Differential equations and conformal structures

Paweł Nurowski Instytut Fizyki Teoretycznej Uniwersytet Warszawski

Minneapolis, 2 August 2006

• Wünschmann K, (1905) "Über Beruhrungsbedingungen bei Differentialgleichungen", Dissertation, Greifswald:

- Wünschmann K, (1905) "Über Beruhrungsbedingungen bei Differentialgleichungen", Dissertation, Greifswald:
 - ★ Considered a general 3rd order ODE

$$y''' = F(x, y, y', y''), \tag{*}$$

asking what one has to assume about F = F(x, y, y', y'') to be able to define a null distance between the solutions.

- Wünschmann K, (1905) "Über Beruhrungsbedingungen bei Differentialgleichungen", Dissertation, Greifswald:
 - ★ Considered a general 3rd order ODE

$$y''' = F(x, y, y', y''), \tag{*}$$

asking what one has to assume about F = F(x, y, y', y'') to be able to define a null distance between the solutions.

 \star Denoting by \mathcal{D} the total differential, $\mathcal{D}=\partial_x+p\partial_y+q\partial_p+F\partial_q$, where p=y', q=y'', he found that the solution space of (*) is naturally equipped with a $conformal\ Lorentzian$ metric iff

$$F_y + (\mathcal{D} - \frac{2}{3}F_q)\underbrace{(\frac{1}{6}\mathcal{D}F_q - \frac{1}{9}F_q^2 - \frac{1}{2}F_p)}_{K} \equiv 0.$$
 (W)

$$g = [dy - pdx][dq - \frac{1}{3}F_qdp + Kdy + (\frac{1}{3}qF_q - F - pK)dx] - [dp - qdx]^2.$$

$$g = [dy - pdx][dq - \frac{1}{3}F_qdp + Kdy + (\frac{1}{3}qF_q - F - pK)dx] - [dp - qdx]^2.$$

 \star Condition (W) is invariant with respect to contact transformations of variables and contact transformations of the variables result in a conformal change of the metric.

$$g = [dy - pdx][dq - \frac{1}{3}F_qdp + Kdy + (\frac{1}{3}qF_q - F - pK)dx] - [dp - qdx]^2.$$

- \star Condition (W) is *invariant* with respect to *contact* transformations of variables and contact transformations of the variables result in a conformal change of the metric.
- * Wünschman: There is a one-to-one correspondence between equivalence classes of 3rd order ODEs satisfying (W) considered modulo contact transformations of variables and 3-dimensional Lorentzian conformal geometries.

$$g = [dy - pdx][dq - \frac{1}{3}F_qdp + Kdy + (\frac{1}{3}qF_q - F - pK)dx] - [dp - qdx]^2.$$

- \star Condition (W) is invariant with respect to contact transformations of variables and contact transformations of the variables result in a conformal change of the metric.
- ★ Wünschman: There is a one-to-one correspondence between equivalence classes of 3rd order ODEs satisfying (W) considered modulo contact transformations of variables and 3-dimensional Lorentzian conformal geometries.
- ★ In particular: all contact invariants of such classes of equations are expressible in terms of the conformal invariants of the associated conformal Lorentzian metrics.

• Chern S S (1940) "The geometry of the differential equations y''' = F(x, y, y', y'')" Sci. Rep. Nat. Tsing Hua Univ. 4 97-111:

- Chern S S (1940) "The geometry of the differential equations y''' = F(x, y, y', y'')" Sci. Rep. Nat. Tsing Hua Univ. 4 97-111:
 - \star Description of the invariants in terms of $\mathfrak{so}(2,3)$ -valued Cartan connection.

- Chern S S (1940) "The geometry of the differential equations y''' = F(x, y, y', y'')" Sci. Rep. Nat. Tsing Hua Univ. 4 97-111:
 - \star Description of the invariants in terms of $\mathfrak{so}(2,3)$ -valued Cartan connection.
 - * This may be identified with the $Cartan\ normal\ conformal\ connection$ associated with the conformal class [g].

• Cartan E (1941) "La geometria de las ecuaciones diferenciales de tercer orden" Rev. Mat. Hispano-Amer. 4 1-31:

- Cartan E (1941) "La geometria de las ecuaciones diferenciales de tercer orden" Rev. Mat. Hispano-Amer. 4 1-31:
 - \star Considered equations (*) modulo point transformations of the variables.

- Cartan E (1941) "La geometria de las ecuaciones diferenciales de tercer orden" Rev. Mat. Hispano-Amer. 4 1-31:
 - \star Considered equations (*) modulo point transformations of the variables.
 - \star If in addition to the Wünschmann condition (W) equation (*) satisfies another point invariant condition

$$\mathcal{D}^2 F_{qq} - \mathcal{D} F_{qp} + F_{qy} \equiv 0, \tag{C}$$

then its solutions space is equipped with a 3-dimensional Lorentzain Einstein-Weyl geometry.

- Cartan E (1941) "La geometria de las ecuaciones diferenciales de tercer orden" Rev. Mat. Hispano-Amer. 4 1-31:
 - \star Considered equations (*) modulo point transformations of the variables.
 - \star If in addition to the Wünschmann condition (W) equation (*) satisfies another point invariant condition

$$\mathcal{D}^2 F_{qq} - \mathcal{D} F_{qp} + F_{qy} \equiv 0, \tag{C}$$

then its solutions space is equipped with a 3-dimensional Lorentzain Einstein-Weyl geometry.

★ There is a one-to-one correspondence between 3-dimensional Lorentzian Einstein-Weyl geometries and 3rd order ODEs considered modulo point transformations and satisfying conditions (W) and (C).

• Cartan E (1932) "Sur la geometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes" Part I *Ann. Math. Pura Appl.* **11** 17-90; Part II *Ann. Sc. Norm. Pisa* **1** 333-54:

- Cartan E (1932) "Sur la geometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes" Part I $Ann.~Math.~Pura~Appl.~\mathbf{11}$ 17-90; Part II $Ann.~Sc.~Norm.~Pisa~\mathbf{1}$ 333-54:
 - \star Solved the local equivalence problem for 3-dimensional real hypersurfaces embedded in \mathbb{C}^2 and considered modulo biholomorphic transformations of variables

- Cartan E (1932) "Sur la geometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes" Part I $Ann.~Math.~Pura~Appl.~\mathbf{11}$ 17-90; Part II $Ann.~Sc.~Norm.~Pisa~\mathbf{1}$ 333-54:
 - \star Solved the local equivalence problem for 3-dimensional real hypersurfaces embedded in \mathbb{C}^2 and considered modulo biholomorphic transformations of variables
 - \star If the hypersurface is not locally biholomorphically equivalent to $\mathbb{C} \times \mathbb{R}$ he found all the invariants in terms of an $\mathfrak{su}(2,1)$ -valued Cartan connection on an 8-dimensional fiber bundle defined over the hypersurface.

