(3)$ acts irreducibly on each 5 -dimensional tangent space at every point of X.
- $X=\mathbf{S U}(3) / \mathbf{S O}(3)$ is the integrable $(T=0)$ model for the irreducible $\mathbf{S O}(3)$ geometries in dimension 5 .
- Th. Friedrich: Is it possible to have 5 -dimensional Riemannian geometries for which the torsionless model would be $X=\mathbf{S U}(3) / \mathbf{S O}(3)$?

The simplest case for the G / H possibilities

- The first entry in the Cartan's list of the irreducible symmetric spaces: $G / H=\mathbf{S U}(3) / \mathbf{S O}(3)$.
- Here: $X=\mathbf{S U}(3) / \mathbf{S O}(3), \operatorname{dim} X=5$ and the $\mathbf{S O}(3)$ acts irreducibly on each 5 -dimensional tangent space at every point of X.
- $X=\mathbf{S U}(3) / \mathbf{S O}(3)$ is the integrable $(T=0)$ model for the irreducible $\mathbf{S O}(3)$ geometries in dimension 5 .
- Th. Friedrich: Is it possible to have 5 -dimensional Riemannian geometries for which the torsionless model would be $X=\mathbf{S U}(3) / \mathbf{S O}(3)$?
- In other words, following Friedrich, we propose to study irreducible $\mathbf{S O}(3)$ geometries in dimension 5 .

Irreducible SO(3) geometries in dimension 5

Irreducible $\mathbf{S O}(3)$ geometries in dimension 5

- Tensor Υ whose isotropy group under the action of $\mathbf{S O}(5)$ is the irreducible $\mathrm{SO}(3)$ is determined by the following conditions (Bobieński+PN):
i) $\Upsilon_{i j k}=\Upsilon_{(i j k)}, \quad$ (totally symmetric)
ii) $\Upsilon_{i j j}=0$,
(trace-free)
iii) $\Upsilon_{j k i} \Upsilon_{l m i}+\Upsilon_{l j i} \Upsilon_{k m i}+\Upsilon_{k l i} \Upsilon_{j m i}=g_{j k} g_{l m}+g_{l j} g_{k m}+g_{k l} g_{j m}$.

Irreducible $\mathbf{S O}(3)$ geometries in dimension 5

- Tensor Υ whose isotropy group under the action of $\mathbf{S O}(5)$ is the irreducible $\mathrm{SO}(3)$ is determined by the following conditions (Bobieński+PN):
i) $\Upsilon_{i j k}=\Upsilon_{(i j k)}, \quad$ (totally symmetric)
ii) $\Upsilon_{i j j}=0, \quad$ (trace-free)
iii) $\Upsilon_{j k i} \Upsilon_{l m i}+\Upsilon_{l j i} \Upsilon_{k m i}+\Upsilon_{k l i} \Upsilon_{j m i}=g_{j k} g_{l m}+g_{l j} g_{k m}+g_{k l} g_{j m}$.
- A 5-dimensional Riemannian manifold (X, g) equipped with a tensor field Υ satisfying conditions i)-iii) and admitting a unique decomposition ${ }_{\Gamma}^{L C}=\Gamma+\frac{1}{2} T$, with $T \in \bigwedge^{3} \mathbb{R}^{5}$ and $\Gamma \in \mathfrak{s o}(3) \otimes \mathbb{R}^{5}$ is called nearly integrable irreducible $\mathbf{S O}(3)$ structure.
- We have examples of such geometries. All our examples admit transitive symmetry group (which may be of dimension 8, 6 and 5)
- We have examples of such geometries. All our examples admit transitive symmetry group (which may be of dimension 8,6 and 5)
- In particular, we have a 7-parameter family of nonequivalent examples which satisfy

$$
\nabla^{T} \Psi=0, \quad \delta(T)=0, \quad T \cdot \Psi=\mu \Psi
$$

i.e. equations of type IIB string theory (but in wrong dimension!). For this family of examples $T \neq 0$ and, at every point of X, we have two 2 -dimensional vector spaces of ∇^{T}-covariantly constant spinors Ψ. Moreover, since for this family $K=0$, we also have $R i c \nabla^{T}=0$.

Question

Question

What are the possible dimensions n in which there exists a tensor Υ satisfying:

$$
\text { i) } \Upsilon_{i j k}=\Upsilon_{(i j k)}, \quad \text { (total symmetry) }
$$

ii) $\Upsilon_{i j j}=0$,
(no trace)
iii) $\Upsilon_{j k i} \Upsilon_{l m i}+\Upsilon_{l j i} \Upsilon_{k m i}+\Upsilon_{k l i} \Upsilon_{j m i}=g_{j k} g_{l m}+g_{l j} g_{k m}+g_{k l} g_{j m}$?

A closer look to $n=5$ case

A closer look to $n=5$ case

- Given $\Upsilon_{i j k}$ we consider a 3 rd order polynomial $w(a)=\Upsilon_{i j k} a_{i} a_{j} a_{k}$, where $a_{i} \in \mathbb{R}, i=1,2,3,4,5$.

A closer look to $n=5$ case

- Given $\Upsilon_{i j k}$ we consider a 3 rd order polynomial $w(a)=\Upsilon_{i j k} a_{i} a_{j} a_{k}$, where $a_{i} \in \mathbb{R}, i=1,2,3,4,5$.
- Then the tensor Υ which brakes $\mathbf{S O}(5)$ to the irreducible $\mathbf{S O}(3)$ gives:

$$
w(a)=6 \sqrt{3} a_{1} a_{2} a_{3}+3 \sqrt{3}\left(a_{1}^{2}-a_{2}^{2}\right) a_{4}-\left(3 a_{1}^{2}+3 a_{2}^{2}-6 a_{3}^{2}-6 a_{4}^{2}+2 a_{5}^{2}\right) a_{5}
$$

A closer look to $n=5$ case

- Given $\Upsilon_{i j k}$ we consider a 3rd order polynomial $w(a)=\Upsilon_{i j k} a_{i} a_{j} a_{k}$, where $a_{i} \in \mathbb{R}, i=1,2,3,4,5$.
- Then the tensor Υ which brakes $\mathbf{S O}(5)$ to the irreducible $\mathbf{S O}(3)$ gives:

$$
w(a)=6 \sqrt{3} a_{1} a_{2} a_{3}+3 \sqrt{3}\left(a_{1}^{2}-a_{2}^{2}\right) a_{4}-\left(3 a_{1}^{2}+3 a_{2}^{2}-6 a_{3}^{2}-6 a_{4}^{2}+2 a_{5}^{2}\right) a_{5}
$$

- Note that:

$$
w(a)=\operatorname{det}\left(\begin{array}{ccc}
a_{5}-\sqrt{3} a_{4} & \sqrt{3} a_{3} & \sqrt{3} a_{2} \\
\sqrt{3} a_{3} & a_{5}+\sqrt{3} a_{4} & \sqrt{3} a_{1} \\
\sqrt{3} a_{2} & \sqrt{3} a_{1} & -2 a_{5}
\end{array}\right)
$$

Bryant: if $n=5$, then also $n=8, n=14$ and $n=26$

- because ...

