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In this paper we study a novel class of parabolic geometries 
which we call parabolic geometries of Monge type. These 
parabolic geometries are defined by gradings such that 
their −1 component contains a nonzero co-dimension 1 
abelian subspace whose bracket with its complement is non-
degenerate. We completely classify the simple Lie algebras 
with such gradings in terms of elementary properties of the 
defining set of simple roots. In addition we characterize those 
parabolic geometries of Monge type which are non-rigid in 
the sense that they have nonzero harmonic curvatures in 
positive weights. Standard models of all non-rigid parabolic 
geometries of Monge type are described by under-determined 
ODE systems. The full symmetry algebras for these under-
determined ODE systems are explicitly calculated; surpris-
ingly, these symmetries are all just prolonged point symme-
tries.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Early in the development of the structure theory for simple Lie algebras, W. Killing 
[9,10] conjectured that there exists a rank 2, 14-dimensional simple Lie algebra g2 which 
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admits a realization as a Lie algebra of vector fields on a 5-dimensional manifold. This 
realization was discovered independently by F. Engel and E. Cartan1 and is given by the 
infinitesimal symmetries of the rank 2 distribution in 5 variables for the under-determined 
ordinary differential equation

dz

dx
=

[
d2y

dx2

]2

. (1.1)

Recall that for any distribution D defined on a manifold M , the Lie algebra of infinitesi-
mal symmetries X(D) is the set of vector fields X on M such that [X, D] ⊂ D. Eq. (1.1)
subsequently re-appeared as the flat model in Cartan’s solution [4] to the equivalence 
problem for rank 2 distributions in 5 variables and in papers by Hilbert [11] and Car-
tan [6] on the problem of closed form integration of under-determined ODE systems.

It is therefore natural to ask if all simple Lie algebras admit such elegant realizations as 
the infinitesimal symmetries of under-determined systems of ordinary differential equa-
tions. We shall formulate this question within the context of parabolic geometry and 
give a complete answer in terms of the novel concept of a parabolic geometry of Monge 
type. These geometries are defined intrinsically in terms of the −1 grading component 
and exist for all types of simple Lie algebras. In this paper we shall [i] completely classify 
all parabolic geometries of Monge type; [ii] identify those geometries which are non-rigid 
and describe the spaces of fundamental curvatures in terms of the second Lie algebra 
cohomology; [iii] give under-determined ODE realizations for the standard models; and
[iv] explicitly calculate the infinitesimal symmetries for the standard models. For each 
classical simple Lie algebra, one particular parabolic Monge geometry of depth 3 stands 
out from all the others. We believe that these particular geometries, listed in Theo-
rem A, merit further study similar to that for the well-known |1|-gradations and contact 
gradations.

To explain this work in more detail, we first recall a few basic definitions from the 
general theory of parabolic geometry. As presented in [1,17], the underlying structure for 
any parabolic geometry is a semi-simple Lie algebra g and a vector space decomposition

g = gk ⊕ · · · ⊕ g1 ⊕ g0 ⊕ g−1 ⊕ · · · ⊕ g−k. (1.2)

Such a decomposition is called a |k|-grading if: [i] [gi, gj ] ⊂ gi+j ; [ii] the negative part of 
this grading

g− = g−1 ⊕ · · · ⊕ g−k

is generated by g−1, that is, [g−1, g�] = g−1+� for � < 0; and [iii] gk �= 0 and g−k �= 0. 
The negatively graded part g− is a graded nilpotent Lie algebra while the non-negative 
part of this grading

1 Their articles appear sequentially in 1893 in Comptes Rendu [2,7].
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p = gk ⊕ · · · ⊕ g1 ⊕ g0

is always a parabolic subalgebra. We remark that for a fixed choice of simple roots Δ0

of g, there is a one-to-one correspondence between the subsets Σ of Δ0 and the gradings 
of g [1, pp. 292–293]. We will denote the corresponding parabolic geometry constructed 
this way by (g, Σ).

For every |k|-grading of a simple Lie algebra g, there is unique element E ∈ g0, called 
the grading element, such that [E, x] = jx for all x ∈ gj and −k ≤ j ≤ k. Let Λq(g−, g)
be the vector space of q-forms on g− with values in g and set Λq(g−, g)p to be the 
subspace of q-forms which are homogeneous of weight p, that is,

Λq(g−, g)p = {ω ∈ Λq(g−, g) | LE(ω) = pω}.

The spaces Λ∗(g−, g)p define a co-chain complex with respect to the standard Lie al-
gebra differential. The cohomology of this co-chain complex is denoted by2 Hq(g−, g)p. 
A parabolic geometry is called rigid if all the degree 2 cohomology spaces in positive 
weights vanish and non-rigid otherwise. The cohomology spaces Hq(g−, g)p can be cal-
culated by the celebrated method of Kostant [13] (see also [1, §3.3] and [17, §5.1]).

With these preliminaries dispatched, fix a |k|-grading of g, let N be the simply con-
nected Lie group with Lie algebra g− and let D(g−1) be the distribution on N generated 
by the left invariant vector fields corresponding to the g−1 component of g−. This dis-
tribution is called the standard differential system associated to the given parabolic 
geometry.

It is a fundamental result of N. Tanaka (see [17, Sections 2 and 5], especially pages 432 
and 475) that if H1(g−, g)p = 0 for p ≥ 0, then the Tanaka prolongation of g− coincides 
with g and we have the following Lie algebra isomorphism

X(D(g−1)) ∼= g. (1.3)

In this way, one can construct many examples of distributions D whose symmetry algebra 
X(D) is a given finite dimensional simple Lie algebra g. Indeed, pick a subset Σ ⊂ Δ0 of 
the simple roots and construct the associated grading (1.2), which we require to satisfy 
H1(g−, g)p = 0 for p ≥ 0. This cohomology condition is generally satisfied, with the few 
exceptions enumerated in [1, Proposition 4.3.1] or [17, Proposition 5.1]. Then calculate 
the left invariant vector fields on the nilpotent Lie group N . By (1.3) the Lie algebra 
of the infinitesimal symmetries of the standard differential system D(g−1) is the given 
simple Lie algebra g. Finally write down a system of ordinary or partial differential 
equations whose canonical differential system is D(g−1).

All of these calculations can be done with the Maple DifferentialGeometry package 
and this allowed the authors to generate many examples of differential equations with 

2 The notation in Yamaguchi [17] is Hp,q(g−, g) = Hq(g−, g)p+q−1.
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prescribed simple Lie algebras of infinitesimal symmetries. For each classical simple Lie 
algebra one particular parabolic geometry immediately stood out from all the others. 
These are listed in the following theorem.

Theorem A. The standard differential systems for the parabolic geometries A�{α1, α2, α3}, 
C�{α�−1, α�}, B�{α1, α2} and D�{α1, α2}, are realized as the canonical differential sys-
tems for the under-determined ordinary differential equations

I : A�{α1, α2, α3 }, � ≥ 3, żi = ẏ0ẏi, 1 ≤ i ≤ �− 2. (1.4)

II : C�{α�−1, α� }, � ≥ 3, żij = ẏiẏj , 1 ≤ i ≤ j ≤ �− 1. (1.5)

III : B�{α1, α2 }, � ≥ 3, ż = 1
2

2�−3∑
i,j=1

κij ẏ
iẏj . (1.6)

IV : D�{α1, α2 }, � ≥ 4, D3{α1, α2, α3 }, ż = 1
2

2�−4∑
i,j=1

κij ẏ
iẏj . (1.7)

Here (κij) is a symmetric, non-degenerate constant matrix of an arbitrary signature 
(r, s), where r + s = 2� − 3 for B� or r + s = 2� − 4 for D�. The symmetry algebras of I
through IV are isomorphic, as real Lie algebras, to sl(� + 1, R), sp(�, R), so(r+ 2, s + 2), 
and so(r + 2, s + 2), respectively.

We note that the only repetition in the above list is A3 and D3, where the matrix 
(κij) has signature (1, 1), corresponding to the isomorphism sl(4, R) ∼= so(3, 3).

Evidently, Eqs. (1.6) and (1.7) are the differential equations for a curve γ(x) =
(x, yi(x), z(x)) to lie on the null cone of the metric

g = dx dz − 1
2
∑
ij

κijdy
i dyj .

Similarly, the Monge equations (1.4) and (1.5) can be interpreted as the differential 
equations for curves to lie on the common null cones of families of (degenerate) quadratic 
forms

{dx dzi − dy0 dyi} and {dx dzij − dyi dyj}.

The geometric characterization of these families of quadratic forms and their roles as 
geometric structures associated to parabolic geometries are interesting problems in their 
own right, which we hope to address in a future publication.

The main result of this paper is an intrinsic characterization of those parabolic geome-
tries arising in Theorem A, as well as the g2 parabolic geometries defining Eq. (1.1). To 
motivate this result, two key observations are needed. First, under-determined systems 
of ordinary differential equations such as I–IV are often referred to, in the geometric 
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differential equation literature, as Monge equations. As distributions these Monge equa-
tions are all generated by vector fields {X, Y1, Y2, . . . , Yd} such that [Yi, Yj ] = 0 and such 
that the 2d + 1 vector fields {X, Yi, [X, Yi]} are all point-wise independent. This first 
observation suggests the following fundamental definition.

Definition 1.1. A parabolic geometry

g = gk ⊕ · · · ⊕ g1 ⊕ g0 ⊕ g−1 ⊕ · · · ⊕ g−k

is of Monge type if its −1 grading component g−1 contains a co-dimension 1 non-zero 
abelian subalgebra y and dim g−2 = dim y.

The second observation is that each of the parabolic geometries arising in Theorem A, 
as well as the Hilbert–Cartan equation (1.1), is non-rigid. These two observations moti-
vate our second theorem.

Theorem B. Let g be a split simple Lie algebra of rank � with simple roots {α1, α2, . . . , α�}. 
The following is a complete list of non-rigid parabolic geometries of Monge type.

