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between the canonical normal Cartan connections associated with the two structures
and we show that the Cartan holonomy of the induced Lie contact structure reduces to
G2. This motivates the study of the curved orbit decomposition associated with a G2
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the structure descends to a (2, 3, 5) distribution on a local leaf space. The closed orbit
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1. Introduction

A distribution D (locally) spanned by vector fields ξ1 and ξ2 on a smooth five

manifold M is called a (2, 3, 5) distribution, or generic, if the five vector fields

ξ1, ξ2, [ξ1, ξ2], [ξ1, [ξ1, ξ2]], [ξ2, [ξ1, ξ2]]

are linearly independent at each point. Two distributions D and D′ are said to be

equivalent if there exists a diffeomorphism φ : M → M ′ such that φ∗ D = D′. It
is a classical result [13] that every (2, 3, 5) distribution is locally equivalent to the

kernel DF = ker(ω1, ω2, ω3) of three 1-forms

ω1 = dy − p dx, ω2 = dp− q dx, ω3 = dz − Fdx

for coordinates (x, y, p, q, z) on an open subset U ⊂ R5 around the origin and a

smooth function F = F (x, y, p, q, z) such that Fqq �= 0. Infinitesimal symmetries of

a distribution D ⊂ TM are vector fields η ∈ X(M) that preserve the distribution,

i.e. Lηξ = [η, ξ] ∈ Γ(D) for all ξ ∈ Γ(D).

Cartan and Engel found, independently but at the same time [10, 12], the first

explicit realizations of the exceptional simple Lie algebra g2. Each of them pre-

sented two different descriptions of g2, and among them one that realized it as the

Lie algebra of infinitesimal symmetries of a rank 2 distribution locally equivalent

to the distribution Dq2 associated with the function F = q2. Cartan’s later fun-

damental work [11] shows that the Cartan–Engel distribution Dq2 can indeed be

regarded as the flat and maximally symmetric model in the category of (2, 3, 5)

distributions. Flat, because he shows how to associate to any (2, 3, 5) distribution

a curvature tensor, called Cartan quartic C ∈ Γ(S4D∗), which vanishes if and only

if the distribution is locally equivalent to Dq2 . Maximally symmetric, because he

proves that the symmetry algebra of a distribution with nonvanishing Cartan quar-

tic has dimension smaller than dim(g2) = 14.

More recent work [23] associates to a (2, 3, 5) distribution a canonical conformal

structure of signature (2, 3), i.e. an equivalence class of pseudo-Riemannian metrics

of signature (2, 3) where two metrics g and ĝ are considered equivalent if one is

a conformal rescaling of the other, meaning that ĝ = e2f g. On the one hand,

this allows to understand the geometry of (2, 3, 5) distributions in terms of the

more familiar conformal geometry. On the other hand, the construction provides

an interesting class of conformal metrics given explicitly in terms of a single function

F , see [24, 19, 14, 30]. From an algebraic point of view, the construction is based

on the Lie algebra inclusion g2 ↪→ so(4, 3), see [15].

This paper is of a similar flavor. It links (2, 3, 5) distributions with special types

of contact geometries associated with the Lie algebras g2 and so(4, 3). Associated

with every simple Lie algebra, there is a parabolic contact geometry; it is given

by a contact distribution (i.e. a corank one distribution that is locally given as

the kernel of a 1-form θ such that θ ∧ (dθ)n �= 0) and additional geometric struc-

ture on the contact distribution. By Pfaff’s theorem, all contact distributions are
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locally equivalent. However, by equipping the distribution with additional geomet-

ric structure, e.g. with a tensor field of some type or a decomposition of the contact

distribution as a tensor product of auxiliary vector bundles, one again obtains

an interesting geometry with nontrivial local invariants. Every parabolic contact

geometry has a flat and maximally symmetric model and the infinitesimal sym-

metry algebra of the model realizes the simple Lie algebra in question. Parabolic

contact geometries associated with special orthogonal Lie algebras so(p+ 2, q + 2)

have been studied under the name Lie contact structures, [27, 28, 20, 21], by means

of Tanaka theory [29].

It is now a natural question whether one can use the Lie algebra inclusion

g2 ↪→ so(4, 3) to relate (2, 3, 5) distributions to Lie contact geometry, as it is done

in the construction of conformal structures from (2, 3, 5) distributions. Inspecting

the models of the two geometries shows that there is indeed such a natural geometric

construction. More precisely, in Sec. 3 we show the following.

Theorem 1.1. Let D = span(ξ1, ξ2) be a (2, 3, 5) distribution with derived

rank 3 distribution [D,D] = span(ξ1, ξ2, [ξ1, ξ2]) and consider the 7-manifold T=

P([D,D])\P(D) of lines contained in the rank 3 distribution but not contained in

the rank 2 distribution. Then T carries a naturally induced Lie contact structure.

The induced Lie contact structure is flat if and only if the (2, 3, 5) distribution is

flat.

The proof of the theorem is based on the equivalent descriptions of (2, 3, 5)

distributions and Lie contact structures, respectively, as particular types of Cartan

geometries. It employs a functorial construction that assigns to the canonical Cartan

geometry encoding a (2, 3, 5) distribution a Cartan geometry encoding a Lie contact

structure.

In Sec. 4, we use the structure equations for a class of (2, 3, 5) distributions

(for those that are encoded in terms of functions F = h(q) of a single variable

q) to construct the corresponding Lie contact structure explicitly in terms of a

conformal symmetric rank 4 tensor [Υ] on the contact distribution. In particular,

this enables us to find explicit generators for the symmetry algebras in the case that

F = 1
k(k−1) q

k and thus examples of Lie contact structures with large symmetry

algebras.

In Sec. 5, we analyze the relation between the canonical normal Cartan connec-

tions associated with the two structures. We show that the construction preserves

normality, see Lemma 5.1, and as a consequence, we have the following.

Proposition 1.1. The holonomy of the canonical normal Cartan connection asso-

ciated with the induced Lie contact structure on T reduces to G2.

We then proceed to discuss, more generally, Lie contact structures in dimension

7 endowed with Cartan holonomy reductions to G2. We show the following (see

also Theorem 5.1).
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Theorem 1.2. Consider a Lie contact structure on a 7-manifold M̃ with canonical

normal so(4, 3)-valued Cartan connection ω̃. A holonomy reduction of ω̃ to G2

determines a distinguished rank 2 distribution V on an open dense subset M̃o ⊂ M̃ .

If the curvature of the Cartan connection ω̃ annihilates the rank 2 distribution V ,
then V is integrable and in a neighborhood of each point in M̃o one can form a local

5-dimensional leaf space, which carries an induced (2, 3, 5) distribution. Moreover, if

M̃o is a proper subset of the 7-manifold M̃, then the complement carries an induced

parabolic contact structure associated with the Lie algebra g2.

Our work combines a conceptual approach based on theory of parabolic geome-

tries [4–6] with explicit calculations in terms of exterior differential systems

(EDSs).

2. Algebraic and Geometric Background

A first step to understanding the construction from (2, 3, 5) distributions to Lie

contact structures is to understand the relationship between the homogeneous

models of the two structures. In this section, we present the algebra behind the

construction, and we further discuss the (curved) geometric structures we are inter-

ested in.

2.1. Split octonions and G2

The exceptional complex simple Lie algebra gC2 has two real forms: the split real

form and the compact real form. In this paper, we will be concerned with the

split real form g2 and the (connected) Lie group G2 with Lie algebra g2 that can be

defined as the automorphism group of the split octonions (O′, ·). For more algebraic

background see e.g. [26, 1].

An algebra (A, ·) with unit 1 together with a non-degenerate quadratic form N

that is multiplicative in the sense that

N(X · Y ) = N(X)N(Y )

is called a composition algebra. There are, up to isomorphism, precisely two

8-dimensional real composition algebras: the octonionsO and the split octonionsO′.
The two can be distinguished by the signature of their quadratic forms. The split

octonions are the unique 8-dimensional real composition algebra with quadratic

form N : O′ → R of signature (4, 4).

Given a composition algebra, there is a notion of conjugation X̄ = 2〈X, 1〉1−X,
where 〈, 〉 denotes the bilinear form determined by N via polarization. The space

of imaginary split octonions is then defined as

V = ImO′ = {X ∈ O′ : X̄ = −X} = 1⊥.
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Since the unit 1 has norm one, 〈, 〉 restricts to a bilinear form of signature (3, 4) on

V; we define H to be the negative of the restriction, which has thus signature (4, 3).

One can further define a 3-form Φ ∈ Λ3V∗ as

Φ(X,Y, Z) := 〈X · Y, Z〉 = H(X × Y, Z),

where

X × Y = X · Y + 〈X,Y 〉 1

denotes the split octonionic cross product on V. Since an algebra automorphism of

a composition algebra preserves the corresponding bilinear form, G2 preserves all

these data. Indeed, it is known that G2 is precisely the stabilizer of Φ in GL(V),

and the representation on V defines an inclusion G2 ↪→ O(H) = O(4, 3).

2.2. Explicit matrix presentations of g2 and so(4, 3)

Here we will present an explicit matrix realization of the inclusion

g2 ↪→ so(4, 3). (1)

Let e1, . . . , e7 be a basis for V with dual basis e1, . . . , e7, i.e. ei(ej) = δij . Consider

the bilinear form

H = 2e1e7 + 2e2e6 + 2e3e5 + e4e4, (2)

defining

so(4, 3) =





a7 −a3 −a6 a11 −a16 a19 0

−a17 a10 a9 a15 −a20 0 −a19

−a14 a8 a13 a18 0 a20 a16

a12 a5 a2 0 −a18 −a15 −a11

−a4 −a0 0 −a2 −a13 −a9 a6

a1 0 a0 −a5 −a8 −a10 a3

0 −a1 a4 −a12 a14 a17 −a7


, a0, . . . , a20 ∈ R


.

(3)

Then the subalgebra of so(4, 3) preserving the 3-form

Φ = 2e1 ∧ e4 ∧ e7 + e1 ∧ e5 ∧ e6 + 8e2 ∧ e3 ∧ e7 − 2e2 ∧ e4 ∧ e6 − 2e3 ∧ e4 ∧ e5

(4)
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is the exceptional Lie algebra

g2 =





−q1 − q4 −2b6 −12b5 −2q5 q6 −6q7 0

− 1
2b

3 −q4 6q2 −6b5 1
2q

5 0 6q7

− 1
12b

4 1
3q

3 −q1 b6 0 − 1
2q

5 −q6
1
3b

0 − 1
3b

4 2b3 0 −b6 6b5 2q5

−b1 − 2
3b

0 0 −2b3 q1 −6q2 12b5

1
6b

2 0 2
3b

0 1
3b

4 − 1
3q

3 q4 2b6

0 − 1
6b

2 b1 − 1
3b

0 1
12 b

4 1
2b

3 q1 + q4


, b0, . . . , q7 ∈ R


.

(5)

2.3. Parabolic subalgebras of g2 and so(4, 3)

A subalgebra p ⊂ g of a semisimple Lie algebra g is a parabolic subalgebra if and

only if its maximal nilpotent ideal p+ coincides with the orthogonal complement p⊥

of p in g with respect to the Killing form. In particular, this yields an identification

(g/p)∗ ∼= p+. A parabolic subalgebra p determines a filtration

g = g−k ⊃ · · · ⊃ g0 ⊃ · · · ⊃ gk,

[gi, gj ] ⊂ gi+j , where g0 = p, g1 = p⊥, gi = [g1, gi−1] and g−i = (gi)⊥ for i > 1.

For a choice of (reductive) subalgebra g0 ⊂ p isomorphic to p/p+, called a Levi

subalgebra, the filtration splits which determines a grading of the Lie algebra

g = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk,

such that [gi, gj ] ⊂ gi+j and g−1 generates g− = g−k ⊕ · · · ⊕ g−1. Conversely, given

such a grading,

p := g0 ⊕ · · · ⊕ gk

defines a parabolic subalgebra, and the filtration can be recovered from the grading

as gi = gi ⊕ · · · ⊕ gk. We will now discuss the parabolic subalgebras of g = g2 and

g̃ = so(4, 3) that are relevant for this paper.

Consider g̃ = so(4, 3) in the matrix presentation (3). Let p̃ ⊂ so(4, 3) be a

parabolic subalgebra defined as the stabilizer of a totally null 2-plane E with respect

to H as in (2). Let

g̃−2 ⊃ g̃−1 ⊃ g̃0 ⊃ g̃1 ⊃ g̃2

be the filtration of g̃ determined by p̃, and let

V−1 ⊃ V0 ⊃ V1, (6)

be the p̃-invariant filtration of the standard representation, where V1 = E, V0 = E⊥,
V−1 = V.
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Any two parabolic subalgebras of so(4, 3) defined as stabilizers of distinct totally

null 2-planes are conjugated to each other by an inner automorphism of so(4, 3).

Hence modulo conjugation, they define the same parabolic subalgebra and induced

filtration. However, the parabolic subalgebras may be different concerning their

position relative to the given subalgebra g2 ⊂ so(4, 3). This observation will be

relevant for the purpose of this paper.

Let us first choose the totally null plane E′ = span(e1, e2), where e1, . . . , e7
denotes the basis of V as in Sec. 2.2. Consider the splitting V1 ⊕ V0 ⊕ V−1 of the

filtration (6) of V given by V1 = E′, V0 = span(e3, e4, e5) and V−1 = span(e6, e7),

which corresponds to the grading g̃0 g̃1 g̃2
g̃−1 g̃0 g̃1
g̃−2 g̃−1 g̃0

 V1

V0

V−1

, (7)

of g̃ = so(4, 3). Then the subalgebra g̃0 ⊂ p̃ of block diagonal matrices is a Levi

subalgebra isomorphic to gl(2,R)⊕ so(2, 1) (Ṽ1 is the defining representation for the

gl(2,R)-summand and Ṽ0 for the so(2, 1)-summand of g̃0). The parabolic subalgebra

p̃ = g̃0 ⊕ g̃1 ⊕ g̃2 consists of upper block triangular matrices.

Next we choose a different totally null 2-plane, E = span(e2, e3). The grading

of g̃ corresponding to the splitting Ṽ1 = span(e2, e3), Ṽ0 = span(e1, e4, e7), Ṽ−1 =

span(e5, e6) looks as follows:
g̃0 g̃−1 g̃0 g̃1 0

g̃1 g̃0 g̃1 g̃2 g̃1
g̃0 g̃−1 g̃0 g̃1 g̃0
g̃−1 g̃−2 g̃−1 g̃0 g̃−1

0 g̃−1 g̃0 g̃1 g̃0




V0

V1

V0

V−1

V0

. (8)

Looking at the explicit form of the defining 3-form Φ for g2 as in (4), we imme-

diately notice that while E′−|Φ = e1−| e2−|Φ = 0, this is not true for the 2-plane E

as e2−| e3−|Φ = 8e7 �= 0. Inserting the 2-plane E into Φ we obtain the line in V∗

spanned by e7, or using the isomorphism V∗ ∼= V induced by the metric H , the line

� ⊂ V spanned by e1.

