GEOPHY 1090 1-14

(1)

(2)

* Corresponding author.

¹ During the preparation of this article P.N. was a memeber of the VW Junior Research Group "Special Geometries in Mathematical Physiscs" at Humboldt University in Berlin.

E-mail addresses: godlinsk@fuw.edu.pl (M. Godliński), nurowski@fuw.edu.pl (P. Nurowski).

1 0393-0440/\$ - see front matter © 2005 Published by Elsevier B.V.

2 doi:10.1016/j.geomphys.2005.01.011

RTICLE IN PRE

Journal of Geometry and Physics xxx (2005) xxx-xxx

www.elsevier.com/locate/jgp

Third-order ODEs and four-dimensional split signature Einstein metrics

Michał Godliński, Paweł Nurowski*1

Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, ul. Hoża 69, Warszawa, Poland

Received 2 January 2005; accepted 19 January 2005

8 Abstract

We construct a family of split signature Einstein metrics in four dimensions, corresponding to par ticular classes of third-order ODEs considered modulo fiber preserving transformations of variables.
 © 2005 Published by Elsevier B.V.

12 Keywords: Einstein metrics; Third-order ODE; Transformations of variables

13

3

4

5

6

7

14 **1. Introduction**

¹⁵ Our starting point is a third-order ordinary differential equation (ODE)

$$6 y''' = F(x, y, y', y''),$$

for a real function y = y(x). Here F = F(x, y, p, q) is a sufficiently smooth real function of four real variables (x, y, p = y', q = y'').

Given another third-order ODE

 $\bar{\mathbf{v}}^{\prime\prime\prime\prime} = \bar{F}(\bar{\mathbf{x}}, \bar{\mathbf{v}}, \bar{\mathbf{v}}^{\prime}, \bar{\mathbf{v}}^{\prime\prime})$

20

ELSEVIER

2

ARTICLE IN PRESS

it is often convenient to know whether there exists a suitable transformation of variables 21 $(x, y, p, q) \rightarrow (\bar{x}, \bar{y}, \bar{p}, \bar{q})$ which brings (2) to (1). Several types of such transformations are 22 of particular importance. Here we consider fiber preserving (f.p.) transformations, which 23 are of the form 24

$$\bar{x} = \bar{x}(x), \quad \bar{y} = \bar{y}(x, y).$$
(3)

We say that two third-order ODEs, (1) and (2), are (locally) f.p. equivalent iff there ex-26 ists a (local) f.p. transformation (3), which brings (2) to (1). The task of finding nec-27 cessary and sufficient conditions for ODEs (1) and (2) to be (locally) f.p. equivalent, 28 is called a f.p. equivalence problem for third-order ODEs. In the cases of (more gen-29 eral) point transformations and contact transformations, this problem was studied and 30 solved by Cartan [1] and Chern [2] in the years 1939–1941. The interest in these stud-31 ies has been recently revived due to the fact that important equivalence classes of third-32 order ODEs naturally define three-dimensional conformal Lorentzian structures including 33 Einstein-Weyl structures. This makes these equivalence problems aplicable not only to 34 differential geometry but also to the theory of integrable systems and general relativity 35 [3,8,11]. 36

In this paper we show how to construct four-dimensional split signature Einstein met-37 rics, starting from particular ODEs of third-order. We formulate the problem of f.p. equiv-38 alence in terms of differential forms. Invoking Cartan's equivalence method, we con-39 struct a six-dimensional manifold with a distinguished coframe on it, which encodes 40 all information about original equivalence problem. For specific types of the ODEs, the 41 class of Einstein metrics can be explicitly constructed from this coframe. This result is a 42 byproduct of the full solution of the f.p. equivalence problem, that will be described in 43 [5]. 44

We acknowledge that all our calculations were checked by the independent use of the 45 two symbolic calculations programs: Maple and Mathematica. 46

2. Third-order ODE and Cartan's method 47

ndr

Following Cartan and Chern, we rewrite (1), using 1-forms 48

q) dx,

$$\omega^{1} = dy - p dx,$$

$$\omega^{2} = dp - q dx,$$

$$\omega^{3} = dq - F(x, y, p, y),$$

$$\omega^{4} = dx.$$

These are defined on the second jet space \mathcal{J}^2 locally parametrized by (x, y, p, q). Each 50 solution y = f(x) of (1) is fully described by the two conditions: forms $\omega^1, \omega^2, \omega^3$ vanish 51 on a curve (t, f(t), f'(t), f''(t)) and, as this defines a solution up to transformations of x, 52 $\omega^4 = dt$ on this curve. Suppose now, that Eq. (1) undergoes fiber preserving transformations 53

GEOPHY 1090 1-14

(4)

ARTICLE IN PRESS

⁵⁴ (3). Then the forms (4) transform by

 $\omega^2 \to \bar{\omega}^2 = \beta(\omega^2 + \gamma \omega^1),$

 $\omega^3 \to \bar{\omega}^3 = \epsilon(\omega^3 + \eta\omega^2 + \varkappa\omega^1),$

 $\omega^1 \to \bar{\omega}^1 = \alpha \omega^1$.

 $\omega^4 \to \bar{\omega}^4 = \lambda \omega^4$.

where functions α , β , γ , ϵ , η , \varkappa , λ are defined on \mathcal{J}^2 , satisfy $\alpha\beta\epsilon\lambda \neq 0$ and are determined by a particular choice of transformation (3). A fiber preserving equivalence class of ODEs is described by forms (4) defined up to transformations (5). Eqs. (1) and (2) are f.p. equivalent, iff their corresponding forms (ω^i) and ($\bar{\omega}^j$) are related as above.