Ia : A�{α1, α2, α3 }, � ≥ 3 Ib : A�{α1, α2 }, � ≥ 2
IIa : C�{α�−1, α� }, � ≥ 3 IIb : C3{α1, α2, α3 }

IIIa : B�{α1, α2 }, � ≥ 2 IIIb : B2{α2 } IIIc : B3{α2, α3 }
IIId : B3{α1, α2, α3 }
IVa : D�{α1, α2 }, � ≥ 4
Va : G2{α1 } Vb : G2{α1, α2 }.

A number of remarks concerning Theorem B are in order.
1. The standard differential systems for cases Ia, IIa, . . . , Va are precisely those given 
by Eqs. (1.4), (1.5), (1.6) and (1.7) (for κij with split signature), and (1.1). Cases Ib,
IIIb, and IIIa with � = 2 are the only cases where H1(g−, g)p �= 0 for some p ≥ 0. The 
standard models for Ib and IIIb are easily seen to be the jet spaces J1(R1, R�−1) and 
J1(R1, R1). The standard models for IIb, IIIc, and IIId are respectively

ż1 = ẏ1ẏ2 ż2 = xẏ2 ż3 = (y1 + ẏ1x)ẏ2 ż4 = y1ẏ1ẏ2, (1.8)

ż = ÿ1ẏ2, and (1.9)

ż1 = ẏ1ẏ2 ż2 = 1
2(ẏ2)2 ż3 = 1

2 ẏ
1(ẏ2)2 ż4 = 1

2 ẏ
2(xẏ1ẏ2 − y1ẏ2 − 2ẏ1y2). (1.10)

Finally, the standard differential system in case Vb is simply a partial prolongation of 
the standard differential system for (1.1) (see also [17, §1.3]). We provide the details for 
these calculations in Section 4.
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2. It is a relatively straightforward matter to extend this classification of non-rigid 
parabolic Monge geometries to all real simple Lie algebras. In the real case the 
|k|-gradings are defined by those subsets of simple roots which are disjoint from the 
compact roots and invariant under the Satake involution [1, Theorem 3.2.9]. This re-
quirement, our classification of parabolic Monge gradations in Theorem 2.4 and the 
classification of real simple Lie algebras (see, for example, [1, Table Appendix B.4]), 
show that, in addition to the split real forms listed in Theorem B, one only has to in-
clude the real parabolic geometries listed in Theorem A III and IV for κij of general 
signature.
3. It is rather disappointing that none of the exceptional Lie algebras f4, e6, e7, e8 appear 
in Theorem B but, simply stated, there are rather few non-rigid parabolic geometries for 
these algebras [17] and none of these satisfy the Monge criteria of Theorem 2.4. (See, 
however, Cartan [3] for the standard differential system for f4{α4} which is not of Monge 
type. In the same spirit, see [17, p. 480] for some other linear PDE systems with simple 
Lie algebras of symmetries.)
4. We remark also that just as the Hilbert–Cartan equation (1.1) arises as the reduction 
of the parabolic Goursat equation

32u3
xy − 12u2

yyu
2
xy + 9u2

xx − 36uxxuxyuyy + 12uxxu
3
yy = 0

(see [5] and [15]), one also finds in [5, p. 414] that Eq. (1.6), with � = 3, appears as the 
reduction of a certain second order system of 3 non-linear partial differential equations 
for 1 unknown function in 3 independent variables. See the Ph.D. thesis of S. Sitton [14]
for details.
5. With regards to the Cartan equivalence problem associated to each of these non-rigid 
parabolic geometries of Monge type, it hardly needs to be said that the g2 parabolic 
geometry defined by {α1} was solved in full detail by Cartan [4]. For the remaining 
interesting cases, that is, except cases Ib, IIIb, and IIIa with � = 2, we remark that, 
unlike the g2 equivalence problem, all fundamental invariants appear in the solution to 
the equivalence problem as torsion.3 The equivalence problems associated to the parabolic 
geometries IIb and IIId are quite remarkably simple – each admits only a scalar torsion 
invariant and no curvature invariants.
6. As pointed out by the referee, the papers [18] and [19] by Yamaguchi and Yatsui are 
closely related to the subject of this article. Let us recall that for any regular distribution 
D on a manifold M one can associate a graded nilpotent Lie algebra

σ(D) = σ−1 ⊕ σ−2 ⊕ · · · ⊕ σ−k

called the symbol algebra. In accordance with Definition 1.1, we then say that D is a 
Monge distribution if σ−1 admits a co-dimension 1 abelian subalgebra y. More generally, 

3 For the definition of the torsion of a Cartan connection, see [1, p. 85].



30 I. Anderson et al. / Advances in Mathematics 277 (2015) 24–55
one says that D defines a pseudo-product structure on M if σ−1 is the vector space 
direct sum of two 2 abelian subalgebras ζ and y. A general method of constructing 
pseudo-product structures is given in [18] which produces, from a different viewpoint, 
the Monge gradations in cases IIa, IIIa, and IVa of Theorem B.

For pseudo-product structures there is a duality construction for the standard models 
– one can view either one of the subalgebras ζ or y as defining the horizontal distribution 
of total vector fields for a system of differential equations. In this paper we have taken this 
horizontal distribution to be the 1-dimensional complement to the codimension-1 abelian 
sub-algebra, resulting in the realization of the standard models as under-determined non-
linear ODE or Monge equations. In [19], the co-dimension 1 abelian subalgebra is taken 
as the horizontal space, leading to realization of the standard models as over-determined
linear PDE . The dual systems to the Monge equations III and IV corresponding to B�

and D� in Theorem A are

∂2y

∂xp∂xq
= κpq

∂2y

∂x2
1
, 1 ≤ p, q ≤ n,

where y is the unknown function and the xp for 1 ≤ p ≤ n are the independent vari-
ables with n = 2� − 3 for B� and n = 2� − 4 for D�. For the dual systems to Monge 
equations II corresponding to C�, we refer the reader to Eqs. (3.6) and (3.7) in [19]. It is 
an interesting and instructive exercise to explicitly exhibit the transformations between 
these two realizations.

The paper is organized as follows. In Section 2 we give a complete classification of 
the grading subsets Σ for parabolic geometries of Monge type. We show, in particular, 
that for simple Lie algebras of rank � ≥ 3, there is a unique simple root ζ ∈ Σ which is 
connected in the Dynkin diagram to every other element of Σ. In Section 3, we adapt the 
arguments of Yamaguchi [17] to describe all the non-rigid parabolic geometries of Monge 
type, thereby proving Theorem B. We also describe the cohomology spaces H2(g−, g)p
with positive homogeneity weights (as irreducible representations of g0) for each non-rigid 
parabolic geometry. This gives a characterization of the curvature for the normal Cartan 
connection which will play an important role in our subsequent study of the Cartan 
equivalence problem for non-rigid parabolic geometries of Monge type. In Section 4, 
we explicitly give the structure equations for the nilpotent Lie algebras g− for each 
non-rigid parabolic geometry of Monge type. In each case we integrate these structure 
equations to obtain the Monge equation realizations of the standard differential systems. 
This establishes Theorem A. Finally in Section 5 we use standard methods to explicitly 
calculate the infinitesimal symmetry generators for our standard models in Theorem A. 
Remarkably, these infinitesimal symmetries are all prolonged point transformations.

2. Parabolic geometries of Monge type

In the introduction we defined the notion of a parabolic geometry of Monge type 
(Definition 1.1) as one for which the g−1 component contains a co-dimension 1 non-zero 
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abelian subalgebra y satisfying dim g−2 = dim y. In this section we obtain a remarkable 
intrinsic classification of these parabolic geometries in terms of the defining set of simple 
roots Σ. The key to this classification is the fact that the set Σ must contain a distin-
guished root ζ which is adjacent to all the other roots of Σ in the Dynkin diagram of g
(see Theorem 2.4).

Let g be a complex semi-simple Lie algebra of rank � with Cartan subalgebra h and 
roots Δ, positive roots Δ+ and simple roots Δ0. The height of a root β =

∑
α∈Δ0

nαα with 

respect to Σ is defined as htΣ(β) =
∑
α∈Σ

nα, and the set of roots with height j is denoted 

by Δj
Σ. The j-th grading component in (1.2) is

gj =
⊕

β∈Δj
Σ

gβ for j �= 0 and g0 = h⊕
⊕

β∈Δ0
Σ

gβ .

It is clear that dim gj = dim g−j .
While we shall primarily be concerned with the case dim g−1 > 2, we shall, never-

theless, be required to carefully analyze the case dim g−1 = 2 since this contains the 
exceptional Lie algebra g2 for the Hilbert–Cartan equation (1.1). For this special case, 
we shall use the following.

Lemma 2.1. Let g be a |k|-graded simple Lie algebra. If dim g−1 = 2, then rank g = 2.

Proof. We show that if rank g > 2 then dim g1 > 2. Let Σ ⊂ Δ0 be any non-empty 
subset of the simple roots Δ0 for g. If rank g > 2, then the set Σ must non-trivially 
intersect a set of 3 connected simple roots {α, β, γ}. Then α, α+ β, α+ β + γ, β, β + γ, 
and γ are all roots. Regardless of which of these 3 simple roots α, β, γ are in Σ, there 
will always be at least 3 roots with height 1 relative to Σ and therefore dim g−1 ≥ 3. For 
example, if the intersection with Σ contains just β, then β, α+β, and β + γ have height 
1 while if the intersection contains α and γ, then the roots α and α + β, β + γ, and γ
have height 1. �
Theorem 2.2. Let g be a |k|-graded simple Lie algebra of Monge type with dim g−1 = 2. 
Then the possibilities are:

1. A2{α1, α2} 2. B2{α2} (the short root) 3. B2{α1, α2}
4. G2{α1} (the short root) 5. G2{α1, α2}

Proof. By the above lemma rank g = 2 and hence g is of type A2, B2 = C2, or G2. The 
gradations not in the above list are A2{α1}, A2{α2}, B2{α1} and G2{α2}, and they are 
not of Monge type; specifically, the gradations A2{α1}, A2{α2}, and B2{α1} have depth 
k = 1 while for G2{α2} one easily checks that dim g−1 = 4 and dim g−2 = 1. �

For the rest of this section we focus on the case dim g−1 > 2.
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Proposition 2.3. Let g be a |k|-graded semi-simple Lie algebra of Monge type with 
dim g−1 > 2, and let Σ be the subset of simple roots which defines the gradation of g.
[i] The abelian subalgebra y ⊂ g−1 is g0-invariant.
[ii] There is a 1-dimensional g0-invariant subspace x such that g−1 = x ⊕ y.
[iii] There is a unique simple root ζ ∈ Σ and roots {β1, β2 , . . . , βd} ⊂ Δ1

Σ such that

x = g−ζ and y = g−β1 ⊕ g−β2 ⊕ · · · ⊕ g−βd
. (2.1)

[iv] The set Σ consists precisely of the root ζ and all roots adjacent to ζ in the Dynkin 
diagram for g.
[v] If g0 contains no simple ideal of g, then the Lie algebra g is simple.

