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• Wünschmann K, (1905) �Über Beruhrungsbedingungen bei
Di�erentialgleichungen�, Dissertation, Greifswald:

? Considered a general 3rd order ODE

y′′′ = F (x, y, y′, y′′), (∗)

asking what one has to assume about F = F (x, y, y′, y′′) to be able to
de�ne a null distance between the solutions.

? Denoting by D the total di�erential, D = ∂x + p∂y + q∂p + F∂q, where
p = y′, q = y′′, he found that the solution space of (∗) is naturally
equipped with a conformal Lorentzian metric i�

Fy + (D − 2
3Fq) (1

6DFq − 1
9F

2
q − 1

2Fp)︸ ︷︷ ︸
K

≡ 0. (W )
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? The metric reads:

g = [dy−pdx][dq− 1
3Fqdp+Kdy+(1

3qFq−F−pK)dx]− [dp−qdx]2.

? Condition (W ) is invariant with respect to contact transformations of
variables and contact transformations of the variables result in a conformal
change of the metric.

? Wünschman: There is a one-to-one correspondence between equivalence
classes of 3rd order ODEs satisfying (W ) considered modulo contact
transformations of variables and 3-dimensional Lorentzian conformal
geometries.

? In particular: all contact invariants of such classes of equations are
expressible in terms of the conformal invariants of the associated conformal
Lorentzian metrics.
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• Chern S S (1940) �The geometry of the di�erential equations
y′′′ = F (x, y, y′, y′′)� Sci. Rep. Nat. Tsing Hua Univ. 4 97-111:

? Description of the invariants in terms of so(2, 3)-valued Cartan connection.
? This may be identi�ed with the Cartan normal conformal connection

associated with the conformal class [g].
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? Considered equations (∗) modulo point transformations of the variables.
? If in addition to the Wünschmann condition (W ) equation (∗) satis�es

another point invariant condition

D2Fqq −DFqp + Fqy ≡ 0, (C)

then its solutions space is equipped with a 3-dimensional Lorentzain
Einstein-Weyl geometry.

? There is a one-to-one correspondence between 3-dimensional Lorentzian
Einstein-Weyl geometries and 3rd order ODEs considered modulo point
transformations and satisfying conditions (W ) and (C).
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? Solved the local equivalence problem for 3-dimensional real hypersurfaces
embedded in C2 and considered modulo biholomorphic transformations of
variables

? If the hypersurface is not locally biholomorphically equivalent to C× R he
found all the invariants in terms of an su(2, 1)-valued Cartan connection
on an 8-dimensional �ber bundle de�ned over the hypersurface.

• Fe�erman C L (1976) � Monge-Ampere equations, the Bergman kernel, and
geometry of pseudoconvex domains� Ann. of Math. 103, 395-416:

? De�ned a 4-dimensional Lorentzian class of metrics on an S1-bundle over
the hypersurface that transforms conformally when the hypersurface
udergoes a biholomorphic transformation.
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• Segre B (1931) �Intorno al problema di Poincare dela representazione
pseudo-conforme� Rend. Acc. Lincei 131 676-83:

? biholomorphically equivalent pseudoconvex hypersurfaces in C2 are analogs
of 2-nd order ODEs considered modulo point transformations

• Nurowski P, Sparling GAJ (2003) �3-dimensional Cauchy-Riemann structures
and 2nd order ODEs� Class. Q. Grav. 20 4995-5016:

? What are the analogs of the Fe�erman metrics for 2nd order ODEs modulo
point transformations?
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• Given 2nd order ODE: y′′ = Q(x, y, y′) consider a parametrization of the
�rst jet space J1 by (x, y, p = y′).

• on J1 × R consider a metric

g = 2[(dp−Qdx)dx−(dy−pdx)(dr+2
3Qpdx+1

6Qpp(dy−pdx))], (F )

where r is a coordinate along R in J1 × R.
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Theorem:
• If ODE undergoes a point transformation then the metric (F ) transforms

conformally.

• All point invariants of a point equivalence class of ODEs y′′ = Q(x, y, y′) are
expressible in terms of the conformal invariants of the associated conformal
class of metrics (F ).

• The metrics (F ) are very special among all the split signature metrics on
4-manifolds. Their Weyl tensor C has algebraic type (N,N) in the
Cartan-Petrov-Penrose classi�cation. Both, the selfdual C+ and the
antiselfdual C−, parts of C are expressible in terms of only one component.
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and C− is proportional to
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Each of the conditions w1 = 0 and w2 = 0 is invariant under point
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• C+ is proportional to

w1 = D2Qpp − 4DQpy −DQppQp + 4QpQpy − 3QppQy + 6Qyy

and C− is proportional to
w2 = Qpppp,

where
D = ∂x + p∂y + Q∂p.