We now apply Cartan's equivalence method [9,10]. Its key idea is to enlarge the space \mathcal{J}^2

to a new manifold $\tilde{\mathcal{P}}$, on which functions α , β , γ , ϵ , η , \varkappa , λ are additional coordinates. The

⁶² coframe (ω^i) defined up to transformations (5), is now replaced by a set of four well-defined ⁶³ 1-forms

$$\theta^{2} = \beta(\omega^{2} + \gamma\omega^{1}),$$

$$\theta^{3} = \epsilon(\omega^{3} + \eta\omega^{2} + \varkappa\omega^{1}),$$

$$\theta^{4} = \lambda\omega^{4}$$

 $\theta^1 = \alpha \omega^1$.

on $\tilde{\mathcal{P}}$. If, in addition, the following f.p. invariant condition [4,6]

$$F_{qq} \neq 0$$

is satisfied then, there is a geometrically distinguished way of choosing five parame-67 ters $\beta, \epsilon, \eta, \varkappa, \lambda$ to be functions of $(x, y, p, q, \alpha, \gamma)$. Then, on a six-dimensional man-68 ifold \mathcal{P} parametrized by $(x, y, p, q, \alpha, \gamma)$ Cartan's method give a way of supplement-69 ing the well-defined four 1-forms (θ^i) with two other 1-forms Ω^1 , Ω^2 so that the set 70 $(\theta^1, \theta^2, \theta^3, \theta^4, \Omega^1, \Omega^2)$ constitutes a rigid coframe on \mathcal{P} . According to the theory of G-71 structures [7,10], all information about a f.p. equivalence class of Eq. (1) satisfying $F_{qq} \neq 0$ is encoded in the coframe $(\theta^1, \theta^2, \theta^3, \theta^4, \Omega^1, \Omega^2)$. Two Eqs. (1) and (2) are f.p. equivalent, 72 73 iff there exists a diffeomorphism $\psi: \mathcal{P} \to \bar{\mathcal{P}}$, such that $\psi^* \bar{\theta}^i = \theta^i, \psi^* \bar{\Omega}^A = \Omega^A$, where 74 i = 1, 2, 3, 4 and A = 1, 2. The procedure of constructing manifold \mathcal{P} and the coframe 75 (θ^i, Ω^A) is explained in details in [9,10] for a general case and in [4,5] for this specific 76 problem. Here we omit the details of this procedure, summarizing the results on f.p. equiv-77 alence problem in the following theorem. 78

Theorem 2.1. A third-order ODE y''' = F(x, y, y', y''), satisfying $F_{qq} \neq 0$, considered modulo fiber preserving transformations of variables, uniquely defines a six-dimensional manifold \mathcal{P} , and an invariant coframe $(\theta^1, \theta^2, \theta^3, \theta^4, \Omega^1, \Omega^2)$ on it. In local coordinates 4

ARTICLE IN PRESS

M. Godliński, P. Nurowski / Journal of Geometry and Physics xxx (2005) xxx-xxx

84 where K denotes

85
$$K = \frac{1}{6}(F_{qx} + pF_{qy} + qF_{qp} + FF_{qq}) - \frac{1}{9}F_q^2 - \frac{1}{2}F_p$$

and ω^i , i = 1, 2, 3, 4 are defined by the ODE via (4).

Exterior derivatives of the above invariant forms read

$$d\theta^{1} = \Omega^{1} \wedge \theta^{1} + \theta^{4} \wedge \theta^{2},$$

$$d\theta^{2} = \Omega^{2} \wedge \theta^{1} + a\theta^{3} \wedge \theta^{2} + b\theta^{4} \wedge \theta^{2} + \theta^{4} \wedge \theta^{3},$$

$$d\theta^{3} = \Omega^{2} \wedge \theta^{2} - \Omega^{1} \wedge \theta^{3} + (2 - 2c)\theta^{3} \wedge \theta^{2} + e\theta^{4} \wedge \theta^{1} + 2b\theta^{4} \wedge \theta^{3},$$

$$d\theta^{4} = \Omega^{1} \wedge \theta^{4} + f\theta^{4} \wedge \theta^{1} + (c - 2)\theta^{4} \wedge \theta^{2} + a\theta^{4} \wedge \theta^{3},$$

$$d\Omega^{1} = (2c - 2)\Omega^{2} \wedge \theta^{1} - \Omega^{2} \wedge \theta^{4} + g\theta^{1} \wedge \theta^{2} + h\theta^{1} \wedge \theta^{3}$$

$$+ k\theta^{1} \wedge \theta^{4} - f\theta^{2} \wedge \theta^{4},$$

$$d\Omega^{2} = \Omega^{2} \wedge \Omega^{1} - a\Omega^{2} \wedge \theta^{3} - b\Omega^{2} \wedge \theta^{4} + l\theta^{1} \wedge \theta^{2} + m\theta^{1} \wedge \theta^{3} + n\theta^{1} \wedge \theta^{4}$$

$$+ r\theta^{2} \wedge \theta^{3} + s\theta^{2} \wedge \theta^{4} - f\theta^{3} \wedge \theta^{4}.$$
(7)

88

8

where a, b, c, e, f, g, h, k, l, m, n, r, s are functions on \mathcal{P} , which can be simply calculated due to formulae (6). The simplest and the most symmetric case, when all the func-

ARTICLE IN PRESS

tions a, b, c, e, f, g, h, k, l, m, n, r, s vanish, corresponds to the f.p. equivalence class of equation

$$y''' = \frac{3}{2} \frac{y''^2}{y'}$$

In this case, the manifold \mathcal{P} is (locally) the Lie group SO(2, 2) and the coframe $(\theta^1, \theta^2, \theta^3, \theta^4, \Omega^1, \Omega^2)$ is a basis of left invariant forms, which can be collected to the so(2, 2)-valued flat Cartan connection on $\mathcal{P} = SO(2, 2)$. Since the Levi–Civita connection for the split signature metrics in four dimensions also takes value in so(2, 2), we ask under which conditions on f.p. equivalence classes of ODEs (1), Eqs. (7) may be interpreted as the structure equations for the Levi–Civita connection of a certain four-dimensional split signature metric *G*.

