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In type II B string theory one considers:

• n = 6-dimensional compact Riemannian manifold (X, g) which, in addition
to the Levi-Civita connection ∇LC, is equipped with:

? a metric conection ∇T with totally skew-symmetric torsion T ,
? a spinor �eld Ψ on X

• special Riemannian structure (X, g,∇T , T,Ψ) should satisfy a number of
�eld equations including:

∇TΨ = 0, δ(T ) = 0, T ·Ψ = µΨ, Ric∇
T

= 0

Question: How to construct solutions to the above equations in n dimensions?
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dθ + Γ ∧ θ = −1
2T ∧ θ

and may be interpreted as the �rst structure equation for a metric

connection Γ ∈ h⊗ Rn with torsion T ∈ so(n)⊗ Rn.

• Curvature of this connection K ∈ h⊗
∧2 Rn - via the second structure

equation:
K = dΓ + Γ ∧ Γ.
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How to escape from the ambiguity in the split
LC

Γ = Γ + 1
2T?

• String theory suggests, that T should be totally skew-symmetric.

• Are there geometries (X, g,Υ) admitting the unique split
LC

Γ = Γ + 1
2T with T ∈

∧3 Rn and Γ ∈ h⊗ Rn?

• If so, for which n and H ⊂ SO(n)?

• What is Υ which reduces SO(n) to H?
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Special geometries (X, g,∇T , T ≡ 0,Ψ)

• If T ∈
∧3Rn was identically zero, then since h⊗ Rn 3 Γ =

LC

Γ , the
holonomy group of (X, g) would be reduced to H ∈ SO(n).

• All irreducible compact Riemannian manifolds (X, g) with the reduced
holonomy group are classi�ed (Berger).

• These are:

? either symmetric spaces G/H , with the holonomy group H ⊂ SO(n)
? or they are contained in the Berger's list:
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Berger's list

Holonomy group for g Dimension of X Type of X Remarks
SO(n) n generic

U(n) 2n, n ≥ 2 Kähler manifold Kähler

SU(n) 2n, n ≥ 2 Calabi-Yau manifold Ricci-�at,Kähler

Sp(n) · Sp(1) 4n, n ≥ 2 quaternionic Kähler Einstein

Sp(n) 4n, n ≥ 2 hyperkähler manifold Ricci-�at,Kähler

G2 7 G2 manifold Ricci-�at

Spin(7) 8 Spin(7) manifold Ricci-�at
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Relaxing T = 0 for H from Berger's theorem

At least two possibilities:

• relax T = 0 condition to T ∈
∧3 Rn for H from the Berger's list. This

approach leads e.g. to nearly Kähler geometries for H = U(n), special
nonintegrable SU(3) geometries in dimension 6, special nonintegrable G2

geometries in dimension 7, etc.

• relax T = 0 condition to T ∈
∧3 Rn for H corresponding to the irreducible

symmetric spaces G/H from Cartan's list.
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The simplest case for the G/H possibilities

• The �rst entry in the Cartan's list of the irreducible symmetric spaces:
G/H = SU(3)/SO(3).

• Here: X = SU(3)/SO(3), dimX = 5 and the SO(3) acts irreducibly on
each 5-dimensional tangent space at every point of X .

• X = SU(3)/SO(3) is the integrable (T = 0) model for the irreducible
SO(3) geometries in dimension 5.

• Th. Friedrich: Is it possible to have 5-dimensional Riemannian geometries for
which the torsionless model would be X = SU(3)/SO(3)?

• In other words, following Friedrich, we propose to study irreducible SO(3)
geometries in dimension 5.



Irreducible SO(3) geometries in dimension 5



Irreducible SO(3) geometries in dimension 5

• Tensor Υ whose isotropy group under the action of SO(5) is the irreducible
SO(3) is determined by the following conditions (Bobie«ski+PN):

i) Υijk = Υ(ijk), (totally symmetric)
ii) Υijj = 0, (trace-free)
iii) ΥjkiΥlmi + ΥljiΥkmi + ΥkliΥjmi = gjkglm + gljgkm + gklgjm.



Irreducible SO(3) geometries in dimension 5

• Tensor Υ whose isotropy group under the action of SO(5) is the irreducible
SO(3) is determined by the following conditions (Bobie«ski+PN):

i) Υijk = Υ(ijk), (totally symmetric)
ii) Υijj = 0, (trace-free)
iii) ΥjkiΥlmi + ΥljiΥkmi + ΥkliΥjmi = gjkglm + gljgkm + gklgjm.