Bryant: if $n=5$, then also $n=8, n=14$ and $n=26$

- because ... besides \mathbb{R}, we have $\mathbb{C}, \mathbb{H}, \mathbb{O}$.

Bryant: if $n=5$, then also $n=8, n=14$ and $n=26$

- because ... besides \mathbb{R}, we have $\mathbb{C}, \mathbb{H}, \mathbb{O}$.
- if $n=5$ the tensor Υ is given by:

$$
\Upsilon_{i j k} a_{i} a_{j} a_{k}=w(a)=\operatorname{det}\left(\begin{array}{ccc}
a_{5}-\sqrt{3} a_{4} & \sqrt{3} a_{3} & \sqrt{3} a_{2} \\
\sqrt{3} a_{3} & a_{5}+\sqrt{3} a_{4} & \sqrt{3} a_{1} \\
\sqrt{3} a_{2} & \sqrt{3} a_{1} & -2 a_{5}
\end{array}\right)
$$

Bryant: if $n=5$, then also $n=8, n=14$ and $n=26$

- because ... besides \mathbb{R}, we have $\mathbb{C}, \mathbb{H}, \mathbb{O}$.
- if $n=5,8,14$ and 26 we take:

$$
w(a)=\operatorname{det}\left(\begin{array}{ccc}
a_{5}-\sqrt{3} a_{4} & \sqrt{3} \alpha_{3} & \sqrt{3} \alpha_{2} \\
\sqrt{3} \bar{\alpha}_{3} & a_{5}+\sqrt{3} a_{4} & \sqrt{3} \alpha_{1} \\
\sqrt{3} \bar{\alpha}_{2} & \sqrt{3} \bar{\alpha}_{1} & -2 a_{5}
\end{array}\right)
$$

where

Bryant: if $n=5$, then also $n=8, n=14$ and $n=26$

- because ... besides \mathbb{R}, we have $\mathbb{C}, \mathbb{H}, \mathbb{O}$.
- if $n=5,8,14$ and 26 we take:

$$
w(a)=\operatorname{det}\left(\begin{array}{ccc}
a_{5}-\sqrt{3} a_{4} & \sqrt{3} \alpha_{3} & \sqrt{3} \alpha_{2} \\
\sqrt{3} \bar{\alpha}_{3} & a_{5}+\sqrt{3} a_{4} & \sqrt{3} \alpha_{1} \\
\sqrt{3} \bar{\alpha}_{2} & \sqrt{3} \bar{\alpha}_{1} & -2 a_{5}
\end{array}\right)
$$

where for $n=5$:

$$
\begin{gathered}
\alpha_{1}=a_{1} \\
\alpha_{2}=a_{2} \\
\alpha_{3}=a_{3}
\end{gathered}
$$

Bryant: if $n=5$, then also $n=8, n=14$ and $n=26$

- because ... besides \mathbb{R}, we have $\mathbb{C}, \mathbb{H}, \mathbb{O}$.
- if $n=5,8,14$ and 26 we take:

$$
w(a)=\operatorname{det}\left(\begin{array}{ccc}
a_{5}-\sqrt{3} a_{4} & \sqrt{3} \alpha_{3} & \sqrt{3} \alpha_{2} \\
\sqrt{3} \bar{\alpha}_{3} & a_{5}+\sqrt{3} a_{4} & \sqrt{3} \alpha_{1} \\
\sqrt{3} \bar{\alpha}_{2} & \sqrt{3} \bar{\alpha}_{1} & -2 a_{5}
\end{array}\right)
$$

where for $n=8$:

$$
\begin{array}{r}
\alpha_{1}=a_{1}+a_{6} \mathrm{i} \\
\alpha_{2}=a_{2}+a_{7} \mathrm{i} \\
\alpha_{3}=a_{3}+a_{8} \mathrm{i}
\end{array}
$$

Bryant: if $n=5$, then also $n=8, n=14$ and $n=26$

- because ... besides \mathbb{R}, we have $\mathbb{C}, \mathbb{H}, \mathbb{O}$.
- if $n=5,8,14$ and 26 we take:

$$
w(a)=\operatorname{det}\left(\begin{array}{ccc}
a_{5}-\sqrt{3} a_{4} & \sqrt{3} \alpha_{3} & \sqrt{3} \alpha_{2} \\
\sqrt{3} \bar{\alpha}_{3} & a_{5}+\sqrt{3} a_{4} & \sqrt{3} \alpha_{1} \\
\sqrt{3} \bar{\alpha}_{2} & \sqrt{3} \bar{\alpha}_{1} & -2 a_{5}
\end{array}\right)
$$

where for $n=14$:

$$
\begin{gathered}
\alpha_{1}=a_{1}+a_{6} \mathrm{i}+a_{9} \mathrm{j}+a_{10} \mathrm{k} \\
\alpha_{2}=a_{2}+a_{7} \mathrm{i}+a_{11} \mathrm{j}+a_{12} \mathrm{k} \\
\alpha_{3}=a_{3}+a_{8} \mathrm{i}+a_{13} \mathrm{j}+a_{14} \mathrm{k}
\end{gathered}
$$

