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Conformal structure

A conformal structure (Mn, [g]) on an n = n+ + n− dimensional
manifold Mn is an equivalence [g] class of (n+,n−)-signature
metrics on Mn, such that two metrics g and ĝ are in the same
class [g] if and only if there exists a function φ on Mn, such that

ĝ = e2φg.
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Ambient metric

Consider a conformal structure (Mn, [g]) as defined on the
previous slide.

An ambient space M̃ for (Mn, [g]) is locally a product

M̃ =]0,+∞[ × Mn × ]− ǫ, ǫ[, ǫ > 0,

with respective coordinates (t , x i , ρ), and the ambient
metric g̃ for (Mn, [g]) is an (n+ + 1,n− + 1)-signature Ricci
flat metric on M̃ given by:

g̃ = 2dtd(ρt) + t2g(x i , ρ)

such that
g(x i , ρ)|ρ=0 = g(x i),

for some metric g = g(x i) from the conformal structure [g].
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Explicit ambient metrics?

Assuming that the metric g̃ admits a power series expansion
with integer powers in ρ one can see that:

If [g] contains the flat metric g0 than

g̃ = 2dtd(ρt) + t2g0.

If [g] contains an Einstein metric g0, Ric(g0) = Λg0, then

g̃ = 2dtd(ρt) + t2(1 +
Λρ

2(n − 1)
)2g0.

But otherwise finding explicit examples of ambient metrics
is difficult.
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An old nontrivial example in five dimensions
Consider a function

f = f0 + f1p + f2p2
+ f3p3

+ f4p4
+ f5p5

+ f6p6
, f0, f1, . . . f6 = const,

and a 5-manifold M5 parametrized by (x , y ,p,q, z), and
equipped with a conformal structure [g] represented by

g = 2ω1
ω

5 − 2ω2
ω

4
+ (ω

3
)
2
,

ω
1
= dy − pdx, ω

2
= dz − (q2

+ f + bz)dx −
√

2
2 qω3

, ω
3
= 2

√
2(dp − qdx), ω

4
= 3dx,

ω
5
=

√
2b
2 ω

3 − 6dq + 3(2bq + fp)dx + 1
10 (9fpp + 4b2

)ω
1
,

Then the ambient metric for (M5, [g]) is

g̃ = 2dtd(ρt) + t2
(

g+A · (ω1
)
2
+ 2B · ω1

ω
4
+ C · (ω4

)
2
)

,

with
A = 27

8 f6ρ
2 − 9

5 (f4 + 5pf5 + 15p2f6)ρ,

B = 1
16 (f5 + 6pf6)ρ

2 − 3
20 (f3 + 4pf4 + 10p2f5 + 20p3f6)ρ,

C = 1
360 (f4 + 5pf5 + 15p2f6)ρ

2 − 1
45 (f2 + 3pf3 + 6p2f4 + 10p3f5 + 15p4f6)ρ.
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with
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5 (f4 + 5pf5 + 15p2f6)ρ,

B = 1
16 (f5 + 6pf6)ρ

2 − 3
20 (f3 + 4pf4 + 10p2f5 + 20p3f6)ρ,

C = 1
360 (f4 + 5pf5 + 15p2f6)ρ

2 − 1
45 (f2 + 3pf3 + 6p2f4 + 10p3f5 + 15p4f6)ρ.
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Distributions associated with z ′ = F (x , y , y ′
, y ′′

, z)

Associated with a differential equation

z′ = F (x , y ,p,q, z),

where p = y ′, q = y ′′, there is a 5-manifold M5 parametrized
by (x , y ,p,q, z), and a distribution

D = Span
(

∂q, ∂x + p∂y + q∂p + F∂z

)

,

whose differential invariants, when Fqq 6= 0, are in one-to-one
correspondance with conformal invariants of a certain
conformal class [gD] of metrics of signature (3,2) on M5.
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The conformal class for F = q2 + f (x , p) + bz

If F = q2 + f (x ,p) + bz, where b is a real constant, the
conformal class may be represented by a metric gDf in a
relatively simple form:

gDf =8
(

dp − qdx
)2

− 6
(

dz − 2qdp + (q2
− f − bz)dx

)

dx−

2
(

dy − pdx
)(

6dq − 2bdp − ( 2
5 b2 + 9

10 fpp)(dy − pdx) − (4bq + 3fp)dx
)

.