Definition 2.1. Let V be a 7-dimensional vector space with a bilinear form H of

signature (4, 3), and let Φ be a defining 3-form for G2 ⊂ O(4, 3). We call a 2-plane

E = span(V,W )

• special if

E−|Φ = V −|W−|Φ = 0,

• generic if

E−|Φ = V −|W−|Φ �= 0.
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G2 acts transitively on generic and special 2-planes, respectively. This follows,

for instance, immediately from the fact that G2 acts transitively on split octo-

nionic null triples (see [1, Theorem 13 and Proposition 15]): these are ordered

triples X,Y, Z of pairwise orthogonal null imaginary split octonions such that Φ(X,

Y, Z) = 1
2 .

Let us now discuss parabolic subalgebras of g2; there are, up to conjugation by

inner automorphisms of g2, three of them. Consider g = g2 in the matrix represen-

tation (5).

Let p ⊂ g be the stabilizer of a null line �; we take the line � = Re1 ⊂ V through

the first basis vector e1. (G2 acts transitively on null lines, see e.g. [2], and thus

different choices lead to conjugated subalgebras). Let

g−3 ⊃ g−2 ⊃ g−1 ⊃ g0 ⊃ g1 ⊃ g2 ⊃ g3

be the filtration determined by the parabolic p. Since p preserves � and Φ, it also

preserves the filtration

V−2 ⊃ V−1 ⊃ V0 ⊃ V1 ⊃ V2, (9)

where V2 = � = span(e1), V
1 = {Y ∈ V : Y −|X−|Φ = 0, ∀X ∈ �} = span(e1, e2,

e3), V
0 = V1⊥ = span(e1, e2, e3, e4) and V1 = V2⊥ = span(e1, e2, e3, e4, e5, e6),

V−2 = V. A choice of Levi subalgebra g0 ∼= p/p⊥ ∼= gl(2,R) is determined by the

splitting V2 = span(e1), V
1 = span(e2, e3), V

0 = span(e4), V
−1 = span(e5, e6),

V−2 = span(e7), and the corresponding grading of g is depicted below:
g0 g1 g2 g3 0

g−1 g0 g1 g2 g3
g−2 g−1 g0 g1 g2
g−3 g−2 g−1 g0 g1
0 g−3 g−2 g−1 g0




V2

V1

V0

V−1

V−2

. (10)

The other maximal parabolic subalgebra p̄ is the stabilizer in g of a special

totally null 2-plane E′ ⊂ V, i.e. one such that X−|Y −|Φ = 0 for all X,Y ∈ E′ (see
e.g. [18]). Let us take E′ = span(e1, e2). Then, as in the case of the special orthogonal

algebra discussed earlier, the parabolic subalgebra preserves the filtration (6) of V,

and the induced filtration of g is of the form

ḡ−2 ⊃ ḡ−1 ⊃ ḡ0 ⊃ ḡ1 ⊃ ḡ2. (11)

A splitting of the filtration of V determines a Levi subalgebra ḡ0 = gl(2,R) and

corresponding grading  ḡ0 ḡ1 ḡ2
ḡ−1 ḡ0 ḡ1
ḡ−2 ḡ−1 ḡ0

 V1

V0

V−1

. (12)
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Finally there is the Borel subalgebra b of g; it is the stabilizer of a filtration

� ⊂ E′ consisting of a null line contained in a special totally null 2-plane E′ ⊂ V .

We shall use analogous notation for the parabolic subgroups appearing in this

paper:

• P̃ ⊂ O(4, 3) denotes the stabilizer of a totally null 2-plane E ⊂ V,

• P ⊂ G2 denotes the stabilizer of a null line � ⊂ V,

• P̄ ⊂ G2 denotes the stabilizer of a special totally null 2-plane E′ ⊂ V,

• B ⊂ G2 denotes the stabilizer of a filtration � ⊂ E′ consisting of a null line

contained in a special totally null 2-plane.

For reasons that will become clear later, we call P̃ ⊂ O(4, 3) the Lie contact

parabolic, P ⊂ G2 the (2,3,5) parabolic and P̄ ⊂ G2 the G2 contact parabolic.

2.4. Parabolic geometries

Here we provide a very brief summary of basic notions from parabolic geometry,

mostly to set notation. For a comprehensive introduction to parabolic geometries

see [8]. See also [29, 31, 22] for additional information.

A Cartan geometry of type (G,P ) is given by

• a principal bundle G →M with structure group P ,

• a Cartan connection ω ∈ Ω1(G, g), i.e. a P -equivariant Lie algebra valued 1-form

such that ω(u)(ζX) = X for all fundamental vector fields ζX and ω(u) : TuG → g

is a linear isomorphism.

The curvature of a Cartan connection ω is the 2-form in Ω2(G, g) defined as

K(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)],

for ξ, η ∈ X(G). It is P -equivariant and horizontal, and thus equivalently encoded

in the curvature function K : G → Λ2(g/p)∗ ⊗ g given by

K(u)(X,Y ) = dω
(
ω−1(u)(X), ω−1(u)(Y )

)
+ [X,Y ].

It is one of the basic results about Cartan connections that the curvature of a Cartan

geometry vanishes, i.e. the geometry is flat if and only if it is locally equivalent to

G → G/P equipped with the Maurer Cartan form ωG. The latter geometry is

referred to as the (homogeneous) model.

A Cartan geometry of type (G,P ) is called a parabolic geometry if g is a semisim-

ple Lie algebra and P ⊂ G a parabolic subgroup, i.e. a closed subgroup with Lie

algebra a parabolic subalgebra p ⊂ g. Given a principal bundle P ↪→ G → M and

Lie algebra g there are a priori several choices of Cartan connections ω ∈ Ω1(G, g).
In pioneering work Tanaka established the following curvature conditions that pin
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down the Cartan connection uniquely: A parabolic geometry is called

• regular if the curvature K is of homogeneity ≥ 1, i.e. K(u)(X,Y ) ⊂ gi+j+1 for

all X ∈ gi, Y ∈ gj and u ∈ G,
• normal if ∂∗ ◦K = 0, where ∂∗ : Λ2(g/p)∗⊗g → (g/p)∗⊗g is the (P -equivariant)

Kostant codifferential. Identifying (g/p)∗ = p+ via the Killing form, it is the

boundary operator computing the Lie algebra homology H∗(p+, g), given on a

decomposable element as

∂∗(Z0 ∧ Z1 ⊗A) = Z0 ⊗ [Z1, A]− Z1 ⊗ [Z0, A]− [Z0, Z1]⊗A. (13)

Projecting the curvature K of a regular, normal parabolic geometry to H2 :=

ker(∂∗)/Im(∂∗) gives the harmonic curvature KH , which is the fundamental cur-

vature quantity of a regular, normal parabolic geometry.

2.5. (2, 3, 5) distributions

A (2, 3, 5) distribution D ⊂ TM is a rank 2 distribution on a 5-manifold that is

bracket generating in a minimal number of steps, i.e. [D,D] is a subbundle of rank

3 and [D, [D,D]] = TM. In other words, the (weak) derived flag D ⊂ [D,D] ⊂ TM

is a sequence of nested bundles of ranks 2, 3 and 5.

So, (2, 3, 5) distributions are in a sense opposite to integrable distributions, and

they are different in character. While integrable rank 2 distributions in dimension

5 are all locally equivalent, (2, 3, 5) distributions have functional local invariants.

A solution to the local equivalence problem was established in Cartan’s influential

1910 paper [11]. His work also shows that the symmetry algebra of a (2, 3, 5) distri-

bution is finite-dimensional; for the most symmetric of these distributions it is the

simple Lie algebra g2.

Note that a relationship to g2 can be seen immediately. At each point x ∈ M ,

the symbol algebra gr(TxM) of a (2, 3, 5) distribution, i.e. the associated graded

Dx ⊕ [D,D]x/D ⊕ TxM/[D,D]x of the derived flag together with the bracket Lx

induced by the Lie bracket of vector fields, is a nilpotent Lie algebra isomorphic

to the negative part of the grading (10) of g2. Indeed, we have the following (see

e.g. [8]).

Theorem 2.1. There is an equivalence of categories between (2, 3, 5) distributions

and parabolic geometries of type (G2, P ), where P ⊂ G2 is the parabolic subgroup

defined as the stabilizer of a null line in the 7-dimensional irreducible representation

of G2.

Based on the Cartan geometric interpretation of (2, 3, 5) distributions, a relation

to conformal geometry was observed in [23].

Theorem 2.2. Every (2, 3, 5) distribution D ⊂ TM determines a conformal class

[g]D of metrics of signature (2, 3) on M . The distribution D is totally null with

respect to any metric from the conformal class [g]D.
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2.6. Lie contact structures

A contact distribution H ⊂ TM on a manifold of dimension 2n + 1 is a corank 1

subbundle such that the Levi-bracket

L : Λ2H → TM/H, L(ξx ∧ ηx) = [ξ, η]x +Hx,

is non-degenerate at each point x ∈M . In other words, locally, H is the kernel of a

contact form θ. Contact distributions do not have local invariants; locally one may

always find coordinates (t, qi, pj) such that θ = dt−
∑

i pidqi.

Lie contact structures have been introduced and studied by Sato and Yamaguchi

[27, 28], and Miyaoka [20, 21]. Here we shall specialize to manifolds of dimension 7.

Note that the symbol algebra gr(TxM) of a contact distributionH on a 7-manifold is

at each point x ∈M isomorphic to the negative part g̃− = g̃−1⊕ g̃−2 of the grading

(7) of g̃ = so(4, 3) from Sec. 2.3 (i.e. to the 7-dimensional Heisenberg algebra).

A contact distribution has a natural graded frame bundle F whose fiber Fx at a

point x ∈ M comprises all graded Lie algebra isomorphisms φ : gr(TxM) → g̃−;
its structure group is the group of grading preserving Lie algebra automorphisms

Autgr(g̃−), which is isomorphic to the conformal symplectic group CSp(3). Let

G̃0
∼= GL(2) × O(2, 1) be the Levi subgroup of P̃ preserving the grading (7). A

Lie contact structure can be defined as a contact distribution equipped with a

reduction of structure group G̃0 ↪→ F of the graded frame bundle with respect to

G̃0 → Autgr(g̃−).
Equivalently, see [8, 32]: A Lie contact structure of signature (2, 1) on a manifold

M of dimension 7 is given by

• a contact distribution H ⊂ TM ,

• two auxiliary vector bundles, E → M of rank 2 and F → M of rank 3, and a

bundle metric b of signature (2, 1) on F ,

• an isomorphism H ∼= E∗ ⊗F such that the Levi bracket L is invariant under the

induced action of the orthogonal group O(b) on H.

Theorem 2.3. There is an equivalence of categories between Lie contact structures

of signature (2, 1) and regular, normal parabolic geometries of type (O(4, 3), P̃ ),

where P̃ ⊂ O(4, 3) is the stabilizer of a totally null 2-plane.

Given a parabolic geometry (G̃ → M̃, ω̃) of type (O(4, 3), P̃ ), vector bundles

E → M and F → M as in the above description of Lie contact structures are

obtained as associated bundles E = G̃ ×P̃ E and F = G̃ ×P̃ (E⊥/E), where E ⊂ R4,3

is the totally null 2-plane stabilized by the parabolic subgroup P̃ .

Remark 2.1. There are a number of (locally) equivalent ways to describe Lie con-

tact structures in terms of geometric structures onM ; for our purposes a description

in terms of a (conformal) tensor field on the contact distribution will be most con-

venient. Since g̃0 is a maximal subalgebra of csp(g̃−1) (see e.g. [7, Proposition 4.2])

any tensor on g̃−1 preserved up to scale by g̃0 but not by all of csp(g̃−1) can be

used for a description.
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In Sec. 4.2.2, we will encode our Lie contact structures in terms of a conformal

symmetric rank 4 tensor defined on the contact distribution H. In this particular

case the semisimple part of g̃0 is g̃ss0 = sl(2,R)⊕ so(2, 1), we can identify so(2, 1) ∼=
sl(2,R), and as a (sl(2,R)⊕ sl(2,R))-representation g̃−1 = E⊗ S2Ė, where E = R2

is the defining representation for one sl(2,R) and Ė = R2 for the other sl(2,R). Now

one can verify that there is precisely one trivial summand in the decomposition of

the (sl(2,R)⊕ sl(2,R))-representation S4(E⊗S2Ė) into irreducible components. To

construct the invariant rank 4 tensor, write an element ψ ∈ E ⊗ S2Ė using index

notation as ψAḂĊ and define a map

L(ψ) : R2 → R2, L(ψ)Ċ Ḣ = ψAḂĊψDĖḞ εADεḂĖεḞ Ḣ ,

for volume forms εAB ∈ Λ2E∗ and εȦḂ ∈ Λ2Ė∗. It turns out that the trace of this

map is zero, but the trace of its square is not, and the unique up to constants

invariant symmetric rank 4 tensor is

Υ(ψ) = Tr(L(ψ) ◦ L(ψ)).

Since Υ is invariant under g̃ss0 but rescales under the action of the center of g̃0,

it induces a conformal symmetric rank 4 tensor [Υ] on the contact distribution

H = G̃0 ×G̃0
g̃−1.

2.7. G2 contact structures

A G2 contact structure on a 5-manifold M is given by a contact distribution H ⊂
TM together with a reduction of structure group Ḡ0 ↪→ F of the graded frame

bundle of H with respect to Ḡ0 → Autgr(ḡ−), where Ḡ0
∼= GL(2,R) is the Levi

subgroup of P̄ preserving the grading (12).

Equivalently, it is a contact distribution H together with an identification H ∼=
S3E, for some rank 2 bundle E → M , such that the Levi bracket L is invariant

under the induced action of GL(E), see [8]. Again, by the general theory, we have

the following.

Theorem 2.4. There is an equivalence of categories between G2 contact structures

and parabolic geometries of type (G2, P̄ ), where P̄ ⊂ G2 is the parabolic subgroup

defined as the stabilizer of a special totally null 2-plane.

Remark 2.2. We can also encode a G2 contact structure in terms of a conformal

symmetric rank 4 tensor [Υ] defined on the contact distribution H ⊂ TM . This can

be seen completely analogously to the case of Lie contact structures explained in

Remark 2.1.

2.8. Relating the models

The model for (2, 3, 5) distributions is the homogeneous space G2/P together with

its canonical G2-invariant distribution D. Since G2 acts transitively on the projec-

tive quadric P(C) of all null lines with respect to the invariant bilinear form H , and
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P is the stabilizer of such a null line �, we get an identification

G2/P ∼= P(C).

The model for the Lie contact structures we are interested in is the homogeneous

space O(4, 3)/P̃ with its canonical left invariant Lie contact structure. Since P̃ is

the stabilizer of a totally null 2-plane and O(4, 3) acts transitively on such 2-planes,

this homogeneous space can be identified with the 7-dimensional orthogonal Grass-

mannian of totally null 2-planes,

O(4, 3)/P̃ ∼= Gr0(2,R
4,3).

Finally, the homogeneous model for G2 contact structures is G2/P̄ , which is the

5-dimensional Grassmannian of special totally null 2-planes, with its canonical left-

invariant G2 contact structure.

The following proposition relates all of these models.