- Cartan E (1932) "Sur la geometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes" Part I $Ann.~Math.~Pura~Appl.~\mathbf{11}$ 17-90; Part II $Ann.~Sc.~Norm.~Pisa~\mathbf{1}$ 333-54:
 - \star Solved the local equivalence problem for 3-dimensional real hypersurfaces embedded in \mathbb{C}^2 and considered modulo biholomorphic transformations of variables
 - * If the hypersurface is not locally biholomorphically equivalent to $\mathbb{C} \times \mathbb{R}$ he found all the invariants in terms of an $\mathfrak{su}(2,1)$ -valued Cartan connection on an 8-dimensional fiber bundle defined over the hypersurface.
- Fefferman C L (1976) "Monge-Ampere equations, the Bergman kernel, and geometry of pseudoconvex domains" Ann. of Math. 103, 395-416:

- Cartan E (1932) "Sur la geometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes" Part I $Ann.~Math.~Pura~Appl.~\mathbf{11}$ 17-90; Part II $Ann.~Sc.~Norm.~Pisa~\mathbf{1}$ 333-54:
 - \star Solved the local equivalence problem for 3-dimensional real hypersurfaces embedded in \mathbb{C}^2 and considered modulo biholomorphic transformations of variables
 - * If the hypersurface is not locally biholomorphically equivalent to $\mathbb{C} \times \mathbb{R}$ he found all the invariants in terms of an $\mathfrak{su}(2,1)$ -valued Cartan connection on an 8-dimensional fiber bundle defined over the hypersurface.
- Fefferman C L (1976) "Monge-Ampere equations, the Bergman kernel, and geometry of pseudoconvex domains" Ann. of Math. 103, 395-416:
 - \star Defined a 4-dimensional Lorentzian class of metrics on an S^1 -bundle over the hypersurface that transforms conformally when the hypersurface udergoes a biholomorphic transformation.

• Burns D Jr, Diederich K, Schnider S (1977) "Distinguished curves in pseudoconvex boundaries" *Duke. Math. J.* **44** 407-31:

- Burns D Jr, Diederich K, Schnider S (1977) "Distinguished curves in pseudoconvex boundaries" *Duke. Math. J.* **44** 407-31:
 - \star understood that Cartan's $\mathfrak{su}(2,1)$ -valued connection associated with a biholomorphic class of strictly pseudoconvex hypersurfaces is a reduction of the Cartan normal conformal connection of the associated conformal class of Feffermann metrics.

- Burns D Jr, Diederich K, Schnider S (1977) "Distinguished curves in pseudoconvex boundaries" $Duke.\ Math.\ J.\ 44\ 407-31$:
 - \star understood that Cartan's $\mathfrak{su}(2,1)$ -valued connection associated with a biholomorphic class of strictly pseudoconvex hypersurfaces is a reduction of the Cartan normal conformal connection of the associated conformal class of Feffermann metrics.
- Segre B (1931) "Intorno al problema di Poincare dela representazione pseudo-conforme" Rend. Acc. Lincei **131** 676-83:

- Burns D Jr, Diederich K, Schnider S (1977) "Distinguished curves in pseudoconvex boundaries" *Duke. Math. J.* **44** 407-31:
 - \star understood that Cartan's $\mathfrak{su}(2,1)$ -valued connection associated with a biholomorphic class of strictly pseudoconvex hypersurfaces is a reduction of the Cartan normal conformal connection of the associated conformal class of Feffermann metrics.
- Segre B (1931) "Intorno al problema di Poincare dela representazione pseudo-conforme" $Rend.\ Acc.\ Lincei\ {\bf 131}$ 676-83:
 - \star biholomorphically equivalent pseudoconvex hypersurfaces in \mathbb{C}^2 are analogs of 2-nd order ODEs considered modulo point transformations

- Burns D Jr, Diederich K, Schnider S (1977) "Distinguished curves in pseudoconvex boundaries" *Duke. Math. J.* **44** 407-31:
 - \star understood that Cartan's $\mathfrak{su}(2,1)$ -valued connection associated with a biholomorphic class of strictly pseudoconvex hypersurfaces is a reduction of the Cartan normal conformal connection of the associated conformal class of Feffermann metrics.
- Segre B (1931) "Intorno al problema di Poincare dela representazione pseudo-conforme" Rend. Acc. Lincei **131** 676-83:
 - \star biholomorphically equivalent pseudoconvex hypersurfaces in \mathbb{C}^2 are analogs of 2-nd order ODEs considered modulo point transformations
- Nurowski P, Sparling GAJ (2003) "3-dimensional Cauchy-Riemann structures and 2nd order ODEs" Class. Q. Grav. **20** 4995-5016:

- Burns D Jr, Diederich K, Schnider S (1977) "Distinguished curves in pseudoconvex boundaries" *Duke. Math. J.* **44** 407-31:
 - \star understood that Cartan's $\mathfrak{su}(2,1)$ -valued connection associated with a biholomorphic class of strictly pseudoconvex hypersurfaces is a reduction of the Cartan normal conformal connection of the associated conformal class of Feffermann metrics.
- Segre B (1931) "Intorno al problema di Poincare dela representazione pseudo-conforme" Rend. Acc. Lincei **131** 676-83:
 - \star biholomorphically equivalent pseudoconvex hypersurfaces in \mathbb{C}^2 are analogs of 2-nd order ODEs considered modulo point transformations
- Nurowski P, Sparling GAJ (2003) "3-dimensional Cauchy-Riemann structures and 2nd order ODEs" Class. Q. Grav. **20** 4995-5016:
 - ★ What are the analogs of the Fefferman metrics for 2nd order ODEs modulo point transformations?

Conformal geometry of y'' = Q(x, y, y')

Conformal geometry of y'' = Q(x, y, y')

• Given 2nd order ODE: y'' = Q(x, y, y') consider a parametrization of the first jet space J^1 by (x, y, p = y').

Conformal geometry of y'' = Q(x, y, y')

- Given 2nd order ODE: y'' = Q(x,y,y') consider a parametrization of the first jet space J^1 by (x,y,p=y').
- ullet on $J^1 imes \mathbb{R}$ consider a metric

$$g = 2[(dp - Qdx)dx - (dy - pdx)(dr + \frac{2}{3}Q_pdx + \frac{1}{6}Q_{pp}(dy - pdx))], \quad (F)$$

where r is a coordinate along $\mathbb R$ in $J^1 imes \mathbb R$.

Theorem:

ullet If ODE undergoes a point transformation then the metric (F) transforms conformally.

Theorem:

- ullet If ODE undergoes a point transformation then the metric (F) transforms conformally.
- All point invariants of a point equivalence class of ODEs y'' = Q(x, y, y') are expressible in terms of the conformal invariants of the associated conformal class of metrics (F).