• A 5-dimensional Riemannian manifold (X, g) equipped with a tensor �eld Υ
satisfying conditions i)-iii) and admitting a unique decomposition
LC

Γ = Γ + 1
2T, with T ∈

∧3 R5 and Γ ∈ so(3)⊗ R5 is called nearly

integrable irreducible SO(3) structure.
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• We have examples of such geometries. All our examples admit transitive
symmetry group (which may be of dimension 8, 6 and 5)

• In particular, we have a 7-parameter family of nonequivalent examples which
satisfy

∇TΨ = 0, δ(T ) = 0, T ·Ψ = µΨ

i.e. equations of type IIB string theory (but in wrong dimension!). For this
family of examples T 6= 0 and, at every point of X , we have two
2-dimensional vector spaces of ∇T -covariantly constant spinors Ψ. Moreover,

since for this family K = 0, we also have Ric∇
T

= 0.
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Question

What are the possible dimensions n in which there exists a tensor Υ satisfying:

i) Υijk = Υ(ijk), (total symmetry)

ii) Υijj = 0, (no trace)

iii) ΥjkiΥlmi + ΥljiΥkmi + ΥkliΥjmi = gjkglm + gljgkm + gklgjm?
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• Given Υijk we consider a 3rd order polynomial w(a) = Υijkaiajak, where
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• Note that:

w(a) = det
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√
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√
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• For each n = 5, 8, 14 i 26 tensor Υ given by

Υijkaiajak = w(a)

satis�es i)-iii)!
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Stabilizer H for Υ

Theorem 1
In dimensions n = 5, 8, 14 i 26 tensor Υ reduces the GL(n,R) group via
O(n) to a subgroup Hn, where:

• for n = 5 group H5 is the irreducible SO(3) in SO(5);
the torsionless compact model: SU(3)/SO(3)

• for n = 8 group H8 is the irreducible SU(3) in SO(8);
the torsionless compact model: SU(3)

• for n = 14 group H14 is the irreducible Sp(3) in SO(14);
the torsionless model: SU(6)/Sp(3)

• for n = 26 group H26 is the irreducible F4 in SO(26);
the torsionless compact model: E6/F4
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• Cartan proved that S is isoparametric in

Sn−1 = {ai ∈ Rn | (a1)2 + (a2)2 + ...+ (an)2 = 1}

and has 3 distinct principal curvatures i� S = Sn−1 ∩ Pc, where
Pc = {ai ∈ Rn | w(a) = c = const ∈ R}

and w = w(a) is a homogeneous 3rd order polynomial in variables (ai) such
that

ii) 4w = 0
iii) |∇w|2 = 9 [ (a1)2 + (a2)2 + ...+ (an)2 ]2.

• He reduced the above di�erential equations for w = w(a) to equations for a
certain function with the properties of a function he encountered when solving
the problem of paralelizability of spheres.

• He concluded that the problem is equivalent to the problem of existence and
the possible dimensions for the normed division algebras. Thus n = 3k + 2,
where k = 1, 2, 4, 8 are dimensions of R,C,H,O.
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de�ned by means of a rank 3 tensor �eld Υ satisfying

i) Υijk = Υ(ijk),

ii) Υijj = 0,

iii) ΥjkiΥlmi + ΥljiΥkmi + ΥkliΥjmi = gjkglm + gljgkm + gklgjm.



Hk structures in dimensions nk = 5, 8, 14, 26

De�nition

An Hk structure on a nk-dimensional Riemannian manifold (M, g) is a structure
de�ned by means of a rank 3 tensor �eld Υ satisfying

i) Υijk = Υ(ijk),

ii) Υijj = 0,

iii) ΥjkiΥlmi + ΥljiΥkmi + ΥkliΥjmi = gjkglm + gljgkm + gklgjm.

An Hk structure is called nearly integrable i�
∇LC

X Υ(X,X,X) = 0, ∀X ∈ Γ(TM) .
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Nearly integrable Hk structures and characteristic

connection

Question: What are the neccessary and su�cient conditions for a Hk structure
to admit a unique decomposition

LC

Γ = Γ + 1
2T

with Γ ∈ hk ⊗ Rk and T ∈
∧3Rnk?

If such a unique decomposition exists, the connection Γ is called characteristic

connection of the Hk structure.
Proposition1

Every Hk structure that admits a characteristic connection must be nearly

integrable.
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Representations

• There are real irreducible representations of the group SO(3) in odd
dimensions: 1, 3, 5, 7, 9...