Proposition 2.1. Let V be a 7-dimensional vector space with a bilinear form H of

signature (4, 3), and consider the Grassmannian Gr0(2,R
4,3) of totally null 2-planes

in V. Let Φ be a defining 3-form for G2 ⊂ O(4, 3). Then Gr0(2,R
4,3) decomposes

into two G2-orbits:

• a closed, 5-dimensional orbit of special 2-planes isomorphic to G2/P̄

• an open orbit of generic 2-planes isomorphic to G2/Q, where Q is the

7-dimensional stabilizer in G2 of a generic totally null 2-plane.

Insertion of a generic totally null 2-plane E into the 3-form Φ defines a line � ⊂ V,

which is null. The stabilizer Q of E in G2 is the subgroup Q = G0 � exp(g2) of the

parabolic subgroup P = G0 � exp(p+) that stabilizes the null line �. In particular,

the open G2-orbit fibers over G2/P :

P/Q G2/Q

G2/P.

The content of Proposition 2.1 is known, see e.g. [17, 25]. In Sec. 2.3, we have

seen that G2 acts transitively on generic and special 2-planes, respectively. We will

outline the arguments for a proof of the remaining statements in Proposition 2.1.

First, observe that for any totally null 2-plane E, E−|Φ is either zero or defines

a null line: Take V = ImO′ and Φ(X,Y, Z) = H(X × Y, Z). Consider a totally null

2-plane E = span(W1,W2) ⊂ V, then

W1 ·W2 =W1 ×W2 − 〈W1,W2〉1 =W1 ×W2,

since 〈W1,W2〉 = 0. Hence E is special if and only ifW1 ·W2 = 0 (i.e. it corresponds

to a null subalgebra) and generic if and only if W1 ·W2 �= 0. In the latter case

� = span(W1 ·W2) ⊂ V

1750094-13
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is a well-defined line determined by the plane E, and it is null since 〈W1 ·W2,W1 ·
W2〉 = 〈W1,W1〉〈W2,W2〉 and both W1 and W2 are null.

Next consider the stabilizer Q of a generic null 2-plane E = span(W1,W2). First,

it preserves the null line � = span(W1 ·W2) determined by E. Hence, evidently, Q

is contained in the parabolic subgroup P stabilizing �. Next one can show that

E⊕ � = span(W1,W2,W1 ·W2) coincides with

{Z ∈ V : Z · (W1 ·W2) = 0} = {Z : Z−|X−|Φ = 0, ∀X ∈ �} = V1,

the latter space being the 3-dimensional filtrand in the filtration (9) preserved by

the parabolic P . So now we choose a subgroup G0 ⊂ Q, G0
∼= P/exp(p+). Then

P = G0 � exp(g1 ⊕ g2 ⊕ g3), where exp(g1) acts by (nonzero) maps from E to �,

while exp(g2 ⊕ g3) acts trivially on E. Hence the subgroup Q, which preserves E, is

isomorphic to G0 � exp(g2 ⊕ g3).

Remark 2.3. In the following root diagram, all black dots correspond to root

spaces contained in the standard parabolic p and the ones with circles correspond

to root spaces contained in the subalgebra q = g0 ⊕ g2 ⊕ g3 ⊂ p:

α2 + 3α1

−α2 − 3α1

α2 + 2α1

−α2 − 2α1

α1−α1

−α2

α2

−α2 − α1

α2 + α1

−2α2 − 3α1

2α2 + 3α1

.

3. From (2, 3, 5) Distributions to Lie Contact Structures

In this section, we present a natural geometric construction of a 7-dimensional

twistor bundle over a 5-manifold equipped with a (2, 3, 5) distribution, and we

investigate the induced geometric structure on the twistor bundle. In particular, we

will prove Theorem 1.1.

3.1. The (2, 3, 5) twistor bundle

Let D be a (2, 3, 5) distribution on a 5-manifold M with derived flag D ⊂ [D,D] ⊂
TM and conformal class [g]D. Then we can form the bundle

π : P([D,D]) =
⋃

x∈M

{�x ⊂ [D,D]x} →M

of all lines contained in the rank 3 distribution. The 7-dimensional manifold

P([D,D]) decomposes as P([D,D]) = P(D) ∪ T into the 6-dimensional subset P(D)
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of all lines contained in D, and the open subset T of all lines in [D,D] transversal to

D. The space P(D) has an interesting induced geometry, but here we are interested

in the complement.

Definition 3.1. We call

T = P([D,D])\P(D) =
⋃

x∈M

{�x ⊂ [D,D]x : �x �⊂ D}

the twistor bundle of the (2, 3, 5) distribution D.

Remark 3.1.

• Since D is totally null with respect to [g]D, we can equivalently describe T as the

space of all non-null lines contained in [D,D].

• Via the conformal structure, we can identify P(TM) with P(T ∗M). Under this

identification, T corresponds to the space of lines in the cotangent space that

annihilate D but do not annihilate [D,D]:

T = P(D⊥)\P([D,D]
⊥
) =

⋃
x∈M

{�x ⊂ Dx
⊥ : �x �⊂ [D,D]x

⊥} ⊂ P(T ∗M).

Among the geometric structures that are naturally present on the twistor bundle

T we are particularly interested in the rank 6 sub-bundle

H =
⋃
�∈T

{ξ ∈ T�T : π∗(ξ) ∈ �⊥},

where the orthogonal complement �⊥ is taken with respect to the conformal class

[g]D on M . Alternatively, if we realize T inside P(T ∗M), then H is precisely the

intersection of the canonical contact distribution on P(T ∗M) with TT. Now it is not

difficult to see that H ⊂ TT defines a contact structure on T. In the following we

will show more, we will prove that T has a naturally induced Lie contact structure

of signature (2, 1).

3.2. The induced Lie contact structure

We shall prove Theorem 1.1 using the descriptions of (2, 3, 5) distributions and

Lie contact structures, respectively, in terms of Cartan geometries. There is a very

general functorial construction that assigns to a Cartan geometry of some type

(G,P ) over a manifold M a Cartan geometry of a different type (G̃, P̃ ) over a

manifold M̃ . In the context of parabolic geometries these constructions are referred

to as Fefferman-type constructions, see [5, 8]. We briefly recall the general principles.

Suppose we have an inclusion i : G ↪→ G̃ of Lie groups, and subgroups P and P̃

such that the G-orbit of o = eP̃ ∈ G̃/P̃ is open and Q := i−1(P̃ ) ⊂ G is contained

in P . Then the construction proceeds in two steps. Let (G → M,ω) be a Cartan

geometry of type (G,P ). Now form the so-called correspondence space

M̃ = G/Q, (14)
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and regard ω ∈ Ω1(G, g) as a Cartan connection on the Q-principal bundle G → M̃ .

Then (G → M̃, ω) is automatically a Cartan geometry of type (G,Q). In a second

step, extend the structure group

G̃ := G ×Q P̃ ,

such that G̃ → M̃ is now a P̃ -principal bundle over M̃ . Let j : G → G̃ be cor-

responding bundle inclusion. Since the G-orbit of eP̃ in G̃/P̃ is open, there is a

unique extension of ω to a Cartan connection ω̃ ∈ Ω1(G̃, g̃) such that j∗ω̃ = ω, see

[8]. Thus, we obtain a Cartan geometry (G̃ → M̃, ω̃) of type (G̃, P̃ ).

The curvature functions K̃ : G̃ → Λ2(g̃/p̃)∗ ⊗ g̃ and K : G → Λ2(g/p)∗ ⊗ g of

the respective Cartan geometries are related as

K̃ ◦ j = (Λ2ϕ⊗ i′) ◦K,

where i′ : g → g̃ is the derivative of the Lie group homomorphism i and ϕ : (g/p)∗ →
(g̃/p̃)∗ is the dual map to the projection g̃/p̃ ∼= g/q → g/p.

Now we specialize to our groups. We take G = G2 and G̃ = O(4, 3), so in

particular we have an inclusion i : G ↪→ G̃. Then we take P to be the parabolic

subgroup in G2 that stabilizes a null line � ⊂ R7, and P̃ to be the stabilizer in

O(4, 3) of a generic null 2-plane E ⊂ R7 such that the null line determined by E is

�, i.e. ιEΦ = �. By Proposition 2.1 this means that the G-orbit of o = eP̃ ∈ G̃/P̃ is

open and the subgroup Q = i−1(P̃ ) is contained in the parabolic P .

Given a (2, 3, 5) distribution D with its canonical Cartan geometry (G →M,ω)

of type (G,P ), it then follows immediately from the general considerations outlined

above that there is a naturally associated Cartan geometry (G̃ → M̃, ω̃) of type

(G̃, P̃ ). It remains to show that this Cartan geometry (which is of the right type)

determines a Lie contact structure on M̃ . This is the case provided the curvature

K̃ is regular, i.e. K̃(u)(g̃i, g̃j) ⊂ g̃i+j+1 at any point u ∈ G̃.

Remark 3.2. To understand the geometric meaning of the regularity condition,

note that the Cartan connection ω̃ determines an isomorphism

TM̃ ∼= G̃ ×P̃ g̃/p̃

and via this isomorphism the P̃ -invariant subspace g̃−1/p̃ ⊂ g̃/p̃ gives rise to a rank

6-subbundle

H ∼= G̃ ×P̃ g̃−1/p̃.

Now the regularity condition ensures that the bundle map L on the graded bundle

gr(TM̃) = H⊕TM̃/H induced by the Lie bracket of vector fields coincides with the

one induced by the algebraic Lie bracket on gr(g̃/p̃) = g̃−2 ⊕ g̃−1. Inspecting the Lie

bracket on g̃−2 ⊕ g̃−1 immediately shows that this implies that L : Λ2H → TM̃/H
is non-degenerate, i.e. H is a contact distribution. To see that one indeed gets an

induced Lie contact structure, note that as a P̃ -representation g̃−1/p̃ = E∗⊗E⊥/E.
See also [8].
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Proposition 3.1. Suppose (G →M,ω) is a regular and normal parabolic geometry

of type (G,P ), then the induced parabolic geometry (G̃ → M̃, ω̃) of type (G̃, P̃ ) is

regular. In particular, it determines a Lie contact structure on the manifold M̃ =

G/Q.

Proof. It is known, see [23] or Theorem 4.1, that the regular, normal Cartan

geometry (G →M,ω) associated with a (2, 3, 5) distribution is torsion-free, i.e. the

curvature function K takes values in Λ2(g/p)∗ ⊗ p. Via the inclusion g ↪→ g̃, the

parabolic p is contained in the P̃ -module g̃−1, and so the curvature function K̃ of

the Cartan geometry (G̃ → M̃, ω̃) takes values in Λ2(g̃/p̃)∗⊗ g̃−1. This implies that

the curvature K̃ is of homogeneity ≥ 1, i.e. the geometry is regular.

Next we show that M̃ is the twistor bundle T as introduced in Definition 3.1.

Proposition 3.2. The manifold M̃ = G/Q can be naturally identified with the

twistor bundle T =
⋃

x∈M{�x ∈ [D,D]x : �x /∈ D} of all lines in [D,D] transversal

to D.

Proof. By definition,

M̃ = G/Q = G ×P P/Q.

Let g−1/p ⊂ g−2/p ⊂ g−3/p be the P -invariant filtration on g/p. To prove the

proposition it remains to identify the homogeneous space P/Q with the set of lines

in g−2/p that are not contained in g−1/p.

We have noticed in the proof of Proposition 2.1 that Q = G0 � exp(g2 ⊕ g3) for

some subgroup G0
∼= P/P+ and corresponding G0-invariant grading g−3 ⊕ g−2 ⊕

g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3. Now exp(g2 ⊕ g3) acts trivially on g−2/p and G0 preserves

the line � = (g−2+p)/p (and acts nontrivially on it). On the other hand, the action

identifies exp(g1) with the space of linear maps from � to g−1/p. It follows that the

P -action is transitive on lines in g−2/p not contained in g−1/p and the stabilizer of

� as above is the subgroup Q.

In particular, we have proven Theorem 1.1.

Remark 3.3. In [8], a construction from conformal structures to Lie contact struc-

tures is presented, which generalizes the work of Miyaoka, Sato and Yamaguchi

[20, 21, 28]. Note that the Lie contact structure constructed here is different from

the Lie contact structure associated with the conformal structure [gD] following
their construction. The latter one lives on a 9-dimensional manifold, ours on a

7-manifold.

3.3. Additional structure on the twistor bundle

One immediately observes that the Lie contact structures obtained from (2, 3, 5)

distributions are special. In particular, besides H, there are several other naturally
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defined distributions on T. First there is the vertical bundle

V =
⋃
�∈T

{ξ ∈ T�T : π∗(ξ) = 0}

for the projection π : T → M , which has rank 2. Then there are the lifts of D and

[D,D],

D̃ =
⋃
�∈T

{ξ ∈ T�T : π∗(ξ) ∈ D},

and

[̃D,D] =
⋃
�∈T

{ξ ∈ T�T : π∗(ξ) ∈ [D,D]},

which are bundles of ranks 4 and 5, respectively. Finally, there is a rank 3

distribution

S =
⋃
�∈T

{ξ ∈ T�T : π∗(ξ) ∈ �},

called the prolongation of D.

These distributions can be understood as follows: Since (G̃ → M̃, ω̃) arises as the

extension of a Cartan geometry (G → M̃, ω) of type (G,Q), we have an isomorphism

TM̃ ∼= G ×Q g/q

via the Cartan connection ω. In particular, every Q-invariant subspace of g/q cor-

responds to a natural subbundle of TM̃ . The vertical bundle V corresponds to p/q,

the rank 3 bundle S corresponds to (g−2 + p)/q, the contact subbundle H corre-

sponds to (g−3 ⊕ g−1 ⊕ p)/q, and D̃ and [̃D,D] correspond to g−1/q and g−2/q,

respectively. In the root diagram below the Q-submodules corresponding to the

vertical bundle V , the rank 3 bundle S, and the rank 4 bundle D̃ are depicted.

g3

g−3

g2

g−2

g1g−1

g0

g0

g−1

g1

g−3

g3

4. The Exterior Differential System and Examples

Here we present a slightly different viewpoint on the construction of Lie contact

structures from (2, 3, 5) distributions, complementing the picture from the previous
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section. First we present the structure equations, or EDS, for (2, 3, 5) distributions.

Then we show how they can be applied to (locally) construct the induced Lie

contact structures in terms of a conformal symmetric rank 4 tensor on the contact

distribution H. This viewpoint has the advantage that it leads to explicit formulae

and enables us, for instance, to solve the symmetry equations for a given structure.

This is carried out for a special class of distributions parametrized by functions

F (q) = qk

k(k−1) .