Theorem:

- If ODE undergoes a point transformation then the metric (F) transforms conformally.
- All point invariants of a point equivalence class of ODEs y'' = Q(x, y, y') are expressible in terms of the conformal invariants of the associated conformal class of metrics (F).
- The metrics (F) are very special among all the split signature metrics on 4-manifolds. Their Weyl tensor C has algebraic type (N,N) in the Cartan-Petrov-Penrose classification. Both, the selfdual C^+ and the antiselfdual C^- , parts of C are expressible in terms of only one component.

ullet C+ is proportional to

$$w_1 = D^2 Q_{pp} - 4DQ_{py} - DQ_{pp}Q_p + 4Q_pQ_{py} - 3Q_{pp}Q_y + 6Q_{yy}$$

and C^- is proportional to

$$w_2 = Q_{pppp},$$

where

$$D = \partial_x + p\partial_y + Q\partial_p.$$

Each of the conditions $w_1=0$ and $w_2=0$ is invariant under point transformations.

 C^+ is proportional to

$$w_1 = D^2 Q_{pp} - 4DQ_{py} - DQ_{pp}Q_p + 4Q_pQ_{py} - 3Q_{pp}Q_y + 6Q_{yy}$$

and C^- is proportional to

$$w_2 = Q_{pppp},$$

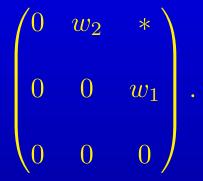
where

$$D = \partial_x + p\partial_y + Q\partial_p.$$

Each of the conditions $w_1 = 0$ and $w_2 = 0$ is invariant under point transformations.

• Cartan normal conformal connection associated with any conformal class [g] of metrics (F) is reducible to a certain $\mathrm{SL}(2+1,\mathbf{R})$ connection naturally defined on an 8-dimensional bundle over J^1 . This is uniquely associated with the point equivalence class of corresponding ODEs via Cartan's equivalence method.

• The curvature of this connection has a very simple form



• The curvature of this connection has a very simple form

$$egin{pmatrix} 0 & w_2 & * \ 0 & 0 & w_1 \ 0 & 0 & 0 \end{pmatrix}.$$

• If $w_1=0$ or $w_2=0$ this connection can be further understood as a Cartan normal projective connection over a certain two dimensional space S equipped with a projective structure. S can be identified either with the solution space of the ODE in the $w_1=0$ case, or with the solution space of its dual in the $w_2=0$ case.

• Hilbert D (1912) "Über den Begriff der Klasse von Differentialgleichungen" *Mathem. Annalen Bd.* **73**, 95-108:

- Hilbert D (1912) "Über den Begriff der Klasse von Differentialgleichungen" *Mathem. Annalen Bd.* **73**, 95-108:
 - \star considered equations of the form z' = F(x, y, y', y'', z) for two real functions y = y(x) and z = z(x).

- Hilbert D (1912) "Über den Begriff der Klasse von Differentialgleichungen" *Mathem. Annalen Bd.* **73**, 95-108:
 - \star considered equations of the form z' = F(x, y, y', y'', z) for two real functions y = y(x) and z = z(x).
 - \star He observed that, contrary to the equation z'=y''F(x,y,y',z)+G(x,y,y',z), the general solution to the equation $z'=y''^2$ can not be written in *integral-free* form:

$$x = x(t, w(t), w'(t), \dots w^{(k)}(t)),$$

$$y = y(t, w(t), w'(t), \dots w^{(k)}(t)),$$

$$z = z(t, w(t), w'(t), \dots w^{(k)}(t)).$$

• Cartan E (1910) "Les systemes de Pfaff a cinq variables et les equations aux derivees partielles du second ordre" Ann. Sc. Norm. Sup. 27 109-192:

- Cartan E (1910) "Les systemes de Pfaff a cinq variables et les equations aux derivees partielles du second ordre" $Ann.~Sc.~Norm.~Sup.~\bf 27$ 109-192:
 - ★ solved an equivalence problem for equations

$$z' = F(x, y, y', y'', z)$$
 with $F_{y''y''} \neq 0$, (H)

by constructing a 14-dimensional Cartan bundle $P \to J$ over the 5-dimensional space J parametrized by (x, y, y', y'', z).

- Cartan E (1910) "Les systemes de Pfaff a cinq variables et les equations aux derivees partielles du second ordre" $Ann.~Sc.~Norm.~Sup.~\bf 27$ 109-192:
 - ★ solved an equivalence problem for equations

$$z' = F(x, y, y', y'', z)$$
 with $F_{y''y''} \neq 0$, (H)

by constructing a 14-dimensional Cartan bundle $P \to J$ over the 5-dimensional space J parametrized by (x,y,y',y'',z). This bundle is equipped with a Cartan connection whose curvature gives all the local invariants of the equation.

- Cartan E (1910) "Les systemes de Pfaff a cinq variables et les equations aux derivees partielles du second ordre" $Ann.~Sc.~Norm.~Sup.~\bf 27$ 109-192:
 - ★ solved an equivalence problem for equations

$$z' = F(x, y, y', y'', z)$$
 with $F_{y''y''} \neq 0$, (H)

by constructing a 14-dimensional Cartan bundle $P \to J$ over the 5-dimensional space J parametrized by (x,y,y',y'',z). This bundle is equipped with a Cartan connection whose curvature gives all the local invariants of the equation. The connection has values in the Lie algebra of the nocompact form of the exceptional group G_2 and is flat iff the equation is equivalent to the Hilbert's equation $z'=y''^2$;

- Cartan E (1910) "Les systemes de Pfaff a cinq variables et les equations aux derivees partielles du second ordre" $Ann.~Sc.~Norm.~Sup.~\bf 27$ 109-192:
 - ★ solved an equivalence problem for equations

$$z' = F(x, y, y', y'', z)$$
 with $F_{y''y''} \neq 0$, (H)

by constructing a 14-dimensional Cartan bundle $P \to J$ over the 5-dimensional space J parametrized by (x,y,y',y'',z). This bundle is equipped with a Cartan connection whose curvature gives all the local invariants of the equation. The connection has values in the Lie algebra of the nocompact form of the exceptional group G_2 and is flat iff the equation is equivalent to the Hilbert's equation $z'=y''^2$; in such case the equation has a symmetry group G_2 .

• PN (2003) "Differentail equations and conformal structures" J. Geom. Phys **55** 19-49:

• PN (2003) "Differentail equations and conformal structures" *J. Geom. Phys* **55** 19-49:

 \star Since G_2 naturally seats in SO(3,4), that is in a conformal group for (3,2)-signature conformal metrics, is it possible to understand Cartan's invariants in terms of inavraints of some conformal structure in 5 dimensions?

ullet Each equation (H) may be represented by forms

$$\omega^{1} = dz - F(x, y, p, q, z)dx$$
$$\omega^{2} = dy - pdx$$
$$\omega^{3} = dp - qdx$$

on a 5-dimensional manifold J parametrized by $(x,y,p=y^{\prime},q=y^{\prime\prime},z)$.

ullet Each equation (H) may be represented by forms

$$\omega^{1} = dz - F(x, y, p, q, z)dx$$
$$\omega^{2} = dy - pdx$$
$$\omega^{3} = dp - qdx$$

on a 5-dimensional manifold J parametrized by $(x,y,p=y^{\prime},q=y^{\prime\prime},z)$.