• There are real irreducible representations of the group SU(3) in dimensions:
1, 8, 20, 27, 70...

• There are real irreducible representations of the group Sp(3) in dimensions:
1, 14, 21, 70, 84, 90, 126, 189, 512, 525...

• There are real irreducible representations of the group F4 in dimensions:
1, 26, 52, 273, 324, 1053, 1274, 4096, 8424...
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Proposition 2

• In dimensions 5 and 14 the nearly integrable condition is also su�cient for the
existence of the characteristic connection.

• In dimension 8 the spaces hk ⊗ Rk and
∧3Rnk have 1-dimensional

intersection V1.In this dimension a su�cient condition for the existence of

characteristic connection Γ is that the Levi-Civita connection
LC

Γ of a nearly
integrable SU(3) structure does not have V1 components in the SU(3)
decomposition of so(8)⊗ R8 onto the irreducibles.

• In dimension 26 the Levi-Civita connection
LC

Γ of a nearly integrable F4

structure may have values in 52-dimensional irreducible representation V52 of
F4, which is not present in the algebraic sum of f4 ⊗ Rk and

∧3Rnk.The

su�cient condition for such structures to admit characteristic Γ is that
LC

Γ has
not componenets in V52.
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Restricted nearly integrable Hk structures

De�nition

The nearly integrable Hk structures described by Proposition 2 are called
restricted nearly integrable.



What the restricted nearly integrable condition

means for a Hk structure?



What the restricted nearly integrable condition

means for a Hk structure?

• If nk = 5 then, out of the a priori 50 independent components of the

Levi-Civita connection
LC

Γ , the restricted nearly integrable condition excludes
25.



What the restricted nearly integrable condition

means for a Hk structure?

• If nk = 5 then, out of the a priori 50 independent components of the

Levi-Civita connection
LC

Γ , the restricted nearly integrable condition excludes
25.Thus, heuristically, the restricted nearly integrable SO(3) structures
constitute `a half' of all the possible SO(3) structures in dimension 5.



What the restricted nearly integrable condition

means for a Hk structure?

• If nk = 5 then, out of the a priori 50 independent components of the

Levi-Civita connection
LC

Γ , the restricted nearly integrable condition excludes
25.Thus, heuristically, the restricted nearly integrable SO(3) structures
constitute `a half' of all the possible SO(3) structures in dimension 5.

• If nk = 8 the Levi-Civita connection has 224 components. The restricted
nearly integrable condition reduces it to 118.



What the restricted nearly integrable condition

means for a Hk structure?

• If nk = 5 then, out of the a priori 50 independent components of the

Levi-Civita connection
LC

Γ , the restricted nearly integrable condition excludes
25.Thus, heuristically, the restricted nearly integrable SO(3) structures
constitute `a half' of all the possible SO(3) structures in dimension 5.

• If nk = 8 the Levi-Civita connection has 224 components. The restricted
nearly integrable condition reduces it to 118.

• For nk = 14 these numbers reduce from 1274 to 658.



What the restricted nearly integrable condition

means for a Hk structure?

• If nk = 5 then, out of the a priori 50 independent components of the

Levi-Civita connection
LC

Γ , the restricted nearly integrable condition excludes
25.Thus, heuristically, the restricted nearly integrable SO(3) structures
constitute `a half' of all the possible SO(3) structures in dimension 5.

• If nk = 8 the Levi-Civita connection has 224 components. The restricted
nearly integrable condition reduces it to 118.

• For nk = 14 these numbers reduce from 1274 to 658.

• For nk = 26 the reduction is from 8450 to 3952.
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Torsion types of the characteristic connection for Hk

geometries

Let (M, g,Υ) be a nearly integrable Hk structure admitting characteristic
connection Γ. The Hk irreducible decomposition of the skew symmetric torsion
T of Γ is given by:

• T ∈ 5
∧2

7 ⊕ 5
∧2

3, for nk = 5,

• T ∈ 8
⊙2

27 ⊕ 8
∧2

20 ⊕ 8
⊙2

8 ⊕ 8
⊙2

1, for nk = 8,

• T ∈ 14V189 ⊕ 14V84 ⊕ 14
∧2

70 ⊕ 14
∧2

21, for nk = 14,

• T ∈ 26V1274 ⊕ 26V1053 ⊕ 26
∧2

273, for nk = 26.
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SU(3) structures in dimension 8

• We have examples of these structures admitting a characteristic connection
with nonzero torsion.