Each of the conditions w1 = 0 and w2 = 0 is invariant under point
transformations.

• Cartan normal conformal connection associated with any conformal class [g]
of metrics (F ) is reducible to a certain SL(2 + 1,R) connection naturally
de�ned on an 8-dimensional bundle over J1. This is uniquely associated with
the point equivalence class of corresponding ODEs via Cartan's equivalence
method.



• The curvature of this connection has a very simple form
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• The curvature of this connection has a very simple form
0 w2 ∗

0 0 w1

0 0 0

 .

• If w1 = 0 or w2 = 0 this connection can be further understood as a Cartan
normal projective connection over a certain two dimensional space S
equipped with a projective structure. S can be identi�ed either with the
solution space of the ODE in the w1 = 0 case, or with the solution space of
its dual in the w2 = 0 case.
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• Hilbert D (1912) �Über den Begri� der Klasse von Di�erentialgleichungen�
Mathem. Annalen Bd. 73, 95-108:

? considered equations of the form z′ = F (x, y, y′, y′′, z) for two real
functions y = y(x) and z = z(x).

? He observed that, contrary to the equation
z′ = y′′F (x, y, y′, z) + G(x, y, y′, z), the general solution to the
equation z′ = y′′2 can not be written in integral-free form:

x = x(t, w(t), w′(t), ....w(k)(t)),

y = y(t, w(t), w′(t), ....w(k)(t)),

z = z(t, w(t), w′(t), ....w(k)(t)).
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• Cartan E (1910) �Les systemes de Pfa� a cinq variables et les equations aux
derivees partielles du second ordre� Ann. Sc. Norm. Sup. 27 109-192:

? solved an equivalence problem for equations

z′ = F (x, y, y′, y′′, z) with Fy′′y′′ 6= 0, (H)

by constructing a 14-dimensional Cartan bundle P → J over the
5-dimensional space J parametrized by (x, y, y′, y′′, z).This bundle is
equipped with a Cartan connection whose curvature gives all the local
invariants of the equation.The connection has values in the Lie algebra of
the nocompact form of the exceptional group G2 and is �at i� the
equation is equivalent to the Hilbert's equation z′ = y′′2;in such case the
equation has a symmetry group G2.
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• PN (2003) �Di�erentail equations and conformal structures� J. Geom. Phys
55 19-49:

? Since G2 naturally seats in SO(3, 4), that is in a conformal group for
(3, 2)-signature conformal metrics, is it possible to understand Cartan's
invariants in terms of inavraints of some conformal structure in 5
dimensions?
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(ω1, ω2, ω3) among themselves, thus:
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Two equations z′ = F (x, y, y′, y′′, z) and z̄′ = F̄ (x̄, ȳ, ȳ′, ȳ′′, z̄) represented by
the respective forms

ω1 = dz − F (x, y, p, q, z)dx, ω2 = dy − pdx, ω3 = dp− qdx;
ω̄1 = dz̄ − F̄ (x̄, ȳ, p̄, q̄, z̄)dx̄, ω̄2 = dȳ − p̄dx̄, ω̄3 = dp̄− q̄dx̄,

are (locally) equivalent i� there exists a (local) di�eomorphism
φ : (x, y, p, q, z) → (x̄, ȳ, p̄, q̄, z̄) such that

φ∗

ω̄1

ω̄2

ω̄2

 =

α β γ
δ ε λ
κ µ ν

 ω1

ω2

ω3


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Solution for equivalence problem for eqs.

z′ = F (x, y, y′, y′′, z)

Theorem

• There are two main branches of nonequivalent equations
z′ = F (x, y, y′, y′′, z). They are distinguished by vanishing or not of the
relative invariant Fqq, q = y′′.

• If Fqq ≡ 0 then such equations have integral-free solutions.

• There are nonequivalent equations among the equations having Fqq 6= 0. All
these equations are beyond the class of equations with integral-free solutions.
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An equivalence class of equations z′ = F (x, y, y′, y′′, z) with Fy′′y′′ 6= 0
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Equations z′ = F (x, y, y′, y′′, z) with Fy′′y′′ 6= 0

Theorem

An equivalence class of equations z′ = F (x, y, y′, y′′, z) with Fy′′y′′ 6= 0
uniquely de�nes a 14-dimensional manifold P → J and a preferred coframe
(θ1, θ2, θ3, θ4, θ5,Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7,Ω8,Ω9) on it such that

dθ1 = θ1 ∧ (2Ω1 + Ω4) + θ2 ∧ Ω2 + θ3 ∧ θ4

dθ2 = θ1 ∧ Ω3 + θ2 ∧ (Ω1 + 2Ω4) + θ3 ∧ θ5

dθ3 = θ1 ∧ Ω5 + θ2 ∧ Ω6 + θ3 ∧ (Ω1 + Ω4) + θ4 ∧ θ5

dθ4 = θ1 ∧ Ω7 + 4
3θ

3 ∧ Ω6 + θ4 ∧ Ω1 + θ5 ∧ Ω2

dθ5 = θ2 ∧ Ω7 − 4
3θ

3 ∧ Ω5 + θ4 ∧ Ω3 + θ5 ∧ Ω4.
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ω =