• every solution to the equation is a curve $\gamma(t)=(x(t),y(t),p(t),q(t),z(t))$ in J on which the forms $(\omega^1,\omega^2,\omega^3)$ simultaneously vanish.

ullet Each equation (H) may be represented by forms

$$\omega^{1} = dz - F(x, y, p, q, z)dx$$
$$\omega^{2} = dy - pdx$$
$$\omega^{3} = dp - qdx$$

on a $\overline{5}$ -dimensional manifold J parametrized by (x,y,p=y',q=y'',z).

- every solution to the equation is a curve $\gamma(t)=(x(t),y(t),p(t),q(t),z(t))$ in J on which the forms $(\omega^1,\omega^2,\omega^3)$ simultaneously vanish.
- Transformation that transforms solutions to solution may mix the forms $(\omega^1, \omega^2, \omega^3)$ among themselves, thus:

Two equations z'=F(x,y,y',y'',z) and $\bar z'=\bar F(\bar x,\bar y,\bar y',\bar y'',\bar z)$ represented by the respective forms

$$\omega^1 = dz - F(x, y, p, q, z)dx$$
, $\omega^2 = dy - pdx$, $\omega^3 = dp - qdx$;

Two equations z'=F(x,y,y',y'',z) and $\bar z'=\bar F(\bar x,\bar y,\bar y',\bar y'',\bar z)$ represented by the respective forms

$$\omega^{1} = dz - F(x, y, p, q, z)dx, \quad \omega^{2} = dy - pdx, \quad \omega^{3} = dp - qdx;$$

$$\bar{\omega}^{1} = d\bar{z} - \bar{F}(\bar{x}, \bar{y}, \bar{p}, \bar{q}, \bar{z})d\bar{x}, \quad \bar{\omega}^{2} = d\bar{y} - \bar{p}d\bar{x}, \quad \bar{\omega}^{3} = d\bar{p} - \bar{q}d\bar{x},$$

Two equations z'=F(x,y,y',y'',z) and $\bar z'=\bar F(\bar x,\bar y,\bar y',\bar y'',\bar z)$ represented by the respective forms

$$\omega^{1} = dz - F(x, y, p, q, z)dx, \quad \omega^{2} = dy - pdx, \quad \omega^{3} = dp - qdx;$$

$$\bar{\omega}^{1} = d\bar{z} - \bar{F}(\bar{x}, \bar{y}, \bar{p}, \bar{q}, \bar{z})d\bar{x}, \quad \bar{\omega}^{2} = d\bar{y} - \bar{p}d\bar{x}, \quad \bar{\omega}^{3} = d\bar{p} - \bar{q}d\bar{x},$$

are (locally) equivalent iff there exists a (local) diffeomorphism

$$\phi:(x,y,p,q,z) \to (\bar x,\bar y,\bar p,\bar q,\bar z)$$
 such that

Two equations z'=F(x,y,y',y'',z) and ar z'=ar F(ar x,ar y,ar y',ar y'',ar z) represented by the respective forms

$$\omega^{1} = dz - F(x, y, p, q, z)dx, \quad \omega^{2} = dy - pdx, \quad \omega^{3} = dp - qdx;$$

$$\bar{\omega}^{1} = d\bar{z} - \bar{F}(\bar{x}, \bar{y}, \bar{p}, \bar{q}, \bar{z})d\bar{x}, \quad \bar{\omega}^{2} = d\bar{y} - \bar{p}d\bar{x}, \quad \bar{\omega}^{3} = d\bar{p} - \bar{q}d\bar{x},$$

are (locally) equivalent iff there exists a (local) diffeomorphism $\phi:(x,y,p,q,z)\to(\bar x,\bar y,\bar p,\bar q,\bar z)$ such that

$$\phi^* \begin{pmatrix} \bar{\omega}^1 \\ \bar{\omega}^2 \\ \bar{\omega}^2 \end{pmatrix} = \begin{pmatrix} \alpha & \beta & \gamma \\ \delta & \epsilon & \lambda \\ \kappa & \mu & \nu \end{pmatrix} \begin{pmatrix} \omega^1 \\ \omega^2 \\ \omega^3 \end{pmatrix}$$

$$z' = F(x, y, y', y'', z)$$

$$z' = F(x, y, y', y'', z)$$

Theorem

• There are two main branches of nonequivalent equations z'=F(x,y,y',y'',z). They are distinguished by vanishing or not of the relative invariant F_{qq} , q=y''.

$$z' = F(x, y, y', y'', z)$$

- There are two main branches of nonequivalent equations z' = F(x, y, y', y'', z). They are distinguished by vanishing or not of the relative invariant F_{qq} , q = y''.
- If $F_{qq} \equiv 0$ then such equations have integral-free solutions.

$$z' = F(x, y, y', y'', z)$$

- There are two main branches of nonequivalent equations z' = F(x, y, y', y'', z). They are distinguished by vanishing or not of the relative invariant F_{qq} , q = y''.
- If $F_{qq} \equiv 0$ then such equations have integral-free solutions.
- There are nonequivalent equations among the equations having $F_{qq} \neq 0$. All these equations are beyond the class of equations with integral-free solutions.

Theorem

An equivalence class of equations z'=F(x,y,y',y'',z) with $F_{y''y''}\neq 0$ uniquely defines a 14-dimensional manifold $P\to J$ and

Theorem

An equivalence class of equations z' = F(x, y, y', y'', z) with $F_{y''y''} \neq 0$ uniquely defines a 14-dimensional manifold $P \to J$ and a preferred coframe $(\theta^1, \theta^2, \theta^3, \theta^4, \theta^5, \Omega_1, \Omega_2, \Omega_3, \Omega_4, \Omega_5, \Omega_6, \Omega_7, \Omega_8, \Omega_9)$ on it such that