Bryant: if $n=5$, then also $n=8, n=14$ and $n=26$

- because ... besides \mathbb{R}, we have $\mathbb{C}, \mathbb{H}, \mathbb{O}$.
- if $n=5,8,14$ and 26 we take:

$$
w(a)=\operatorname{det}\left(\begin{array}{ccc}
a_{5}-\sqrt{3} a_{4} & \sqrt{3} \alpha_{3} & \sqrt{3} \alpha_{2} \\
\sqrt{3} \bar{\alpha}_{3} & a_{5}+\sqrt{3} a_{4} & \sqrt{3} \alpha_{1} \\
\sqrt{3} \bar{\alpha}_{2} & \sqrt{3} \bar{\alpha}_{1} & -2 a_{5}
\end{array}\right)
$$

where for $n=26$:

$$
\begin{aligned}
& \alpha_{1}=a_{1}+a_{6} \mathrm{i}+a_{9} \mathrm{j}+a_{10} \mathrm{k}+a_{15} \mathrm{p}+a_{16} \mathrm{q}+a_{17} \mathrm{r}+a_{18} \mathrm{~S}, \\
& \alpha_{2}=a_{2}+a_{7} \mathrm{i}+a_{11} \mathrm{j}+a_{12} \mathrm{k}+a_{19} \mathrm{p}+a_{20} \mathrm{q}+a_{21} \mathrm{r}+a_{22} \mathrm{~S} \\
& \alpha_{3}=a_{3}+a_{8} \mathrm{i}+a_{13} \mathrm{j}+a_{14} \mathrm{k}+a_{23} \mathrm{p}+a_{24} \mathrm{q}+a_{25} \mathrm{r}+a_{26} \mathrm{~S} .
\end{aligned}
$$

Bryant: if $n=5$, then also $n=8, n=14$ and $n=26$

- because ... besides \mathbb{R}, we have $\mathbb{C}, \mathbb{H}, \mathbb{O}$.
- if $n=5,8,14$ and 26 we take:

$$
w(a)=\operatorname{det}\left(\begin{array}{ccc}
a_{5}-\sqrt{3} a_{4} & \sqrt{3} \alpha_{3} & \sqrt{3} \alpha_{2} \\
\sqrt{3} \bar{\alpha}_{3} & a_{5}+\sqrt{3} a_{4} & \sqrt{3} \alpha_{1} \\
\sqrt{3} \bar{\alpha}_{2} & \sqrt{3} \bar{\alpha}_{1} & -2 a_{5}
\end{array}\right)
$$

where for $n=26$:

$$
\begin{aligned}
& \alpha_{1}=a_{1}+a_{6} \mathrm{i}+a_{9} \mathrm{j}+a_{10} \mathrm{k}+a_{15} \mathrm{p}+a_{16} \mathrm{q}+a_{17} \mathrm{r}+a_{18} \mathrm{~S}, \\
& \alpha_{2}=a_{2}+a_{7} \mathrm{i}+a_{11} \mathrm{j}+a_{12} \mathrm{k}+a_{19} \mathrm{p}+a_{20} \mathrm{q}+a_{21} \mathrm{r}+a_{22} \mathrm{~S} \\
& \alpha_{3}=a_{3}+a_{8} \mathrm{i}+a_{13} \mathrm{j}+a_{14} \mathrm{k}+a_{23} \mathrm{p}+a_{24} \mathrm{q}+a_{25} \mathrm{r}+a_{26} \mathrm{~S} .
\end{aligned}
$$

- For each $n=5,8,14$ i 26 tensor Υ given by

$$
\Upsilon_{i j k} a_{i} a_{j} a_{k}=w(a)
$$

satisfies i)-iii)!

Stabilizer H for Υ

Stabilizer H for Υ

Theorem 1
In dimensions $n=5$, 8 , 14 i 26 tensor Υ reduces the $\mathbf{G} \mathbf{L}(n, \mathbb{R})$ group via $\mathrm{O}(n)$ to a subgroup H_{n}, where:

- for $n=5$ group H_{5} is the irreducible $\mathbf{S O}(3)$ in $\mathbf{S O}(5)$; the torsionless compact model: $\mathrm{SU}(3) / \mathrm{SO}(3)$

Stabilizer H for Υ

Theorem 1
In dimensions $n=5,8$, 14 i 26 tensor Υ reduces the $\mathbf{G L}(n, \mathbb{R})$ group via $\mathrm{O}(n)$ to a subgroup H_{n}, where:

- for $n=5$ group H_{5} is the irreducible $\mathbf{S O}(3)$ in $\mathbf{S O}(5)$; the torsionless compact model: $\mathbf{S U}(3) / \mathbf{S O}(3)$
- for $n=8$ group H_{8} is the irreducible $\mathbf{S U}(3)$ in $\mathbf{S O}(8)$; the torsionless compact model: $\mathrm{SU}(3)$

Stabilizer H for Υ

Theorem 1

In dimensions $n=5$, 8, 14 i 26 tensor Υ reduces the $\mathbf{G} \mathbf{L}(n, \mathbb{R})$ group via $\mathrm{O}(n)$ to a subgroup H_{n}, where:

- for $n=5$ group H_{5} is the irreducible $\mathbf{S O}(3)$ in $\mathbf{S O}(5)$; the torsionless compact model: $\mathbf{S U}(3) / \mathbf{S O}(3)$
- for $n=8$ group H_{8} is the irreducible $\mathbf{S U}(3)$ in $\mathbf{S O}(8)$; the torsionless compact model: $\mathrm{SU}(3)$
- for $n=14$ group H_{14} is the irreducible $\operatorname{Sp}(3)$ in $\mathbf{S O}(14)$; the torsionless model: $\mathbf{S U}(6) / \mathbf{S p}(3)$

Stabilizer H for Υ

Theorem 1
In dimensions $n=5$, 8 , 14 i 26 tensor Υ reduces the $\mathbf{G} \mathbf{L}(n, \mathbb{R})$ group via $\mathrm{O}(n)$ to a subgroup H_{n}, where:

- for $n=5$ group H_{5} is the irreducible $\mathbf{S O}(3)$ in $\mathbf{S O}(5)$; the torsionless compact model: $\mathbf{S U}(3) / \mathbf{S O}(3)$
- for $n=8$ group H_{8} is the irreducible $\mathbf{S U}(3)$ in $\mathbf{S O}(8)$; the torsionless compact model: $\mathbf{S U}(3)$
- for $n=14$ group H_{14} is the irreducible $\mathbf{S p}(3)$ in $\mathbf{S O}(14)$; the torsionless model: $\mathbf{S U}(6) / \mathbf{S p}(3)$
- for $n=26$ group H_{26} is the irreducible $\mathbf{F}_{4} \quad$ in $\mathbf{S O}(26)$; the torsionless compact model: $\mathbf{E}_{6} / \mathbf{F}_{4}$

Theorem 2

Theorem 2

- The only dimensions in which conditions i)-iii) have solutions for $\Upsilon_{i j k}$ are $n=5,8,14,26$.
- Modulo the action of $\mathbf{O}(n)$ all such tensors are given by $\operatorname{det} A$, where A is a 3×3 traceless hermitian matrix with entries in $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$, for the respective dimensions 5, 8, 14,26.