4.1. The EDS for a (2, 3, 5) distribution

The EDS for a generic (2, 3, 5) distribution was first introduced by Cartan in [11],

and was then modified in [23] to get a form adapted to the corresponding (reduced

to g2) normal conformal Cartan connection. Here we have rewritten the system

from [23] changing the notation to be more suitable to the contact structures we

consider in this paper. The changes in notations with respect to [23] are as follows:

1-forms in [23] the respective 1-forms in this paper

θ1, θ2, θ3, θ4, θ5 θ1, θ2, θ0, θ3, θ4

Ω5,Ω6 3θ6, 3θ5

Ω7,Ω8,Ω9 Ω5,Ω6,Ω7

Theorem 4.1. A (2, 3, 5) distribution D on a 5-manifold M uniquely defines a

14-dimensional bundle P → G →M together with a rigid coframe (θ0, θ1, θ2, θ3, θ4,

θ5, θ6,Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7) on it satisfying the following EDS:

dθ0 = θ0 ∧ (Ω1 +Ω4) + 3θ1 ∧ θ6 + 3θ2 ∧ θ5 + θ3 ∧ θ4,

dθ1 = θ0 ∧ θ3 + θ1 ∧ (2Ω1 +Ω4) + θ2 ∧ Ω2,

dθ2 = θ0 ∧ θ4 + θ1 ∧ Ω3 + θ2 ∧ (Ω1 + 2Ω4),

dθ3 = 4θ0 ∧ θ5 + θ1 ∧Ω5 + θ3 ∧ Ω1 + θ4 ∧ Ω2,

dθ4 = −4θ0 ∧ θ6 + θ2 ∧ Ω5 + θ3 ∧Ω3 + θ4 ∧ Ω4,

dΩ1 = −Ω2 ∧Ω3 −
1

3
Ω5 ∧ θ0 − Ω6 ∧ θ1 − 2θ3 ∧ θ6 + θ4 ∧ θ5

− b2θ
0 ∧ θ1 − b3θ

0 ∧ θ2 + 3

8
c2θ

1 ∧ θ2 + a2θ
1 ∧ θ3

+ a3(θ
1 ∧ θ4 + θ2 ∧ θ3) + a4θ

2 ∧ θ4,

dΩ2 = −Ω1 ∧Ω2 − Ω2 ∧Ω4 − Ω7 ∧ θ1 − 3θ3 ∧ θ5

− b3θ
0 ∧ θ1 − b4θ

0 ∧ θ2 + 3

8
c3θ

1 ∧ θ2 + a3θ
1 ∧ θ3

+ a4(θ
1 ∧ θ4 + θ2 ∧ θ3) + a5θ

2 ∧ θ4,
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dΩ3 = Ω1 ∧Ω3 +Ω3 ∧Ω4 − Ω6 ∧ θ2 − 3θ4 ∧ θ6

+ b1θ
0 ∧ θ1 + b2θ

0 ∧ θ2 − 3

8
c1θ

1 ∧ θ2 − a1θ
1 ∧ θ3

− a2(θ
1 ∧ θ4 + θ2 ∧ θ3)− a3θ

2 ∧ θ4,

dΩ4 = Ω2 ∧Ω3 −
1

3
Ω5 ∧ θ0 − Ω7 ∧ θ2 + θ3 ∧ θ6 − 2θ4 ∧ θ5

+ b2θ
0 ∧ θ1 + b3θ

0 ∧ θ2 − 3

8
c2θ

1 ∧ θ2 − a2θ
1 ∧ θ3

− a3(θ
1 ∧ θ4 + θ2 ∧ θ3)− a4θ

2 ∧ θ4,

dθ5 = Ω2 ∧ θ6 +Ω4 ∧ θ5 −
1

3
Ω5 ∧ θ3 −

1

3
Ω7 ∧ θ0

− 1

4
c2θ

0 ∧ θ1 − 1

4
c3θ

0 ∧ θ2 + e1θ
1 ∧ θ2

+
1

4
b2θ

1 ∧ θ3 + 1

4
b3(θ

1 ∧ θ4 + θ2 ∧ θ3) + 1

4
b4θ

2 ∧ θ4,

dθ6 = Ω1 ∧ θ6 +Ω3 ∧ θ5 +
1

3
Ω5 ∧ θ4 −

1

3
Ω6 ∧ θ0

− 1

4
c1θ

0 ∧ θ1 − 1

4
c2θ

0 ∧ θ2 + e2θ
1 ∧ θ2

+
1

4
b1θ

1 ∧ θ3 + 1

4
b2(θ

1 ∧ θ4 + θ2 ∧ θ3) + 1

4
b3θ

2 ∧ θ4,

dΩ5 = Ω1 ∧Ω5 +Ω4 ∧Ω5 − Ω6 ∧ θ3 − Ω7 ∧ θ4 − 12θ5 ∧ θ6

+4e2θ
0 ∧ θ1 + 4e1θ

0 ∧ θ2 + fθ1 ∧ θ2 − 3

8
c1θ

1 ∧ θ3

− 3

8
c2(θ

1 ∧ θ4 + θ2 ∧ θ3)− 3

8
c3θ

2 ∧ θ4,

dΩ6 = 2Ω1 ∧ Ω6 +Ω3 ∧ Ω7 +Ω4 ∧ Ω6 − 3Ω5 ∧ θ6

− p1θ
0 ∧ θ1 − p2θ

0 ∧ θ2 + q1θ
1 ∧ θ2 + h1θ

1 ∧ θ3

+ h2(θ
1 ∧ θ4 + θ2 ∧ θ3) + h3θ

2 ∧ θ4,

dΩ7 = Ω1 ∧Ω7 +Ω2 ∧Ω6 + 2Ω4 ∧ Ω7 − 3Ω5 ∧ θ5

− 1

3
(2f + 3p2)θ

0 ∧ θ1 − p3θ
0 ∧ θ2 + q2θ

1 ∧ θ2 + (h2 − e2)θ
1 ∧ θ3

+(h3 − e1)(θ
1 ∧ θ4 + θ2 ∧ θ3) + h4θ

2 ∧ θ4.

The functions a1, a2, a3, a4, a5, b1, b2, b3, b4, c1, c2, c3, e1, e2, f, q1, q2, p1, p2, p3,

h1, h2, h3, h4 appearing in the EDS can be understood as the curvature coefficients

of the normal Cartan connection ω ∈ Ω1(G, g2) associated with the distribution D.
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In terms of the rigid coframe the Cartan normal connection ω reads

ω =



−Ω1 − Ω4 −2θ6 −12θ5 −2Ω5 Ω6 −6Ω7 0

− 1
2θ

3 −Ω4 6Ω2 −6θ5 1
2Ω5 0 6Ω7

− 1
12θ

4 1
3Ω

3 −Ω1 θ6 0 − 1
2Ω5 −Ω6

1
3θ

0 − 1
3θ

4 2θ3 0 −θ6 6θ5 2Ω5

−θ1 − 2
3θ

0 0 −2θ3 Ω1 −6Ω2 12θ5

1
6θ

2 0 2
3θ

0 1
3θ

4 − 1
3Ω3 Ω4 2θ6

0 − 1
6θ

2 θ1 − 1
3θ

0 1
12θ

4 1
2θ

3 Ω1 +Ω4


. (15)

The curvature K of the connection ω is of the form

K =
1

2
Kijθ

i ∧ θj , where i, j = 0, 1, 2, 3, 4,

and the above EDS is the same as

dω = −ω ∧ ω +
1

2
Kijθ

i ∧ θj .

4.2. From the EDS to underlying structures

Suppose that the fourteen 1-forms (θ0, . . . , θ6,Ω1, . . . ,Ω7) on G are linearly inde-

pendent at each point, θ0 ∧ · · · θ6 ∧ Ω1 ∧ · · · ∧ Ω7 �= 0, and satisfy the EDS as in

Theorem 4.1.

4.2.1. The underlying (2, 3, 5) distribution and conformal metric

On the one hand, we easily conclude the following:

• G is locally foliated by 9-dimensional submanifolds tangent to the distribution

P defined as the annihilator of the basis 1-forms (θ0, θ1, θ2, θ3, θ4). That P is

integrable follows immediately from the EDS, since it guarantees that

dθk ∧ θ0 ∧ θ1 ∧ θ2 ∧ θ3 ∧ θ4 = 0, ∀ k = 0, 1, 2, 3, 4.

• The rank 2 distribution D̄ on G annihilated by the forms (θ0, θ1, θ2, θ5, θ6,

Ω1, . . . ,Ω7),

D̄ = ker(θ0, θ1, θ2, θ5, θ6,Ω1, . . . ,Ω7),

descends to a well-defined rank 2 distribution D = π∗D̄ on the space M = G/P
of leaves of the distribution P . To see that this is the case, consider the frame

(X0, . . . , X6, Y1, . . . , Y7) dual to the coframe forms on G. Then D̄ is spanned by

X3 and X4,

D̄ = Span(X3, X4).

To show that D̄ projects to a well-defined rank 2 distribution M it is enough

to show that, at each point of G, the Lie derivatives of X3 and X4 with
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respect to the fiber directions X5, X6, Y1, Y2, Y3, Y4, Y5, Y6, Y7 are spanned by

no other vectors than the distribution vectors X3, X4, and the vertical vectors

X5, X6, Y1, Y2, Y3, Y4, Y5, Y6, Y7. Dually, this precisely means that in the consid-

ered EDS the terms θ3∧θ5, θ3∧θ6, Ωi∧θ3, θ4∧θ5, θ4∧θ6, Ωi∧θ4, i = 1, 2, . . . , 7,

cannot appear in the exterior derivatives of the forms θ0, θ1 and θ2. This is the

case for the EDS from Theorem 4.1.

The distribution D = π∗D̄ on M is (2, 3, 5), since the EDS from Theorem

4.1 guarantees the following expressions for the commutators [X3, X4] = −X0,

[X3, X0] = X1 and [X4, X0] = X2, where equality is considered modulo terms

vertical with respect to π.

• The conformal class of (3, 2) signature metrics [gD] is represented by the bilinear

form

gD =
4

3
(θ0)2 + 2θ1θ4 − 2θ2θ3.

The EDS from Theorem 4.1 guarantees that the Lie derivatives of gD with respect

to its degenerate directions spanned by X5, X6, Y1, . . . , Y7 are always multiples

of gD. Thus gD descends to a well-defined conformal class [gD] of (3, 2) signature
metrics on M = G/P .

4.2.2. The corresponding Lie contact structure and (3, 5, 7) distribution

On the other hand, the EDS from Theorem 4.1 can be viewed quite differently:

• Consider the rank 7 distribution Q on G defined as the annihilator of the seven

linearly independent 1-forms θA, A = 0, 1, 2, 3, 4, 5, 6. This distribution is inte-

grable due to

dθA ∧ θ0 ∧ θ1 ∧ θ2 ∧ θ3 ∧ θ4 ∧ θ5 ∧ θ6 = 0, ∀A = 0, 1, 2, 3, 4, 5, 6.

As such, it defines a foliation of G by 7-dimensional leaves, and a fibration

Q→ G σ→ M̃ = G/Q,

over the 7-dimensional leaf space M̃ = G/Q.

• The rank 6 distribution H̄ on G annihilated by the forms (θ0,Ω1, . . . ,Ω7),

H̄ = ker(θ0,Ω1, . . . ,Ω7),

descends to a well-defined rank 6 distribution H = σ∗H̄ on the leaf space M̃ .

Moreover, using the EDS from Theorem 4.1 and a similar reasoning as before

show that the rank 6 distribution H = σ∗H̄ is indeed a contact distribution on M̃ .

The one-form θ0 descends from G to an equivalence class [λ] of contact forms on

M̃ , where two contact forms are in the same class if one is a functional multiple

of the other; they span a well-defined line subbundle in T ∗M̃ .

• Again using the EDS from Theorem 4.1, we show that the contact distribution

H on M̃ is equipped with additional structure. Consider the 2-form

ρ = 3θ1 ∧ θ6 + 3θ2 ∧ θ5 + θ3 ∧ θ4, (16)
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and the symmetric rank 4 tensor

Υ = 2θ2(θ3)2θ6 − 3(θ1)2(θ6)2 − 2θ1θ3θ4θ6 − 6θ1θ2θ5θ6

+2θ2θ3θ4θ5 − 2θ1(θ4)2θ5 − 3(θ2)2(θ5)2. (17)

Then the Lie derivatives of ρ and Υ with respect to the fiber directions YA are

LYAρ = uAρ+ θ0 ∧ αA and LYAΥ = vAΥ+ θ0 � γA,

where uA, vA are functions, αA are 1-forms, and γA are symmetric rank 3 tensors.

Since θ0 annihilates the distribution H, ρ and Υ descend to the respective objects

[ρ] and [Υ] on the distribution H, where they are defined up to scale, because

some of the uA, vA are nonzero. (In fact, the class of ρ on H can be represented

by dθ0|H, so this defines a line subbundle of Λ2H∗ spanned by symplectic forms

on H.)

• The rank 3 distribution S̄ on the Cartan bundle G defined as

S̄ = ker(θ1, θ2, θ3, θ4,Ω1, . . . ,Ω7) = Span(X0, X5, X6),

descends to a well-defined rank 3 distribution S = σ∗S̄ on M̃. This can be seen

from the fact that in the EDS from Theorem 4.1 the exterior derivatives of the

forms θ1, θ2, θ3 and θ4 do not contain terms of the form θ0 ∧ Ωi, θ
5 ∧ Ωi and

θ6 ∧ Ωi.

One easily checks using the system that [X5, X6] = 0, [X0, X5] = −4X3,

[X0, X6] = 4X4, [X0, X3] = −X1, [X0, X4] = −X2 modulo vertical terms. This

shows that the first commutator [S,S] has rank 5 (and is equal to the lift [̃D,D]

of [D,D]), and [S, [S,S]] = TM̃. In particular, the distribution S has growth

vector (3, 5, 7).

Remark 4.1. Locally, the structure on M̃ described above in terms of the contact

distribution H equipped with the equivalence class of symmetric rank 4 tensors [Υ]

is equivalent to a Lie contact structure as introduced in Sec. 2.6. To see this, one

shows that [Υ] reduces the structure group of the natural frame bundle F of the

contact distribution to the correct group G̃0 ⊂ CSp(3), see also Remark 2.1.

4.3. A class of examples

Next we construct the 1-forms (θ0, . . . , θ6) explicitly with respect to a section for a

special class of distributions. In particular, this yields an explicit local description

of the induced Lie contact structure.

4.3.1. A particular solution to the EDS in dimension 7

Recall that we can specify a (2, 3, 5) distribution DF defined in a neighborhood U5

around the origin of R5 with local coordinates (x, y, p, q, z) by specifying a single

function of five variables F = F (x, y, p, q, z) such that Fqq �= 0. Let us consider a
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differentiable function F = h(q) of one variable q only. We assume that h′′ �= 0.

Then the distribution Dh is given as the kernel of the three 1-forms

ω0 = dp− qdx, ω1 = dy − pdx, ω2 = dz − hdx.

The 1-forms (ω0, ω1, ω2) can be supplemented to a coframe (ωi), i = 0, 1, 2, 3, 4, on

U5 given by

ω0 = dp− qdx,

ω1 = dy − pdx,

ω2 = dz − hdx,

ω3 = dq,

ω4 = dx.