Theorem

An equivalence class of equations z' = F(x, y, y', y'', z) with $F_{y''y''} \neq 0$ uniquely defines a 14-dimensional manifold $P \to J$ and a preferred coframe $(\theta^1, \theta^2, \theta^3, \theta^4, \theta^5, \Omega_1, \Omega_2, \Omega_3, \Omega_4, \Omega_5, \Omega_6, \Omega_7, \Omega_8, \Omega_9)$ on it such that

$$d\theta^{1} = \theta^{1} \wedge (2\Omega_{1} + \Omega_{4}) + \theta^{2} \wedge \Omega_{2} + \theta^{3} \wedge \theta^{4}$$

$$d\theta^{2} = \theta^{1} \wedge \Omega_{3} + \theta^{2} \wedge (\Omega_{1} + 2\Omega_{4}) + \theta^{3} \wedge \theta^{5}$$

$$d\theta^{3} = \theta^{1} \wedge \Omega_{5} + \theta^{2} \wedge \Omega_{6} + \theta^{3} \wedge (\Omega_{1} + \Omega_{4}) + \theta^{4} \wedge \theta^{5}$$

$$d\theta^{4} = \theta^{1} \wedge \Omega_{7} + \frac{4}{3}\theta^{3} \wedge \Omega_{6} + \theta^{4} \wedge \Omega_{1} + \theta^{5} \wedge \Omega_{2}$$

$$d\theta^{5} = \theta^{2} \wedge \Omega_{7} - \frac{4}{3}\theta^{3} \wedge \Omega_{5} + \theta^{4} \wedge \Omega_{3} + \theta^{5} \wedge \Omega_{4}.$$

Theorem

An equivalence class of equations z' = F(x, y, y', y'', z) with $F_{y''y''} \neq 0$ uniquely defines a 14-dimensional manifold $P \to J$ and a preferred coframe $(\theta^1, \theta^2, \theta^3, \theta^4, \theta^5, \Omega_1, \Omega_2, \Omega_3, \Omega_4, \Omega_5, \Omega_6, \Omega_7, \Omega_8, \Omega_9)$ on it such that

$$d\theta^{1} = \theta^{1} \wedge (2\Omega_{1} + \Omega_{4}) + \theta^{2} \wedge \Omega_{2} + \theta^{3} \wedge \theta^{4}$$

$$d\theta^{2} = \theta^{1} \wedge \Omega_{3} + \theta^{2} \wedge (\Omega_{1} + 2\Omega_{4}) + \theta^{3} \wedge \theta^{5}$$

$$d\theta^{3} = \theta^{1} \wedge \Omega_{5} + \theta^{2} \wedge \Omega_{6} + \theta^{3} \wedge (\Omega_{1} + \Omega_{4}) + \theta^{4} \wedge \theta^{5}$$

$$d\theta^{4} = \theta^{1} \wedge \Omega_{7} + \frac{4}{3}\theta^{3} \wedge \Omega_{6} + \theta^{4} \wedge \Omega_{1} + \theta^{5} \wedge \Omega_{2}$$

$$d\theta^{5} = \theta^{2} \wedge \Omega_{7} - \frac{4}{3}\theta^{3} \wedge \Omega_{5} + \theta^{4} \wedge \Omega_{3} + \theta^{5} \wedge \Omega_{4}.$$

We also have formulae for the differentials of the forms Ω_{μ} , $\mu=1,2,...,9$.

$$d\Omega_{1} = \Omega_{3} \wedge \Omega_{2} + \frac{1}{3}\theta^{3} \wedge \Omega_{7} - \frac{2}{3}\theta^{4} \wedge \Omega_{5} + \frac{1}{3}\theta^{5} \wedge \Omega_{6} + \theta^{1} \wedge \Omega_{8} + \frac{3}{8}c_{2}\theta^{1} \wedge \theta^{2} + b_{2}\theta^{1} \wedge \theta^{3} + b_{3}\theta^{2} \wedge \theta^{3} + a_{3}\theta^{1} \wedge \theta^{4} + a_{3}\theta^{1} \wedge \theta^{5} + a_{3}\theta^{2} \wedge \theta^{4} + a_{4}\theta^{2} \wedge \theta^{5}.$$

where a_2 , a_3 , a_4 , b_2 , b_3 , c_2 are functions on P uniquely defined by the equivalence class of equations.

$$d\Omega_{1} = \Omega_{3} \wedge \Omega_{2} + \frac{1}{3}\theta^{3} \wedge \Omega_{7} - \frac{2}{3}\theta^{4} \wedge \Omega_{5} + \frac{1}{3}\theta^{5} \wedge \Omega_{6} + \theta^{1} \wedge \Omega_{8} + \frac{3}{8}c_{2}\theta^{1} \wedge \theta^{2} + b_{2}\theta^{1} \wedge \theta^{3} + b_{3}\theta^{2} \wedge \theta^{3} + a_{3}\theta^{1} \wedge \theta^{4} + a_{3}\theta^{1} \wedge \theta^{5} + a_{3}\theta^{2} \wedge \theta^{4} + a_{4}\theta^{2} \wedge \theta^{5}.$$

where a_2 , a_3 , a_4 , b_2 , b_3 , c_2 are functions on P uniquely defined by the equivalence class of equations.

The other differentials, when decomposed on the basis θ^i , Ω_μ , define more functions, which Cartan denoted by a_1 , a_2 , a_3 , a_4 , a_5 , b_1 , b_2 , b_3 , b_4 , c_1 , c_2 , c_3 , δ_1 , δ_2 , e, h_1 , h_2 , h_3 , h_4 , h_5 , h_6 , k_1 , k_2 , k_3 .

$$d\Omega_{1} = \Omega_{3} \wedge \Omega_{2} + \frac{1}{3}\theta^{3} \wedge \Omega_{7} - \frac{2}{3}\theta^{4} \wedge \Omega_{5} + \frac{1}{3}\theta^{5} \wedge \Omega_{6} + \theta^{1} \wedge \Omega_{8} + \frac{3}{8}c_{2}\theta^{1} \wedge \theta^{2} + b_{2}\theta^{1} \wedge \theta^{3} + b_{3}\theta^{2} \wedge \theta^{3} + a_{3}\theta^{1} \wedge \theta^{4} + a_{3}\theta^{1} \wedge \theta^{5} + a_{3}\theta^{2} \wedge \theta^{4} + a_{4}\theta^{2} \wedge \theta^{5}.$$

where a_2 , a_3 , a_4 , b_2 , b_3 , c_2 are functions on P uniquely defined by the equivalence class of equations.

The other differentials, when decomposed on the basis θ^i , Ω_{μ} , define more functions, which Cartan denoted by a_1 , a_2 , a_3 , a_4 , a_5 , b_1 , b_2 , b_3 , b_4 , c_1 , c_2 , c_3 , δ_1 , δ_2 , e, h_1 , h_2 , h_3 , h_4 , h_5 , h_6 , k_1 , k_2 , k_3 .

The system provides all the local invariants for the equivalence class of equations satisfying $F_{qq} \neq 0$.

$$d\Omega_{1} = \Omega_{3} \wedge \Omega_{2} + \frac{1}{3}\theta^{3} \wedge \Omega_{7} - \frac{2}{3}\theta^{4} \wedge \Omega_{5} + \frac{1}{3}\theta^{5} \wedge \Omega_{6} + \theta^{1} \wedge \Omega_{8} + \frac{3}{8}c_{2}\theta^{1} \wedge \theta^{2} + b_{2}\theta^{1} \wedge \theta^{3} + b_{3}\theta^{2} \wedge \theta^{3} + a_{3}\theta^{1} \wedge \theta^{4} + a_{3}\theta^{1} \wedge \theta^{5} + a_{3}\theta^{2} \wedge \theta^{4} + a_{4}\theta^{2} \wedge \theta^{5}.$$

where a_2 , a_3 , a_4 , b_2 , b_3 , c_2 are functions on P uniquely defined by the equivalence class of equations.