Idea of the proof

Theorem 2

- The only dimensions in which conditions i)-iii) have solutions for $\Upsilon_{i j k}$ are $n=5,8,14,26$.
- Modulo the action of $\mathbf{O}(n)$ all such tensors are given by $\operatorname{det} A$, where A is a 3×3 traceless hermitian matrix with entries in $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$, for the respective dimensions 5, 8, 14,26.

Idea of the proof

- It follows from Cartan's work on isoparametric hypersurfaces in spheres.

Theorem 2

- The only dimensions in which conditions i)-iii) have solutions for $\Upsilon_{i j k}$ are $n=5,8,14,26$.
- Modulo the action of $\mathbf{O}(n)$ all such tensors are given by $\operatorname{det} A$, where A is a 3×3 traceless hermitian matrix with entries in $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$, for the respective dimensions 5, 8, 14,26.

Idea of the proof

- It follows from Cartan's work on isoparametric hypersurfaces in spheres.
- A hypersurface S is isoparametric in \mathbf{S}^{n-1} iff all its principal curvatures are constant.

Theorem 2

- The only dimensions in which conditions i)-iii) have solutions for $\Upsilon_{i j k}$ are $n=5,8,14,26$.
- Modulo the action of $\mathbf{O}(n)$ all such tensors are given by $\operatorname{det} A$, where A is a 3×3 traceless hermitian matrix with entries in $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$, for the respective dimensions 5, 8, 14,26.

Idea of the proof

- It follows from Cartan's work on isoparametric hypersurfaces in spheres.
- A hypersurface S is isoparametric in \mathbf{S}^{n-1} iff all its principal curvatures are constant.
- Cartan proved that S is isoparametric in

$$
\mathbf{S}^{n-1}=\left\{a^{i} \in \mathbb{R}^{n} \mid\left(a^{1}\right)^{2}+\left(a^{2}\right)^{2}+\ldots+\left(a^{n}\right)^{2}=1\right\}
$$

and has 3 distinct principal curvatures iff $S=\mathbf{S}^{n-1} \cap P_{c}$, where

$$
P_{c}=\left\{a^{i} \in \mathbb{R}^{n} \mid w(a)=c=\text { const } \in \mathbb{R}\right\}
$$

- Cartan proved that S is isoparametric in

$$
\mathbf{S}^{n-1}=\left\{a^{i} \in \mathbb{R}^{n} \mid\left(a^{1}\right)^{2}+\left(a^{2}\right)^{2}+\ldots+\left(a^{n}\right)^{2}=1\right\}
$$

and has 3 distinct principal curvatures iff $S=\mathbf{S}^{n-1} \cap P_{c}$, where

$$
P_{c}=\left\{a^{i} \in \mathbb{R}^{n} \mid w(a)=c=\text { const } \in \mathbb{R}\right\}
$$

and $w=w(a)$ is a homogeneous 3rd order polynomial in variables $\left(a^{i}\right)$ such that

$$
\begin{aligned}
& \text { ii) } \triangle w=0 \\
& \text { iii) }|\nabla w|^{2}=9\left[\left(a^{1}\right)^{2}+\left(a^{2}\right)^{2}+\ldots+\left(a^{n}\right)^{2}\right]^{2} .
\end{aligned}
$$

- Cartan proved that S is isoparametric in

$$
\mathbf{S}^{n-1}=\left\{a^{i} \in \mathbb{R}^{n} \mid\left(a^{1}\right)^{2}+\left(a^{2}\right)^{2}+\ldots+\left(a^{n}\right)^{2}=1\right\}
$$

and has 3 distinct principal curvatures iff $S=\mathbf{S}^{n-1} \cap P_{c}$, where

$$
P_{c}=\left\{a^{i} \in \mathbb{R}^{n} \mid w(a)=c=\text { const } \in \mathbb{R}\right\}
$$

and $w=w(a)$ is a homogeneous 3rd order polynomial in variables $\left(a^{i}\right)$ such that
ii) $\triangle w=0$
iii) $\quad|\nabla w|^{2}=9\left[\left(a^{1}\right)^{2}+\left(a^{2}\right)^{2}+\ldots+\left(a^{n}\right)^{2}\right]^{2}$.

- He reduced the above differential equations for $w=w(a)$ to equations for a certain function with the properties of a function he encountered when solving the problem of paralelizability of spheres.
- Cartan proved that S is isoparametric in

$$
\mathbf{S}^{n-1}=\left\{a^{i} \in \mathbb{R}^{n} \mid\left(a^{1}\right)^{2}+\left(a^{2}\right)^{2}+\ldots+\left(a^{n}\right)^{2}=1\right\}
$$

and has 3 distinct principal curvatures iff $S=\mathbf{S}^{n-1} \cap P_{c}$, where

$$
P_{c}=\left\{a^{i} \in \mathbb{R}^{n} \mid w(a)=c=\text { const } \in \mathbb{R}\right\}
$$

and $w=w(a)$ is a homogeneous 3rd order polynomial in variables $\left(a^{i}\right)$ such that
ii) $\triangle w=0$
iii) $\quad|\nabla w|^{2}=9\left[\left(a^{1}\right)^{2}+\left(a^{2}\right)^{2}+\ldots+\left(a^{n}\right)^{2}\right]^{2}$.

- He reduced the above differential equations for $w=w(a)$ to equations for a certain function with the properties of a function he encountered when solving the problem of paralelizability of spheres.
- He concluded that the problem is equivalent to the problem of existence and the possible dimensions for the normed division algebras. Thus $n=3 k+2$, where $k=1,2,4,8$ are dimensions of $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.

H_{k} structures in dimensions $n_{k}=5,8,14,26$

H_{k} structures in dimensions $n_{k}=5,8,14,26$

Definition

An H_{k} structure on a n_{k}-dimensional Riemannian manifold (M, g) is a structure defined by means of a rank 3 tensor field Υ satisfying
i) $\Upsilon_{i j k}=\Upsilon_{(i j k)}$,
ii) $\Upsilon_{i j j}=0$,
iii) $\Upsilon_{j k i} \Upsilon_{l m i}+\Upsilon_{l j i} \Upsilon_{k m i}+\Upsilon_{k l i} \Upsilon_{j m i}=g_{j k} g_{l m}+g_{l j} g_{k m}+g_{k l} g_{j m}$.

H_{k} structures in dimensions $n_{k}=5,8,14,26$

Definition

An H_{k} structure on a n_{k}-dimensional Riemannian manifold (M, g) is a structure defined by means of a rank 3 tensor field Υ satisfying
i) $\Upsilon_{i j k}=\Upsilon_{(i j k)}$,
ii) $\Upsilon_{i j j}=0$,
iii) $\Upsilon_{j k i} \Upsilon_{l m i}+\Upsilon_{l j i} \Upsilon_{k m i}+\Upsilon_{k l i} \Upsilon_{j m i}=g_{j k} g_{l m}+g_{l j} g_{k m}+g_{k l} g_{j m}$.