QUESTION: Can we find explicit formulae for
Fefferman-Graham ambient metrics for the conformal class
(M5, [gDf ])?
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An ansatz

Observation: The Schouten tensor for the class [gDf ] has
the form: P = α · (ω1)2 + 2β · ω1ω4 + γ · (ω4)2, with
ω1 = dy − pdx and ω4 = 3dx , and α, β, γ functions
depending on f and its derivatives.

Idea: Make an ansatz for the ambient metric g̃Df in which
gDf (x

i , ρ) assumes a similar form.

Explicitly, make the following ansatz for g̃Df :

g̃Df = 2dtd(ρt)+

t2
(

gDf + A · (ω1)2 + 2B · ω1ω4 + C · (ω4)2
)

,

with unknown functions A = A(x ,p, ρ), B = B(x ,p, ρ) and
C = C(x ,p, ρ).
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Theorem (Ian Anderson + PN)

The metric g̃Df , as above, is an ambient metric for the
conformal class (M5, [gDf ]), if and only if the unknown functions
A = A(x ,p, ρ), B = B(x ,p, ρ) and C = C(x ,p, ρ), satisfy the
initial conditions A|ρ=0 ≡ 0, B|ρ=0 ≡ 0, C|ρ=0 ≡ 0 and the
following system of PDEs:

LA = 9
40 fpppp

LB = − 1
36Ap + 3

40 fppp

LC = − 1
18Bp + 1

324A + 1
30 fpp − 2

15b2,

with the linear operator L given by

L = 2ρ
∂2

∂ρ2 − 3
∂

∂ρ
− 1

8
∂2

∂p2 .
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Power series expansion in ρ

One can solve the above equations, assuming power series
expansion in ρ:

A =

∞
∑

k=1

ak(x , p)ρ
k
, B =

∞
∑

k=1

bk (x , p)ρ
k
, C =

∞
∑

k=1

ck (x , p)ρ
k
,

obtaining:

A =

∞
∑

k=1

3
5
·

(2k − 1)(2k − 3)
22k(2k)!

·

∂(2k+2)f
∂p(2k+2)

· ρ
k
,

B =−

∞
∑

k=1

1
15

·

(2k − 1)(2k − 3)(2k − 5)
22k(2k)!

·

∂(2k+1)f
∂p(2k+1)

· ρ
k
,

C =
∞
∑

k=1

( 2
135

·

(k − 3)(2k − 1)(2k − 3)(2k − 5)
22k (2k)!

·

∂2k f
∂p2k

+
2

45
b2

δ1k

)

· ρ
k
.
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Solutions being ploynomials in ρ

An important feature of the analytic solutions is that their
coefficients behave as:

ak (x ,p) ∼
∂(2k+2)f
∂p(2k+2)

, bk(x ,p) ∼
∂(2k+1)f
∂p(2k+1)

, ck (x ,p) ∼
∂(2k)f
∂p(2k)

.

Thus, if we want to have an example of an ambient metric that
does not involve powers in ρ higher than k0 we need to have
∂(2k0+2)f
∂p(2k0+2) ≡ 0, i.e. the function f = f (x ,p) defining the distribution

must be a polynomial of order no higher than 2k0 + 1.
Because of c3(x ,p) ≡ 0, this statement can be improved, if we
want to have ambient metrics truncated at order k0 = 2. Here f
must be a polynomial of order no higher than 2k0 + 2 = 6,
which is the case of examples of Leistner and PN.
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Polynomial solutions have G2 holonomy