The other differentials, when decomposed on the basis θ^i , Ω_μ , define more functions, which Cartan denoted by a_1 , a_2 , a_3 , a_4 , a_5 , b_1 , b_2 , b_3 , b_4 , c_1 , c_2 , c_3 , δ_1 , δ_2 , e, h_1 , h_2 , h_3 , h_4 , h_5 , h_6 , k_1 , k_2 , k_3 .

The system provides all the local invariants for the equivalence class of equations satisfying $F_{qq} \neq 0$.

We pass to the interpretetion in terms of Cartan connection:

P is a principal fibre bundle over J with the 9-dimensional parabolic subgroup H of G_2 as its structure group.

P is a principal fibre bundle over J with the 9-dimensional parabolic subgroup Hof G_2 as its structure group.

is a Cartan connection with values in the Lie algebra of G_2 .

The curvature of this connection $R=\mathrm{d}\omega+\omega\wedge\omega$ 'measures' how much a given equivalence class of equations is 'distorted' from the flat Hilbert case corresponding to $F=q^2$.

Given an equivalence class of equation z'=F(x,y,y',y'',z) consider its corresponding bundle P with the coframe $(\theta^1,\theta^2,\theta^3,\theta^4,\theta^5,\Omega_1,\Omega_2,\Omega_3,\Omega_4,\Omega_5,\Omega_6,\Omega_7,\Omega_8,\Omega_9).$

Given an equivalence class of equation z' = F(x, y, y', y'', z) consider its corresponding bundle P with the coframe $(\theta^1, \theta^2, \theta^3, \theta^4, \theta^5, \Omega_1, \Omega_2, \Omega_3, \Omega_4, \Omega_5, \Omega_6, \Omega_7, \Omega_8, \Omega_9)$.

Define a bilinear form

$$\tilde{g} = 2\theta^1 \theta^5 - 2\theta^2 \theta^4 + \frac{4}{3}\theta^3 \theta^3$$

Given an equivalence class of equation z' = F(x, y, y', y'', z) consider its corresponding bundle P with the coframe $(\theta^1, \theta^2, \theta^3, \theta^4, \theta^5, \Omega_1, \Omega_2, \Omega_3, \Omega_4, \Omega_5, \Omega_6, \Omega_7, \Omega_8, \Omega_9)$.

Define a bilinear form

$$\tilde{g} = 2\theta^1 \theta^5 - 2\theta^2 \theta^4 + \frac{4}{3}\theta^3 \theta^3$$

This form is degenerate on P and has signature (3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Given an equivalence class of equation z' = F(x, y, y', y'', z) consider its corresponding bundle P with the coframe $(\theta^1, \theta^2, \theta^3, \theta^4, \theta^5, \Omega_1, \Omega_2, \Omega_3, \Omega_4, \Omega_5, \Omega_6, \Omega_7, \Omega_8, \Omega_9)$.

Define a bilinear form

$$\tilde{g} = 2\theta^1 \theta^5 - 2\theta^2 \theta^4 + \frac{4}{3}\theta^3 \theta^3$$

This form is degenerate on P and has signature (3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0).

The 9 degenerate directions generate the vertical space of P.

• The bilinear forms \tilde{g} transforms conformally when Lie transported along any of the vertical directions.

- The bilinear forms \tilde{g} transforms conformally when Lie transported along any of the vertical directions.
- It descends to a well defined conformal~(3,2)-signature metric on the 5-dimensional space J on which the equation z'=F(x,y,y',y'',z) is defined.

- The bilinear forms \tilde{g} transforms conformally when Lie transported along any of the vertical directions.
- It descends to a well defined conformal~(3,2)-signature metric on the 5-dimensional space J on which the equation z'=F(x,y,y',y'',z) is defined.
- The Cartan normal conformal connection associated with this conformal metric yields all the invariant information about the equivalence class of the equation.

- The bilinear forms \tilde{g} transforms conformally when Lie transported along any of the vertical directions.
- It descends to a well defined conformal~(3,2)-signature metric on the 5-dimensional space J on which the equation z'=F(x,y,y',y'',z) is defined.
- The Cartan normal conformal connection associated with this conformal metric yields all the invariant information about the equivalence class of the equation.
- This $\mathfrak{so}(4,3)$ -valued connection is reducible and, after reduction, can be identified with the \mathfrak{g}_2 Cartan connection ω on P.

In the quoted paper I gave the explicit formula for the (3,2)-siganture metric in terms of the function F defining the equation.

In the quoted paper I gave the explicit formula for the (3,2)-siganture metric in terms of the function F defining the equation. Here I present a simple example.

In the quoted paper I gave the explicit formula for the (3,2)-siganture metric in terms of the function F defining the equation. Here I present a simple example.

The Hilbert equation $z'=y''^2$ has maximal symmetry group: G_2 of dimension 14.

In the quoted paper I gave the explicit formula for the (3,2)-signature metric in terms of the function F defining the equation. Here I present a simple example.

The Hilbert equation $z'=y''^2$ has maximal symmetry group: G_2 of dimension 14.

Cartan knew that z' = F(x, y, y', y'', z) is either equivalent to the Hilbert equation or its group of $transitive\ symmetries\ is\ at\ most\ 7$ -dimensional.

In the quoted paper I gave the explicit formula for the (3,2)-siganture metric in terms of the function F defining the equation. Here I present a simple example.

The Hilbert equation $z' = y''^2$ has maximal symmetry group: G_2 of dimension 14.

Cartan knew that z' = F(x, y, y', y'', z) is either equivalent to the Hilbert equation or its group of $transitive\ symmetries\ is\ at\ most\ 7$ -dimensional.

The equations with 7-dimensional group of transitive symmetries are among those equivalent to z' = F(y'') with $F_{y''y''} \neq 0$.

In the quoted paper I gave the explicit formula for the (3,2)-siganture metric in terms of the function F defining the equation. Here I present a simple example.

The Hilbert equation $z' = y''^2$ has maximal symmetry group: G_2 of dimension 14.

Cartan knew that z' = F(x, y, y', y'', z) is either equivalent to the Hilbert equation or its group of $transitive\ symmetries\ is\ at\ most\ 7$ -dimensional.

The equations with 7-dimensional group of transitive symmetries are among those equivalent to z' = F(y'') with $F_{y''y''} \neq 0$.