An H_{k} structure is called nearly integrable iff

$$
\nabla_{X}^{L C} \Upsilon(X, X, X)=0, \quad \forall X \in \Gamma(T M)
$$

Nearly integrable H_{k} structures and characteristic connection

Nearly integrable H_{k} structures and characteristic connection

Question: What are the neccessary and sufficient conditions for a H_{k} structure to admit a unique decomposition

$$
\Gamma=\Gamma+\frac{1}{2} T
$$

with $\Gamma \in \mathfrak{h}_{k} \otimes \mathbb{R}^{k}$ and $T \in \bigwedge^{3} \mathbb{R}^{n_{k}}$?

Nearly integrable H_{k} structures and characteristic connection

Question: What are the neccessary and sufficient conditions for a H_{k} structure to admit a unique decomposition

$$
{ }^{L C}=\Gamma+\frac{1}{2} T
$$

with $\Gamma \in \mathfrak{h}_{k} \otimes \mathbb{R}^{k}$ and $T \in \bigwedge^{3} \mathbb{R}^{n_{k}}$?
If such a unique decomposition exists, the connection Γ is called characteristic connection of the H_{k} structure.

Nearly integrable H_{k} structures and characteristic connection

Question: What are the neccessary and sufficient conditions for a H_{k} structure to admit a unique decomposition

$$
{ }^{L C}=\Gamma+\frac{1}{2} T
$$

with $\Gamma \in \mathfrak{h}_{k} \otimes \mathbb{R}^{k}$ and $T \in \bigwedge^{3} \mathbb{R}^{n_{k}}$?
If such a unique decomposition exists, the connection Γ is called characteristic connection of the H_{k} structure.

Proposition1

Every H_{k} structure that admits a characteristic connection must be nearly integrable.

Representations

Representations

- There are real irreducible representations of the group $\mathbf{S O}(3)$ in odd dimensions: $1,3,5,7,9 \ldots$

Representations

- There are real irreducible representations of the group $\mathbf{S O}(3)$ in odd dimensions: $1,3,5,7,9 \ldots$
- There are real irreducible representations of the group $\mathbf{S U}(3)$ in dimensions: $1,8,20,27,70 \ldots$

Representations

- There are real irreducible representations of the group $\mathbf{S O}(3)$ in odd dimensions: $1,3,5,7,9 \ldots$
- There are real irreducible representations of the group $\mathbf{S U}(3)$ in dimensions: $1,8,20,27,70 \ldots$
- There are real irreducible representations of the group $\operatorname{Sp}(3)$ in dimensions: $1,14,21,70,84,90,126,189,512,525 \ldots$

Representations

- There are real irreducible representations of the group $\mathbf{S O}(3)$ in odd dimensions: $1,3,5,7,9 \ldots$
- There are real irreducible representations of the group $\mathbf{S U}(3)$ in dimensions: $1,8,20,27,70 \ldots$
- There are real irreducible representations of the group $\operatorname{Sp}(3)$ in dimensions: $1,14,21,70,84,90,126,189,512,525 \ldots$
- There are real irreducible representations of the group \mathbf{F}_{4} in dimensions: $1,26,52,273,324,1053,1274,4096,8424$...

Proposition 2

Proposition 2

- In dimensions 5 and 14 the nearly integrable condition is also sufficient for the existence of the characteristic connection.

Proposition 2

- In dimensions 5 and 14 the nearly integrable condition is also sufficient for the existence of the characteristic connection.
- In dimension 8 the spaces $\mathfrak{h}_{k} \otimes \mathbb{R}^{k}$ and $\bigwedge^{3} \mathbb{R}^{n_{k}}$ have 1-dimensional intersection V_{1}.

Proposition 2

- In dimensions 5 and 14 the nearly integrable condition is also sufficient for the existence of the characteristic connection.
- In dimension 8 the spaces $\mathfrak{h}_{k} \otimes \mathbb{R}^{k}$ and $\bigwedge^{3} \mathbb{R}^{n_{k}}$ have 1-dimensional intersection V_{1}. In this dimension a sufficient condition for the existence of characteristic connection Γ is that the Levi-Civita connection Γ of a nearly integrable $\mathbf{S U}(3)$ structure does not have V_{1} components in the $\mathbf{S U}(3)$ decomposition of $\mathfrak{s o}(8) \otimes \mathbb{R}^{8}$ onto the irreducibles.

Proposition 2

- In dimensions 5 and 14 the nearly integrable condition is also sufficient for the existence of the characteristic connection.
- In dimension 8 the spaces $\mathfrak{h}_{k} \otimes \mathbb{R}^{k}$ and $\bigwedge^{3} \mathbb{R}^{n_{k}}$ have 1-dimensional intersection V_{1}. In this dimension a sufficient condition for the existence of characteristic connection Γ is that the Levi-Civita connection Γ of a nearly integrable $\mathbf{S U}(3)$ structure does not have V_{1} components in the $\mathbf{S U}(3)$ decomposition of $\mathfrak{s o}(8) \otimes \mathbb{R}^{8}$ onto the irreducibles.
- In dimension 26 the Levi-Civita connection $\Gamma_{\Gamma}^{L C}$ of a nearly integrable \mathbf{F}_{4} structure may have values in 52-dimensional irreducible representation V_{52} of \mathbf{F}_{4}, which is not present in the algebraic sum of $\mathfrak{f}_{4} \otimes \mathbb{R}^{k}$ and $\bigwedge^{3} \mathbb{R}^{n_{k}}$.

Proposition 2

- In dimensions 5 and 14 the nearly integrable condition is also sufficient for the existence of the characteristic connection.
- In dimension 8 the spaces $\mathfrak{h}_{k} \otimes \mathbb{R}^{k}$ and $\bigwedge^{3} \mathbb{R}^{n_{k}}$ have 1-dimensional intersection V_{1}. In this dimension a sufficient condition for the existence of characteristic connection Γ is that the Levi-Civita connection ${ }_{\Gamma}^{L C}$ of a nearly integrable $\mathbf{S U}(3)$ structure does not have V_{1} components in the $\mathbf{S U}(3)$ decomposition of $\mathfrak{s o}(8) \otimes \mathbb{R}^{8}$ onto the irreducibles.
- In dimension 26 the Levi-Civita connection $\Gamma_{\Gamma}^{L C}$ of a nearly integrable \mathbf{F}_{4} structure may have values in 52-dimensional irreducible representation V_{52} of F_{4}, which is not present in the algebraic sum of $\mathfrak{f}_{4} \otimes \mathbb{R}^{k}$ and $\bigwedge^{3} \mathbb{R}^{n_{k}}$. The sufficient condition for such structures to admit characteristic Γ is that ${ }^{L C}$ has not componenets in V_{52}.