(18)

Now one introduces forms

θ0

θ1

θ2

θ3

θ4


=



u1 u2 u3 0 0

u4 u5 u6 0 0

u7 u8 u9 0 0

u10 u11 u12 u13 u14

u15 u16 u17 u18 u19





ω0

ω1

ω2

ω3

ω4


, (19)

with the 19 free parameters (u1, u2, . . . , u19). It follows that there exists a

choice of these parameters, in which the forms (θ0, θ1, . . . , θ4) satisfy the EDS

as in Theorem 4.1, with corresponding functions (a1, a2, . . . , h3, h4) and 1-forms

(θ5, θ6,Ω1,Ω2, . . . ,Ω7), such that

θ0 ∧ θ1 ∧ θ2 ∧ θ3 ∧ θ4 ∧ θ5 ∧ θ6 �= 0,

and

Ωi ∧ θ0 ∧ θ1 ∧ θ2 ∧ θ3 ∧ θ4 ∧ θ5 ∧ θ6 ≡ 0, ∀ i = 1, 2, . . . , 7.

This means that there is an effective algorithm of solving the EDS of Theorem 4.1

for forms (θ0, θ1, . . . , θ6,Ω1,Ω2, . . . ,Ω7) and the coefficients (a1, a2, . . . , h3, h4) on a

certain 7-dimensional manifold, which we below parametrized by (x, y, p, q, z, v, w).

Explicitly, the forms corresponding to this choice are given below (we use the nota-

tion h(n) for higher derivatives of the function h = h(q)):

θ0 =
vh′′4/3

9w4
dy +

h′′4/3

9w4
dz − (w + h′)h′′4/3

9w4
dp− (vp− wq + h− qh′)h′′4/3

9w4
dx,

θ1 = −ph
′′4/3

27w4
dx+

h′′4/3

27w4
dy,

θ2 =
vh′′5/3

27w5
dy +

h′′5/3

27w5
dz − h′h′′5/3

27w5
dp− (vp+ h− qh′)h′′5/3

27w5
dx,
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θ3 =
vh′′

3w3
dy − (−20h′′4 − 4w2h(3)

2
+ 3w2h′′h(4))

90w3h′′3
dz

− (40wh′′4 + 20h′h′′4 + 10w2h′′2h(3) + 4w2h′h(3)
2 − 3w2h′h′′h(4))

90w3h′′3
dp

+
1

90w3h′′3
(30w2h′′3 − 30vph′′4 + 40wqh′′4 − 20hh′′4 + 20qh′h′′4

+10w2qh′′2h(3) − 4w2hh(3)
2
+ 4w2qh′h(3)

2
+ 3w2hh′′h(4)

− 3w2qh′h′′h(4))dx,

θ4 = −h
′′4/3

3w2
dq +

v2h′′4/3

9w4
dy − v(−10h′′4 − 4w2h(3)

2
+ 3w2h′′h(4))

90w4h′′8/3
dz

+
v(−10h′h′′4 − 10w2h′′2h(3) − 4w2h′h(3)

2
+ 3w2h′h′′h(4))

90w4h′′8/3
dp

− v

90w4h′′8/3
(−30w2h′′3 + 10vph′′4 + 10hh′′4 − 10qh′h′′4 − 10w2qh′′2h(3)

+4w2hh(3)
2 − 4w2qh′h(3)

2 − 3w2hh′′h(4) + 3w2qh′h′′h(4))dx,

θ5 =
dw

h′′1/3
+

(10h′′4 − 10wh′′2h(3) + 4w2h(3)
2 − 3w2h′′h(4))

30h′′10/3
dq

+
v(−5h′′6 + 40w3h(3)

3 − 45w3h′′h(3)h(4) + 9w3h′′2h(5))

90w2h′′16/3
dz

+
v

90w2h′′16/3
(−15wh′′6 + 5h′h′′6 − 12w3h′′2h(3)

2 − 40w3h′h(3)
3

+9w3h′′3h(4) + 45w3h′h′′h(3)h(4) − 9w3h′h′′2h(5))dp

− v

90w2h′′16/3
(−15wqh′′6 − 5hh′′6 + 5qh′h′′6 − 12w3qh′′2h(3)

2

+40w3hh(3)
3 − 40w3qh′h(3)

3
+ 9w3qh′′3h(4)

− 45w3hh′′h(3)h(4) + 45w3qh′h′′h(3)h(4) + 9w3hh′′2h(5)

− 9w3qh′h′′2h(5))dx,

θ6 = −dv +
v2(−4h(3)

2
+ 3h′′h(4))

90wh′′3
dz +

v(10h′′4 − 4w2h(3)
2
+ 3w2h′′h(4))

30wh′′3
dq

+
v3(40h(3)

3 − 45h′′h(3)h(4) + 9h′′2h(5))
90h′′5

dy − v2

90w2h′′5
(5h′′6 − 10wh′′4h(3)

− 12w2h′′2h(3)
2 − 4wh′h′′2h(3)

2
+ 40w3h(3)

3
+ 9w2h′′3h(4)
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+3wh′h′′3h(4) − 45w3h′′h(3)h(4) + 9w3h′′2h(5))dp− v2

90w2h′′5
(30wh′′5

− 5qh′′6 + 10wqh′′4h(3) + 12w2qh′′2h(3)
2 − 4whh′′2h(3)

2
+ 4wqh′h′′2h(3)

2

+40vw2ph(3)
3 − 40w3qh(3)

3 − 9w2qh′′3h(4) + 3whh′′3h(4) − 3wqh′h′′3h(4)

− 45vw2ph′′h(3)h(4) + 45w3qh′′h(3)h(4) + 9vw2ph′′2h(5) − 9w3qh′′2h(5))dx.

(20)

We could also write down the remaining forms (Ω1,Ω2, . . . ,Ω7) that together with

the above (θ0, θ1, . . . , θ6) satisfy the EDS from Theorem 4.1, but since they are not

interesting for the rest of our paper we will skip them.

The particular solution (θ0, θ1, . . . , θ6) constructed above enables us to write

down the structural tensors associated with the (2, 3, 5) distribution

Dh = Span(∂x + p∂y + q∂p + h(q)∂z , ∂q), (21)

explicitly in the coordinates (x, y, p, q, z; v, w).

It should be clear that the coordinates (x, y, p, q, z) parametrize the 5-manifold

M on which the distribution Dh resides, and that (v, w) are the fiber coordinates of

the bundle M̃ → M . In particular, (v, w) locally parameterize directions �(v, w) =

dir(ξ(v, w)) in the 3-distribution [Dh,Dh] as follows:

ξ(v, w) = ∂x + p∂y + q∂p + h∂z +
v

h′′
∂q +

w

h′′
(∂p + h′∂z).

Note that in this parametrization the directions transverse to the 2-distribution Dh

have w �= 0, and that w ≡ 0 corresponds to the directions in the 2-distribution

Dh. Thus, when the coordinate w → 0 we approach points (x, y, p, q, z, v) of the

6-dimensional boundary P(Dh) of M̃ ∼= P([Dh,Dh])\P(Dh).

In the remainder of Sec. 4.3 we will restrict our examples to the distributions

Dh with

h(q) =
1

k(k − 1)
qk, where k ∈ R, k �= 0, 1. (22)

Since in such case Dh is totally determined by a real number k, we will denote

these distributions by Dk. We have excluded the cases k = 0, 1 because they do not

correspond to (2, 3, 5) distributions.

4.3.2. Conformal metric on M

For the class of examples given by (22) the conformal class of metrics [gDk
] may be

represented by

gDk
= (k − 1)2(9k2 − 9k + 2)q2dx2 − 2k(k − 1)(9k2 − 9k − 8)qdxdp

+30k2(k − 1)2pdxdq − 4k(k − 1)2(3k2 + 2k − 1)q2−kdxdz
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− 30k2(k − 1)2dydq + k2(9k2 − 9k + 2)dp2

+4k2(k − 1)(3k2 − 8k + 4)q1−kdpdz − k2(k − 1)2(k2 − k − 2)q2−2kdz2.

(23)

It is well known [23] that this metric is conformally flat if and only if the corre-

sponding distribution Dk is flat, and this happens [11] precisely in the four cases

when k ∈ {2, 23 ,
1
3 ,−1}. For example for k = 2 we get the conformally flat metric

gD2 = 4(30dxdz − 5q2dx2 − 20dp2 + 10qdpdx− 30pdqdx+ 30dqdy). (24)

Now if k /∈ {2, 23 ,
1
3 ,−1} the distributionDk has 7-dimensional symmetry algebra

(the submaximal dimension) spanned by

X1 = ∂x, X2 = ∂y, X3 = ∂z , X4 = ∂p + x∂y ,

X5 = x∂x − p∂p − 2q∂q + (1 − 2k)z∂z, X6 = y∂y + p∂p + q∂q + kz∂z,

X7 = qk−1∂x + (pqk−1 + (1− k)z)∂y +
k − 1

k
qk∂p +

q2k−1

k(2k − 1)
∂z .

The conformal class represented by (23) has 9-dimensional symmetry algebra,

spanned by X1, . . . , X7 and the two additional generators

X8 = q−
1
2+

√
10k2−10k+5

10

(
∂x + p∂y +

3k2 − 2
√
10k2 − 10k + 5− 3k + 4

(3k − 2)(k − 2)
q∂p

+ 2
4k2 − 4k + 2− k

√
10k2 − 10k + 5

(3k − 2)(k − 2)k(k − 1)
q−k∂z

)
,

X9 = q−
1
2+

√
10k2−10k+5

10

(
∂x + p∂y +

3k2 + 2
√
10k2 − 10k + 5− 3k + 4

(3k − 2)(k − 2)
q∂p

+ 2
4k2 − 4k + 2 + k

√
10k2 − 10k + 5

(3k − 2)(k − 2)k(k − 1)
qk∂z

)
.

It is instructive to look at the symmetries in one of the flat cases, say k = 2. One

sees that in this case X8 and X9 are singular, but the rescaling by a factor (k − 2)

regularizes them at k = 2. These however, in the limit k → 2, lead to one symmetry

only, namely to Z1 = limk→2X9 = ∂p + q∂z , since the limit of the regularized X8

is zero. In this case the eight conformal symmetries (X1, X2, . . . , X7, X9
′) are of

course extendible to the full 21-dimensional algebra of symmetries so(4, 3).

We close this section providing the full algebra of symmetries of the distribution

Dk with k = 2 and the full algebra of conformal symmetries of [gDk
] in such case.

In addition to the 7 symmetries (X1, X2, . . . , X7) with k = 2 this distribution has

additional seven symmetries, so that its full algebra of symmetries has dimension 14.
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The remaining seven symmetries are

Y1 =
1

2
x2∂y + x∂p + ∂q + p∂z,

Y2 =
1

6
x3∂y +

1

2
x2∂p + x∂q + (xp− y)∂z ,

Y3 = x2∂x + 3xy∂y + (3y + xp)∂p + (4p− qx)∂q + 2p2∂z ,

Y4 = (8p− 6qx)∂x + (4p2 + 6xz − 6pqx)∂y

+(6z − 3q2x)∂p − 2q2∂q − q3x∂z ,

Y5 = (16xp− 12y − 6qx2)∂x + (6x2z + 8p2x− 6pqx2)∂y

+(12xz + 4p2 − 3q2x2)∂p + (12z + 4pq − 4q2x)∂q

+(12pz − q3x2)∂z ,

Y6 = (24px2 − 6qx3 − 36xy)∂x + (12p2x2 + 6x3z − 36y2 − 6pqx3)∂y

+(12p2x+ 18x2z − 3q2x3 − 36py)∂p

+(12pqx− 6q2x2 − 24p2 + 36xz)∂q

+(36pxz − 8p3 − q3x3 − 36yz)∂z,

Y7 = (12p2 − 18qy)∂x + (8p3 − 18pqy + 18yz)∂y + (18pz − 9q2y)∂p

+(18qz − 6pq2)∂q + (18z2 − 3q3y)∂z.

(25)

The 14-dimensional Lie algebra spanned by (X1, X2, . . . , X7, Y1, Y2, . . . , Y7) is iso-

morphic to the split real form of the exceptional simple Lie algebra g2. As for the

conformal symmetries of [gD2 ]: we have the 14 conformal symmetries of the dis-

tribution, (X1, X2, . . . , X7, Y1, Y2, . . . , Y7), forming the Lie algebra of g2, but also

seven additional conformal symmetries given by

Z1 = ∂p + q∂z,

Z2 = ∂x + p∂y +
3

4
q∂p +

1

4
q2∂z ,

Z3 = ∂q +
1

4
x∂p +

1

4
qx∂z ,

Z4 = 4px∂y + (3qx+ 6p)∂p + 12q∂q + (q2x+ 2qp+ 12z)∂z,

Z5 = 4x2∂x + 4px2∂y + (3qx2 + 4px− 6y)∂p + 8(qx− p)∂q

+(q2x2 + 4xqp− 6qy)∂z,

Z6 = 12qx∂x + (12xqp+ 8p2 − 12xz)∂y + (6q2x+ 12qp)∂p + 12q2∂q

+(2q3x+ 4q2p+ 12qz)∂z,

Z7 = 4(px− 3y)∂x + 4p(px− 3y)∂y + (3xqp− 2p2 − 9qy + 3xz)∂p

+(2q2x− 8qp+ 12z)∂q + (xpq2 − 2p2q − 3yq2 + 3zqx)∂z.
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The 21-dimensional algebra generated by X1, . . . , X7, Y1, . . . , Y7, Z1, . . . , Z7 is iso-

morphic to the Lie algebra so(4, 3).

4.3.3. The Lie contact structure

The Lie contact structure ([λ], [Υ]) on M̃ associated with the distribution Dh is

totally expressible in terms of the forms (θ0, θ1, . . . , θ6) as written in Sec. 4.3.1, for-

mulas (16), (17). For h(q) = qk

k(k−1) , the line of contact forms can be represented by

λ = dz −
(
w +

qk−1

k − 1

)
dp+ vdy +

(
wq − vp+

qk

k

)
dx. (26)

To get this, we took θ0 from (20), calculated it for h = qk

k(k−1) and rescaled, so that

the term at dz is equal to one. One easily checks that

dλ ∧ dλ ∧ dλ ∧ λ = −6wdx ∧ dy ∧ dp ∧ dq ∧ dz ∧ dv ∧ dw,

so λ is a contact form everywhere on M̃ except the boundary w = 0. Even in the

simple case that we are considering here, we found that the structural tensor Υ on

Dk, when written via the formula (17) in coordinates (x, y, p, q, z, v, w), is very ugly.

For this reason we will not write it here. Instead we determine the symmetries of

the Lie contact structure ([λ], [Υ]) on M̃ = P([Dk,Dk])\P(Dk) with this ugly Υ.

In general, an infinitesimal symmetry of a Lie contact structure ([λ], [Υ]) on M̃

is a vector field X on M̃ such that

(LXλ) ∧ λ = 0, and LXΥ = fΥ+ λ� τ, (27)

where τ is a rank 3 tensor and f is a function on M̃ . We calculated the infinitesimal

symmetries of the Lie contact structure ([λ], [Υ]) with λ as in (26) and Υ determined

by (17), (20) with h = qk

k(k−1) , obtaining the following proposition.