For such F's the (3,2)-signature conformal metric reads:

$$\begin{split} g &= 30(F'')^4 \left[\, \mathrm{d}q \mathrm{d}y - p \mathrm{d}q \mathrm{d}x \, \right] + \left[\, 4F^{(3)2} - 3F''F^{(4)} \, \right] \, \mathrm{d}z^2 + \\ 2 \left[-5(F'')^2 F^{(3)} - 4F'F^{(3)2} + 3F'F''F^{(4)} \, \right] \, \mathrm{d}p \mathrm{d}z + \\ 2 \left[15(F'')^3 + 5q(F'')^2 F^{(3)} - 4FF^{(3)2} + 4qF'F^{(3)2} + 3FF''F^{(4)} - 3qF'F''F^{(4)} \, \right] \, \mathrm{d}x \mathrm{d}z + \\ \left[-20(F'')^4 + 10F'(F'')^2 F^{(3)} + 4(F')^2 F^{(3)2} - 3(F')^2 F''F^{(4)} \, \right] \, \mathrm{d}p^2 + \\ 2 \left[-15F'(F'')^3 + 20q(F'')^4 + 5F(F'')^2 F^{(3)} - 10qF'(F'')^2 F^{(3)} + 4FF'F^{(3)2} - 4q(F')^2 F^{(3)2} - 3FF'F''F^{(4)} + 3q(F')^2 F''F^{(4)} \, \right] \, \mathrm{d}p \mathrm{d}x + \\ \left[-30F(F'')^3 + 30qF'(F'')^3 - 20q^2(F'')^4 - 10qF(F'')^2 F^{(3)} + 10q^2 F'(F'')^2 F^{(3)} + 4F^2 F^{(3)2} - 8qFF'F^{(3)2} + 4q^2(F')^2 F^{(3)2} - 3F^2 F''F^{(4)} + 6qFF'F''F^{(4)} - 3q^2(F')^2 F''F^{(4)} \, \right] \, \mathrm{d}x^2. \end{split}$$

$$\begin{split} g &= 30(F'')^4 \left[\, \mathrm{d}q \mathrm{d}y - p \mathrm{d}q \mathrm{d}x \, \right] \, + \, \left[\, 4F^{(3)2} - 3F''F^{(4)} \, \right] \, \mathrm{d}z^2 + \\ 2 \left[-5(F'')^2 F^{(3)} - 4F'F^{(3)2} + 3F'F''F^{(4)} \, \right] \, \mathrm{d}p \mathrm{d}z + \\ 2 \left[15(F'')^3 + 5q(F'')^2 F^{(3)} - 4FF^{(3)2} + 4qF'F^{(3)2} + 3FF''F^{(4)} - 3qF'F''F^{(4)} \, \right] \, \mathrm{d}x \mathrm{d}z + \\ \left[-20(F'')^4 + 10F'(F'')^2 F^{(3)} + 4(F')^2 F^{(3)2} - 3(F')^2 F''F^{(4)} \, \right] \, \mathrm{d}p^2 + \\ 2 \left[-15F'(F'')^3 + 20q(F'')^4 + 5F(F'')^2 F^{(3)} - 10qF'(F'')^2 F^{(3)} + 4FF'F^{(3)2} - 4q(F')^2 F^{(3)2} - 3FF'F''F^{(4)} + 3q(F')^2 F''F^{(4)} \, \right] \, \mathrm{d}p \mathrm{d}x + \\ \left[-30F(F'')^3 + 30qF'(F'')^3 - 20q^2(F'')^4 - 10qF(F'')^2 F^{(3)} + \\ 10q^2 F'(F'')^2 F^{(3)} + 4F^2 F^{(3)2} - 8qFF'F^{(3)2} + 4q^2(F')^2 F^{(3)2} - \\ 3F^2 F''F^{(4)} + 6qFF'F''F^{(4)} - 3q^2(F')^2 F''F^{(4)} \, \right] \, \mathrm{d}x^2. \end{split}$$

It is always conformal to an Einstein metric $\hat{g}=\mathrm{e}^{2\Upsilon}g$ with the conformal factor $\Upsilon=\Upsilon(q)$ satisfying

$$10(F'')^{2} \left[\Upsilon'' - (\Upsilon')^{2} \right] - 40F''F^{(3)}\Upsilon' + 17F''F^{(4)} - 56F^{(3)2} = 0.$$

```
g = 30(F'')^4 \left[ dqdy - pdqdx \right] + \left[ 4F^{(3)2} - 3F''F^{(4)} \right] dz^2 + 2 \left[ -5(F'')^2 F^{(3)} - 4F'F^{(3)2} + 3F'F''F^{(4)} \right] dpdz + 2 \left[ 15(F'')^3 + 5q(F'')^2 F^{(3)} - 4FF^{(3)2} + 4qF'F^{(3)2} + 3FF''F^{(4)} - 3qF'F''F^{(4)} \right] dxdz + \left[ -20(F'')^4 + 10F'(F'')^2 F^{(3)} + 4(F')^2 F^{(3)2} - 3(F')^2 F''F^{(4)} \right] dp^2 + 2 \left[ -15F'(F'')^3 + 20q(F'')^4 + 5F(F'')^2 F^{(3)} - 10qF'(F'')^2 F^{(3)} + 4FF'F^{(3)2} - 4q(F')^2 F^{(3)2} - 3FF'F''F^{(4)} + 3q(F')^2 F''F^{(4)} \right] dpdx + \left[ -30F(F'')^3 + 30qF'(F'')^3 - 20q^2(F'')^4 - 10qF(F'')^2 F^{(3)} + 10q^2 F'(F'')^2 F^{(3)} + 4F^2 F^{(3)2} - 8qFF'F^{(3)2} + 4q^2(F')^2 F^{(3)2} - 3F^2 F''F^{(4)} + 6qFF'F''F^{(4)} - 3q^2(F')^2 F''F^{(4)} \right] dx^2.
```

It is always conformal to an Einstein metric $\hat{g}=\mathrm{e}^{2\Upsilon}g$ with the conformal factor $\Upsilon=\Upsilon(q)$ satisfying

$$10(F'')^{2} \left[\Upsilon'' - (\Upsilon')^{2} \right] - 40F''F^{(3)}\Upsilon' + 17F''F^{(4)} - 56F^{(3)2} = 0.$$

Any conformal metric originated from our construction, has $special\ conformal\ holonomy\ H_C\subseteq G_2$.

```
g = 30(F'')^{4} \left[ dqdy - pdqdx \right] + \left[ 4F^{(3)2} - 3F''F^{(4)} \right] dz^{2} + 2 \left[ -5(F'')^{2}F^{(3)} - 4F'F^{(3)2} + 3F'F''F^{(4)} \right] dpdz + 2 \left[ 15(F'')^{3} + 5q(F'')^{2}F^{(3)} - 4FF^{(3)2} + 4qF'F^{(3)2} + 3FF''F^{(4)} - 3qF'F''F^{(4)} \right] dxdz + \left[ -20(F'')^{4} + 10F'(F'')^{2}F^{(3)} + 4(F')^{2}F^{(3)2} - 3(F')^{2}F''F^{(4)} \right] dp^{2} + 2 \left[ -15F'(F'')^{3} + 20q(F'')^{4} + 5F(F'')^{2}F^{(3)} - 10qF'(F'')^{2}F^{(3)} + 4FF'F^{(3)2} - 4q(F')^{2}F^{(3)2} - 3FF'F''F^{(4)} + 3q(F')^{2}F''F^{(4)} \right] dpdx + \left[ -30F(F'')^{3} + 30qF'(F'')^{3} - 20q^{2}(F'')^{4} - 10qF(F'')^{2}F^{(3)} + 10q^{2}F'(F'')^{2}F^{(3)} + 4F^{2}F^{(3)2} - 8qFF'F^{(3)2} + 4q^{2}(F')^{2}F^{(3)2} - 3F^{2}F''F^{(4)} + 6qFF'F''F^{(4)} - 3q^{2}(F')^{2}F''F^{(4)} \right] dx^{2}.
```