3. The construction of the metrics

It is convenient to change the basis of 1-forms θ^1 , θ^2 , θ^3 , θ^4 , Ω^1 , Ω^2 on \mathcal{P} to

$$\tau^{1} = 2\theta^{1} + \theta^{4}, \qquad \tau^{2} = \Omega^{2}, \qquad \tau^{3} = \Omega^{2} + 2\theta^{3}, \qquad \tau^{4} = \theta^{4},$$

$$\gamma_{1} = \Omega^{1}, \qquad \gamma_{2} = \Omega^{1} + 2\theta^{2}.$$
 (8)

After this change, Eqs. (7) yield the formulae for the exterior differentials of $\tau^1, \tau^2, \tau^3, \tau^4, \Gamma_1, \Gamma_2$. These are the formulae (23) of Appendix A. They can be used to analyze the properties of the following bilinear tensor field

$$\tilde{G} = \tilde{G}_{ij}\tau^{i}\tau^{j} = 2\tau^{1}\tau^{2} + 2\tau^{3}\tau^{4}$$
(9)

on \mathcal{P} . The first question we ask here is the following: under which conditions on *a*, *b*, *c*, *e*, *f*, *g*, *h*, *k*, *l*, *m*, *n*, *r*, *s* the first four of Eqs. (23) may be identified with

$$\mathrm{d}\tau^{i} + \Gamma^{i}_{\ i} \wedge \tau^{j} = 0,$$

where the 1-forms Γ_i^i , i, j = 1, 2, 3, 4 satisfy

110
$$\Gamma_{(ij)} = 0$$
, and $\Gamma_{ij} = \tilde{G}_{ik} \Gamma_i^k$

111 This happens if and only if

112
$$c = 0, \quad l = 0, \quad r = 0, \quad s = 0.$$
 (10)

Now, we call 1-forms Γ_1 , Γ_2 as *vertical* and 1-forms τ^1 , τ^2 , τ^3 , τ^4 as *horizontal*. To be able to interprete

115
$$R^i_j = \mathrm{d}\Gamma^i_j + \Gamma^i_k \wedge$$

GEOPHY 1090 1-14

6

ARTICLE IN PRESS

M. Godliński, P. Nurowski / Journal of Geometry and Physics xxx (2005) xxx-xxx

as a curvature, we have to require that it is horizontal, i.e. contains no Γ_1 , Γ_2 terms. This is equivalent to

118
$$m = 0, \quad a = 0, \quad g = 0, \quad f = -b.$$
 (11)

¹¹⁹ If these conditions are satisfied then the exterior derivatives of (23) give also

$$h_{120} \qquad b = 0, \qquad h = 0.$$
 (12)

¹²¹ Concluding, having conditions (10)–(12) satisfied, we have the following differentials of ¹²² the coframe $(\theta^1, \theta^2, \theta^3, \theta^4, \Gamma_1, \Gamma_2)$:

$$\begin{split} \mathrm{d}\tau^{1} &= \Gamma_{1} \wedge \tau^{1}, \\ \mathrm{d}\tau^{2} &= -\Gamma_{1} \wedge \tau^{2} + \frac{1}{2}n\tau^{1} \wedge \tau^{4}, \\ \mathrm{d}\tau^{3} &= -\Gamma_{2} \wedge \tau^{3} + \left(\frac{1}{2}n - e\right)\tau^{1} \wedge \tau^{4}, \\ \mathrm{d}\tau^{4} &= \Gamma_{2} \wedge \tau^{4}, \\ \mathrm{d}\Gamma_{1} &= \tau^{1} \wedge \tau^{2} + \frac{1}{2}k\tau^{1} \wedge \tau^{4}, \end{split}$$

123

 $\mathrm{d}\Gamma_2 = \frac{1}{2}k\tau^1 \wedge \tau^4 - \tau^3 \wedge \tau^4,$

125

 $\Gamma_j^i = \begin{pmatrix} -\Gamma_1 & 0 & 0 & 0 \\ 0 & \Gamma_1 & 0 & -\frac{1}{2}n\tau^1 + (e - \frac{1}{2}n)\tau^4 \\ \frac{1}{2}n\tau^1 - (e - \frac{1}{2}n)\tau^4 & 0 & \Gamma_2 & 0 \\ 0 & 0 & 0 & -\Gamma_2 \end{pmatrix}.$

Moreover, introducing the frame of the vector fields $(X_1, X_2, X_3, X_4, Y_1, Y_2)$ dual to the coframe $\tau^1, \ldots, \tau^4, \Gamma_1, \Gamma_2$ we get the following non-vanishing 2-forms R_i^i :

$$\begin{split} R_1^1 &= -\tau^1 \wedge \tau^2 - \frac{1}{2}k\tau^1 \wedge \tau^4, \\ R_2^2 &= \tau^1 \wedge \tau^2 + \frac{1}{2}k\tau^1 \wedge \tau^4, \\ R_4^2 &= \frac{1}{2}k\tau^1 \wedge \tau^2 + \left(\frac{1}{2}n_4 + e_1 - \frac{1}{2}n_1\right)\tau^1 \wedge \tau^4 - \frac{1}{2}k\tau^3 \wedge \tau^4, \\ R_1^3 &= -\frac{1}{2}k\tau^1 \wedge \tau^2 - \left(\frac{1}{2}n_4 + e_1 - \frac{1}{2}n_1\right)\tau^1 \wedge \tau^4 + \frac{1}{2}k\tau^3 \wedge \tau^4, \\ R_3^3 &= \frac{1}{2}k\tau^1 \wedge \tau^4 - \tau^3 \wedge \tau^4, \\ R_4^4 &= -\frac{1}{2}k\tau^1 \wedge \tau^4 + \tau^3 \wedge \tau^4. \end{split}$$

128

Here
$$f_i$$
 denotes $X_i(f)$. It further follows that $Ric_{ij} = R_{ikj}^{\kappa}$ satisfies

$$Ric_{ij} = -\tilde{G}_{ij}.$$
(14)

These preparatory steps enable us to associate with each f.p. equivalence class of ODEs (1) satisfying conditions (10)–(12) a four-manifold \mathcal{M} equipped with a split signature Einstein metric *G*. This is done as follows.