Proposition 4.1. If k /∈ {2, 23 ,
1
3 , 0, 1,−1} the algebra of infinitesimal symmetries

of the Lie contact structure ([λ], [Υ]) on M̃ = P([Dk,Dk])\P(Dk) is 7-dimensional

and is spanned by the infinitesimal symmetries:

X̃1 = ∂x, X̃2 = ∂y, X̃3 = ∂z , X̃4 = ∂p + x∂y ,

X̃5 = x∂x − p∂p − 2q∂q + (1− 2k)z∂z + (1− 2k)v∂v + 2(1− k)w∂w,

X̃6 = y∂y + p∂p + q∂q + kz∂z + (k − 1)v∂v + (k − 1)w∂w,

X̃7 = qk−1∂x + (pqk−1 + (1− k)z)∂y +
k − 1

k
qk∂p +

q2k−1

k(2k − 1)
∂z

+(1− k)v2∂v + (1− k)vw∂w .

Remark 4.2. Note that the seven symmetries (X̃1, X̃2, . . . , X̃7) above correspond

to the seven symmetries (X1, X2, . . . , X7) of the distribution Dk defining the Lie

contact structure ([λ], [Υ]). Explicitly note that we have: X̃i = Xi + ai∂v + bi∂w,
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i = 1, 2, . . . , 7, with specific functional coefficients ai and bi. We remark that we

obtained (X̃1, X̃2, . . . , X̃7) by directly solving the symmetry equations (27), and not

by assuming that the symmetry X̃i have the form X̃i = Xi + ai∂v + bi∂w.

There is, however, more direct way of getting these seven symmetries. This is

related to the general fact that every symmetry of a (2, 3, 5) distribution D induces a

symmetry of its twistor Lie contact structure, since the construction is natural. The

simplest way of seeing this is via the prolongation lift (or simply prolongation) X̃ of

an infinitesimal symmetry X of D. This is done point by point as follows: Suppose

that we want to lift Xp, i.e. the vector defined by an infinitesimal symmetry X

at p ∈ M , from point p to a point (p, �) in the fiber in M̃ over p. At p the point

(p, �) defines a direction � in the 3-distribution [D,D]. We transport this direction

by a flow φ(t) of X along its integral curve p(t) passing through p, p(0) = p. This

defines a direction �(t) = φ∗(t)� at every point of the curve p(t). Thus starting with

�(0) = � at p(0) = p, we have a direction �(t) at p(t) for every t. Since X is a

symmetry of a (2, 3, 5) distribution, its flow preserves the 3-distribution, so for any

value of t the direction �(t) sits in the 3-distribution. Thus, choosing a point � at

a fiber of p, at each point p(t) of an integral curve of a symmetry vector field X

we have a direction �(t) in the 3-distribution. We thus have a curve (p(t), �(t)) in

the bundle M̃ , which starts at (p, �) and which projects to p(t). The tangent vector

X̃(p,�) to this curve at t = 0 is the prolongation lift of the symmetry vector Xp from

p ∈M to (p, �) ∈ M̃ . By repeating this procedure for all pairs (p, �) ∈ M̃ we define a

vector field X̃ on M̃ consisting of vectors X̃(p,�). We call X̃ the prolongation ofX . It

follows from the construction that the prolongation X̃ of an infinitesimal symmetry

X of a (2, 3, 5) distribution D is an infinitesimal symmetry of the corresponding Lie

contact structure ([λ], [Υ]) on M̃ .

Finishing the remark we stress that all infinitesimal symmetries of the Lie con-

tact structure ([λ], [Υ]) on M̃ = P([Dk,Dk])\P(Dk) with all k /∈ {2, 23 ,
1
3 , 0, 1,−1}

are just prolongations of infinitesimal symmetries of the distribution Dk. We have

proven this by explicitly solving the symmetry equations and finding all their

solutions.

4.3.4. The (3, 5, 7) distribution

It is also interesting to look at the infinitesimal symmetries of the prolongation

S = Span
(
∂x + p ∂y + q ∂p + h ∂z +

v

h′′
∂q +

w

h′′
(∂p + q ∂z), ∂v, ∂w

)
of Dh. For (22) and k /∈ {2, 23 ,

1
3 ,−1}, the seven lifts of infinitesimal symmetries of

the distribution Dk from Proposition 4.1 clearly preserve the (3, 5, 7) distribution

S. We calculated that all infinitesimal symmetries of S = Sk are contained in the

span of these seven symmetries. We further calculated that in the flat case k = 2,

the symmetry algebra of the distribution S2 is precisely g2 (the symmetry algebra

of the Lie contact structure is of course so(4, 3) in this case; see the end of this
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section for details). It turns out that for any (2, 3, 5) distribution, the prolongation

S has the same symmetry algebra as the underlying (2, 3, 5) distribution D.

Proposition 4.2. For any (2, 3, 5) distribution D ⊂ TM, the infinitesimal sym-

metries of the prolongation S ⊂ TM̃ are precisely the lifts of the infinitesimal

symmetries of D.

Proof. Since the construction is natural, every infinitesimal symmetry X ∈ X(M)

of the (2, 3, 5) distribution D lifts to a vector field X̃ ∈ X(M̃) that preserves the

induced geometric structure on the twistor bundle. In particular, it defines a sym-

metry of the (3, 5, 7) distribution S. It remains to show that every infinitesimal

symmetry of S projects to an infinitesimal symmetry of D. Consider the tensorial

map Λ2S → [S,S]/S induced by the Lie bracket. At every point this is a surjective

map from a 3-dimensional to a 2-dimensional space and thus it has a 1-dimensional

kernel spanned by a decomposable element. So this defines a rank 2 distribution

on M̃ . Since the vertical distribution V for M̃ → M is evidently contained in this

rank 2 distribution and of the same dimension, the two coincide. Note that this

means that the vertical bundle is characterized as the unique rank 2 subbundle in

S such that Lie brackets of its sections are again contained in S. This in particular

implies that any infinitesimal symmetry X̃ ∈ X(M̃) of S also preserves the verti-

cal bundle V and thus it is projectable to a vector field X ∈ X(M). Moreover, ξ̃

also preserves [S,S], and since [S,S] = [̃D,D], then naturality of the Lie bracket

implies that X preserves [D,D]. By the same line of argument as above, D can be

characterized as the unique rank 2 subbundle in [D,D] such that Lie brackets of

its sections are again contained in [D,D], and this implies that ξ is an infinitesimal

symmetry for the (2, 3, 5) distribution D.

4.3.5. Flat Lie contact structure

We conclude this section with a discussion of the flat case, corresponding to the

(2, 3, 5) distribution with h(q) = 1
2q

2, i.e. k = 2. In this case we have

λ = dz − (w + q)dp+ vdy +

(
wq − vp+

q2

2

)
dx

and the conformal tensor Υ on ker(λ) can be represented by

Υ = −3v2(2vp− 2wq − q2)dx4 + 6v3dx3dy − 6v2(w + q)dpdx3

+6v(3vp− 2wq − q2)dqdx3 − 2(−9w2q − 12wq2 + 9vpw + 9pvq − 4q3)dvdx3

+6v(−q2 + 3vp− 3wq)dwdx3 + 3v2dp2dx2 − 3(−2wq − q2 + 6vp)dq2dx2

− 9p2dv2dx2 − 324q2dw2dx2 + 9v(w + q)dpdqdx2

+6(−3w2 − 8wq − 4q2 + 3vp)dpdvdx2 + 6v(3w + 2q)dpdwdx2
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+18p(w+ q)dqdvdx2 − 6(−3wq + 6vp− q2)dqdwdx2 − 18v2dqdydx2

+18pqdvdwdx2 + 18v(w + q)dvdydx2 − 18v2dwdydx2 − 6vdp2dqdx

+24(w + q)dp2dvdx − 6vdp2dwdx − 6(w + q)dpdq2dx

− 18pdpdqdvdx− 6(3w + 2q)dpdqdwdx − 18pdpdvdwdx

− 18vdpdvdydx+ 18qdpdw2dx+ 6pdq3dx+ 18pdq2dwdx

+18vdq2dxdy − 18(w + q)dqdvdydx + 36vdqdwdxdy + 18pdv2dxdy

− 18qdvdwdxdy − 8dp3dv + 3dp2dq2 + 6dp2dqdw − 9dp2dw2

+18dpdqdvdy + 18dpdvdwdy − 6dq3dy − 18dq2dwdy − 9dv2dy2.

The infinitesimal symmetries of the Lie contact structure ([λ], [Υ]) form a Lie

algebra so(3, 4) and are naturally grouped as (X̃1, . . . , X̃7), (Ỹ1, . . . , Ỹ7) and

(Ẑ1, . . . , Ẑ7), where we have.

The first seven symmetries are just prolongations (X̃1, . . . , X̃7) of the seven

symmetries (X1, . . . , X7) of the distribution Dk, as given in Proposition 4.1, and

restricted to the case k = 2:

X̃1 = ∂x, X̃2 = ∂y, X̃3 = ∂z, X̃4 = ∂p + x∂y ,

X̃5 = x∂x − p∂p − 2q∂q − 3z∂z − 3v∂v − 2w∂w,

X̃6 = y∂y + p∂p + q∂q + 2z∂z + v∂v + w∂w ,

X̃7 = q∂x + (pq − z)∂y +
1

2
q2∂p +

1

6
q3∂z − v2∂v − vw∂w .

The second group of symmetries are the lifts of the seven symmetries (Y1, . . . , Y7)

of the flat distribution D2 given in (25).

Ỹ1 =
1

2
x2∂y + x∂p + ∂q + p∂z,

Ỹ2 =
1

6
x3∂y +

1

2
x2∂p + x∂q + (xp− y)∂z + ∂v,

Ỹ3 = x2∂x + 3xy∂y + (3y + xp)∂p + (4p− qx)∂q + 2p2∂z

− (3vx− 3w − 3q)∂v − wx∂w ,

Ỹ4 = (8p− 6qx)∂x + (4p2 + 6xz − 6pqx)∂y + (6z − 3q2x)∂p − 2q2∂q − q3x∂z

+(6v2x− 6vw − 6vq)∂v + (6vwx − 6w2 − 4wq)∂w,

Ỹ5 = (16xp− 12y − 6qx2)∂x + (6x2z + 8p2x− 6pqx2)∂y + (12xz + 4p2 − 3q2x2)∂p

+(12z + 4pq − 4q2x)∂q + (12pz − q3x2)∂z + (6v2x2 − 12vwx− 12vqx

+12wq + 6q2)∂v + (6vwx2 − 12w2x− 8wqx+ 4wp)∂w,
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Ỹ6 = (24px2 − 6qx3 − 36xy)∂x + (12p2x2 + 6x3z − 36y2 − 6pqx3)∂y

+(12p2x+ 18x2z − 3q2x3 − 36py)∂p + (12pqx− 6q2x2 − 24p2 + 36xz)∂q

+(36pxz − 8p3 − q3x3 − 36yz)∂z + (6v2x3 − 18vwx2 − 18vqx2 + 36wqx

+18q2x+ 36vy − 36wp− 36pq + 36z)∂v

+(6vwx3 − 18w2x2 − 12wqx2 + 12wpx)∂w,

Ỹ7 = (12p2 − 18qy)∂x + (8p3 − 18pqy + 18yz)∂y + (18pz − 9q2y)∂p

+(18qz − 6pq2)∂q + (18z2 − 3q3y)∂z + (18v2y − 18vwp− 18vpq

+9wq2 + 3q3 + 18vz)∂w + (18vwy − 18w2p− 12wpq + 18wz)∂w.

The 14 symmetries (X̃1, . . . , X̃7, Ỹ1, . . . , Ỹ7) form a Lie algebra isomorphic to the

split real form of the exceptional Lie algebra g2.

The third group of seven symmetries is given by

Ẑ1 =
1

w

(
∂x + (p− wx)∂y + q∂p + v∂q +

(
qw +

1

2
q2
)
∂z

)
,

Ẑ2 =
1

w

(
x∂x +

(
px− 1

2
wx2

)
∂y + qx∂p + vx∂q +

(
wqx− wp+

1

2
q2x

)
∂z

)
− ∂w,

Ẑ3 =
1

w

(
q∂x + (pq − pw)∂y + q2∂p + vq∂q +

1

2
(q2w + q3)∂z

)
− v∂w,

Ẑ4 =
1

w
((2p− qx)∂x + (2p2 − pqx− 3wy + wpx)∂y

+ q(2p− qx)∂p + v(2p− qx)∂q

+(2pq2 − q3x− 6zw + 4pqw − q2xw)∂z) + (vx − 3w − q)∂w,

Ẑ5 =
1

w

(
(4px− qx2 − 6y)∂x + (wpx2 − pqx2 − 3wxy + 4p2x− 6py)∂y

+(3wpx− q2x2 + 4pqx− 9wy − 6qy)∂p + (4vpx− vqx2 + 3wqx− 6vy

− 6wp)∂q +
1

2
(8wpqx − q3x2 − wq2x2 + 4pq2x− 4wp2 − 12wqy − 6q2y)∂z

)
+(3vx− 9w − 3q)∂v + (vx2 − 3wx− 2qx+ 2p)∂w,

Ẑ6 =
1

w

(
(4pq − 3wqx− 12z)∂x + (3wxz − 3wpqx− 2wp2 + 4p2q − 12pz)∂y

+
1

2
(8pq2 − 3wq2x− 18wz − 24qz)∂p + (4vpq − 3wq2 − 12vz)∂q

+
1

2
q(4wpq − wq2x+ 4pq2 − 24wz − 12qz)∂z

)
+ (3v2x+ 9vw − 3vq)∂v
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+(3vwx− 4vp+ 9w2 + 6wq + 2q2)∂w,

Ẑ7 =
1

w

(
(3wqx2 − 8pqx− 18wy − 16p2 + 24qy + 24xz)∂x

+(3wpqx2 + 4wp2x− 3wx2z − 8p2qx− 24wpy − 16p3 + 24pqy + 24pxz)∂y

+
1

2
(3wq2x2 − 16pq2x− 36wp2 + 36wxz − 32p2q + 48q2y + 48qxz)∂p

+2(3wq2x− 4vpqx− 8vp2 + 12vqy + 12vxz − 9wpq + 9wz)∂q

+
1

2
(wq3x2 − 8wpq2x− 8pq3x− 32wp2q + 24wq2y + 48wqxz − 16p2q2

+24q3y + 24q2xz − 12wpz)∂z

)
+ (6vqx− 3v2x2 − 18vwx+ 18wq − 3q2)∂v

+(8vpx− 3vwx2 − 18w2x− 12wqx− 4q2x− 24vy + 30wp+ 16pq − 24z)∂w.

These symmetries are not lifts of vector fields from M . In particular, they are not

lifts of conformal symmetries of the conformal class [gD2 ] of the distribution.

4.3.6. Geometry on the boundary P(D2) of P([D2,D2])

Next we observe what happens if we pass to the 6-dimensional boundary P(D2),

which in our parametrization is given by w = 0. This is done by considering an

inclusion

ι : P(D2) ↪→ P([D2,D2]), ι(x, y, p, q, z, v) = (x, y, p, q, z, v, 0),

of the boundary P(D2) into P([D2,D2]) and by pulling the structural objects λ and

Υ back to the boundary. Taking λ as in (26) with k = 2 gives

λ0 = ι∗λ = dz − qdp+ vdy +

(
1

2
q2 − vp

)
dx.