Restricted nearly integrable H_{k} structures

Restricted nearly integrable H_{k} structures

Definition

The nearly integrable H_{k} structures described by Proposition 2 are called restricted nearly integrable.

What the restricted nearly integrable condition means for a H_{k} structure?

What the restricted nearly integrable condition means for a H_{k} structure?

- If $n_{k}=5$ then, out of the a priori 50 independent components of the Levi-Civita connection $\Gamma^{L C}$, the restricted nearly integrable condition excludes 25.

What the restricted nearly integrable condition means for a H_{k} structure?

- If $n_{k}=5$ then, out of the a priori 50 independent components of the Levi-Civita connection $\Gamma^{L C}$, the restricted nearly integrable condition excludes 25 . Thus, heuristically, the restricted nearly integrable $\mathbf{S O}(3)$ structures constitute 'a half' of all the possible $\mathbf{S O}(3)$ structures in dimension 5 .

What the restricted nearly integrable condition means for a H_{k} structure?

- If $n_{k}=5$ then, out of the a priori 50 independent components of the Levi-Civita connection ${ }_{\Gamma}^{L C}$, the restricted nearly integrable condition excludes 25 . Thus, heuristically, the restricted nearly integrable $\mathbf{S O}(3)$ structures constitute 'a half' of all the possible $\mathbf{S O}(3)$ structures in dimension 5 .
- If $n_{k}=8$ the Levi-Civita connection has 224 components. The restricted nearly integrable condition reduces it to 118 .

What the restricted nearly integrable condition means for a H_{k} structure?

- If $n_{k}=5$ then, out of the a priori 50 independent components of the Levi-Civita connection ${ }_{\Gamma}^{L C}$, the restricted nearly integrable condition excludes 25 . Thus, heuristically, the restricted nearly integrable $\mathbf{S O}(3)$ structures constitute 'a half' of all the possible $\mathbf{S O}(3)$ structures in dimension 5 .
- If $n_{k}=8$ the Levi-Civita connection has 224 components. The restricted nearly integrable condition reduces it to 118 .
- For $n_{k}=14$ these numbers reduce from 1274 to 658 .

What the restricted nearly integrable condition means for a H_{k} structure?

- If $n_{k}=5$ then, out of the a priori 50 independent components of the Levi-Civita connection ${ }_{\Gamma}^{L C}$, the restricted nearly integrable condition excludes 25 . Thus, heuristically, the restricted nearly integrable $\mathbf{S O}(3)$ structures constitute 'a half' of all the possible $\mathbf{S O}(3)$ structures in dimension 5 .
- If $n_{k}=8$ the Levi-Civita connection has 224 components. The restricted nearly integrable condition reduces it to 118 .
- For $n_{k}=14$ these numbers reduce from 1274 to 658 .
- For $n_{k}=26$ the reduction is from 8450 to 3952 .

Torsion types of the characteristic connection for H_{k} geometries

Torsion types of the characteristic connection for H_{k} geometries

Let (M, g, Υ) be a nearly integrable H_{k} structure admitting characteristic connection Γ. The H_{k} irreducible decomposition of the skew symmetric torsion T of Γ is given by:

Torsion types of the characteristic connection for H_{k} geometries

Let (M, g, Υ) be a nearly integrable H_{k} structure admitting characteristic connection Γ. The H_{k} irreducible decomposition of the skew symmetric torsion T of Γ is given by:

- $T \in{ }^{5} \bigwedge_{7}^{2} \oplus{ }^{5} \bigwedge_{3}^{2}$,
for $n_{k}=5$,

Torsion types of the characteristic connection for H_{k} geometries

Let (M, g, Υ) be a nearly integrable H_{k} structure admitting characteristic connection Γ. The H_{k} irreducible decomposition of the skew symmetric torsion T of Γ is given by:

- $T \in{ }^{5} \bigwedge_{7}^{2} \oplus^{5} \bigwedge_{3}^{2}, \quad$ for $n_{k}=5$,
- $T \in{ }^{8} \bigodot_{27}^{2} \oplus^{8} \bigwedge_{20}^{2} \oplus^{8} \bigodot_{8}^{2} \oplus^{8} \bigodot_{1}^{2}, \quad$ for $n_{k}=8$,

Torsion types of the characteristic connection for H_{k} geometries

Let (M, g, Υ) be a nearly integrable H_{k} structure admitting characteristic connection Γ. The H_{k} irreducible decomposition of the skew symmetric torsion T of Γ is given by:

- $T \in{ }^{5} \bigwedge_{7}^{2} \oplus{ }^{5} \bigwedge_{3}^{2}, \quad$ for $n_{k}=5$,
- $T \in{ }^{8} \bigodot_{27}^{2} \oplus^{8} \bigwedge_{20}^{2} \oplus^{8} \bigodot_{8}^{2} \oplus^{8} \bigodot_{1}^{2}, \quad$ for $n_{k}=8$,
- $T \in{ }^{14} V_{189} \oplus{ }^{14} V_{84} \oplus{ }^{14} \bigwedge_{70}^{2} \oplus{ }^{14} \bigwedge_{21}^{2}$, for $n_{k}=14$,

Torsion types of the characteristic connection for H_{k} geometries

Let (M, g, Υ) be a nearly integrable H_{k} structure admitting characteristic connection Γ. The H_{k} irreducible decomposition of the skew symmetric torsion T of Γ is given by:

- $T \in{ }^{5} \bigwedge_{7}^{2} \oplus{ }^{5} \bigwedge_{3}^{2}, \quad$ for $n_{k}=5$,
- $T \in{ }^{8} \bigodot_{27}^{2} \oplus^{8} \bigwedge_{20}^{2} \oplus^{8} \bigodot_{8}^{2} \oplus^{8} \bigodot_{1}^{2}, \quad$ for $n_{k}=8$,
- $T \in{ }^{14} V_{189} \oplus{ }^{14} V_{84} \oplus{ }^{14} \bigwedge_{70}^{2} \oplus{ }^{14} \bigwedge_{21}^{2}$, for $n_{k}=14$,
- $T \in{ }^{26} V_{1274} \oplus{ }^{26} V_{1053} \oplus{ }^{26} \bigwedge_{273}^{2}, \quad$ for $n_{k}=26$.