It is always conformal to an Einstein metric $\hat{g}=\mathrm{e}^{2\Upsilon}g$ with the conformal factor $\Upsilon=\Upsilon(q)$ satisfying

$$10(F'')^{2} \left[\Upsilon'' - (\Upsilon')^{2} \right] - 40F''F^{(3)}\Upsilon' + 17F''F^{(4)} - 56F^{(3)2} = 0.$$

Any conformal metric originated from our construction, has $special\ conformal\ holonomy\ H_C\subseteq G_2$.

It is therefore interesting to look for the ambient metrics for them. These, in turn, will have $special\ pseudo-riemanian\ holonomy\ H_{\psi R}\subseteq G_2$.

$$\bar{g} = t^2 g + 2 dr dt + \frac{2rt}{10F''^2} (56F^{(3)3} - 17F''F^{(4)}) dq^2.$$

$$\bar{g} = t^2 g + 2 dr dt + \frac{2rt}{10F''^2} (56F^{(3)3} - 17F''F^{(4)}) dq^2.$$

By construction it is $Ricci\ flat$ and has pseudo-riemannian holonomy $H_{\psi R}\subseteq G_2.$

$$\bar{g} = t^2 g + 2 dr dt + \frac{2rt}{10F''^2} (56F^{(3)3} - 17F''F^{(4)}) dq^2.$$

By construction it is $Ricci\ flat$ and has pseudo-riemannian holonomy $H_{\psi R}\subseteq G_2$. As I was told here by Thomas Leistner, since the metric g is conformal to Einstein, the equality $H_{\psi R}=G_2$ is excluded. We therefore have $H_{\psi R}\subseteq G_2$.

$$\bar{g} = t^2 g + 2 dr dt + \frac{2rt}{10F''^2} (56F^{(3)3} - 17F''F^{(4)}) dq^2.$$

By construction it is $Ricci\ flat$ and has pseudo-riemannian holonomy $H_{\psi R}\subseteq G_2$. As I was told here by Thomas Leistner, since the metric g is conformal to Einstein, the equality $H_{\psi R}=G_2$ is excluded. We therefore have $H_{\psi R}\subseteq G_2$.

Conformal metrics from our construction are rarely conformal to Einstein.

$$\bar{g} = t^2 g + 2 dr dt + \frac{2rt}{10F''^2} (56F^{(3)3} - 17F''F^{(4)}) dq^2.$$

By construction it is $Ricci\ flat$ and has pseudo-riemannian holonomy $H_{\psi R}\subseteq G_2$. As I was told here by Thomas Leistner, since the metric g is conformal to Einstein, the equality $H_{\psi R}=G_2$ is excluded. We therefore have $H_{\psi R}\subseteq G_2$.

Conformal metrics from our construction are rarely conformal to Einstein.

Thus, evaluation of the ambient metrics for them should lead to quite nontrivial (4,3)-signature metrics with strict noncompact G_2 pseudo-riemannian holonomy.

This polynomial encodes partial information of the $Weyl\ tensor$ of the associated conformal (3,2)-signature metric. In particular, the well known invariant $I_{\Psi}=6a_3^2-8a_2a_4+2a_1a_5$ of this polynomial is, modulo a numerical factor, proportional to the $square\ of\ the\ Weyl\ tensor\ C^2=C^{\mu\nu\rho\sigma}C_{\mu\nu\rho\sigma}$ of the conformal metric.

This polynomial encodes partial information of the $Weyl\ tensor$ of the associated conformal (3,2)-signature metric. In particular, the well known invariant $I_{\Psi}=6a_3^2-8a_2a_4+2a_1a_5$ of this polynomial is, modulo a numerical factor, proportional to the $square\ of\ the\ Weyl\ tensor\ C^2=C^{\mu\nu\rho\sigma}C_{\mu\nu\rho\sigma}$ of the conformal metric.

Vanishing of I_{Ψ} means that $\Psi = \Psi(z)$ has a root with multiplicity no smaller than 3.

This polynomial encodes partial information of the $Weyl\ tensor$ of the associated conformal (3,2)-signature metric. In particular, the well known invariant $I_{\Psi}=6a_3^2-8a_2a_4+2a_1a_5$ of this polynomial is, modulo a numerical factor, proportional to the $square\ of\ the\ Weyl\ tensor\ C^2=C^{\mu\nu\rho\sigma}C_{\mu\nu\rho\sigma}$ of the conformal metric.

Vanishing of I_{Ψ} means that $\Psi = \Psi(z)$ has a root with multiplicity no smaller than 3.

Our example above corresponds to the situation when this multiplicity is equal to 4.

This polynomial encodes partial information of the $Weyl\ tensor$ of the associated conformal (3,2)-signature metric. In particular, the well known invariant $I_{\Psi}=6a_3^2-8a_2a_4+2a_1a_5$ of this polynomial is, modulo a numerical factor, proportional to the $square\ of\ the\ Weyl\ tensor\ C^2=C^{\mu\nu\rho\sigma}C_{\mu\nu\rho\sigma}$ of the conformal metric.

Vanishing of I_{Ψ} means that $\Psi = \Psi(z)$ has a root with $multiplicity \ no \ smaller$ $than \ 3$.

Our example above corresponds to the situation when this multiplicity is equal to 4. According to Cartan, all nonequivalent equations for which Ψ has quartic root are covered by this example.

If a_5 =const the equation has a 7-dimensional group of symmetries.

If a_5 =const the equation has a 7-dimensional group of symmetries.

Further relations:

If a_5 =const the equation has a 7-dimensional group of symmetries.

Further relations:

Bryant R L (2005) Conformal geometry and 3-plane fields on 6 manifolds, DG/0511110:

If a_5 =const the equation has a 7-dimensional group of symmetries.

Further relations:

Bryant R L (2005) Conformal geometry and 3-plane fields on 6 manifolds, DG/0511110:

Equations z' = F(x, y, y', y'', z) are in relations with 2-plane fields on manifolds of dimension 5. Bryant found description of certain 3-plane fields in dimension 6 in terms of conformal (3,3)-signature geometries.