This defines a 5-distribution H0 on P(D2) via H0 = ker(λ0).

Let us recall the following definition: Given a contact distribution D = ker(λ)

defined in terms of a 1-form λ on a manifold M , a nonzero vector field X on M is

called its Cauchy characteristic if X−|λ = 0 and X−| dλ = 0modλ. A Cauchy char-

acteristic is a particular infinitesimal symmetry of D, since the definition implies

LXλ∧λ = 0. It follows that, in general, distributions have no Cauchy charac-

teristics. However, it turns out that the distribution H0 on P(D2) has a Cauchy

characteristic

X = ∂x + p ∂y + q ∂p +
q2

2
∂z + v∂q.

This characteristic preserves Υ0 also, we have LfXΥ0 = 0. To explicitly see this

we adapt coordinates in such a way that five of them are invariant with respect
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to X and the sixth one is chosen so that it ramifies X . Explicitly we pass from

coordinates (x, y, p, q, z, v) to coordinates (x0, x1, x2, x3, x4, x5), where

x = x5, y =
1

6
x1x5

3 +
61/3

2
x2x5

2 +
62/3

2
x3x5 + x4,

p =
1

2
x1x5

2 + 6
1/3x2x5 +

62/3

2
x3, q = x1x5 + 6

1/3x2,

z =
62/3

2
x2

2x5 +
61/3

2
x1x2x5

2 +
1

6
x1

2x5
3 + x0, v = x1.

In these new coordinates

X = ∂x5 , λ0 = dx0 − 3x2dx3 + x1dx4,

and the pullback of the conformal symmetric rank 4 tensor is represented by

Υ0 = −3dx22dx
2
3 + 4dx1dx

3
3 + 4dx32dx4 − 6dx1dx2dx3dx4 + dx21dx

2
4.

This suggests to consider the 5-dimensional quotient N = P(D2)/X of P(D2) by

the foliation given by X .

4.3.7. Associated flat contact G2 geometry in dimension 5

The above formulae show that λ0 and Υ0 descend to N . Moreover, we have

dλ0 ∧ dλ0 ∧ λ0 = 2dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx0,

so λ0 defines a contact distribution H0 = kerλ0 on N . We equip this contact

distribution with the line [Υ0] of symmetric rank 4 tensors on H0 spanned by

Υ0. Then one finds that the pointwise common stabilizer of [Υ0] and [(dλ0)|H0
] is

isomorphic to GL(2,R) in the irreducible 4-dimensional representation. That means

that ([λ0], [Υ0]) describes a G2 contact structure on N as introduced in Sec. 2.7.

The algebra of infinitesimal symmetries of the structure ([λ0], [Υ0]) is then

defined as the set of vector fields X ∈ X(N) such that

(LXλ0) ∧ λ0 = 0, and LXΥ0 = fΥ0 + λ0 � τ,

where τ is a rank 3 tensor and f is a function on M . The algebra of infinitesimal

symmetries of ([λ0], [Υ0]) is the exceptional Lie algebra g2, as described in the

following proposition.

Proposition 4.3. All symmetries X of the structure ([λ0], [Υ0]) defined by the

representatives:

λ0 = dx0 − 3x2dx3 + x1dx4 (28)

and

Υ0 = −3dx22dx
2
3 + 4dx1dx

3
3 + 4dx32dx4 − 6dx1dx2dx3dx4 + dx21dx

2
4 (29)
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are R-linear combinations of the following 14 vector fields:

X1 = (x20 + 3x33x1 − 3x3x1x4x2 − x4x
3
2 − 3x23x

2
2)∂0 + (x21x4 + x0x1 + x32)∂1

+(2x3x
2
2 + x2x1x4 + x0x2 − x1x

2
3)∂2 + (x0x3 + x2x

2
3 + x4x

2
2)∂3

+(x0x4 + 3x3x2x4 − x33)∂4,

X2 = −(x0x4 − 2x33)∂0 + (x1x4 + x0)∂1 − x23∂2 − x3x4∂3 − x24∂4,

X3 = −
(
1

2
x3x1x4 +

1

2
x4x

2
2 + x2x

2
3

)
∂0 +

1

2
x22∂1 +

(
2

3
x3x2 +

1

6
x1x4 +

1

6
x0

)
∂2

+

(
1

6
x23 +

1

3
x2x4

)
∂3 +

1

2
x3x4∂4,

X4 = −(x2x4 + x23)∂0 + x2∂1 +
2

3
x3∂2 +

1

3
x4∂3,

X5 = −x4∂0 + ∂1,

X6 = (x0x2 − 2x1x
2
3)∂0 + x1x2∂1 +

(
1

3
x22 +

2

3
x3x1

)
∂2

+

(
1

3
x3x2 −

1

3
x0

)
∂3 + x23∂4,

X7 = x0∂0 + x1∂1 +
2

3
x2∂2 +

1

3
x3∂3,

X8 = −
(
3

2
x3x1x2 +

1

2
x32

)
∂0 +

1

2
x21∂1 +

1

2
x1x2∂2

+
1

2
x22∂3 +

(
3

2
x3x2 +

(
1

2
x0

)
∂4,

X9 = −(x3x1 + x22)∂0 +
1

3
x1∂2 +

2

3
x2∂3 + x3∂4,

X10 = ∂4,

X11 = x0∂0 +
1

3
x2∂2 +

2

3
x3∂3 + x4∂4,

X12 = −3x2∂0 + ∂3,

X13 = ∂2,

X14 = ∂0.

Here the symbols ∂µ = ∂
∂xµ

denote the partial derivatives with respect to the variables

xµ, µ = 0, 1, 2, 3, 4. The Lie algebra generated by the 14 vector fields XA, A =

1, 2, . . . , 14, is isomorphic to the split real form of the exceptional simple Lie algebra

g2, and thus the G2 contact structure ([λ0], [Υ0]) is flat.
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Remark 4.3. We remark that the previous discussion describes in local coordi-

nates the well-known double fibration for G2, see e.g. [3],

G2/B

π

�����
��
��
��

π̄

���
���

���
��

G2/P G2/P̄ ,

(30)

where B ⊂ G2 is the Borel subgroup introduced in Sec. 2.3. The boundary P(D2)

can be identified with G2/B, the Cauchy characteristic X spans the vertical bundle

for the projection G2/B → G2/P̄ . What is new here is that the model geometry

of type G2/B is viewed as a natural compactification of the special twistorial Lie

contact geometry on P([D2,D2])\P(D2) over the flat (2, 3, 5)-geometry.

5. G2-Reduced Lie Contact Structures

Here we show that the Lie contact structures on P([D,D])\P(D) associated with

(2, 3, 5) distributions D have holonomy reduced to G2 ⊂ O(4, 3). We further study,

more generally, Lie contact structures in dimension 7 whose holonomy is reduced

to G2. In particular, we prove Proposition 1.1 and Theorem 1.2.

5.1. Normality of the induced Cartan connection

We start this section with a technical result: we will prove that the curvature K̃

of the induced Lie contact Cartan connection ω̃ satisfies the normality condition

∂̃∗K̃ = 0. Note that we did not need this information to show that the twistor

bundle of a (2, 3, 5) distribution carries an induced Lie contact structure. However,

the fact that ω̃ is the canonical normal Cartan connection will be of importance for

further applications, in particular Proposition 1.1.

Given Theorem 4.1, proving normality of ω̃ is a straightforward task, although

computationally involved. The following alternative proof uses methods from

parabolic geometry, in particular Kostant’s theorem [16] and [4, Corollary 3.2],

which we will use to derive information about the full curvature of regular, normal

parabolic geometries associated with (2, 3, 5) distributions from information about

their harmonic curvature space.

The Kostant codifferential can be written in terms of bases as follows: Let

X1, . . . , Xn ∈ g project to a basis for g/p and let Z1, . . . , Zn ∈ p+ ∼= (g/p)∗ the

dual basis, then for any φ ∈ Λ2(g/p)∗ ⊗ g and X ∈ g,

∂∗φ(X + p) = 2
∑
i

[φ(Xi + p, X + p), Zi] +
∑
i

φ(Xi + p, [Zi, X ] + p),

see [8, Lemma 3.1.11].

Lemma 5.1. Suppose (G → M,ω) is a regular and normal parabolic geometry of

type (G2, P ), then the induced parabolic geometry (G̃ → M̃, ω̃) of type (O(4, 3), P̃ )

is normal.
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Proof. Let K : G → Λ2(g/p)∗ ⊗ g be the curvature function of ω and let K̃ : G̃ →
Λ2(g̃/p̃)∗ ⊗ g̃ be the curvature function of ω̃. By P̃ -equivariancy of ∂̃∗K̃ it suffices

to prove that ∂̃∗K̃(u) = 0 for any u ∈ G (rather than u ∈ G̃) in order to show that

the induced geometry is normal. Recall that, for u ∈ G,

K̃(u) = (Λ2ϕ⊗ i′)(K(u)),

where i′ : g → g̃ is the Lie algebra inclusion and ϕ : (g/p)∗ → (g̃/p̃)∗ is the dual

map to the projection g̃/p̃ ∼= g/q → g/p.

Next let us recall some facts from the general theory of parabolic geometries,

see [16, 4] for details. One can, as a G0-representation, identify the harmonic cur-

vature space ker(∂∗)/im(∂∗) with the kernel of the so-called Kostant Laplacian

ker(�) ⊂ Λ2p+ ⊗ g. A lowest weight vector of ker(�) can be algorithmically deter-

mined using Kostant’s theorem. Consider the grading (10) of g, then in our case

the lowest weight vector is an element of the form

φ1 = Z1 ∧ Z4 ⊗ A ∈ g1 ∧ g3 ⊗ g0.

Now, since regular, normal parabolic geometries of type (G2, P ) are torsion-free,

[4, Corollary 3.2] implies that the curvature functionK takes values in the P -module

generated by successively raising this lowest weight vector via the action of p+. Note

that this implies, for instance, that K(u)(X + p, Y + p) = 0 whenever both X and

Y are contained in g−2.

Now to prove the lemma, pick an arbitrary map φ ∈ Λ2p+ ⊗ g contained in

the P -module generated by raising the lowest weight vector in ker(�); in particular

∂∗φ = 0. Let

φ̃ = (Λ2ϕ⊗ i′)(φ)

be the corresponding element in Λ2p̃+ ⊗ g̃. Choose elements X1, X2 ∈ g−1, X3 ∈
g−2, X4, X5 ∈ g−3 defining a basis for g/p, supplement them by X6, X7 ∈ g1 to

obtain a basis for g̃/p̃ ∼= g/q. Use the Killing form on g̃, which restricts to a multiple

of the Killing form on g, to identify p+ ∼= (g/p)∗ and p̃+ ∼= (g̃/p̃)∗ ∼= (g/q)∗, and
let Z1, . . . , Z5 ∈ p+ and Z̃1, . . . , Z̃7 be the respective dual bases. By construction φ̃

vanishes upon insertion of elements of p, hence φ̃(·, Xi) = 0 for i = 6, 7. Thus,

∂̃∗φ̃(X + p̃) = 2
∑

i=1,...,5

[Z̃i, φ̃(X + p̃, Xi + p̃)]−
∑

i=1,...,5

φ̃([Z̃i, X ] + p̃, Xi + p̃)

for any X ∈ g. Using that ∂∗φ = 0 this can also be written as

∂̃∗φ̃(X + p̃) = 2
∑

i=1,...,5

[Z̃i − Zi, φ̃(X + p̃, Xi + p̃)]

−
∑

i=1,...,5

φ̃([Z̃i − Zi, X ] + p̃, Xi + p̃). (31)
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Let us first show that the second term in the above expression vanishes. Note

that g̃ splits into the direct sum of g ⊂ g̃ and its orthogonal complement g⊥ ⊂ g̃ with

respect to the Killing form, which can be identified as a g-representation with the

7-dimensional fundamental representation V of g. By construction, the differences

Z̃i −Zi are contained in the orthogonal complement to g, i.e. in V = g⊥. Now V is

g-invariant, hence [Z̃i −Zi, X ] ⊂ V for any X ∈ g. More precisely, Z̃i −Zi ∈ V1 for

i = 1, 2, Z̃3 −Z3 ∈ V2, and Z̃i −Zi = 0 for i = 4, 5, where we use the grading from

(10). Moreover, V =
⊕

i=−2,...,2Vi ⊂ g−2 + p̃. Since φ(X + p, Y + p) = 0 and hence

φ̃(X + p̃, Y + p̃) = 0 for any X,Y ∈ g−2, this implies that∑
i=1,...,5

φ̃([Z̃i − Zi, X ] + p̃, Xi + p̃) = 0.

Now for the first term in (31), consider the g0-invariant decomposition of Λ2p+⊗
g according to homogeneity with respect to the grading (10) on g (in the sense that

an element φ ∈ gi ∧ gj ⊗ gk has homogeneity i + j + k). Since [gi,Vj ] ⊂ Vi+j and

V3 =
⊕

i≥3 Vi = {0}, one sees that∑
i=1,...,5

[Z̃i − Zi, V ] = 0 and
∑

i=3,...,5

[Z̃i − Zi,W ] = 0,

for any V ∈ g2 = g2 ⊕ g3 and W ∈ g1 = g1 ⊕ g2 ⊕ g3. Keeping in mind also that

Z̃4−Z4 = Z̃5−Z5 = 0 and that φ(X+p, Y +p) = 0 if both X and Y are contained

in g−2, one concludes that it remains to inspect φ’s contained in the P -module

generated by the lowest weight vector φ1 intersected with

(g1 ∧ g3 ⊗ g0)⊕ (g2 ∧ g3 ⊗ g0)⊕ (g1 ∧ g3 ⊗ g1)

(i.e. of homogeneity 4 or 5). Indeed, by Schur’s Lemma and since G0 includes into P̃ ,

it suffices to compute ∂̃∗φ̃ for one representative φ in each irreducible G0-submodule

of that space. One easily sees that there are only two such G0-submodules: The

lowest weight vector

φ1 = Z1 ∧ Z4 ⊗A

generates the first one, and raising it we obtain a generator of the second one of

the form

φ2 = Z3 ∧ Z4 ⊗A+ Z1 ∧ Z4 ⊗ Z1;

here Z1 ∈ g1, Z3 ∈ g2, Z4 ∈ g3, A ∈ g0 and, since ∂∗φ1 = ∂∗φ2 = 0, [Z1, A] =

[Z3, A] = [Z4, A] = 0. Using that this implies that [Z̃1, A] = [Z̃3, A] = [Z̃4, A] = 0

and the facts Z̃4 − Z4 = 0 and [Z1, Z̃1] = 0, which can be verified directly, we

immediately conclude that the corresponding elements φ̃1 = Z̃1 ∧ Z̃4 ⊗ A and

φ̃2 = Z̃3 ∧ Z̃4 ⊗A+ Z̃1 ∧ Z̃4 ⊗Z1 are contained in the kernel of ∂̃∗. This completes

the proof.
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5.2. Holonomy in G2 and a parallel tractor 3-form

Let (G → M,ω) be a Cartan geometry of type (G,P ) and let ω̂ be the canoni-

cal extension of ω to a principal connection on the extended G-principal bundle

Ĝ :=G ×P G. Assume that M is connected. The holonomy group of the Cartan

geometry at a point u ∈ Ĝ is then defined to be the holonomy group

Holu(ω) := Holu(ω̂) ⊂ G

of the principal connection ω̂ at that point. Since different choices of base points u

lead to conjugate subgroups within G, we will disregard the base point and speak

of the holonomy Hol(ω) of the Cartan connection ω (keeping in mind that it is well-

defined only up to conjugacy in G). If (G → M,ω) is a normal, regular parabolic

geometry encoding an underlying structure (e.g. a (2, 3, 5) distribution or a Lie

contact structure) then the holonomy of the underlying structure is defined to be

the holonomy of the associated normal Cartan connection.