(13)

ARTICLE IN PRESS

- The system (13) guarantees that the distribution \mathcal{V} spanned by the vector fields Y_1, Y_2 is integrable. The leaf space of this foliation is four-dimensional and may be identified with \mathcal{M} . We also have the projection $\pi : \mathcal{P} \to \mathcal{M}$.
- The tensor field \tilde{G} is degenerate, $\tilde{G}(Y_1, \cdot) = 0$, $\tilde{G}(Y_2, \cdot) = 0$, along the leaves of \mathcal{V} . Moreover, equations (13) imply that

139
$$L_{Y_1}\tilde{G} = 0, \qquad L_{Y_2}\tilde{G}$$

Thus, \tilde{G} projects to a well-defined split signature metric G on \mathcal{M} .

= 0.

- The Levi–Civita connection 1-form for G and the curvature 2-form, pull-backed via π^* to \mathcal{P} , identify with Γ_i^i and R_i^i , respectively.
- Thus, due to equations (14), the metric G satisfies the Einstein field equations with cosmological constant $\Lambda = -1$.

Below we find all functions F = F(x, y, p, q) which solve conditions (10)–(12). This will enable us to write down the explicit formulae for the Einstein metrics *G* associated with the corresponding equations y''' = F(x, y, y', y'').

The conditions b = 0, c = 0 in coordinates $x, y, p, q, \alpha, \gamma$ read

¹⁴⁹
$$F_{qp} + \frac{1}{3}F_{qq} + 3K_q = 0, \qquad F_{qqq}\gamma - F_{qqp} - \frac{1}{3}F_{qqq}F_q + \frac{1}{6}F_{qq}^2 = 0.$$

The most general function F(x, y, p, q) defining third-order ODEs satisfying these contraints is

152
$$F = \frac{3}{2} \frac{q^2}{p + \sigma(x, y)} + 3 \frac{\sigma_x(x, y) + p\sigma_y(x, y)}{p + \sigma(x, y)} q + \xi(x, y, p),$$

where σ , ξ are arbitrary functions of two and three variables, respectively. Since the equations are considered modulo fiber preserving transformations, we can put $\sigma = 0$ by transformation $\bar{x} = x$ and $\bar{y} = \bar{y}(x, y)$ such that $\bar{y} = -\sigma(x, \bar{y}(x, y))$. Condition l = 0 now becomes

 $\bar{x} = x$ and $\bar{y} = \bar{y}(x, y)$ such that $\bar{y}_x = -\sigma(x, \bar{y}(x, y))$. Condition l = 0 now becomes

¹⁵⁶
$$p^3\xi_{ppp} - 3p^2\xi_{pp} + 6p\xi_p - 6\xi = 0,$$

157 with the following general solution

158
$$\xi = A(x, y)p^3 + C(x, y)p^2 + B(x, y)p$$

Hence F is given by

 $F = \frac{3}{2}\frac{q^2}{p} + A(x, y)p^3 + C(x, y)p^2 + B(x, y)p.$ (15)

GEOPHY 1090 1-14

8

16

166

ARTICLE IN PRESS

M. Godliński, P. Nurowski / Journal of Geometry and Physics xxx (2005) xxx-xxx

It further follows that it fulfills the remaining conditions a = f = g = h = m = r = s = 0and that

so
$$k = -\frac{C}{4\alpha^2 p}, \qquad n = \frac{C_y - zC - 2A_x}{8\alpha^3 p}, \qquad e = \frac{1}{2}n + \frac{tC + 2B_y - C_x}{16\alpha^3 p^2}.$$
 (16)

A straightforward application of Theorem 2.1 leads to the following expressions for the 'null coframe' $(\tau^1, \tau^2, \tau^3, \tau^4)$:

$$\tau^{1} = 2\alpha \, dy$$

$$\tau^{2} = (4\alpha)^{-1} [C \, dx + (2A - z^{2}) \, dy + 2 \, dz]$$

$$\tau^{3} = (4\alpha p)^{-1} [-(t + 2B) \, dx - C \, dy + 2 \, dt]$$

$$\tau^{4} = 2\alpha p \, dx,$$

where the new coordinates z and t are

168 $z = \frac{\gamma}{p}, \qquad t = \frac{q}{p} + \gamma.$

169 This brings

170
$$\tilde{G} = 2(\tau^1 \tau^2 + \tau^3 \tau^4)$$

on \mathcal{P} to the form that depends only on coordinates (x, y, z, t). Thus, \tilde{G} projects to a welldefined split signature metric

$$G = -[t^{2} + 2B(x, y)] dx^{2} + 2 dt dx + [2A(x, y) - z^{2}] dy^{2} + 2 dz dy$$

on a four-manifold \mathcal{M} parmetrized by (x, y, z, t).