−Ω1 − Ω4 −Ω8 −Ω9 − 1√
3
Ω7

1
3Ω5

1
3Ω6 0

θ1 Ω1 Ω2
1√
3
θ4 −1

3θ
3 0 1

3Ω6

θ2 Ω3 Ω4
1√
3
θ5 0 −1

3θ
3 −1

3Ω5

2√
3
θ3 2√

3
Ω5

2√
3
Ω6 0 1√

3
θ5 − 1√

3
θ4 − 1√

3
Ω7

θ4 Ω7 0 2√
3
Ω6 −Ω4 Ω2 Ω9

θ5 0 Ω7 − 2√
3
Ω5 Ω3 −Ω1 −Ω8

0 θ5 −θ4 2√
3
θ3 −θ2 θ1 Ω1 + Ω4



,

is a Cartan connection with values in the Lie algebra of G2.



The curvature of this connection R = dω + ω ∧ ω `measures' how much a given
equivalence class of equations is `distorted' from the �at Hilbert case
corresponding to F = q2.
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The 9 degenerate directions generate the vertical space of P .
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Theorem

• The bilinear forms g̃ transforms conformally when Lie transported along any
of the vertical directions.

• It descends to a well de�ned conformal (3, 2)-signature metric on the
5-dimensional space J on which the equation z′ = F (x, y, y′, y′′, z) is
de�ned.

• The Cartan normal conformal connection associated with this conformal
metric yields all the invariant information about the equivalence class of
the equation.

• This so(4, 3)-valued connection is reducible and, after reduction, can be
identi�ed with the g2 Cartan connection ω on P .
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The Hilbert equation z′ = y′′2 has maximal symmetry group: G2 of dimension
14.

Cartan knew that z′ = F (x, y, y′, y′′, z) is either equivalent to the Hilbert
equation or its group of transitive symmetries is at most 7-dimensional.

The equations with 7-dimensional group of transitive symmetries are among
those equivalent to z′ = F (y′′) with Fy′′y′′ 6= 0.

For such F 's the (3, 2)-signature conformal metric reads:
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It is therefore interesting to look for the ambient metrics for them. These, in
turn, will have special pseudo-riemanian holonomy HψR ⊆ G2.
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In the present example it is particularly easy, since g is conformal to Einstein. We
�nd that the Fe�erman-Graham ambient metric for this example is:

ḡ = t2g + 2drdt +
2rt

10F ′′2
(56F (3)3 − 17F ′′F (4))dq2.

By construction it is Ricci �at and has pseudo-riemannian holonomy
HψR ⊆ G2. As I was told here by Thomas Leistner, since the metric g is
conformal to Einstein, the equality HψR = G2 is excluded. We therefore have
HψR ( G2.

Conformal metrics from our construction are rarely conformal to Einstein.

Thus, evaluation of the ambient metrics for them should lead to quite nontrivial
(4, 3)-signature metrics with strict noncompact G2 pseudo-riemannian holonomy.
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4 + 4a2z
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2 + 4a4z + a5, where
(a1, a2, a3, a4, a5) are the scalar invariants of the equation.

This polynomial encodes partial information of the Weyl tensor of the associated
conformal (3, 2)-signature metric. In particular, the well known invariant
IΨ = 6a2

3 − 8a2a4 + 2a1a5 of this polynomial is, modulo a numerical factor,
proportional to the square of the Weyl tensor C2 = CµνρσCµνρσ of the
conformal metric.

Vanishing of IΨ means that Ψ = Ψ(z) has a root with multiplicity no smaller
than 3.

Our example above corresponds to the situation when this multiplicity is equal to
4. According to Cartan, all nonequivalent equations for which Ψ has quartic root
are covered by this example.
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In this example nonequivalent equations are distinguished by the only
nonvanishing scalar invariant a5 to which the Weyl tensor of the metric g is
proportional.

If a5 =const the equation has a 7-dimensional group of symmetries.

Further relations:

Bryant R L (2005) Conformal geometry and 3-plane �elds on 6 manifolds,
DG/0511110:

Equations z′ = F (x, y, y′, y′′, z) are in relations with 2-plane �elds on
manifolds of dimension 5. Bryant found description of certain 3-plane �elds in
dimension 6 in terms of conformal (3, 3)-signature geometries.