$\mathrm{SU}(3)$ structures in dimension 8

SU(3) structures in dimension 8

- We have examples of these structures admitting a characteristic connection with nonzero torsion.

$\mathrm{SU}(3)$ structures in dimension 8

- We have examples of these structures admitting a characteristic connection with nonzero torsion.
- All our examples admit transitive symmetry group, which can has dimension ≤ 16.

$\mathrm{SU}(3)$ structures in dimension 8

- We have examples of these structures admitting a characteristic connection with nonzero torsion.
- All our examples admit transitive symmetry group, which can has dimension ≤ 16.
- 2-parameter family with transitive symmetry group of dimension 11, torsion $T \in{ }^{8} \bigodot_{27}^{2}$, Ric ${ }^{\Gamma}$ has 2 different constant eigenvalues of multiplicity 5 and 3

$\mathrm{SU}(3)$ structures in dimension 8

- We have examples of these structures admitting a characteristic connection with nonzero torsion.
- All our examples admit transitive symmetry group, which can has dimension ≤ 16.
- 2-parameter family with transitive symmetry group of dimension 11, torsion $T \in{ }^{8} \bigodot_{27}^{2}$, Ric $^{\Gamma}$ has 2 different constant eigenvalues of multiplicity 5 and 3
- 2-parameter family with transitive symmetry group of dimension 9 , torsion $T \in{ }^{8} \bigodot_{8}^{2}$, Ric ${ }^{\Gamma}$ has 2 different constant eigenvalues of multiplicity 4 and 4 .

Magic square

$\mathfrak{s o}(3)$	$\mathfrak{s u}(3)$	$\mathfrak{s p}(3)$	\mathfrak{f}_{4}
$\mathfrak{s u}(3)$	$2 \mathfrak{s u}(3)$	$\mathfrak{s u}(6)$	\mathfrak{e}_{6}
$\mathfrak{s p}(3)$	$\mathfrak{s u}(6)$	$\mathfrak{s o}(12)$	\mathfrak{e}_{7}
\mathfrak{f}_{4}	\mathfrak{e}_{6}	\mathfrak{e}_{7}	\mathfrak{e}_{8}

Magic square

$\mathfrak{s o}(3)$	$\mathfrak{s u}(3)$	$\mathfrak{s p}(3)$	\mathfrak{f}_{4}
$\mathfrak{s u}(3)$	$2 \mathfrak{s u}(3)$	$\mathfrak{s u}(6)$	\mathfrak{e}_{6}
$\mathfrak{s p}(3)$	$\mathfrak{s u}(6)$	$\mathfrak{s o}(12)$	\mathfrak{e}_{7}
\mathfrak{f}_{4}	\mathfrak{e}_{6}	\mathfrak{e}_{7}	\mathfrak{e}_{8}

$\mathfrak{s u}(3) \oplus \mathbb{R}$
$2 \mathfrak{s u}(3) \oplus \mathbb{R}$
$\mathfrak{s u}(6) \oplus \mathbb{R}$
$\mathfrak{e}_{6} \oplus \mathbb{R}$

Magic square

$\mathfrak{s o}(3)$	$\mathfrak{s u}(3)$	$\mathfrak{s p}(3)$	\mathfrak{f}_{4}
$\mathfrak{s u}(3)$	$2 \mathfrak{s u}(3)$	$\mathfrak{s u}(6)$	\mathfrak{e}_{6}
$\mathfrak{s p}(3)$	$\mathfrak{s u}(6)$	$\mathfrak{s o}(12)$	\mathfrak{e}_{7}
\mathfrak{f}_{4}	\mathfrak{e}_{6}	\mathfrak{e}_{7}	\mathfrak{e}_{8}

$\mathfrak{s u}(3) \oplus \mathbb{R}$
$2 \mathfrak{s u}(3) \oplus \mathbb{R}$
$\mathfrak{s u}(6) \oplus \mathbb{R}$
$\mathfrak{e}_{6} \oplus \mathbb{R}$

$\mathfrak{s p}(3) \oplus \mathfrak{s u}(2)$
$\mathfrak{s u}(6) \oplus \mathfrak{s u}(2)$
$\mathfrak{s o}(12) \oplus \mathfrak{s u}(2)$
$\mathfrak{e}_{7} \oplus \mathfrak{s u}(2)$

Distinguished dimensions

$\mathrm{SU}(3) / \mathbf{S O}(3)$	$\mathbf{S p}(3) / \mathrm{U}(3)$	$\left.\mathbf{F}_{4} / \mathbf{(S p}(3) \times \mathbf{S U}(2)\right)$
$\mathbf{S U}(3)$	$\mathrm{SU}(6) / \mathbf{S}(\mathrm{U}(3) \times \mathbf{U}(3))$	$\mathbf{E}_{6} / \mathbf{(\mathbf { S U } (6) \times \mathbf { S U } (2)}$
$\mathrm{SU}(6) / \mathbf{S p}(3)$	$\mathbf{S O}(12) / \mathbf{U}(6)$	$\mathbf{E}_{7} /(\mathbf{S O}(12) \times \mathbf{S U}(2))$
$\mathbf{E}_{6} / \mathbf{F}_{4}$	$\mathbf{E}_{7} /\left(\mathbf{E}_{6} \times \mathbf{S O}(2)\right)$	$\mathbf{E}_{8} /\left(\mathbf{E}_{7} \times \mathbf{S U}(2)\right)$

These 12 symmetric spaces can be considered torsionless models for special geometries on Riemannian manifolds M with the following dimensions and structure groups:

Distinguished dimensions (continued)

n_{k}	Structure group H_{k}	$2\left(n_{k}+1\right)$	Structure group	$4\left(n_{k}+2\right)$	Structure group
5	$\mathbf{S O}(3)$	12	$\mathbf{U}(3)$	28	$\mathbf{S p}(3) \times \mathbf{S U}(2)$
8	$\mathbf{S U}(3)$	18	$\mathbf{S}(\mathbf{U}(3) \times \mathbf{U}(3))$	40	$\mathbf{S U}(6) \times \mathbf{S U}(2)$
14	$\mathbf{S p}(3)$	30	$\mathbf{U}(6)$	64	$\mathbf{S O}(12) \times \mathbf{S U}(2)$
26	\mathbf{F}_{4}	54	$\mathbf{E}_{6} \times \mathbf{S O}(2)$	112	$\mathbf{E}_{7} \times \mathbf{S U}(2)$