It is a matter of checking that the so obtained analytic in ρ
Fefferman-Graham metrics generically have full G2 holonomy.
As an example we give a formula for a Fefferman-Graham full
G2 holonomy metric that truncates at order 4 in ρ:

f = f0 + f1p + f2p2
+ f3p3

+ f4p4
+ f5p5

+ f6p6
+ f7p7

+ f8p8
+ f9p9

,

ω
1
= dy − pdx, ω

2
= dz − (q2

+ f + bz)dx −
√

2
2 qω3

, ω
3
= 2

√
2(dp − qdx), ω

4
= 3dx,

ω
5
=

√
2b
2 ω

3 − 6dq + 3(2bq + fp)dx + 1
10 (9fpp + 4b2

)ω
1
,

g̃Df
= 2dtd(ρt) + t2

(

2ω1
ω

5 − 2ω2
ω

4
+ (ω

3
)
2
+A · (ω1

)
2
+ 2B · ω1

ω
4
+ C · (ω4

)
2
)

,

A = 63
8 (f8 + 9pf9)ρ

3
+ 27

8 (f6 + 7pf7 + 28p2f8 + 84p3f9)ρ
2 − 9

5 (f4 + 5pf5 + 15p2f6 + 35p3f7 + 70p4f8 + 126p5f9)ρ,

B = − 63
256 f9ρ

4 − 7
64 (f7 + 8pf8 + 36p2f9)ρ

3
+ 1

16 (f5 + 6pf6 + 21p2f7 + 56p3f8 + 126p4f9)ρ
2−

3
20 (f3 + 4pf4 + 10p2f5 + 20p3f6 + 35p4f7 + 56p5f8 + 84p6f9)ρ,

C = 7
1152 (f8 + 9pf9)ρ

4
+ 1

360 (f4 + 5pf5 + 15p2f6 + 35p3f7 + 70p4f8 + 126p5f9)ρ
2
+

1
45 (2b2 − f2 − 3pf3 − 6p2f4 − 10p3f5 − 15p4f6 − 21p5f7 − 28p6f8 − 36p7f9)ρ.

Here all f0, f1, . . . f9 are arbitrary functions of the variable x .
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√
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=
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(
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Indicial exponents

To find all, and in particular nonanalytic in ρ, solutions to the
system

LA = 9
40 fpppp, LB = − 1

36Ap + 3
40 fppp

LC = − 1
18Bp + 1

324A + 1
30 fpp − 2

15b2,

we first observe that the two independent solutions to
L(ρk ) = 0 are ρ0 and ρ5/2. Thus, the most general solution to
the above system can be obtained by the following series:

A =
∞
∑

k=1

ak (x , p)ρ
k + ρ

5/2
∞
∑

k=0

αk (x , p)ρ
k
,

B =
∞
∑

k=1

bk (x , p)ρ
k + ρ

5/2
∞
∑

k=0

βk (x , p)ρ
k
,

C =

∞
∑

k=1

ck (x , p)ρ
k + ρ

5/2
∞
∑

k=0

γk (x , p)ρ
k
.
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General solutions

A =
∞
∑

k=1

3

5
·
(2k − 1)(2k − 3)

22k (2k)!
·
∂(2k+2)f

∂p(2k+2)
· ρk
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Note that the analytic solutions are totally determined by the
distribution, i.e. by the function f and the constant b.
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Note that the analytic solutions are totally determined by the
distribution, i.e. by the function f and the constant b.
On the other hand, the nonalytic sloutions do not depend on a
distribution at all!!

21/37



Ambient metrics and distributions
The main theorem

Examples of explicit ambient metrics

Solutions analytic in ρ

Nonanalytic in ρ solutions
Poincaré-Einstein picture

General solutions

A =
∞
∑

k=1

3

5
·
(2k − 1)(2k − 3)

22k (2k)!
·
∂(2k+2)f

∂p(2k+2)
· ρk

+ ρ
5/2

∞
∑

k=0

60 ·
(k + 2)(k + 1)

22k (2k + 5)!
·
∂2kα0

∂p2k
· ρk

,

B = −
∞
∑

k=1

1

15
·
(2k − 1)(2k − 3)(2k − 5)