Proof. [i] Let {y1, y2, . . . , yd} be a basis for y and let {x, y1, y2, . . . , yd} be a basis for 
g−1. The generating condition [g−1, g−1] = g−2 and the fact that dim g−2 = dim y imply 
that

adx : y → g−2 is an isomorphism. (2.2)

This implies that the vectors zi = [x, yi] form a basis for g−2. Let u ∈ g0. Since the 
action of g0 on g preserves the |k|-grading, it follows that

[u, yi] = aix + bjiyj .

Since the vectors yi commute, the Jacobi identity for the vectors u, yi, yj yields

aizj − ajzi = 0 for all 1 ≤ i < j ≤ d.

Since d > 1 this implies that ai = 0 and hence [u, yi] ∈ y. This proves [i].
[ii] Since g is a complex semi-simple Lie algebra, g0 is a reductive Lie algebra and the 
center z(g0) ⊂ h by [1, Theorem 3.2.1]. Hence the center acts on g−1 by semi-simple 
endomorphisms. Therefore the representation of g0 on g−1 is completely reducible (see 
for example [1, p. 316]). Thus the g0-invariant subspace y admits a g0-invariant comple-
ment x.
[iii] Since the Cartan subalgebra h of g used to define the root space decomposition of g
is, by definition, contained in g0, the g0-invariant subspaces x and y must be direct sums 
of the (1-dimensional) root spaces corresponding to roots in Δ1

Σ. This proves Eq. (2.1).
Put x = g−ζ . In order to complete the proof of [iii], we must verify that ζ is a simple 

root. Suppose not. Since ζ is a positive root of height 1, we can therefore write ζ = ζ ′+ζ ′′, 
where ζ ′ is a positive root of height 0 and ζ ′′ is a positive root of height 1. Then, on the 
one hand,

[gζ′ , x] = [gζ′ , g−ζ ] = g−ζ′′ .
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On the other hand, gζ′ ⊂ g0 and so [gζ′ , x] ⊂ x since x is g0-invariant. This contradicts 
the above equation and therefore ζ must be a simple root which belongs to Σ.
[iv] Let β ∈ Σ\ζ and let x ∈ g−ζ and y ∈ g−β be non-zero vectors. By (2.2), [x, y] ∈ g−2
is non-zero, ζ+β must be a root, and therefore β is adjacent to ζ in the Dynkin diagram 
for g. Conversely, let β be any simple root adjacent to ζ. Then β + ζ is a root and 
[g−β , g−ζ ] = g−β−ζ . If β /∈ Σ, then β ∈ Δ0

Σ and therefore, by the g0-invariance of g−ζ , 
[g−β , g−ζ ] ⊂ g−ζ . This is a contradiction and hence β ∈ Σ.
[v] Suppose that g = l ⊕ k, where l and k are semi-simple. The condition that g0 contains 
no simple ideal of g implies that Σ must contain simple roots of l and k. Therefore Σ is 
disconnected in the Dynkin diagram of g, which contradicts [iv]. �

In view of [v], we henceforth assume that (g, Σ) is a parabolic geometry of Monge 
type with g simple. By Proposition 2.3, there is a simple root ζ such that all the other 
roots in Σ are connected to ζ in the Dynkin diagram for g. We say that the root ζ is 
the leader of Σ. However not every simple root of g can serve as a leader for a parabolic 
geometry of Monge type. To complete our characterization, we now turn our attention 
to the gradation of g by the leader ζ itself, and in particular to the decomposition of 
the semi-simple part gssζ,0 of its 0-grading component. By virtue of the connectivity of Σ, 
there is a one-to-one correspondence between the remaining roots Σ\ζ and the connected 
components of graph obtained by removing the node ζ in the Dynkin diagram for g. Label 
these connected components by Υα for α ∈ Σ\ζ so that

Δ0 = {ζ} ∪
⋃

α∈Σ\ζ
Υα.

Let g(Υα) be the complex simple Lie algebra with Dynkin diagram Υα. Then by [1, 
Proposition 3.2.2] we have the following decomposition

gssζ,0 =
⊕

α∈Σ\ζ
g(Υα).

Theorem 2.4. Let g be a parabolic geometry of a complex simple Lie algebra as determined 
by the set of simple roots Σ. If dim g−1 > 2, then g is a parabolic geometry of Monge 
type if and only if
[i] there is root ζ ∈ Σ which is adjacent to every other root in Σ in the Dynkin diagram 
of g; and
[ii] For each α ∈ Σ\ζ, the parabolic geometry for the complex simple Lie algebra g(Υα)
defined by the root {α} is |1|-graded.

Condition [ii] of Theorem 2.4 excludes just two possibilities. The first is F4 with 
ζ = α4, the short root, and the other exclusion is Cm with ζ = αi, for 1 ≤ i ≤ m − 2, 
m ≥ 3. (See Corollary 2.6 for details.) Therefore there are many Monge gradations, and 
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the condition of non-rigidity is essential for arriving at the short list of Monge gradations 
in Theorem B.

In order to prove this theorem, we consider the set of roots Υ1
α of g(Υα) with height 1 

relative to the gradation by {α}, that is,

Υ1
α = {β ∈ Δ | β = α +

m∑
i=1

niβi where βi ∈ Υα\α, ni > 0, and m ≥ 0}. (2.3)

Furthermore, define subspaces of g by

y−α =
⊕
β∈Υ1

α

g−β . (2.4)

These are the −1-grading components of g(Υα) with respect to {α}. The proof of The-
orem 2.4 depends on the following lemma.

Lemma 2.5. Let Σ be a set of simple roots satisfying condition [i] of Theorem 2.4.

[i] Then Δ1
Σ = {ζ} ∪

⋃
α∈Σ\ζ Υ1

α, and hence we have the following decomposition

g−1 = g−ζ ⊕
⊕

α∈Σ\ζ
y−α. (2.5)

[ii] If β ∈ Υ1
α and β′ ∈ Υ1

α′ with α �= α′, then β + β′ is not a root, and hence

[y−α, y−α′ ] = 0. (2.6)

[iii] If β ∈ Υ1
α then ζ + β ∈ Δ, and hence dim[g−ζ , y−α] = dim y−α.

[iv] If γ ∈ Δ0
Σ, β ∈ Υ1

α and γ + β ∈ Δ, then γ + β ∈ Υ1
α. Thus the y−α in (2.5) are 

g0-invariant subspaces of g−1.

Proof. [i] Clearly Υ1
α ⊂ Δ1

Σ and so it suffices to show that if β ∈ Δ1
Σ\ζ then there is a 

root α ∈ Σ such that β ∈ Υ1
α. Indeed, since β has height 1 with respect to Σ, there is a 

root α ∈ Σ and simple roots βi ∈ Δ0\Σ such that

β = α +
m∑
i=1

niβi where ni > 0 and m ≥ 0. (2.7)

Since β is a root, the set of simple roots {α, β1, . . . , βm} must define a connected subgraph 
of the Dynkin diagram for g. Therefore {α, β1, . . . , βm} ⊂ Υα. This equation implies that 
βi ∈ Υα\α and β ∈ Υ1

α.
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[ii] In view of (2.3), the roots β ∈ Υ1
α and β′ ∈ Υ1

α′ , with α �= α′, are given by

β = α +
m∑
i=1

niβi and β′ = α′ +
m′∑
i=1

n′
iβ

′
i. (2.8)

Since Υα and Υα′ are disjoint, the totality of roots {α, α′, βi, β′
i} is not a connected 

subgraph in the Dynkin diagram of g and therefore β+β′ cannot be a root. Consequently 
[g−β , g−β′ ] = 0 and (2.6) follows.
[iii] Let (·,·) be the positive-definite inner product on the root space induced from the 
Killing form. Since ζ is adjacent to α but not any of the βi, it follows that

(β, ζ) =
(
α +

m∑
i=1

niβi, ζ
)

= (α, ζ) < 0,

and therefore β + ζ is a root by [8, p. 324 (6)].
[iv] We note that γ + β ∈ Δ1

Σ, and then use [i] to conclude that γ + β ∈ Υ1
α. The 

g0-invariance of the summands y−α immediately follows. �
Proof of Theorem 2.4. Suppose that g is a parabolic geometry of Monge type. Then 
condition [i] follows from Proposition 2.3. From (2.1) and (2.5), we know that

y =
⊕

α∈Σ\ζ
y−α. (2.9)

Since y is abelian, each of the summands y−α in this decomposition must be abelian. 
Since y−α is the −1-grading component for the gradation of g(Υα) defined by α, this 
must be a |1|-gradation and condition [ii] in Theorem 2.4 is established.

Conversely, given a |k|-grading defined by Σ such that [i] and [ii] hold, define y by 
(2.9). By (2.5), y is a co-dimension 1 subspace of g−1. We now check the conditions of 
Definition 1.1 for a parabolic Monge geometry. To prove that y is abelian, we first note 
that each summand y−α is abelian by hypothesis [ii]. Eq. (2.6) then proves that y is 
abelian. That the dimension of [g−ζ , y] equals the dimension of y follows directly from 
part [iii] of Lemma 2.5. �

An explicit list of parabolic geometries of Monge type can now be constructed from 
the classification of |1|-graded simple Lie algebras given in the table on page 297 of [1]. 
We see that condition [ii] of Theorem 2.4 holds if and only if the graded simple algebras 
g(Υα) are A, B, C, D, E6 and E7 with the gradation given by a simple root at the end 
of its Dynkin diagram as specified in the table. In the case that g(Υα) is of type Bm, 
α cannot equal αm which means that the original |k|-graded algebra g cannot be F4 with 
ζ = α4, the short root. Similarly, in the case that g(Υα) is of type Cm, α cannot equal 
α1 which means that the original |k|-graded algebra g cannot be Cm with ζ = αi, for 
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1 ≤ i ≤ m − 2, m ≥ 3. One can check that these two exceptions occur precisely when Σ
consists of just short roots. This proves the following.