It follows from the construction that metric G is f.p. invariant. However, it does not 175 yield all the f.p. information about the corresponding ODE. It is clear, since the function 176 C which is proportional to the f. p. Cartan's invariant k of (13), is not appearing in the 177 metric G. From the point of view of the metric, function C represents a 'null rotation' 178 of coframe (τ^{i}) . Thus it is not a geometric quantity. Therefore G, although f.p. invariant, 179 can not distinguish between various f.p. nonequivalent classes of equations such as, for 180 example, those with $C \equiv 0$ and $C \neq 0$. To fully distinguish all non-equivalent ODEs with 181 (15) one needs additional structure than the metric G. This structure is only fully described 182 by the bundle $\pi: \mathcal{P} \to \mathcal{M}$ together with the coframe $(\tau^1, \tau^2, \tau^3, \tau^4, \Gamma_1, \Gamma_2)$ of (13) on \mathcal{P} . 183 An alternative description, more in the spirit of the split signature metric G, is presented in 184 Section 5. 185

¹⁸⁶ Now, Eq. (14) imply that the metric *G* is Einstein with cosmological constant A = -1. ¹⁸⁷ The anti-selfdual part of its Weyl tensor is always of Petrov–Penrose type D. The selfdual ¹⁸⁸ Weyl tensor is of type II, if the functions *A* and *B* are generic. If A = A(y) and B = B(x)¹⁸⁹ the selfdual Weyl tensor degenerates to a tensor of type D. Summing up we have following ¹⁹⁰ theorem.

191 **Theorem 3.1.** *Third-order ODE*

¹⁹²
$$y''' = \frac{3}{2} \frac{y''^2}{y'} + A(x, y)y'^3 + C(x, y)y'^2 + B(x, y)y'$$

193 defines, by virtue of Cartan's equivalence method, a four-dimensional split signature metric

¹⁹⁴
$$G = -[t^2 + 2B(x, y)] dx^2 + 2 dt dx + [2A(x, y) - z^2] dy^2 + 2 dz dy$$

195 which is Einstein

196
$$Ric(G) = -G$$

and has Weyl tensor $W = W^{ASD} + W^{SD}$ of Petrov type D + II, with the exception of the case A = A(y), B = B(x), when it is of type D + D. The metric G is invariant with respect to f.p. transformations of the variables of the ODE.

4. Uniqueness of the metrics

²⁰¹ In this section we prove the following theorem.

Theorem 4.1. The metrics of Theorem 3.1 are the unique family of metrics G, which are defined by f.p. equivalence classes of third-order ODEs and satisfy the following three conditions.

- The metrics are split signature, Einstein: Ric(G) = -G, and each of them is defined on four-dimensional manifold \mathcal{M} , which is the base of the fibration $\pi : \mathcal{P} \to \mathcal{M}$.
- The family contains a metric corresponding to equation $y''' = \frac{3}{2} \frac{y'^2}{y'}$.
- 208 The tensor

209

$$\tilde{G} = \pi^* G = \mu_{ii} \theta^i \theta^j + \nu_{iA} \theta^i \Omega^A + \rho_{AB} \Omega^A \Omega^B$$

on \mathcal{P} , when expressed by the invariant coframe (θ^i , Ω^A) associated with the respective f.p. equivalence class, has the coefficients μ_{ij} , ν_{iA} , ρ_{AB} ; i, j = 1, ..., 4; A, B = 1, 2constant and the same for all classes of the ODEs for which G is defined.

To prove the theorem, it is enough to show the uniqueness of *G* in the simplest case of equation $y''' = \frac{3}{2} \frac{y''^2}{y'}$, and to repeat the calculations of Section 3 for a generic equation. The following trivial proposition holds.

Proposition 4.2. Let \tilde{G} be a bilinear symmetric form of signature (+ + -00) on \mathcal{P} , such that for a vector field N

if
$$\tilde{G}(N, \cdot) = 0$$
 then $L_N \tilde{G} = 0.$ (17)

9

10

A distribution spanned by such vector fields N is integrable and defines a four-dimensional manifold \mathcal{M} as a space of its integral leaves. There exists exactly one bilinear form G on \mathcal{M} with the property $\pi^*G = \tilde{G}$, where $\pi : \mathcal{P} \to \mathcal{M}$ is the canonical projection assigning a point of \mathcal{M} to an integral leave of the distribution.

Our aim now is to find all the metrics \tilde{G} of Proposition 4.2 which, when expressed by the coframe θ^i , Ω^A (or, equivalently, by τ^i , Γ_A), have constant coefficients. Let us consider the simplest case, corresponding to equation $y''' = \frac{3}{2} \frac{y''^2}{y'}$, for which all the invariant functions appearing in (7) and (23) vanish. \mathcal{P} is now the Lie group SO(2, 2), \tilde{G} is a form on Lie algebra so(2, 2), the distribution spanned by the degenerate fields N is a two-dimensional subalgebra $\mathfrak{h} \subset$ so(2, 2). Finding \tilde{G} is now a purely algebraic problem. In our case the basis (τ^i , Γ_A) satisfies

230

$$d\tau^{1} = \Gamma_{1} \wedge \tau^{1}, \qquad d\tau^{3} = -\Gamma_{2} \wedge \tau^{3}, d\tau^{2} = -\Gamma_{1} \wedge \tau^{2}, \qquad d\tau^{4} = \Gamma_{2} \wedge \tau^{4}, d\Gamma_{1} = \tau^{1} \wedge \tau^{2}, \qquad d\Gamma_{2} = \tau^{4} \wedge \tau^{3},$$

which agrees with a decomposition $so(2, 2) = so(1, 2) \oplus so(1, 2)$. A group of transformations preserving equations (18) is $O(1, 2) \times O(1, 2)$, that is the intersection of the orthogonal group O(2, 4) preserving the Killing form κ of so(2, 2) and the group $GL(3) \times GL(3)$ preserving the decomposition $so(2, 2) = so(1, 2) \oplus so(1, 2)$. Each coframe ($\tilde{\tau}^i, \tilde{\Gamma}_A$), satisfying (18) is obtained by a linear transformation:

236

$$\begin{pmatrix} \tilde{\tau}^1\\ \tilde{\tau}^2\\ \tilde{\Gamma}_1 \end{pmatrix} = A \begin{pmatrix} \tau^1\\ \tau^2\\ \Gamma_1 \end{pmatrix}, \qquad \begin{pmatrix} \tilde{\tau}^3\\ \tilde{\tau}^4\\ \tilde{\Gamma}_2 \end{pmatrix} = B \begin{pmatrix} \tau^3\\ \tau^4\\ \Gamma_2 \end{pmatrix}, \quad A, B \in \mathcal{O}(1, 2).$$
(19)

We use transformations (19) to obtain the most convenient form of the basis (N_1, N_2) of 237 the subalgebra $\mathfrak{h} \subset \mathfrak{so}(2, 2)$. We write down the metric \tilde{G} in the corresponding coframe 238 $(\tilde{\tau}^1, \tilde{\tau}^2, \tilde{\tau}^{\bar{3}}, \tilde{\tau}^4, \tilde{\Gamma}_1, \tilde{\Gamma}_2)$ and impose conditions (17). This conditions imply that the most 239 general form of the metric is $\tilde{\tilde{G}} = 2u\tilde{\tau}^1\tilde{\tau}^2 + 2v\tilde{\tau}^3\tilde{\tau}^4$, where *u*, *v* are two real parameters. 240 In such case, $[N_1, N_2] = 0$ and $\kappa(N_1, N_1) < 0$, $\kappa(N_2, N_2) < 0$. When written in terms of 241 the coframe (τ^i, Γ_A) , \tilde{G} involves six real parameters u, v, μ, ϕ, v, ψ , however it appears, 242 that only parameters u and v are essential; different choices of μ , ϕ , v, ψ define different 243 degenerate distributions spanned by N_1 , N_2 and hence spaces \mathcal{M} are different, but metrics 244 G on them are isometric. Thus we can choose $\tilde{G} = 2u\tau^1\tau^2 + 2v\tau^3\tau^4$. Computing \tilde{G} for 245 $F = \frac{3}{2} \frac{q^2}{p}$, we have, in a suitable coordinate system (x, y, z, t), 246

$$G = -v[t^2 + 2B(x, y)] dx^2 + 2v dt dx + u[2A(x, y) - z^2] dy^2 + 2u dz dy.$$

Parameters u, v can be also fixed, if we demand G to be Einstein with cosmological constant $\Lambda = -1$. This is only possible if u = 1, v = 1. The the tensor field \tilde{G} defined in this way is unique and has the form

$$\tilde{G} = 2\tau^{1}\tau^{2} + 2\tau^{3}\tau^{4} = 2\Omega^{2}(2\theta^{1} + \theta^{4}) + 2\theta^{4}(2\theta^{3} + \Omega^{2}).$$

(18)

ARTICLE IN PRESS

M. Godliński, P. Nurowski / Journal of Geometry and Physics xxx (2005) xxx-xxx

This formula is used in the generic case explaining our choice of the coframe (8) and the metric (9). This finishes the proof of Theorem 4.1.

5. The Cartan connection and the distinguished class of ODEs

Here we provide an alternative description of the f.p. equivalence class of third-order ODEs corresponding to F = F(x, y, p, q) of (15). We consider a four-dimensional manifold \mathcal{M} parametrized by (x, y, z, t). Then the geometry of a f.p. equivalence class of ODEs (15) is in one to one correspondence with the geometry of a class of coframes

259

 $\tau_0^1 = dy$

$$\tau_0^2 = \frac{1}{2} [C \, dx + (2A - z^2) \, dy + 2 \, dz]$$

$$\tau_0^3 = \frac{1}{2} [-(t + 2B) \, dx - C \, dy + 2 \, dt]$$

$$\tau_0^4 = dx,$$

on \mathcal{M} given modulo a special SO(2, 2) transformation

$$\tau_{0}^{i} \mapsto \tau^{i} = h_{j}^{i} \tau_{0}^{j}, \quad \text{where} \quad (h_{j}^{i}) = \begin{pmatrix} 2\alpha & 0 & 0 & 0 \\ 0 & (2\alpha)^{-1} & 0 & 0 \\ 0 & 0 & (2\alpha p)^{-1} & 0 \\ 0 & 0 & 0 & 2\alpha p \end{pmatrix}.$$
(21)

The Cartan equivalence method applied to the question if two coframes (20) are transformable to each other via (21) gives the full system of invariants of this geometry. These invariants consist of (i) a fibration $\pi : \mathcal{P} \to \mathcal{M}$ of Section 3, which now becomes a Cartan bundle $\mathcal{H} \to \mathcal{P} \to \mathcal{M}$ with the two-dimensional structure group \mathcal{H} generated by h_{j}^{i} , and (ii) of an so(2, 2)-valued Cartan connection ω described by the coframe ($\tau^{1}, \tau^{2}, \tau^{3}, \tau^{4}, \Gamma_{1}, \Gamma_{2}$) of (13) on \mathcal{P} . Explicitly, the connection ω is given by

$$\omega_{j}^{i} = \begin{pmatrix} -\frac{1}{2}(\Gamma_{1} + \Gamma_{2} + \tau^{4}) & 0 & \tau^{1} & -\frac{1}{2}\tau^{4} \\ 0 & \frac{1}{2}(\Gamma_{1} + \Gamma_{2} + \tau^{4}) - \Gamma_{2} + \tau^{3} - \frac{1}{2}\tau^{4} & -\frac{1}{2}\tau^{2} \\ \frac{1}{2}\tau^{2} & \frac{1}{2}\tau^{4} & \frac{1}{2}(\Gamma_{1} - \Gamma_{2} - \tau^{4}) & 0 \\ \Gamma_{2} - \tau^{3} + \frac{1}{2}\tau^{4} & -\tau^{1} & 0 & \frac{1}{2}(-\Gamma_{1} + \Gamma_{2} + \tau^{4}) \end{pmatrix}.$$