22k (2k)!
·
∂(2k+1) f

∂p(2k+1)
· ρk

+

ρ
5/2

∞
∑

k=0

20

3
·
(k + 1)(k + 2)

22k (2k + 5)!
·
(

9
∂2kβ0

∂p2k
− 2k

∂(2k−1)α0

∂p(2k−1)

)

· ρk
,

C =
∞
∑

k=1

( 2

135
·
(k − 3)(2k − 1)(2k − 3)(2k − 5)

22k (2k)!
·
∂2k f

∂p2k
+

2

45
b2

δ1k

)

· ρk

Note that the analytic solutions are totally determined by the
distribution, i.e. by the function f and the constant b.
On the other hand, the nonalytic sloutions do not depend on a
distribution at all!!

21/37



Ambient metrics and distributions
The main theorem

Examples of explicit ambient metrics

Solutions analytic in ρ

Nonanalytic in ρ solutions
Poincaré-Einstein picture

General solutions

A =
∞
∑

k=1

3

5
·
(2k − 1)(2k − 3)

22k (2k)!
·
∂(2k+2)f

∂p(2k+2)
· ρk

+ ρ
5/2

∞
∑

k=0

60 ·
(k + 2)(k + 1)

22k (2k + 5)!
·
∂2kα0

∂p2k
· ρk

,

B = −
∞
∑

k=1

1

15
·
(2k − 1)(2k − 3)(2k − 5)

22k (2k)!
·
∂(2k+1) f

∂p(2k+1)
· ρk

+

ρ
5/2

∞
∑

k=0

20

3
·
(k + 1)(k + 2)

22k (2k + 5)!
·
(

9
∂2kβ0

∂p2k
− 2k

∂(2k−1)α0

∂p(2k−1)

)

· ρk
,

C =
∞
∑

k=1

( 2

135
·
(k − 3)(2k − 1)(2k − 3)(2k − 5)

22k (2k)!
·
∂2k f

∂p2k
+

2

45
b2

δ1k

)

· ρk
+

ρ
5/2

∞
∑

k=0

20

27
·
(k + 1)(k + 2)

22k (2k + 5)!
·
(

81
∂2kγ0

∂p2k
− 36k

∂(2k−1)β0

∂p(2k−1)
+ 2k(2k − 1)

∂(2k−2)α0

∂p(2k−2)

)

· ρk
.

Note that the analytic solutions are totally determined by the
distribution, i.e. by the function f and the constant b.
On the other hand, the nonalytic sloutions do not depend on a
distribution at all!!

21/37



Ambient metrics and distributions
The main theorem

Examples of explicit ambient metrics

Solutions analytic in ρ

Nonanalytic in ρ solutions
Poincaré-Einstein picture

General solutions

A =
∞
∑

k=1

3

5
·
(2k − 1)(2k − 3)

22k (2k)!
·
∂(2k+2)f

∂p(2k+2)
· ρk

+ ρ
5/2

∞
∑

k=0

60 ·
(k + 2)(k + 1)

22k (2k + 5)!
·
∂2kα0

∂p2k
· ρk

,

B = −
∞
∑

k=1

1

15
·
(2k − 1)(2k − 3)(2k − 5)

22k (2k)!
·
∂(2k+1) f

∂p(2k+1)
· ρk

+

ρ
5/2

∞
∑

k=0

20

3
·
(k + 1)(k + 2)

22k (2k + 5)!
·
(

9
∂2kβ0

∂p2k
− 2k

∂(2k−1)α0

∂p(2k−1)

)

· ρk
,

C =
∞
∑

k=1

( 2

135
·
(k − 3)(2k − 1)(2k − 3)(2k − 5)

22k (2k)!
·
∂2k f

∂p2k
+

2

45
b2

δ1k

)

· ρk
+

ρ
5/2

∞
∑

k=0

20

27
·
(k + 1)(k + 2)

22k (2k + 5)!
·
(

81
∂2kγ0

∂p2k
− 36k

∂(2k−1)β0

∂p(2k−1)
+ 2k(2k − 1)

∂(2k−2)α0

∂p(2k−2)

)

· ρk
.