Corollary 2.6. Let g be a parabolic geometry of a simple Lie algebra as determined by the 
set of simple roots Σ ⊂ Δ0. If dim g−1 > 2, then g is a parabolic geometry of Monge type 
if and only if condition [i] of Theorem 2.4 holds and Σ contains a long root.

3. Non-rigid parabolic geometries of Monge type

Let g be a simple Lie algebra and let

g = gk ⊕ . . . g1 ⊕ g0 ⊕ g−1 ⊕ · · · ⊕ g−k (3.1)

be a |k|-grading of g determined by the set of simple roots Σ ⊂ Δ0. We suppose that the 
parabolic geometry defined by this grading is of Monge type (see Definition 1.1) so that Σ
satisfies the conditions of Theorem 2.4. The purpose of this section is to determine which 
parabolic geometries of Monge type are non-rigid, that is, we will characterize the Monge 
subsets of simple roots Σ with non-vanishing second degree Lie algebra cohomology in 
positive homogeneity weight

H2(g−, g)p �= 0 for some p > 0. (3.2)

In a remarkable paper K. Yamaguchi [17] gives a complete list of all sets of simple 
roots for which the corresponding parabolic geometry satisfies (3.2). Initially, we simply 
determined which of the 40 or so cases in Yamaguchi’s classification were of Monge type 
and in this way we arrived at Theorem B. It is a rather surprising fact that of all the 
possible sets of simple roots Σ of Monge type, those which are non-rigid contain either 
the first or the last root and for the algebras B, C, and D of rank ≥ 4 all contain exactly 
2 roots. Since these two facts alone effectively reduce the proof of Theorem B to the 
examination of just a few cases and since both facts can be directly established with 
relative ease, we have chosen to give the detailed proofs here.

We shall use Kostant’s theorem [13] to calculate the Lie algebra cohomology.4 To 
briefly describe how this calculation proceeds, we first establish some standard notation. 
Recall that we denote the set of all roots by Δ and the positive and negative roots by 
Δ+ and Δ−. For a subset of simple roots Σ ⊂ Δ0, we denote by

Δ+
Σ =

⋃
k>0

Δk
Σ (3.3)

the set of roots with positive heights with respect to Σ.

4 Kostant’s theorem applies more generally to the Lie algebra cohomology Hq(g−, V ), where V is any rep-
resentation space of g, but we limit our discussion to just the case where V = g is the adjoint representation 
of g.
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For each simple root αi ∈ Δ0 the simple Weyl reflection si on the root space is defined 
by si(β) = β − 〈β, αi〉 αi, where β ∈ Δ and 〈β, αi〉 = 2(β,αi)

(αi,αi) . The finite group generated 
by all simple Weyl reflections is the Weyl group W of g. For any element σ ∈ W , we 
define another set of roots by

Δσ = σ(Δ−) ∩ Δ+, (3.4)

that is, Δσ is the set of positive roots that are images of negative roots under the action 
of σ. It is an important fact, established in many textbooks, that if q = cardΔσ, then 
σ can be written as a product of exactly q simple Weyl reflections si, in other words, 
length(σ) = cardΔσ. Finally, define

WΣ = {σ ∈ W |Δσ ⊂ Δ+
Σ } and W q

Σ = {σ ∈ WΣ | cardΔσ = q }. (3.5)

Hasse diagrams provide an effective method for finding the sets W q
Σ (see [1, §§3.2.14–16]).

Kostant’s method is based upon two key results. The first result states that the coho-
mology spaces Hq(g−, g) are isomorphic to the kernel of a certain (algebraic) Laplacian 
� : Λq(g−, g) → Λq(g−, g). The forms in ker� are said to be harmonic – they define dis-
tinguished cohomology representatives. Since [g0, gi] ⊂ gi, the Lie algebra g0 naturally 
acts on the forms Λq(g−, g). The second key observation is that this action commutes 
with �.

The first assertion in Kostant’s theorem is that ker� decomposes as a direct sum of 
irreducible representations of g0, each occurring with multiplicity 1, and that there is a 
one-to-one correspondence between the irreducible summands in this decomposition and 
the Weyl group elements in W q

Σ. For each σ ∈ W q
Σ, we label the corresponding summand 

by Hq,σ(g−, g) and write

Hq(g−, g) =
⊕

σ∈W q
Σ

Hq,σ(g−, g). (3.6)

Kostant’s theorem also describes the lowest weight vector for Hq,σ(g−, g) as an irre-
ducible g0-representation.5 Fix a basis eα for the root space gα, and let ωα be the 1-form 
dual to eα under the Killing form: ωα(x) = B(eα, x). Let θ denote the highest root of g, 
which is also the highest weight for the adjoint representation of g. For σ ∈ W q

Σ, let 
Δσ = {β1, β2, . . . , βq}. Then

ωσ = e−σ(θ) ⊗ ω−β1 ∧ ω−β2 ∧ · · · ∧ ω−βq
(3.7)

is the harmonic representative for the lowest weight vector in Hq,σ(g−, g). The homo-
geneity weight wΣ(ωσ) of this form with respect to the grading is the homogeneity weight 

5 Actually Kostant [13] studied the cohomology Hq,σ(g+, g) and gave the highest weight vector for this ir-
reducible g0-representation. Through the Killing form, we have (Hq,σ(g+, g))∗ = Hq,σ(g−, g), and therefore 
the negative of the highest weight of the former becomes the lowest weight for the latter.
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of all the forms in Hq,σ(g−, g), since the orbit of the g0-action on ωσ is all of Hq,σ(g−, g)
and the grading element E commutes with g0.

To calculate the homogeneity weight wΣ(ωσ) is generally quite complicated but it is 
possible to obtain a compact formula in the case of immediate interest to us, namely 
when q = 2. Then the length of σ is 2 and there are two simple Weyl reflections si and 
sj , i �= j such that σ = σij = si ◦ sj .

Lemma 3.1. If σ = si ◦ sj ∈ W 2
Σ, then Δσ = { αi, si(αj) }, αi ∈ Σ, and

wΣ(ωσ) = −htΣ(θ) + 〈θ, αi〉 + 1 + (〈θ, αj〉 + 1) htΣ(si(αj)). (3.8)

Therefore the parabolic geometry defined by Σ is non-rigid if and only if

〈θ, αi〉 + (〈θ, αj〉 + 1) htΣ(si(αj)) ≥ htΣ(θ). (3.9)

Proof. The formula (3.8) for the homogeneity weight of Hq,σ(g−, g) is essentially the 
same as that given by Yamaguchi in Section 5.3 of [17] and we follow the arguments 
given there.

We first show that Δσ = { αi, si(αj)}. Since σ = si ◦ sj , we have

σ−1(αi) = −sj(αi) ∈ Δ− and σ−1(si(αj)) = sj(αj) = −αj ∈ Δ−

and therefore αi and si(αj) are the two distinct elements of Δσ. Set β1 = αi and β2 =
si(αj). The requirement Δσ ∈ Δ+

Σ now implies that αi ∈ Σ and therefore htΣ(αi) = 1.
Since

σ(θ) = si(θ − 〈θ, αj〉αj) = θ − 〈θ, αi〉αi − 〈θ, αj〉si(αj),

we have that the weight of the harmonic representative (3.7) (with q = 2) is

wΣ(ωσ) = −htΣ(θ) + 〈θ, αi〉 htΣ(αi) + 〈θ, αj〉htΣ(si(αj)) + htΣ(β1) + htΣ(β2),

which reduces to (3.8). �
To continue, we list the expressions for θ and the nonzero 〈θ, αi〉 for the classical Lie 

algebras.

A� : θ = α1 + α2 + · · · + α�, 〈θ, α1〉 = 〈θ, α�〉 = 1 (3.10)

B� : θ = α1 + 2α2 + · · · + 2α�, 〈θ, α2〉 = 1 (3.11)

C� : θ = 2α1 + · · · + 2α�−1 + α�, 〈θ, α1〉 = 2 (3.12)

D� : θ = α1 + 2α2 + · · · + 2α�−2 + α�−1 + α�, 〈θ, α2〉 = 1 (3.13)
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With these formulas and Lemma 3.1 it is now a straightforward matter to determine all 
the non-rigid parabolic geometries of Monge type. Simply stated, the reason that there 
are relatively few such geometries is because the Monge conditions in Theorem 2.4 lead 
to a large lower bound for the value of htΣ(θ).

Proposition 3.2. Every Monge parabolic geometry of type A� with � ≥ 5 whose simple 
roots Σ are interior to the Dynkin diagram is rigid. Apart from the standard symmetry 
of the Dynkin diagram for A�, the non-rigid Monge parabolic geometries of type A� are 
A�{α1, α2} for � ≥ 2 and A�{α1, α2, α3} for � ≥ 3.

Proof. If Σ is interior to the Dynkin diagram, then by Theorem 2.4 it is a connected set 
of 3 roots. From (3.10), we have htΣ(θ) = 3. Since α1, α� /∈ Σ, (3.9) reduces to

(〈θ, αj〉 + 1)(htΣ(αj) − 〈αj , αi〉) ≥ 3. (3.14)

But 〈θ, αj〉 ≤ 1, htΣ(αj) ≤ 1 and −〈αj , αi〉 ≤ 1 (from the Cartan matrix for A�), so 
(3.14) is satisfied only when

〈θ, αj〉 = 1, htΣ(αj) = 1, and 〈αj , αi〉 = −1. (3.15)

The second equation implies that αj ∈ Σ, which is interior to the Dynkin diagram. 
Then the first equation cannot be satisfied by (3.10). Therefore the first statement in 
the proposition is established, and hence the only non-rigid cases for A� with � ≥ 5 are 
A�{ α1, α2 } and A�{ α1, α2, α3 }.