To see that this is an so(2, 2) connection it is enough to note that $g_{ij}\omega_k^j + g_{kj}\omega_i^k = 0$ with the matrix g_{ij} given by

271
$$g_{ij} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

GEOPHY 1090 1-14

(20)

12 M. Godliński, P. Nurowski / Journal of Geometry and Physics xxx (2005) xxx-xxx

Now, Eqs (13) are interpreted as the requirement that the curvature

$$\Omega = \mathrm{d}\omega + \omega \wedge \omega$$

of this connection ω has a very simple form

$$\Omega = \begin{pmatrix} -\frac{1}{2}k & 0 & 0 & 0\\ 0 & \frac{1}{2}k & \frac{1}{2}(-k+n-2e) & -\frac{1}{4}n\\ \frac{1}{4}n & 0 & 0 & 0\\ \frac{1}{2}(k-n+2e) & 0 & 0 & 0 \end{pmatrix} \tau^{1} \wedge \tau^{4},$$

where *n*, *e* and *k* are given by (16). The connection ω and its curvature Ω yields all the f.p. information of the equation corresponding to (15). In particular, all the equations with *k* = n = e = 0 are f.p. equivalent, all having the vanishing curvature of their Cartan connection ω .

It is interesting to search for a split signature 4-metric *H* for which the connection ω is the Levi–Civita connection. The general form of such metric is

$$H = g_{ij}T^iT^j,$$

where (T^1, T^2, T^3, T^4) are four linearly independent 1-forms on \mathcal{P} which staisfy

$$dT^i + \omega^i_j \wedge T^j = 0.$$
(22)

Thus, for such *H* to exist, the 1-forms (T^1, T^2, T^3, T^4) must also satisfy the integrability conditions of (22),

287
$$\Omega^{i}{}_{j} \wedge T^{j} = 0,$$

which are just the Bianchi identities for ω to be the Levi–Civita connection of metric H. 288 These identities provide severe algebraic constraints on the possible solutions (T^i) . Using 289 them, under the assumption that $C(x, y) \neq 0$ in the considered region of \mathcal{P} , we found all 290 (T^i) s satisfying (22). Thus, with every triple $C \neq 0, A, B$ corresponding to an ODE given 291 by F of (15), we were able to find a split signature metric H for which connection ω is the 292 Levi–Civita connection. Surprisingly, given A, B and $C \neq 0$ the general solution for (T^i) 293 involves four free real functions. Two of these functions depend on six variables and the 294 other two depend on two variables. Thus, each f.p. equivalence class of ODEs representd by 295 F of (15) defines a large family of split signature metrics H for which ω is the Levi–Civita 296 connection.¹ Writing down the explicit formulae for these metrics is easy, but we do not 297 present them here, due to their ugliness and due to the fact that, regardless of the choice of 298 the four free functions, they never satisfy the Einstein equations. The proof of this last fact 299 is based on lengthy calculations using the explicit forms of the general solutions for (T^i) . 300

¹ The four-manifold on which each of these metrics resides is the leaf space of the two-dimensional integrable distribution on \mathcal{P} which anihilates forms (T^1, T^2, T^3, T^4) .

ARTICLE IN PRESS

M. Godliński, P. Nurowski / Journal of Geometry and Physics xxx (2005) xxx-xxx

301 Acknowledgement

³⁰² This research was supported by the KBN grant 2 P03B 12724.

303 Appendix A

In this appendix we give the formulae for the differentials of the transformed Cartan invariant coframe $(\tau^1, \tau^2, \tau^3, \tau^4, \Gamma_1, \Gamma_2)$ on \mathcal{P} . These are:

$$d\tau^{1} = \Gamma_{1} \wedge \tau^{1} + \frac{1}{2}c\Gamma_{1} \wedge \tau^{4} - \frac{1}{2}c\Gamma_{2} \wedge \tau^{4} + \frac{1}{2}f\tau^{4} \wedge \tau^{1} - \frac{1}{2}a\tau^{4} \wedge \tau^{2} + \frac{1}{2}a\tau^{4} \wedge \tau^{3},$$
(23a)

$$d\tau^{2} = \frac{1}{4}l\Gamma_{1} \wedge \tau^{1} + \left(\frac{1}{4}r - 1\right)\Gamma_{1} \wedge \tau^{2} - \frac{1}{4}r\Gamma_{1} \wedge \tau^{3} - \left(\frac{1}{4}l + \frac{1}{2}s\right)\Gamma_{1} \wedge \tau^{4}$$

$$- \frac{1}{4}l\Gamma_{2} \wedge \tau^{1} - \frac{1}{4}r\Gamma_{2} \wedge \tau^{2} + \frac{1}{4}r\Gamma_{2} \wedge \tau^{3} + \left(\frac{1}{4}l + \frac{1}{2}s\right)\Gamma_{2} \wedge \tau^{4}$$

$$+ \frac{1}{4}m\tau^{2} \wedge \tau^{1} - \frac{1}{4}m\tau^{3} \wedge \tau^{1} - \frac{1}{2}n\tau^{4} \wedge \tau^{1} + \frac{1}{2}a\tau^{3} \wedge \tau^{2}$$