Note that the analytic solutions are totally determined by the
distribution, i.e. by the function f and the constant b.
On the other hand, the nonalytic sloutions do not depend on a
distribution at all!!

21/37



Ambient metrics and distributions
The main theorem

Examples of explicit ambient metrics

Solutions analytic in ρ

Nonanalytic in ρ solutions
Poincaré-Einstein picture

General solutions

A =
∞
∑

k=1

3

5
·
(2k − 1)(2k − 3)

22k (2k)!
·
∂(2k+2)f

∂p(2k+2)
· ρk

+ ρ
5/2

∞
∑

k=0

60 ·
(k + 2)(k + 1)

22k (2k + 5)!
·
∂2kα0

∂p2k
· ρk

,

B = −
∞
∑

k=1

1

15
·
(2k − 1)(2k − 3)(2k − 5)

22k (2k)!
·
∂(2k+1) f

∂p(2k+1)
· ρk

+

ρ
5/2

∞
∑

k=0

20

3
·
(k + 1)(k + 2)

22k (2k + 5)!
·
(

9
∂2kβ0

∂p2k
− 2k

∂(2k−1)α0

∂p(2k−1)

)

· ρk
,

C =
∞
∑

k=1

( 2

135
·
(k − 3)(2k − 1)(2k − 3)(2k − 5)

22k (2k)!
·
∂2k f

∂p2k
+

2

45
b2

δ1k

)

· ρk
+

ρ
5/2

∞
∑

k=0

20

27
·
(k + 1)(k + 2)

22k (2k + 5)!
·
(

81
∂2kγ0

∂p2k
− 36k

∂(2k−1)β0

∂p(2k−1)
+ 2k(2k − 1)

∂(2k−2)α0

∂p(2k−2)

)

· ρk
.

Note that the analytic solutions are totally determined by the
distribution, i.e. by the function f and the constant b.
On the other hand, the nonalytic sloutions do not depend on a
distribution at all!! They depend on α0, β0 and γ0, which can be
arbitrary functions of the variables x and p.
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Nonanalytic in ρ solutions
Poincaré-Einstein picture

Holonomy questions

If α0 ≡ β0 ≡ γ0 ≡ 0 and for a randomly chosen f the
holonomy of the corresponding ambient metric is equal to
G2 (Graham-Willse result).

What about the holonomy of FG metrics corresponding to
the solutions with nontrivial ρ5/2+k terms?
Problems:

These solutions are only defined for ρ ≥ 0.
They are only twice differentiable at ρ = 0.
Holonomy on a manifold with a boundary?
First calculate holonomy in the points where ρ > 0, ...
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Solutions with f ≡ 0, b = 0

In case of a flat distribution, i.e. when f ≡ 0 and b = 0 the
solutions are:

A =ρ
5/2

∞
∑

k=0

60 ·
(k + 2)(k + 1)

22k (2k + 5)!
·
∂2k α0

∂p2k
· ρk

,

B =ρ
5/2

∞
∑

k=0

20

3
·
(k + 1)(k + 2)

22k (2k + 5)!
·
(

9
∂2kβ0

∂p2k
− 2k

∂(2k−1)α0

∂p(2k−1)

)

· ρk
,

C =ρ
5/2

∞
∑

k=0

20

27
·
(k + 1)(k + 2)

22k (2k + 5)!
·
(

81
∂2k γ0

∂p2k
− 36k

∂(2k−1)β0

∂p(2k−1)
+ 2k(2k − 1)

∂(2k−2)α0

∂p(2k−2)

)

· ρk
,

and, as in the general case, they depend on three arbitrary
functions α0, β0, γ0 of variables x and p.
As an illustration we discuss holonomy properties of the
corresponding ambient metrics on a very simple example, in
which we have made a particular choice of these 3
functionsons.
We believe that the discussed behaviour is a typical one.
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and, as in the general case, they depend on three arbitrary
functions α0, β0, γ0 of variables x and p.
As an illustration we discuss holonomy properties of the
corresponding ambient metrics on a very simple example, in
which we have made a particular choice of these 3
functionsons.
We believe that the discussed behaviour is a typical one.
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Examples of explicit ambient metrics