For � ≤ 4 the Monge systems are A2{α1, α2}, A3{α1, α2}, A3{α1, α2, α3}, A4{α1, α2}
and A4{α1, α2, α3} and hence, in summary, the only possible non-rigid parabolic geome-
tries of type A� are those listed in the second statement of the proposition. To show that 
these possibilities are actually all non-rigid, one calculates the following table of Weyl 
reflections in W 2

Σ from the Hasse diagrams and the associated weights from (3.8).

Monge systems W 2
Σ Weights of σij

A2{α1, α2} [σ12, σ21] [4, 4]
A3{α1, α2} [σ12, σ21, σ23] [2, 3, 1]
A�{α1, α2}, � ≥ 4 [σ12, σ21, σ23] [2, 3, 0]
A3{α1, α2, α3} [σ12, σ13, σ21, σ23, σ32] [1, 1, 2, 2, 1]
A4{α1, α2, α3} [σ12, σ13, σ21, σ23, σ32, σ34] [1, 0, 2, 0, 0, 0]
A�{α1, α2, α3}, � ≥ 5 [σ12, σ13, σ21, σ23, σ32, σ34] [1, 0, 2, 0, 0, −1]

�
Proposition 3.3. Every Monge parabolic geometry of type C� with � ≥ 4 for a set Σ
containing 3 simple roots is rigid. The non-rigid Monge parabolic geometries of type C�

are C3{α1, α2, α3} and C�{α�−1, α�} for � ≥ 3.
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Proof. By Corollary 2.6, Σ must contain the long simple root and therefore Σ =
{α�−2, α�−1, α�} if it contains 3 simple roots. Then from (3.12) we have htΣ(θ) = 5. 
Since � ≥ 4, we have α1 /∈ Σ. Then (3.12) shows that 〈θ, αi〉 = 0, and therefore (3.8)
reduces to

(〈θ, αj〉 + 1)(htΣ(αj) − 〈αj , αi〉) ≥ 5. (3.16)

Now we have

〈θ, αj〉 ≤ 2, htΣ(αj) ≤ 1, −〈αj , αi〉 ≤ 2. (3.17)

If 〈θ, αj〉 = 0, then (3.16) is not possible. The only other possible value is 〈θ, αj〉 = 2
but then αj = α1 and we have htΣ(αj) = 0 and −〈αj , αi〉 ≤ 1 by the Dynkin diagram. 
Then (3.16) fails again. The first statement in the proposition is established and the 
list of possible non-rigid parabolic geometries of type C� are those listed in the second 
statement of the proposition. These are all non-rigid.

Monge systems W 2
Σ Weights of σij

C3{α1, α2, α3 } [σ12, σ13, σ21, σ23, σ32] [0, −1, 2, −1, −2]
C3{α2, α3 } [σ21, σ23, σ32] [1, 1, 0]
C�{α�−1, α� }, � ≥ 4 [σ�−1 �−2, σ�−1 �, σ� �−1] [−1, 1, 0]

�
Proposition 3.4. Every Monge parabolic geometry of type B� with � ≥ 4 for a set Σ
containing 3 simple roots is rigid. The non-rigid Monge parabolic geometries of type B�

are B2{α2}, B3{α2, α3}, B3{α1, α2, α3} and B�{α1, α2} for � ≥ 2.
Likewise, every Monge parabolic geometry of type D� with � ≥ 4 for a set Σ containing 

3 or more simple roots is rigid. The non-rigid Monge parabolic geometries of type D� for 
� ≥ 4 are D�{α1, α2}.

Proof. We note that for D�, the Monge grading set Σ can contain 4 simple roots. For 
either B� or D� with � ≥ 4, if Σ contains 3 or more simple roots then, from (3.11)
and (3.13), we find that htΣ(θ) = 5 or 6. Since

〈θ, αi〉 ≤ 1, 〈θ, αj〉 ≤ 1, 〈θ, αi〉 �= 〈θ, αj〉, htΣ(si(αj)) ≤ 3,

(3.8) can only hold when 〈θ, αi〉 = 0 and 〈θ, αj〉 = 1. In this case αj = α2 by (3.11)
and (3.13), and (3.8) becomes

2(htΣ(α2) − 〈α2, αi〉) ≥ 5.
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For D�, this is not possible because −〈α2, αi〉 ≤ 1. For B�, this inequality holds only if 
α2 ∈ Σ, αi = α3 and � = 3. The first statement in the proposition for each type B� or 
D� is therefore established.

In view of this result and Theorem 2.2 the possible non-rigid, Monge parabolic geome-
tries of type B� are B2{ α2 }, B2{ α1, α2 }, B3{ α1, α2 }, B3{ α2, α3 }, B3{ α1, α2, α3 }, 
B�{ α1, α2 } for � ≥ 4 and B�{ α�−1, α� } for � ≥ 4. The Monge parabolic geometries 
B�{ α�−1, α� } are rigid; all the others are non-rigid.

Monge systems W 2
Σ Weights of σij

B2{α1, α2} [σ12, σ21] [4, 3]
B2{α2 } [σ21] [3]
B3{α1, α2 } [σ12, σ21, σ23] [2, 1, 0]
B3{α2, α3 } [σ21, σ23, σ32] [−1, 0, 3]
B3{α1, α2, α3 } [σ12, σ13, σ21, σ23, σ32] [0, −3, −1, −1, 2]
B�{α1, α2 }, � ≥ 4 [σ12, σ21, σ23] [2, 1, 0]
B4{α3, α4 }, � ≥ 4 [σ32, σ34, σ43] [−1, −1, 0]
B�{α�−1, α� }, � ≥ 5 [σ�−1 �−2, σ�−1 �, σ� �−1] [−2, −1, 0]

The possible non-rigid, Monge parabolic geometries of type D� are D�{α1, α2}, 
D�{α�−2, α�−1} and D�{α�−2, α�}. Note that D4{α2, α4} is equivalent to D4{α1, α2}
and D�{α�−2, α�−1} and D�{α�−2, α�} are equivalent for all � ≥ 4. For � ≥ 5 the geome-
tries D�{α�−2, α�} are rigid.

Monge systems W 2
Σ Weights of σij

D4{α1, α2 } [σ12, σ21, σ23, σ24] [2, 1, 0, 0]
D�{α1, α2 }, � ≥ 5 [σ12, σ21, σ23] [2, 1, 0]
D5{α3, α5 } [σ32, σ34, σ35, σ53] [0,−1, 0, 0]
D�{α�−2, α� }, � ≥ 6 [σ�−2 �−3, σ�−2 �−1, σ�−2 �, σ� �−2] [−1,−1, 0, 0]

�
For the exceptional Lie algebras the highest weights and non-zero 〈θ, αi〉 are:

G2 : θ = 3α1 + 2α2, 〈θ, α2〉 = 1
F4 : θ = 2α1 + 3α2 + 4α3 + 2α4, 〈θ, α1〉 = 1
E6 : θ = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6, 〈θ, α2〉 = 1
E7 : θ = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7, 〈θ, α1〉 = 1
E8 : θ = 2α1 + 2α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8, 〈θ, α8〉 = 1

Here the roots are labeled as in [17, p. 454] or [12, p. 58].

Proposition 3.5. The only non-rigid Monge parabolic geometries for the exceptional sim-
ple Lie algebras are G2{α1} and G2{α1, α2}.
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Proof. Consider first the case of F4. If cardΣ ≥ 3, then htΣ(θ) = 9 and with 〈θ, αi〉 ≤ 1, 
〈θ, αj〉 ≤ 1, and htΣ(si(αj)) ≤ 3, the inequality (3.8) cannot hold. For parabolic geome-
tries of Monge type, Σ must contain the long root and this leaves just F4{α1, α2} as the 
only possibility. But it is easy to check that this is rigid.

For E6, E7 and E8 we have 〈θ, αi〉 ≤ 1, 〈θ, αj〉 ≤ 1, htΣ(si(αj)) ≤ 2 and 〈θ, αi〉 �=
〈θ, αj〉 so that the left-hand side of (3.8) does not exceed 4. If cardΣ ≥ 3, then by the 
connectivity of Σ we have htΣ(θ) ≥ 6, 6 and 9 for E6, E7 and E8 respectively and so 
only those geometries with cardΣ = 2 remain as possibilities. For cardΣ = 2 the size of 
htΣ(θ) is still ≥ 5 except for the 2 cases (apart from the symmetry of the E6 Dynkin 
diagram) listed below, all of which are rigid by direct calculation.

Monge systems W 2
Σ Weights of σij

F4{α1, α2 } [σ12, σ21, σ23, σ24] [−1, 0,−3]
E6{α5, α6 } [σ54, σ56, σ65] [−1, 0, 0]
E7{α6, α7 } [σ65, σ67, σ76] [−1, 0, 0]

�
We conclude this section with the description of H2(g−, g)p with positive homogeneity 

weights as gss0 -representations. This gives a characterization of the curvature for the 
normal Cartan connection which will play an important role in our subsequent study of 
the Cartan equivalence problem for non-rigid parabolic geometries of Monge type. With 
this application in mind and in view of (1.3), we will only discuss the non-rigid parabolic 
geometries of Monge type in Theorem B with H1(g−, g)p = 0 for all p ≥ 0. Therefore 
we will not discuss the cases Ib, IIIb, and IIIa with � = 2 in the following.

By Kostant’s theorem, the irreducible components of H2(g−, g)p are in one-to-one 
correspondence with W 2

Σ. The corresponding lowest weight vector is given by (3.7). We 
make the standard transformation from the lowest weight to the highest weight by the 
longest Weyl reflection.

Furthermore, if in (3.7) the e−σ(θ) ∈ p, then the corresponding cohomology class is 
called curvature and otherwise it is called torsion. As mentioned in the introduction, all 
our second cohomology classes with positive homogeneities are torsion classes, except 
the case for the Hilbert–Cartan equation Va. We indicate this in our table by listing the 
homogeneity weight of −σ(θ), and it is strictly negative in all cases except one.