Holonomy reductions of Cartan connections are related to parallel sections of

so-called tractor bundles. Given a G-representation W, the principal connection

ω̂ ∈ Ω1(Ĝ, g) induces a linear connection ∇ on the associated bundle

W := G ×P W = Ĝ ×G W.

Vector bundles arising that way are called tractor bundles and the induced linear

connections are called tractor connections. If the Cartan connection ω is normal, the

induced tractor connection is said to be normal. By definition of W as an associated

bundle, sections s ∈ Γ(W) correspond to smooth equivariant maps fs : Ĝ → W. A

section s is parallel for the tractor connection if and only if the corresponding func-

tion is constant along all horizontal curves c : I → Ĝ, ω̂(c′(t)) = 0. The holonomy

group Hol(ω) is then contained in the pointwise stabilizer of the parallel section s.

Now consider a Lie contact structure of signature (2, 1) on a manifold M̃ with

associated regular, normal parabolic geometry of type (O(4, 3), P̃ ). Let V be the

standard representation for O(4, 3) and T the associated tractor bundle with its

normal tractor connection. The constant map fH from the Cartan bundle onto the

(unique up to constants) O(4, 3)-invariant bilinear form defines a parallel section

H ∈ Γ(S2T ∗) called the tractor metric.

Next recall the following (well-known) characterization of the Lie group G2.

Consider a 7-dimensional vector space V with bilinear form H of signature (4, 3).

Let Φ ∈ Λ3V∗ be a 3-form, then (X,Y ) �→ (X−|Φ)∧(Y −|Φ)∧Φ defines a symmetric

Λ7V∗-valued bilinear form on V. If this bilinear form is non-degenerate, then it

determines a volume form volΦ and thus a R-valued symmetric bilinear form HΦ.

Now suppose that HΦ is a multiple of H , i.e.

HΦ(X,Y )volΦ := (X−|Φ) ∧ (Y −|Φ) ∧Φ = λH(X,Y )volΦ, (32)

for a constant λ. Then the stabilizer of Φ is a copy of G2 ⊂ SO(4, 3) = SO(H).

We will call a 3-form satisfying the above condition compatible, and we will use the

same terminology on the level of tractors.
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As an immediate consequence of the construction and Lemma 5.1, we obtain

the following.

Corollary 5.1. The Lie contact structure on M̃ induced by a (2, 3, 5) distribution

D admits a compatible tractor 3-form Φ ∈ Γ(Λ3T ∗) which is parallel for the normal

tractor connection, and the holonomy of the Lie contact structure reduces to G2.

Proof. Let (G →M,ω) be the regular, normal parabolic geometry of type (G2, P )

associated with the (2, 3, 5) distribution D. Let (G̃ → M̃, ω̃) be the induced

parabolic geometry of type (O(4, 3), P̃ ) on the twistor bundle. Then, by construc-

tion, the principal connection ˆ̃ω on the extended bundle G̃ ×P̃ O(4, 3) reduces to

the G2-principal bundle connection ω̂ on G ×P G2.

Now let Φ ∈ Λ3V∗ be a defining 3-form for G2 ⊂ O(4, 3). Then the constant

G2-equivariant map fΦ : Ĝ → Λ3V∗ onto Φ defines a section Φ ∈ Γ(Λ3T ∗) of the

Lie contact tractor bundle, which is compatible with H. Since ˆ̃ω is the extension of

the G2-principal connection ω̂, Φ is parallel for the tractor connection induced by
ˆ̃ω, and by Lemma 5.1 this is the normal tractor connection on Λ3T ∗. Moreover,

Hol(ω̃) = Hol(ˆ̃ω) ⊂ G2 ⊂ O(4, 3)

and, again by normality of ω̃, this is the holonomy of the underlying Lie contact

structure.

In particular, we have proven Proposition 1.1.

5.3. A curved orbit decomposition

Next we consider the more general situation of a Lie contact structure of signature

(2, 1) together with a tractor 3-form Φ ∈ Γ(Λ3T ∗) that is compatible in the sense of

(32) and parallel for the normal tractor connection. Then the pointwise stabilizer

of Φ is G2 and the holonomy of the Lie contact structure is reduced, Hol(ω̃) ⊂ G2.

In order to formulate the geometric implications of this set-up, we will apply the

curved orbit decomposition theorem discussed below.

Let (G → M,ω) be a Cartan geometry of type (G,P ) and let s ∈ Γ(W) be a par-

allel section of some tractor bundle W with corresponding G-equivariant function

fs : Ĝ → W. Assuming that M is connected, the image fs(Ĝ) is a G-orbit O ⊂ W.

In [6], the following pointwise invariant of s is introduced: the image fs(Gx) ⊂ O
of a fiber is a P -orbit called the P -type of x with respect to s. The manifold M

then decomposes according to the P -type of points into a disjoint union of curved

orbits Mi,

M =
⊔

i∈P\O
Mi,

where P\O denotes the set of P -orbits of the G-orbit O. Fix an element in O and

let H ⊂ G be its stabilizer. Then the set of P -orbits of O ∼= G/H is in bijective
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correspondence with the set of H-orbits of G/P via PgH �→ Hg−1P . In particular,

the set of curved orbits can be parametrized by H-orbits of G/P . Now suppose that

Mi is a nonempty curved orbit and let αi be a representative of the corresponding

H-orbit H · αi ⊂ G/P . Then it is shown in [6] that:

• for any x ∈ Mi there are neighborhoods U ⊂ M of x and V ⊂ G/P of αi and a

diffeomorphism ψ : U → V such that ψ(U ∩Mi) = V ∩ (H · αi).

• Mi carries an induced Cartan geometry (Gi → Mi, ωi) of the same type as the

correspondingH-orbit in G/P . The Cartan bundle can be realized as a subbundle

Gi ⊂ G|Mi and the Cartan connection ωi is the pullback of ω with respect to the

corresponding inclusion.

In the following we apply this result in the case of interest for us, i.e. when the

Cartan geometry is of type (O(4, 3), P̃ ), the section s = Φ ∈ Γ(Λ3T ∗) is a parallel

compatible tractor 3-form and the stabilizer H = G2. As before, P̃ ⊂ O(4, 3)

denotes the Lie contact parabolic, P ⊂ G2 the (2, 3, 5) parabolic and P̄ ⊂ G2 the

G2 contact parabolic as introduced in Sec. 2.3.

Theorem 5.1. Suppose M̃ is a 7-manifold endowed with a Lie contact structure of

signature (2, 1) and let (G̃ → M̃, ω̃) be the corresponding regular, normal parabolic

geometry. Let Φ ∈ Γ(Λ3T ∗) be a parallel compatible tractor 3-form that defines a

holonomy reduction to G2.

Then the corresponding curved orbit decomposition is of the form

M̃ = M̃o ∪ M̃ ′,

where M̃o is open and M̃ ′ (if nonempty) is a 5-dimensional submanifold of M̃ .

(1) If M̃ ′ is nonempty, then it carries an induced G2 contact structure.

(2) M̃o carries an induced Cartan geometry (G → M̃o, ωo) of type (G,Q). Suppose

further that the curvature of this Cartan geometry satisfies Ko(u)(X,Y ) = 0 for

all X ∈ p and Y ∈ g. Then the rank 2 bundle V ⊂ TM̃o corresponding to p/q

is integrable and around each point x ∈ M̃o we can form a local 5-dimensional

leaf space which inherits a (2, 3, 5) distribution.

Proof. The first statement is an immediate consequence of Proposition 2.1, which

describes the G2-orbit decomposition of O(4, 3)/P̃ , and the curved orbit decompo-

sition theorem. Combining these results shows that the manifold M̃ decomposes

into an open submanifold M̃o and a complement M̃ ′, which is either empty or a

5-dimensional submanifold. M̃ ′ carries an induced Cartan geometry (G′ → M̃ ′, ω′)
of type (G, P̄ ) and M̃o carries an induced Cartan geometry (Go → M̃o, ωo) of type

(G,Q). These can be realized as subbundles in G̃|
M̃ ′ and G̃|

M̃o , respectively, and the

Cartan connections, ω′ and ωo, and their curvatures, K ′ and Ko, are the pullbacks

of the Cartan connection ω̃ and curvature K̃ with respect to the inclusions.
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Using this, we next show that the induced Cartan connection on M̃ ′ is regular.
First, the curvature K̃ of the regular, normal Lie contact Cartan connection takes

values in Λ2(g̃/p̃)∗ ⊗ g̃−1, which follows from the structure of the harmonic curva-

ture K̃H and an application of the Bianchi identity. This implies that the curvature

K ′ of the reduced connection takes values in Λ2(g/p̄)∗ ⊗ (g̃−1 ∩ g). Now g̃−1 ∩ g

coincides with the filtration component ḡ−1 for the G′
2 contact grading (11), and

this implies that K ′ is of homogeneity ≥ 1, i.e. the Cartan connection ω′ is regular.
In particular, M̃ ′ carries an induced G′

2 contact structure.

Next we investigate the Cartan geometry of type (G,Q) on M̃o. Via the Cartan

connection, the Q-submodule p/q ⊂ g/q determines a distinguished rank 2 subbun-

dle V in TM̃o. Now suppose that the curvature function satisfies Ko(u)(X, ·) = 0

for all X ∈ p. It is proven in [4], see also [8, Theorem 1.5.14], that this implies

that the subbundle V is integrable, and locally around each point one can form

a corresponding leaf space M , which carries an induced Cartan geometry of type

(G2, P ).

To see that the Cartan geometry of type (G2, P ) determines a (2, 3, 5) dis-

tribution on the leaf space M , it remains to see that the Cartan connection is

regular. Arguing as before shows that the Q-equivariant curvature function Ko

takes values in Λ2(g/q)∗ ⊗ (g̃−1 ∩ g). Looking at the gradings (8) and (10) shows

that g̃−1 ∩ g = g−3 ⊕ g−1 ⊕ p. Note that this space is a Q-module, but not a

P -module. The condition Ko(u)(X, ·) = 0 for all X ∈ p/q in particular implies

that, locally, G → M is a P -principal bundle and the curvature function Ko is

P -equivariant. Now suppose that for some u ∈ G and X,Y ∈ g, Ko(u)(X,Y ) has

a nontrivial component in g−3. Then we can find some g ∈ exp(g1) ⊂ P such that

Ko(u ·g−1)(Ad(g) ·X,Ad(g) ·Y ) = Ad(g) ·Ko(u)(X,Y ) has a nontrivial component

in g−2. But this is a contradiction to the assumptions on the values of Ko. Hence

under the additional curvature condition, the curvature function takes indeed values

in Λ2(g/p)∗ ⊗ g−1, which implies that the (G2, P ) geometry on M is regular.

We conclude with a number of remarks and open questions.

Remark 5.1. One can show that the resulting Cartan connection ω ∈ Ω1(G →
M, g2) is indeed the normal Cartan connection associated with the induced dis-

tribution on the local leaf space. However, this requires more information on the

curvature of the regular, normal Lie contact Cartan connection, and will be dis-

cussed elsewhere.

Remark 5.2. The decomposition into curved orbits can also be described using

the so-called normal BGG solution determined by the parallel tractor 3-form Φ.

Recall (see Sec. 2.3) that the parabolic subgroup P̃ preserves a filtration Ṽ−1 ⊃
Ṽ0 ⊃ Ṽ1 of the standard representation, where Ṽ1 = E, Ṽ0 = E⊥ and Ṽ−1 = V.

Correspondingly, the standard tractor bundle is filtered

T ⊃ T 0 ⊃ T 1,
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where T 1 = E, T 0/T 1 ∼= F and T /T 1 ∼= E∗. There is an induced filtration of

Λ3T ∗, and a natural projection onto the quotient by the largest proper subbundle

in this filtration,

Π : Λ3T ∗ → Λ3T ∗/(Λ3T ∗)0 ∼= Λ2E∗ ⊗ F ∗ ∼= Λ2E∗ ⊗ F.

The image of a tractor Φ ∈ Γ(Λ3T ∗) under this projection defines an element

φ ∈ Γ(Λ2E∗ ⊗ F ),

i.e. a weighted section of F . By the general theory of parabolic geometries, if Φ is a

parallel tractor 3-form, then the underlying section φ ∈ Γ(Λ2E∗ ⊗ F ) is contained

in the kernel of a first-order linear differential operator, called first BGG operator

for Λ3T ∗. Solutions of the corresponding overdetermined system of PDEs that are

obtained in that way are called normal BGG solutions. See [9, 6] for more details.

Now suppose that Φ ∈ Γ(Λ3T ∗) is a parallel compatible tractor 3-form. Recall

(see Sec. 2.3 and Proposition 2.1) that inserting a totally null 2-plane E into a

defining 3-form for G2 gives either zero or a null line � ∈ E⊥ transversal to E.

Hence, for a parallel compatible tractor 3-form Φ, at any point x ∈ M either

φx = 0 or φx defines a null line in F with respect to the bundle metric b. The

decomposition of M̃ into P̃ -types of Φ corresponds to the decomposition into the

zero locus M ′ of φ and the open subset Mo where φ is nonvanishing. On Mo, via

the isomorphism H = E∗⊗F , the filtration φ ⊂ φ⊥ ⊂ F determines a distinguished

filtration of a rank 2 subbundle contained in a rank 4 subbundle contained in the

contact subbundle

Vφ ⊂ Dφ ⊂ H.
Looking at the explicit matrices (8) and (10), it can be seen that via the isomor-

phisms g/q ∼= g̃/p̃ and g̃−1/p̃ ∼= E∗⊗E⊥/E, the subspace p/q corresponds to E∗⊗ �,
where � now denotes the projection of E−|Φ to E⊥/E, and g−1/q corresponds to

E∗ ⊗ �⊥. Hence, for Lie contact structures coming from (2, 3, 5) distributions via

the twistor construction, Vφ is the vertical bundle for the projection M̃ →M , and

Dφ = D̃ projects to the downstairs (2, 3, 5) distribution.

Remark 5.3. The twistorial construction of Lie contact structures from (2, 3, 5)

distributions provides many non-flat examples of holonomy reductions to G2. How-

ever, by construction, in these cases the corresponding parallel tractor 3-form Φ

has only one P̃ -type and the underlying BGG solution φ is nowhere vanishing. It

would be interesting to find examples of non-flat Lie contact structures admitting

φ’s as above with nonempty zero sets that carry induced G2 contact structures and

thus to provide non-flat examples of curved orbit decompositions as in Theorem 5.1

for which the 5-dimensional orbit is nonempty.
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