Solutions analytic in ρ

Nonanalytic in ρ solutions
Poincaré-Einstein picture

Ambient metrics for the flat equation z ′ = (y ′′)2

Take

α0 =β(x) + pα(x), β0 = f0(x) + pf1(x) + 252cp2
α(x),

γ0 =f3(x) + pf4(x) + 1
81 p2(2268f2(x)− β(x) + 18f1(x)),

with c a real constant.
This gives the following solution:

A =
(

252pα(x) + β(x)
)

ρ5/2

B =(9c − 1)α(x)ρ7/2 +
(

f0(x) + pf1(x) + 252cp2α(x)
)

ρ5/2

C =
(

f2(x) +
( 1

9 − 4c
)

pα(x)
)

ρ7/2+
(

f3(x) + pf4(x) +
1

81 p2(18f1(x) + 2268f2(x) − β(x)
)

)

ρ5/2

corresponding to the following Fefferman-Graham family
of metrics for the flat conformal structure:
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Solutions analytic in ρ

Nonanalytic in ρ solutions
Poincaré-Einstein picture

Ambient metrics for the flat equation z ′ = (y ′′)2

g̃ = 2dtd(ρt) + t2(8(dp − qdx)2 − 6(dz − 2qdp + q2dx)dx − 12(dy − pdx)dq+

(252pα+ β)
√
ρ 5 · (dy − pdx)2+

6((9c − 1)α
√
ρ 7 + (f0 + pf1 + 252cp2α)

√
ρ 5) · (dy − pdx)dx+

9((f2 + ( 1
9 − 4c)pα)

√
ρ 7 + (f3 + pf4 + 1

81 p2(18f1 + 2268f2 − β))
√
ρ 5) · dx2).

The family depends on seven arbitrary functions
α = α(x), β = β(x), f0 = f0(x), f1 = f1(x), . . . , f4 = f4(x) and
a real constant c.
g̃ is an ambient metric for the flat conformal structure
represented by a flat metric

g = 8(dp−qdx)2−6(dz−2qdp+q2dx)dx−12(dy−pdx)dq.

Note that g̃ is only two times differentiable at ρ = 0; the
third derivative at ρ = 0 does not exist.
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Examples of explicit ambient metrics

Solutions analytic in ρ

Nonanalytic in ρ solutions
Poincaré-Einstein picture

Holonomy of the ambient metrics from this family

Holonomy properties of this family are quite interesting:

In general these metrics have full SO(4,3) holonomy!!!!
Even if we put: β(x) ≡ f0(x) ≡ f1(x) ≡ · · · ≡ f4(x) ≡ 0, and
α(x) ≡ 1, the holonomy algebra behaves as this:

the curvature defines 6 independent components of the
holonomy algebra
the first covariant derivative of the curvature produces next
9 independent ones
the second derivative of curvature produces next 3
independent ones
the third derivative of curvature produces still 3 new
and after this the algebra stabilizes.

So the holonomy algebra is 6 + 9 + 3 + 3 = 21
dimensional, so it must be the full so(4,3) Lie algebra.
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Holonomy of the ambient metrics from this family

Interestingly these metrics include, as special cases,
metrics with full G2 holonomy, which can not be extended
to anything larger!!!
For this we put: β(x) ≡ f0(x) ≡ f1(x) ≡ · · · ≡ f4(x) ≡ 0, and
c = 0. Then the holonomy algebra behaves as this:

the curvature defines 4 independent components of the
holonomy algebra
the first covariant derivative of the curvature produces next
7 independent ones
the second derivative of curvature produces next 2
independent ones
the third derivative of curvature produces still 1 new
and after this the algebra stabilizes.