• All our examples admit transitive symmetry group, which can has dimension
≤ 16.

• 2-parameter family with transitive symmetry group of dimension 11, torsion
T ∈ 8

⊙2
27, Ric

Γ has 2 di�erent constant eigenvalues of multiplicity 5 and 3

• 2-parameter family with transitive symmetry group of dimension 9, torsion
T ∈ 8

⊙2
8, Ric

Γ has 2 di�erent constant eigenvalues of multiplicity 4 and 4.
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Magic square

so(3) su(3) sp(3) f4
su(3) 2su(3) su(6) e6
sp(3) su(6) so(12) e7

f4 e6 e7 e8

.

su(3)⊕ R
2su(3)⊕ R
su(6)⊕ R

e6 ⊕ R

sp(3)⊕ su(2)
su(6)⊕ su(2)
so(12)⊕ su(2)

e7 ⊕ su(2)



Distinguished dimensions

SU(3)/SO(3) Sp(3)/U(3) F4/(Sp(3)× SU(2))
SU(3) SU(6)/S(U(3)×U(3)) E6/(SU(6)× SU(2)

SU(6)/Sp(3) SO(12)/U(6) E7/(SO(12)× SU(2))
E6/F4 E7/(E6 × SO(2)) E8/(E7 × SU(2))

.

These 12 symmetric spaces can be considered torsionless models for special
geometries on Riemannian manifolds M with the following dimensions and
structure groups:
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26 F4 54 E6 × SO(2) 112 E7 × SU(2)
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Distinguished dimensions (continued)

Structure Structure group Structure
nk group Hk 2(nk + 1) 4(nk + 2) group

5 SO(3) 12 U(3) 28 Sp(3)× SU(2)
8 SU(3) 18 S(U(3)×U(3)) 40 SU(6)× SU(2)
14 Sp(3) 30 U(6) 64 SO(12)× SU(2)
26 F4 54 E6 × SO(2) 112 E7 × SU(2)

Two exceptional cases:

1) dimM = 8, with the structure group SU(2)× SU(2) and with the
torsionless model of compact type M = G2/(SU(2)× SU(2)) .

2) dimM = 32, with the structure group SO(10)× SO(2) and with the
torsionless model of compact type M = E6/(SO(10)× SO(2))
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SU(3) structures in dimension 8 (continued)

• In the decomposition of
∧3R8 onto the irreducible components under the

action of SU(3) there exists a 1-dimensional SU(3) invariant subspace
8
⊙2

1.

• This space, in
an orthonormal coframe adapted to the SU(3) structure is spanned by a 3-form

ψ = τ1 ∧ θ6 + τ2 ∧ θ7 + τ3 ∧ θ8 + θ6 ∧ θ7 ∧ θ8,
where (τ1, τ2, τ3) are 2-forms

τ1 = θ1 ∧ θ4 + θ2 ∧ θ3 +
√

3θ1 ∧ θ5
τ2 = θ1 ∧ θ3 + θ4 ∧ θ2 +

√
3θ2 ∧ θ5

τ3 = θ1 ∧ θ2 + 2θ4 ∧ θ3
spanning the 3-dimensional irreducible representation 5

∧2
3 ' so(3)

associated with SO(3) structure in dimension 5.
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• The 3-form ψ can be considered in R8 without any reference to tensor Υ.

• It is remarkable that this 3-form alone reduces the GL(8,R) to the
irreducible SU(3) in the same way as Υ does.

• Thus, in dimension 8, the Hk structure can be de�ned either in terms of the
totally symmetric Υ or in terms of the totally skew symmetric ψ.



In this sense the 3-form ψ and the 2-forms (τ1, τ2, τ3) play the same role in the
relations between SU(3) structures in dimension eight and SO(3) structures in
dimension �ve as the 3-form

φ = σ1 ∧ θ5 + σ2 ∧ θ6 + σ3 ∧ θ7 + θ5 ∧ θ6 ∧ θ7

and the self-dual 2-forms
σ1 = θ1 ∧ θ3 + θ4 ∧ θ2
σ2 = θ4 ∧ θ1 + θ3 ∧ θ2
σ3 = θ1 ∧ θ2 + θ3 ∧ θ4

play in the relations between G2 structures in dimension seven and SU(2)
structures in dimension four.