In the following table, the ω are the fundamental weights of gss0 , and the V are the 
standard representations of gss0 corresponding to its first fundamental weight ω1. The 
subscript tf stands for trace free, and ⊗ means the Cartan component of the tensor 
product.

4. Standard differential systems for the non-rigid parabolic geometries of Monge type

In this section we use the standard matrix representations of the classical simple Lie 
algebras to explicitly calculate the structure equations for each negatively graded compo-
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Non-rigid 
par. Monge

g
ss
0 W 2

Σ Hom. 
wts

wts of 
−σ(θ)

Highest 
weights

Rep. 
spaces

Ia A3{α1, α2, α3} 0 σ12, σ32 1 −2 0 R

σ13 1 −1
σ21, σ23 2 −1

A�{α1, α2, α3}, A�−3 σ12 1 −2 ω1 V
� ≥ 4 σ21 2 −1

IIa C3{α2, α3} A1 σ21 1 −1 0 R

σ23 1 −3 5ω1 S5(V )
C�{α�−1, α�}
� ≥ 4

A�−2 σ�−1,� 1 −3 3ω1 + 2ω�−2 S3(V )
⊗

S2(V ∗)

IIb C3{α1, α2, α3} 0 σ21 2 −1 0 R

IIIa B3{α1, α2} A1 σ12 2 −1 4ω1 S4(V )
σ21 1 −2 6ω1 S6(V )

B�{α1, α2} B�−2 σ12 2 −1 2ω1 S2(V )tf
� ≥ 4 σ21 1 −2 3ω1 S3(V )tf

IIIc B3{α2, α3} A1 σ32 3 −1 2ω1 S2(V )

IIId B3{α1, α2, α3} 0 σ32 2 −2 0 R

IVa D4{α1, α2} A1 ⊕ A1 σ12 2 −1 [2ω1, 2ω1] S2(V1) ⊗ S2(V2)
σ21 1 −2 [3ω1, 3ω1] S3(V1) ⊗ S3(V2)

D�{α1, α2} D�−2 σ12 2 −1 2ω1 S2(V )tf
� ≥ 5 σ21 1 −2 3ω1 S3(V )tf

Va G2{α1} A1 σ12 4 0 4ω1 S4(V )

Vb G2{α1, α2} 0 σ12 4 −1 0 R

nent g− of the non-rigid parabolic geometries of Monge type enumerated in Theorem B. 
We give the structure equations in terms of the dual 1-forms. In each case these struc-
ture equations are easily integrated to give the Maurer–Cartan forms on the nilpotent 
Lie group N for the Lie algebra g− and the associated standard differential system is 
found.

Ia. A�{ α1, α2, α3 }, � ≥ 3. We use the standard matrix representation for the Lie 
algebra A� = sl(� + 1). Then the Cartan subalgebra is defined by the trace-free diagonal 
matrices Hi = Ei,i − Ei+1,i+1, 1 ≤ i ≤ �. Let Li be the linear function on the Cartan 
subalgebra taking the value of the ith entry. The simple roots are αi = Li − Li+1 for 
1 ≤ i ≤ � and the positive roots are αi + · · · + αj for 1 ≤ i ≤ j ≤ �. Thus the 
positive roots of height 1 with respect to Σ = { α1, α2, α3 } are α1, α2 and α3 + · · ·+αi

for 3 ≤ i ≤ �. The leader is X = e−α2 = E3,2 and the remaining root vectors of 
height −1, which define a basis for the abelian subalgebra y are P0 = e−α1 = E2,1 and 
Pi = e−α3−···−αi+2 = Ei+3,3 for 1 ≤ i ≤ � − 2. This somewhat obscure labeling of the 
basis vectors will be justified momentarily. It is easy to verify that the given matrices are 
indeed the required root vectors with respect to the above choice of Cartan subalgebra. 
These vectors define the weight −1 component g−1 of the grading for sl(� + 1) defined 
by Σ. Since [g−1, g−i] = g−i−1, we calculate the remaining vectors in g− to be

[P0, X ] = Y0 = −E3,1, [Pi, X ] = Yi = Ei+3,2,
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[P0, Yi ] = [Pi, Y0 ] = Zi = −Ei+3,1.

The grading of g− and full structure equations are therefore

g−1 = 〈P0, P1, P2, . . . , P�−2, X 〉,
g−2 = 〈Y0, Y1, . . . , Y�−2 〉,
g−3 = 〈Z1, . . . , Z�−2 〉,

and

P0 Pi X Y0 Yi Zi

P0 0 0 Y0 0 Zi 0
Pi 0 Yi Zi 0 0
X 0 0 0 0
Y0 0 0 0
Yi 0 0
Zi 0

.

In terms of the dual basis { θ0
p, θ

i
p, θx, θ

0
y, θ

i
y, θ

i
z } for the Lie algebra these structure 

equations are

dθ0
p = 0, dθip = 0 dθx = 0,

dθ0
y = θx ∧ θ0

p, dθiy = θx ∧ θip, dθiz = θiy ∧ θ0
p + θ0

y ∧ θip.

These structure equations are easily integrated to obtain Maurer–Cartan forms on 
the nilpotent Lie group for g−. The first 5 structure equations immediately give

θ0
p = dp0, θip = dpi, θx = dx, θ0

y = dy0 − p0dx, θiy = dyi − pidx,

so that the last structure equation becomes

d θiz = −dp0 ∧ dyi − dpi ∧ dy0 + (pidp0 + p0dpi) ∧ dx. (4.1)

The first term can be written as either d(−p0dyi) or d(yidp0). Since our goal is to give 
the simplest possible form for span { θ0

y, θ
i
y, θ

i
z }, we chose to write the first term as 

d(−p0dyi) so that (4.1) integrates to

θiz = dzi − p0dyi − pidy0 + p0pidx ≡ dzi − p0pidx mod { θ0
y, θ

i
y }.

The standard Pfaffian system defined by the parabolic geometry A�{ α1, α2, α3 } is 
therefore

IA�{1,2,3} = span { θ0
y, θ

i
y, θ

i
z }

= span { dy0 − p0dx, dyi − pidx, dzi − p0pidx }.

This is the canonical Pfaffian system for the Monge equations (1.4). By Tanaka’s theorem 
we are guaranteed that the symmetry algebra of the system is sl(� + 1).

IIa. C�{α�−1, α�}, � ≥ 3. The split real form for C� which we shall use is sp(�, R) =
{ X ∈ gl(2�, R) | XtJ + JX = 0 }, where
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J =
[

0 K�

−K� 0

]
and K� =

⎡
⎣

1
. .
.

1

⎤
⎦ .

Each X ∈ sp(�, R) may be written as X =
[
A B

C −A′

]
where A, B, C are � × � matrices, 

A′ = KAtK and B = B′ and C = C ′. The diagonal matrices Hi = Ei,i −E2�+1−i,2�+1−i

define a Cartan subalgebra. The simple roots αi = Li−Li+1, 1 ≤ i ≤ � −1 and α� = 2L�

and the positive roots are
{
αi + · · · + αj−1 for 1 ≤ i < j ≤ �, and
(αi + · · · + α�−1) + (αj + · · · + α�) for 1 ≤ i ≤ j ≤ �.

(4.2)

(For the Lie algebras of type B, C and D, we use the lists of positive roots from [16].) 
Therefore, for the choice of simple roots Σ = {α�−1, α�}, the roots of height 1 are α�

and αi + · · · + α�−1, for 1 ≤ i ≤ �− 1. The root −α� is our leader with root vector 
X = E�+1,�. A basis for the abelian subalgebra y, corresponding to the remaining roots 
of height −1 is given by Pi = E�,i − E2�+1−i,�+1. One easily checks that these matrices 
belong to sp(�, R) and that they are indeed root vectors for the above choice of Cartan 
subalgebra. By direct calculation we then find that

[Pi, X ] = Yi = −E�+1,i −E2�+1−i,�, and

[Pi, Yi ] = 2Zii = 2E2�+1−i,i and [Pi, Yj ] = Zij = E2�+1−i,j + E2�+1−j,i

Note that Zij = Zji. The grading and full structure equations for g− are therefore

g−1 = 〈P1, P2, . . . , P�−1, Z 〉,
g−2 = 〈 Y1, . . . , Y�−1 〉,
g−3 = 〈Z11, Z12, . . . , Z�� 〉,

and

Pi X Yi Zij

Ph 0 Yh εZhi 0
X 0 0 0
Yk 0 0
Zhk 0

where ε = 2 if i = j and ε = 1 otherwise. In terms of the dual basis { θip, θx, θ
i
y, θ

ij
z } for 

g− these structure equations are

dθip = 0 dθx = 0, dθiy = θx ∧ θip,

dθ ij
z = θiy ∧ θjp + θjy ∧ θip

These structure equations are easily integrated to give the following Maurer–Cartan 
forms

θip = dpi, θx = dx, θiy = dyi − pidx,

θijz = dzij − pidyj − pjdyi + pipj dx.
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The standard Pfaffian system defined by the parabolic geometry C�{ α�−1, α� } is there-
fore

IC�{�−1,�} = span { θiy, θijz } = span{ dyi − pidx, dzij − pipjdx }.

This is the canonical Pfaffian system for the Monge equations (1.5). By Tanaka’s theorem 
we are guaranteed that the symmetry algebra of the system is sp(�, R).

IIIa. B�{α1, α2}, � ≥ 3. The split real form for B� is so(� + 1, �) which we take to be 
the Lie algebra of n × n matrices, n = 2� + 1, which are skew-symmetric with respect 
to the anti-diagonal matrix Kn = [kij ]. The diagonal matrices Hi = Ei,i −En+1−i,n+1−i

define a Cartan subalgebra. The simple roots are αi = Li − Li+1, 1 ≤ i ≤ � − 1 and 
α� = L� and the positive roots are

{
αi + · · · + αj for 1 ≤ i ≤ j ≤ �, and
(αi + · · · + α�) + (αj + · · · + α�) for 1 ≤ i < j ≤ �.