So the holonomy algebra is 4+7+2+1 = 14 dimensional,
and one can check that it is the g2 Lie algebra.
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the first covariant derivative of the curvature produces next
7 independent ones
the second derivative of curvature produces next 2
independent ones
the third derivative of curvature produces still 1 new
and after this the algebra stabilizes.

So the holonomy algebra is 4+7+2+1 = 14 dimensional,
and one can check that it is the g2 Lie algebra.
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Holonomy of the ambient metrics from this family

If we put: α(x) ≡ β(x) ≡ f0(x) ≡ f1(x) ≡ f2(x) ≡ f4(x) ≡ 0,
and c = 1/9. Then the holonomy algebra behaves as this:

the curvature defines 4 independent components of the
holonomy algebra
the first covariant derivative of the curvature produces next
5 independent ones
the second derivative of curvature produces next 1
independent ones
and after this the algebra stabilizes.

So the holonomy algebra g is 4 + 5 + 1 = 10 dimensional.

one can check that it is a semidirect product of a
7-dimensional radical and 3-dimensional semisimple Lie
algebra.

Of course it is a subgroup of so(4,3), but it is not a
subgroup of g2.
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Passing from ρ to r such that ρ = r2

The nonanalytic in ρ solutions have troubles at ρ ≤ 0
because they are expessible in odd powers of

√
ρ .

One can try to remedy the situation by passing to the
coordinate r such that ρ = r2.
On doing this we first assume that r > 0, and bring the
metric g̃ to the form

g̃ = 2dtd(r 2t) + t2(8(dp − qdx)2 − 6(dz − 2qdp + q2dx)dx − 12(dy − pdx)dq+

(252pα+ β)r5 · (dy − pdx)2+

6((9c − 1)αr7 + (f0 + pf1 + 252cp2α)r5) · (dy − pdx)dx+

9((f2 + ( 1
9 − 4c)pα)r7 + (f3 + pf4 + 1

81 p2(18f1 + 2268f2 − β))r5) · dx2).

This metric is regular and Ricci flat for all r 6= 0, but
because 2dtd(r 2t) = 4rdrdt + 2r2dt2, it is degenerate at
r = 0.
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Poincaré-Einstein metrics in general

Given a normal form of a (4,3)-signature ambient metric g̃Df

g̃Df =2dtd(ρt) + t2
(

gDf + A · (ω1)2 + 2B · ω1ω4 + C · (ω4)2
)

,

Ric(g̃) = 0,

A|ρ=0 = B|ρ=0 = C|ρ=0 = 0,

one can associate with it a (3,3) signature metric gPE , called
a Poincaré-Einstein metric,

obtained in the following way:
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Poincaré-Einstein metrics in general

Let R6 be coordinatized by (r , x , y ,p,q, z), and consider an
open neigbourhood U6 around a point with r 6= 0 there.

Imbedd U6 in M̃ by ι : U6 → M̃, where ι is given by:

ι(r , x , y ,p,q, z) :=
(

t =
1
r
, ρ = r2, x , y ,p,q, z

)

.

Pullback g̃Df from M̃ to U6 obtaining

gPE : = ι∗(g̃) =

1
r2

(

− 2dr2 + gDf + A · (ω1)2 + 2B · ω1ω4 + C · (ω4)2
)

.
.

gPE is a (3,3)-signature metric everywhere except r = 0.
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Poincaré-Einstein metrics in general

The metric gPE is Einstein,

Ric(gPE ) =
5
2gPE ,

if and only if the functions A, B, C satisfy

LA = 9
40 fpppp, LB = − 1

36Ap + 3
40 fppp

LC = − 1
18Bp + 1

324A + 1
30 fpp − 2

15b2,

i.e. iff they correspond to the Fefferman-Graham (Ricci
flat) metric g̃Df .
Note that in coordinate r the linear operator is

L =
1
2

∂2

∂r2 − 2
r
∂

∂r
− 1

8
∂2

∂p2 ,

so now the indicial exponents are 0 and 5, and we have no
troubles with r < 0 range.
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Nontrivial Poincare-Einstein metrics associated with
flat conformal structure