$$+ \left(\frac{1}{4}m - \frac{1}{2}f + b\right)\tau^{4} \wedge \tau^{2} + \left(\frac{1}{2}f - \frac{1}{4}m\right)\tau^{4} \wedge \tau^{3}, \qquad (23b)$$

$$d\tau^{3} = \frac{1}{4}l\Gamma_{1} \wedge \tau^{1} + \left(c + \frac{1}{4}r\right)\Gamma_{1} \wedge \tau^{2} - \left(c + \frac{1}{4}r\right)\Gamma_{1} \wedge \tau^{3} - \left(\frac{1}{4}l + \frac{1}{2}s\right)\Gamma_{1} \wedge \tau^{4} + \frac{1}{4}l\Gamma_{2} \wedge \tau^{1} - \left(c + \frac{1}{4}r\right)\Gamma_{2} \wedge \tau^{2} + \left(c + \frac{1}{4}r - 1\right)\Gamma_{2} \wedge \tau^{3} + \left(\frac{1}{4}l + \frac{1}{2}s\right)\Gamma_{2} \wedge \tau^{4} + \frac{1}{4}m\tau^{2} \wedge \tau^{1} - \frac{1}{4}m\tau^{3} \wedge \tau^{1} + \left(e - \frac{1}{2}n\right)\tau^{4} \wedge \tau^{1} + \frac{1}{2}a\tau^{3} \wedge \tau^{2} + \left(\frac{1}{4}m - b - \frac{1}{2}f\right)\tau^{4} \wedge \tau^{2} + \left(2b + \frac{1}{2}f - \frac{1}{4}m\right)\tau^{4} \wedge \tau^{3},$$
(23c)

$$d\tau^{4} = +\frac{1}{2}c\Gamma_{1} \wedge \tau^{4} + \left(1 - \frac{1}{2}c\right)\Gamma_{2} \wedge \tau^{4} + \frac{1}{2}f\tau^{4} \wedge \tau^{1} - \frac{1}{2}a\tau^{4} \wedge \tau^{2} + \frac{1}{2}a\tau^{4} \wedge \tau^{3},$$
(23d)

GEOPHY 1090 1-14

ARTICLE IN PRESS

M. Godliński, P. Nurowski / Journal of Geometry and Physics xxx (2005) xxx-xxx

$$d\Gamma_{1} = \frac{1}{4}g\Gamma_{1} \wedge \tau^{1} + \left(\frac{1}{2}f - \frac{1}{4}g\right)\Gamma_{1} \wedge \tau^{4} - \frac{1}{4}g\Gamma_{2} \wedge \tau^{1} + \left(\frac{1}{4}g - \frac{1}{2}f\right)\Gamma_{2} \wedge \tau^{4} + \left(\frac{1}{4}h + c - 1\right)\tau^{2} \wedge \tau^{1} + -\frac{1}{4}h\tau^{3} \wedge \tau^{1} - \frac{1}{2}k\tau^{4} \wedge \tau^{1} + \left(\frac{1}{4}h + c\right)\tau^{4} \wedge \tau^{2} - \frac{1}{4}h\tau^{4} \wedge \tau^{3},$$
(23e)

$$d\Gamma_{2} = \frac{1}{4}g\Gamma_{1} \wedge \tau^{1} - \frac{1}{2}a\Gamma_{1} \wedge \tau^{2} + \frac{1}{2}a\Gamma_{1} \wedge \tau^{3} + \left(b + \frac{1}{2}f - \frac{1}{4}g\right)\Gamma_{1} \wedge \tau^{4} - \frac{1}{4}g\Gamma_{2} \wedge \tau^{1} + \frac{1}{2}a\Gamma_{2} \wedge \tau^{2} - \frac{1}{2}a\Gamma_{2} \wedge \tau^{3} + \left(\frac{1}{4}g - b - \frac{1}{2}f\right)\Gamma_{2} \wedge \tau^{4} + \left(\frac{1}{4}h + c\right)\tau^{2} \wedge \tau^{1} - \frac{1}{4}h\tau^{3} \wedge \tau^{1} - \frac{1}{2}k\tau^{4} \wedge \tau^{1} + \left(\frac{1}{4}h + c\right)\tau^{4} \wedge \tau^{2} + \left(1 - \frac{1}{4}h\right)\tau^{4} \wedge \tau^{3}.$$
(23f)

304 References

- [1] E. Cartan, La Geometria de las Ecuaciones Diferenciales de Tercer Orden, Rev. Mater. Hispano-Am. 4 (1941)
 1–31.
- [2] S.-S. Chern, The Geometry of the Differential Equation y''' = F(x, y, y', y'') in Selected Papers, Springer-Verlag, 1978 (original 1940).
- [3] S. Fritelli, C. Kozameh, E.T. Newman, Differential geometry from differential equations, Commun. Math.
 Phys. 223 (2001) 383–408.
- [4] M. Godliński Metoda równoważności Cartana i struktury Sasakiego, Master thesis, Department of Physics,
 Warsaw University, 2001.
- [5] M. Godliński, P. Nurowski, Geometry of third order ODEs, in preparation.
- [6] G. Grebot, The characterization of third order ordinary differential equations admitting a transitive fiber preserving point symmetry group, J. Math. Anal. Appl. 206 (1997) 364–388.
- [7] S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, New York, Heidelberg,
 Berlin, 1972.
- [8] P. Nurowski, Differential Equations and Conformal Structures, arXiv:math.DG/0406400, 2004.
- [9] P.J. Olver, Equivalence, Invariants and Symmetry, Cambridge University Press, Cambridge, 1995.
- 10] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ, 1964.
- [11] K.P. Tod, Einstein–Weyl spaces and third order differential equations, J. Math. Phys. 41 (2000) 5572.

DTD 5