Therefore, for the choice of simple roots Σ = {α1, α2}, the roots of height 1 are

⎧⎨
⎩

α1
α2 + · · · + αj for 2 ≤ j ≤ �, and
α2 + · · · + αi−1 + 2αi + · · · + 2α� for 3 ≤ i ≤ �.

The root −α1 is our leader with root vector X = E2,1 − En,n−1. A basis for the 
abelian subalgebra y, corresponding to the remaining roots of height −1 is given by 
Pi = Ei+2,2−En−1,n−i−1 for 1 ≤ i ≤ n −4. One easily checks that these matrices belong 
to so(� + 1, �) and that they are indeed root vectors for the above choice of Cartan 
subalgebra. By direct calculation we find that for 1 ≤ i ≤ n − 4 and 1 ≤ j ≤ n − 4

[Pi, X ] = Yi = Ei+2,1 −En,n−i−1, and

[Pi, Yj ] = κijZ, where Z = En,2 − En−1,1 and [κij ] = Kn−4.

The grading and full structure equations for g− are therefore

g−1 = 〈P1, P2, . . . , Pn−4, X 〉,
g−2 = 〈 Y1, . . . , Yn−4〉,
g−3 = 〈Z 〉,

and

Pi X Yi Z

Ph 0 Yh κhiZ 0
X 0 0 0
Yk 0 0
Z 0

.

In terms of the dual basis { θip, θx, θ
i
y, θz } for g− the structure equations are

dθip = 0, dθx = 0, dθiy = θx ∧ θip, dθz = κijθ
j
y ∧ θip,
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which are integrated to give the following Maurer–Cartan forms

θip = dpi, θx = dx, θiy = dyi − pidx,

θz = dz − κijp
idyj + 1

2κijp
ipj dx.

The standard Pfaffian system defined by the parabolic geometry B�{ α1, α2 } is therefore

IB�{1,2} = span { θiy, θz } = span { dyi − pidx, dz − 1
2κijp

ipjdx }. (4.3)

This is the canonical Pfaffian system for the Monge equations (1.6). By Tanaka’s theorem 
we are guaranteed that the symmetry algebra of the system is so(� + 1, �).

IVa. D�{α1, α2}, � ≥ 4. In this case n = 2� and the positive roots are

{
αi + · · · + αj−1 for 1 ≤ i < j ≤ �, and
(αi + · · · + α�−2) + (αj + · · · + α�) for 1 ≤ i < j ≤ �

(4.4)

but otherwise the formulas from III remain unchanged.

We now turn to the exceptional cases.

Ib. A�{α1, α2 }, � ≥ 2. We retain the notation used in Ia. In the present case the 
leader is X = e−α1 = E2,1 and the matrices Pi = e−α2−···−αi+2 = Ei+2,2, 1 ≤ i ≤ � − 1
define a basis for y. The structure equations are [Pi, X ] = Yi = Ei+2,1 and the standard 
differential system is the contact system

IA�{αa,α2} = { dy1 − p1dx, dy2 − p2dx, . . . , dy�−1 − p�−1dx } (4.5)

on the jet space J1(R, R�−1).

IIb. C3{α1, α2, α3 }. The roots of height 1 are Σ = {α1, α2, α3}. The root −α2 is 
our leader with root vector X = E3,2 − E5,4. A basis for the abelian subalgebra y, 
corresponding to the roots −α1 and −α3, is P1 = E2,1 − E6,5 and P2 = E4,3 and we 
calculate

Y1 = [P1, X] = E6,4 −E3,1, Y2 = [P2, X] = E5,3 + E4,2,

Z1 = [P1, Y2] = −E4,1 −E6,3, Z2 = [X,Y2] = −2E5,2,

Z3 = [X,Z1] = E6,2 + E5,1, Z4 = [P1, Z3] = −2E6,1.

The grading and full structure equations for g− are therefore
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g−1 = 〈P1, P2, X 〉,
g−2 = 〈 Y1, Y2 〉,
g−3 = 〈Z1, Z2 〉,
g−4 = 〈Z3 〉,
g−5 = 〈Z4 〉

and

P1 P2 X Y1 Y2 Z1 Z2 Z3 Z4
P1 0 0 Y1 0 Z1 0 2Z3 Z4 0
P2 0 Y2 Z1 0 0 0 0 0
X 0 0 Z2 Z3 0 0 0
Y1 0 Z3 Z4 0 0 0
Y2 0 0 0 0 0
Z1 0 0 0 0
Z2 0 0 0
Z3 0 0
Z4 0

.

In terms of the dual basis {θ1
p, θ

2
p, θx, θ

1
y, θ

2
y, θ

1
z , θ

2
z , θ

3
z , θ

4
z} for g− the structure equa-

tions are

dθ1
p = 0, dθ2

p = 0, dθx = 0, dθ1
y = θx ∧ θ1

p, dθ2
y = θx ∧ θ2

p,

dθ1
z = θ1

y ∧ θ2
p + θ2

y ∧ θ1
p, dθ2

z = θ2
y ∧ θx,

dθ3
z = −θ1

y ∧ θ2
y + θ1

z ∧ θx + 2θ2
z ∧ θ1

p, dθ4
z = θ1

z ∧ θ1
y + θ3

z ∧ θ1
p,

which integrate to give

θ1
p = dp1, θ2

p = dp2, θx = dx, θ1
y = dy1 − p1dx, θ2

y = dy2 − p2dx,

θ1
z = dz1 − p2dy1 − p1dy2 + p1p2dx, θ2

z = dz2 − xdy2,

θ3
z = dz3 − xdz1 − 2p1dz2 + (2xp1 − y1)dy2

θ4
z = dz4 + (xp1 − y1)dz1 + (p1)2dz2 − p1dz3 − p1(xp1 − y1)dy2.

The standard differential system for C3{α1, α2, α3} is therefore

IC3{1,2,3} = {θ1
y, θ

2
y, θ

1
z , θ

2
z , θ

3
z , θ

4
z}

= {dy1 − p1dx, dy2 − p2dx, dz1 − p1p2dx, dz2 − xp2dx,

dz3 − (y1p2 + xp1p2) dx, dz4 − y1p1p2dx}

is the canonical differential system for the first order Monge system (1.8).

IIIb. B2{ α2 }. The roots of height 1 are α2 and α1 + α2, and the standard differential 
system is just the canonical differential system

IB2{ α2 } = {dy − p dx} (4.6)

IIIc. B3{ α2, α3 }. The roots of height 1 are Σ = { α1 + α2, α2, α3 }. The root −α3
is our leader with root vector X = E4,3 − E5,4. A basis for the abelian subalgebra y, 
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corresponding to the roots −α2 and −α1 −α2, is Q1 = E3,2 −E6,5 and Q2 = E3,1 −E7,5
and we calculate

P1 = [Q1, X] = E6,4 − E4,2, P2 = [Q2, X] = E7,4 −E4,1,

Y1 = [P1, X] = E6,3 − E5,2, Y2 = [P2, X] = E7,3 − E5,1,

Z = [Q1, Y2] = E6,1 −E7,2.

The grading and full structure equations for g− are therefore

g−1 = 〈Q1, Q2, X 〉,
g−2 = 〈P1, P2 〉,
g−3 = 〈Y1, Y2 〉,
g−4 = 〈Z 〉,

and

Q1 Q2 X P1 P2 Y1 Y2 Z

Q1 0 0 P1 0 0 0 Z 0
Q2 0 P2 0 0 −Z 0 0
X 0 0 −Y1 −Y2 0 0 0
P1 0 −Z 0 0 0
P2 0 0 0 0
Y1 0 0 0
Y2 0 0
Z 0

.

In terms of the dual basis { θ1
q , θ

2
q , θx, θ

1
p, θ

2
p, θ

1
y, θ

2
y, θz} for g− the structure equations 

are

dθ1
q = 0, dθ2

q = 0, dθx = 0, dθ1
p = θx ∧ θ1

q , dθ2
p = θx ∧ θ2

q ,

dθ1
y = θx ∧ θ1

p, dθ2
y = θx ∧ θ2

p, dθz = −θ1
y ∧ θ2

q + θ2
y ∧ θ1

q + θ1
p ∧ θ2

p,

and one finds that

θ1
q = dq1, θ2

q = dq2 θx = dx, θ1
p = dp1 − q1dx, θ2

p = dp2 − q2dx,

θ1
y = dy1 − p1dx, θ2

y = dy2 − p2dx,

θz = dz − p2dp1 + q2dy1 − q1dy2 + (p2q1 − p1q2)dx.

The standard Pfaffian differential system for B2{α2, α3} is therefore

IB2{2,3} = { θ1
y, θ

2
y, θ

1
p, θ

2
p, θz }

= { dy1 − p1dx, dy2 − p2dx, dp1 − q1dx, dp2 − q2dx, dz − p2q1dx }

which coincides with the differential system for the Monge equations (1.9). We remark 
that this Monge system may also be encoded on a 7-dimensional manifold without the 
coordinate q2 by the Pfaffian system { θ1

y, θ
2
y, θ

1
p, θz } – however, the symmetry algebra 

of this latter Pfaffian system is only 16-dimensional.
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IIId. B3,Σ = {α1, α2, α3 }. The roots of height 1 are Σ = {α1, α2, α3}. The root −α2

is our leader with root vector X = E3,2 − E6,5, a basis for the abelian subalgebra y, 
corresponding to the roots −α1 and −α3, is P1 = E2,1 −E7,6 and P2 = E4,3 −E5,4 and 
we calculate

Y1 = [P1, X] = E7,5 − E3,1, Y2 = [P2, X] = E4,2 − E6,4,

Z1 = [P1, Y2] = E7,4 − E4,1, Z2 = [P2, Y2] = E6,3 −E5,2,

Z3 = [P1, Z2] = E5,1 −E7,3, Z4 = [X,Z3] = E7,2 − E6,1.

The grading and full structure equations for g− are therefore

g−1 = 〈P1, P2, X 〉,
g−2 = 〈 Y1, Y2 〉,
g−3 = 〈Z1, Z2 〉,
g−4 = 〈Z3 〉,
g−5 = 〈Z4 〉

and

P1 P2 X Y1 Y2 Z1 Z2 Z3 Z4
P1 0 0 Y1 0 Z1 0 Z3 0 0
P2 0 Y2 Z1 Z2 Z3 0 0 0
X 0 0 0 0 0 Z4 0
Y1 0 0 0 −Z4 0 0
Y2 0 −Z4 0 0 0
Z1 0 0 0 0
Z2 0 0 0
Z3 0 0
Z4 0

.