Distinguished dimensions (continued)

n_{k}	Structure group H_{k}	$2\left(n_{k}+1\right)$	Structure group	$4\left(n_{k}+2\right)$	Structure group
5	$\mathbf{S O}(3)$	12	$\mathbf{U}(3)$	28	$\mathbf{S p}(3) \times \mathbf{S U}(2)$
8	$\mathbf{S U}(3)$	18	$\mathbf{S}(\mathbf{U}(3) \times \mathbf{U}(3))$	40	$\mathbf{S U}(6) \times \mathbf{S U}(2)$
14	$\mathbf{S p}(3)$	30	$\mathbf{U}(6)$	64	$\mathbf{S O}(12) \times \mathbf{S U}(2)$
26	\mathbf{F}_{4}	54	$\mathbf{E}_{6} \times \mathbf{S O}(2)$	112	$\mathbf{E}_{7} \times \mathbf{S U}(2)$

Two exceptional cases:

1) $\operatorname{dim} M=8$, with the structure group $\mathbf{S U}(2) \times \mathbf{S U}(2)$ and with the torsionless model of compact type $M=\mathbf{G}_{2} /(\mathbf{S U}(2) \times \mathbf{S U}(2))$.

Distinguished dimensions (continued)

n_{k}	Structure group H_{k}	$2\left(n_{k}+1\right)$	Structure group	$4\left(n_{k}+2\right)$	Structure group
5	$\mathbf{S O}(3)$	12	$\mathbf{U}(3)$	28	$\mathbf{S p}(3) \times \mathbf{S U}(2)$
8	$\mathbf{S U}(3)$	18	$\mathbf{S}(\mathbf{U}(3) \times \mathbf{U}(3))$	40	$\mathbf{S U}(6) \times \mathbf{S U}(2)$
14	$\mathbf{S p}(3)$	30	$\mathbf{U}(6)$	64	$\mathbf{S O}(12) \times \mathbf{S U}(2)$
26	\mathbf{F}_{4}	54	$\mathbf{E}_{6} \times \mathbf{S O}(2)$	112	$\mathbf{E}_{7} \times \mathbf{S U}(2)$

Two exceptional cases:

1) $\operatorname{dim} M=8$, with the structure group $\mathbf{S U}(2) \times \mathbf{S U}(2)$ and with the torsionless model of compact type $M=\mathbf{G}_{2} /(\mathbf{S U}(2) \times \mathbf{S U}(2))$.
2) $\operatorname{dim} M=32$, with the structure group $\mathbf{S O}(10) \times \mathbf{S O}(2)$ and with the torsionless model of compact type $M=\mathbf{E}_{6} /(\mathbf{S O}(10) \times \mathbf{S O}(2))$

SU(3) structures in dimension 8 (continued)

SU(3) structures in dimension 8 (continued)

- In the decomposition of $\bigwedge^{3} \mathbb{R}^{8}$ onto the irreducible components under the action of $\mathbf{S U}(3)$ there exists a 1-dimensional $\mathbf{S U}(3)$ invariant subspace ${ }^{8} \bigodot_{1}^{2}$.

SU(3) structures in dimension 8 (continued)

- In the decomposition of $\bigwedge^{3} \mathbb{R}^{8}$ onto the irreducible components under the action of $\mathbf{S U}(3)$ there exists a 1 -dimensional $\mathbf{S U}(3)$ invariant subspace ${ }^{8} \bigodot_{1}^{2}$.
- This space, in an orthonormal coframe adapted to the $\mathrm{SU}(3)$ structure is spanned by a 3 -form

$$
\psi=\tau_{1} \wedge \theta^{6}+\tau_{2} \wedge \theta^{7}+\tau_{3} \wedge \theta^{8}+\theta^{6} \wedge \theta^{7} \wedge \theta^{8}
$$

where $\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ are 2 -forms

$$
\begin{aligned}
\tau_{1}= & \theta^{1} \wedge \theta^{4}+\theta^{2} \wedge \theta^{3}+\sqrt{3} \theta^{1} \wedge \theta^{5} \\
\tau_{2}= & \theta^{1} \wedge \theta^{3}+\theta^{4} \wedge \theta^{2}+\sqrt{3} \theta^{2} \wedge \theta^{5} \\
& \tau_{3}=\theta^{1} \wedge \theta^{2}+2 \theta^{4} \wedge \theta^{3}
\end{aligned}
$$

spanning the 3 -dimensional irreducible representation ${ }^{5} \bigwedge_{3}^{2} \simeq \mathfrak{s o}$ (3) associated with $\mathbf{S O}(3)$ structure in dimension 5.

- The 3 -form ψ can be considered in \mathbb{R}^{8} without any reference to tensor Υ.
- The 3 -form ψ can be considered in \mathbb{R}^{8} without any reference to tensor Υ.
- It is remarkable that this 3 -form alone reduces the $\mathbf{G L}(8, \mathbb{R})$ to the irreducible $\mathbf{S U}(3)$ in the same way as Υ does.
- The 3 -form ψ can be considered in \mathbb{R}^{8} without any reference to tensor Υ.
- It is remarkable that this 3-form alone reduces the $\mathbf{G L}(8, \mathbb{R})$ to the irreducible $\mathbf{S U}(3)$ in the same way as Υ does.
- Thus, in dimension 8 , the H_{k} structure can be defined either in terms of the totally symmetric Υ or in terms of the totally skew symmetric ψ.

In this sense the 3 -form ψ and the 2 -forms $\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ play the same role in the relations between $\mathrm{SU}(3)$ structures in dimension eight and $\mathrm{SO}(3)$ structures in dimension five as the 3-form

$$
\phi=\sigma_{1} \wedge \theta^{5}+\sigma_{2} \wedge \theta^{6}+\sigma_{3} \wedge \theta^{7}+\theta^{5} \wedge \theta^{6} \wedge \theta^{7}
$$

and the self-dual 2-forms

$$
\begin{aligned}
& \sigma_{1}=\theta^{1} \wedge \theta^{3}+\theta^{4} \wedge \theta^{2} \\
& \sigma_{2}=\theta^{4} \wedge \theta^{1}+\theta^{3} \wedge \theta^{2} \\
& \sigma_{3}=\theta^{1} \wedge \theta^{2}+\theta^{3} \wedge \theta^{4}
\end{aligned}
$$

play in the relations between \mathbf{G}_{2} structures in dimension seven and $\mathbf{S U}(2)$ structures in dimension four.