For example: a Poincaré-Einstein metric corresponding to the
Fefferman-Graham metric associated with the flat conformal
structure discussed few slides ago is then given by:

g̃ = r−2
(

− 2dr2+8(dp − qdx)2 − 6(dz − 2qdp + q2dx)dx − 12(dy − pdx)dq+

(252pα+ β)r5 · (dy − pdx)2 + 6((9c − 1)αr7 + (f0 + pf1 + 252cp2α)r5) · (dy − pdx)dx+

9((f2 + ( 1
9 − 4c)pα)r7 + (f3 + pf4 + 1

81 p2(18f1 + 2268f2 − β))r5) · dx2)
)

.
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Nonanalytic PE metrics and flat structure

The most general one associated with f ≡ 0 and b = 0 is:

g̃ = r−2
(

− 2dr2+8(dp − qdx)2 − 6(dz − 2qdp + q2dx)dx − 12(dy − pdx)dq+

A(dy − pdx)2 + 6B(dy − pdx)dx + 9Cdx2
)

A =ρ
5/2

∞
∑

k=0

60 ·
(k + 2)(k + 1)

22k (2k + 5)!
·
∂2kα0

∂p2k
· ρk

,

B =ρ
5/2

∞
∑

k=0

20

3
·
(k + 1)(k + 2)

22k (2k + 5)!
·
(

9
∂2kβ0

∂p2k
− 2k

∂(2k−1)α0

∂p(2k−1)

)

· ρk
,

C =ρ
5/2

∞
∑

k=0

20

27
·
(k + 1)(k + 2)

22k (2k + 5)!
·
(

81
∂2kγ0

∂p2k
− 36k

∂(2k−1)β0

∂p(2k−1)
+ 2k(2k − 1)

∂(2k−2)α0

∂p(2k−2)

)

· ρk
.

This can be truncated at any half-integer order of ρ, starting at
ρ5/2 by choosing α0, β0, γ0 as polynomials in p of an apropriate
order.
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The most general one associated with f ≡ 0 and b = 0 is:

g̃ = r−2
(

− 2dr2+8(dp − qdx)2 − 6(dz − 2qdp + q2dx)dx − 12(dy − pdx)dq+

A(dy − pdx)2 + 6B(dy − pdx)dx + 9Cdx2
)

A =ρ
5/2

∞
∑

k=0

60 ·
(k + 2)(k + 1)

22k (2k + 5)!
·
∂2kα0

∂p2k
· ρk

,

B =ρ
5/2

∞
∑

k=0

20

3
·
(k + 1)(k + 2)

22k (2k + 5)!
·
(

9
∂2kβ0

∂p2k
− 2k

∂(2k−1)α0

∂p(2k−1)

)

· ρk
,

C =ρ
5/2

∞
∑

k=0

20

27
·
(k + 1)(k + 2)

22k (2k + 5)!
·
(

81
∂2kγ0

∂p2k
− 36k

∂(2k−1)β0

∂p(2k−1)
+ 2k(2k − 1)

∂(2k−2)α0

∂p(2k−2)

)

· ρk
.

This can be truncated at any half-integer order of ρ, starting at
ρ5/2 by choosing α0, β0, γ0 as polynomials in p of an apropriate
order.
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TT tensors

The explicit solutions for the PE metrics can be used to
calculate the trace-free, divergence-free tensors for each of the
conformal structure [gDf ]:

TT = α0(x , p)(dy − pdx)2 + 6β0(x , p)(dy − pdx)dx + 9γ0(x , p)dx2
.

For all choices of the free functions α0, β0 and γ0 they are
trace-free and divergence-free in the metric

gDf =8
(

dp − qdx
)2

− 6
(

dz − 2qdp + (q2
− f − bz)dx

)

dx−

2
(

dy − pdx
)(

6dq − 2bdp − ( 2
5 b2 + 9

10 fpp)(dy − pdx) − (4bq + 3fp)dx
)

,

associated with z′ = (y ′′)2 + f (x , y ′) + bz.
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THANK YOU!
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