In terms of the dual basis { θ1
p, θ

2
p, θx, θ

1
y, θ

2
y, θ

1
z , θ

2
z , θ

3
z , θ

4
z} the structure equations for 

g− are

dθ1
p = 0, dθ2

p = 0, dθx = 0, dθ1
y = θx ∧ θ1

p, dθ2
y = θx ∧ θ2

p,

dθ1
z = θ2

y ∧ θ1
p + θ1

y ∧ θ2
p, dθ2

z = θ2
y ∧ θ2

p, dθ3
z = θ1

z ∧ θ2
p + θ2

z ∧ θ1
p,

dθ4
z = θ1

y ∧ θ2
z + θ2

y ∧ θ1
z + θ3

z ∧ θx.

Integrating these equations, one finds that

θ1
p = dp1, θ2

p = dp2 θx = dx, θ1
y = dy1 − p1dx, θ2

y = dy2 − p2dx,

θ1
z = dz1 − p2dy1 − p1dy2 + p1p2dx, θ2

z = dz2 − p2dy2 + 1
2(p2)2dx,

θ3
z = dz3 + 1

2(p2)2dy1 + p1p2dy2 − p2dz1 − p1dz2 − 1
2p

1(p2)2dx,

θ4
z = dz4 + y2dz1 + y1dz2 − x dz3.

The standard Pfaffian differential system for the parabolic geometry B3{α1, α2, α3} is 
therefore
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IB3{1,2,3} = {θ1
y, θ

2
y, θ

1
z , θ

2
z , θ

3
z , θ

4
z }

= {dy1 − p1dx, dy2 − p2dx, dz1 − p1p2dx, dz2 − 1
2(p2)2dx, dz3 − 1

2p
1(p2)2dx,

dz4 − 1
2p

2(xp1p2 − y1p2 − 2y2p1) dx}

which is the canonical Pfaffian system for the first order Monge equations (1.10). Given 
the visual asymmetry of these equations, it is a remarkable fact that the symmetry 
algebra is isomorphic to so(4, 3).

Va. G2{α1}. Let {H1, H2} be a Cartan subalgebra for g2 and let Y1, Y2, Y3, Y4, Y5, Y6
be bases for the root spaces for the negative roots −α1, −α2, −α1 − α2, −2α1 − α2, 
−3α1 − α2, −3α1 − 2α2. In terms of a Chevalley basis (see [8, p. 346]), the structure 
equations for g2 are, in part,

H1 H2 Y1 Y2 Y3 Y4 Y5 Y6
H1 0 0 −2Y1 3Y2 Y3 −Y4 −3Y5 0
H2 0 Y1 −2Y2 −Y3 0 Y5 −Y6
Y1 0 −Y3 −2Y4 3Y5 0 0
Y2 0 0 0 Y6 0
Y3 0 3Y6 0 0
Y4 0 0 0
Y5 0 0
Y6 0

.

For Σ = { α1} the roots of height 1 are α1 and α1 + α2 and thus g− is spanned by the 
vectors

Q = Y3, X = Y1, P = [Q,X] = 2Y4, Y = [P,X] = −6Y5, Z = [Q,P ] = 6Y6.

The structure equations for the dual coframe { θq, θx, θp, θy, θz} are

dθq = 0, dθx = 0, dθp = θx ∧ θq, dθy = θx ∧ θp, dθz = θp ∧ θq,

which are easily integrated to give

θq = dq, θx = dx, θp = dp− q dx, θy = dy − p dx,

θz = dz − q dp + 1
2q

2 dx.

The standard differential system for g2{α1} is therefore

IG2{1} = span {θy, θp, θz} = span {dy − p dx, dp− q dx, dz − 1
q2 dx},
2
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which is the canonical Pfaffian system for the Cartan–Hilbert equation (1.1).

Vb. G2{α1, α2 }. In this case the roots of height 1 are {α1, α2 } so that g− is the sum 
of all the negative root spaces. We set

R = Y2, X = Y1, Q = [R,X] = Y3, P = [Q,X] = 2Y4,

Y = [P,X] = −6Y5, Z = [Y,R] = 6Y6.

The structure equations for the dual coframe { θr, θx, θq, θp, θy, θz } are

dθr = 0, dθx = 0, dθq = θx ∧ θr, dθp = θx ∧ θq,

dθy = θx ∧ θp, dθz = θr ∧ θy + θp ∧ θq

which are easily integrated to give

θr = dr, θx = dx, θq = dq − r dx, θp = dp− q dx,

θy = dy − p dx, θz = dz + r dy − q dp + (1
2q

2 − pr) dx.

The standard differential system for g2{α1} is therefore

IG2{1,2} = span {θy, θp, θq, θz} = span {dy − p dx, dp− q dx, dq − r dx, dz − 1
2q

2 dx},

which is the canonical Pfaffian system for the prolongation of the Pfaffian system for the 
Cartan–Hilbert equation (1.1) given in the previous case.

5. Infinitesimal symmetries for the standard models

In this section we give explicit formulas for the infinitesimal symmetries for the Monge 
equations in Theorem A. We find that these infinitesimal symmetries are all prolonged 
point symmetries and that coefficients of the vector fields for any symmetry are all 
quadratic functions of the variables x, yi, zα.

The infinitesimal symmetries for any first order system of Monge equations

żα = Fα(x, yi, ẏi, zα)

is, by definition, the Lie algebra of vector fields

X = A
∂

∂x
+ Bi ∂

∂yi
+ Cα ∂

∂zα
+ Di ∂

∂ẏi
, (5.1)

where the coefficients A, Bi, Cα, Di are functions of the variables x, yi, zα, ẏi, which 
preserve the Pfaffian system
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I = span{ θi = dyi − ẏidx, θα = dzα − Fα dx }.

From the equation LXθi ≡ 0 mod I one finds that the coefficients A and Bi are inde-
pendent of the variables ẏi and that

Di = DxB
i − ẏiDxA, where Dx = ∂

∂x
+ ẏi

∂

∂yi
+ Fα ∂

∂zα
. (5.2)

The equation LXθα ≡ 0 mod I then implies [i] that the coefficients Cα are also inde-
pendent of the variables ẏi so that X is a prolonged point transformation, and [ii]

DxC
α −X(Fα) − FαDx(A) = 0. (5.3)

To continue, we now take Fα = Fα
ij ẏ

iẏj , where the coefficients Fα
ij = Fα

ji are constant. 
Then, by Eq. (5.1), we find that (5.3) becomes

DxC
α − 2Fα

ijDxB
iẏj + FαDx(A) = 0.

This equation is a polynomial identity in the derivatives ẏj of order 4. From the coeffi-
cients of ẏiẏj ẏhẏk and 1 one finds that

∂A

∂zα
= 0 and ∂Cα

∂x
= 0. (5.4)

The coefficients of ẏi, ẏiẏj and ẏiẏj ẏk give, respectively,

2Fα
�i

∂B�

∂x
= ∂Cα

∂yi
, (5.5a)

Fα
�i

∂B�

∂yj
+ Fα

�j

∂B�

∂yi
= Fα

ij

∂A

∂x
+ F β

ij

∂Cα

∂zβ
, and (5.5b)

2Fα
�(iF

β
jk)

∂B�

∂zβ
= Fα

(ij
∂A

∂yk) . (5.5c)

These are the determining equations for the symmetries of the Monge equations żα =
Fα
ij ẏ

iẏj .
The integrability conditions for (5.4) and (5.5) imply that all the coefficients A, Bi and 

Cα are quadratic functions of the coordinates {x, yi, zα}. Thus the determining equations 
reduce to purely algebraic equations. It is now a straightforward, albeit a slightly tedious, 
matter to explicitly construct a basis for all the solutions to the determining equations. 
The results of these calculations are summarized in the following table of symmetries for 
the Monge equations of type A, BD and C.
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gr. żi = ẏ0ẏi ż = 1
2κij ẏ

iẏj żij = ẏiẏj

−1 ∂x, ∂y0 , ∂yi , ∂zi ∂x, ∂yi , ∂z ∂x, ∂yi , ∂zij

0 x ∂x + 1
2y

0 ∂y0 + 1
2y

i ∂yi x ∂x + 1
2y

i ∂yi x ∂x + 1
2y

j ∂yj

y0 ∂x + zi ∂yi , 
yi ∂x + zi ∂y0

yi ∂x + 1
2zκ

ij ∂yj yi ∂x + 1
2 z

ij ∂yj

x∂y0 + yi∂x , 
x∂yi + y0∂zi

xκij∂j
y + yi ∂z x ∂yi + 2yj ∂ij

∂ij = 1+δij

2 ∂zij

y0∂y0 + zi∂zi , 
yi∂yj + zi∂zj

yi ∂yi + 2z ∂z , 
κikbijy

j ∂yk (bij skew)
yi ∂yj + 2zik ∂jk

1 x2∂x + xy0∂y0 + xyi∂yi

+ y0yi∂zi

x2∂x + zyi∂yi + K∂z

K = κijy
iyj

x2∂x + xyi∂yi + yiyj∂zij

xy0∂x +(y0)2∂y0 +y0zi∂zi , 
xyi∂x + xzi∂y0 + yiyj∂yj

+ ziyj∂zj

xyi∂x +(yiyj +(xz−K)κij)∂yj

+ zyi∂z

xyi∂x + yjzik∂jk

+ 1
2 (xzij +yiyj)∂yi

y0yi∂x + y0zi∂y0 + yizj∂yj

+ zizk∂zk

K∂x + zyi∂yi + z2∂z yiyj∂x + zihzjk∂hk

+ 1
2 (yizjk+yjzik)∂yk

It is not difficult to see that the above point symmetries for our Monge equations 
coincide with the infinitesimal generators for the G action on G/P̃ , where P̃ is the 
parabolic subgroup of G defined by the |1|-gradings using the leader only.
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