Examples of explicit Fefferman-Graham metrics

Paweł Nurowski
(joint work with Ian Anderson)

Instytut Fizyki Teoretycznej
Uniwersytet Warszawski
Banff Research Station, July/August 2012

Plan

(1) Ambient metrics and distributions

- Fefferman-Graham construction
- Conformal structures and Cartan's paper
(2) The main theorem
- An ansatz
- The theorem
(3) Examples of explicit ambient metrics
- Solutions analytic in ρ
- Nonanalytic in ρ solutions
- Poincaré-Einstein picture

Plan

(1) Ambient metrics and distributions

- Fefferman-Graham construction
- Conformal structures and Cartan's paperThe main theorem
- An ansatz
- The theorem
(3)

Examples of explicit ambient metrics

- Solutions analytic in ρ
- Nonanalytic in ρ solutions
- Poincaré-Einstein picture

Conformal structure

A conformal structure $\left(M^{n},[g]\right)$ on an $n=n_{+}+n_{-}$dimensional manifold M^{n} is an equivalence $[g]$ class of $\left(n_{+}, n_{-}\right)$-signature metrics on M^{n}, such that two metrics g and \hat{g} are in the same class $[g]$ if and only if there exists a function ϕ on M^{n}, such that

$$
\hat{g}=\mathrm{e}^{2 \phi} g
$$

Ambient metric

- Consider a conformal structure $\left(M^{n},[g]\right)$ as defined on the previous slide.
- An ambient space \tilde{M} for ($\left.M^{n},[g]\right)$ is locally a product
with respective coordinates (t, x^{i}, ρ), and the ambient metric \tilde{g} for $\left(M^{n},[g]\right)$ is an $\left(n_{+}+1, n_{-}+1\right)$-signature Ricci flat metric on N/ given by:

such that

for some metric $g=g\left(x^{i}\right)$ from the conformal structure $[g]$.

Ambient metric

- Consider a conformal structure $\left(M^{n},[g]\right)$ as defined on the previous slide.
- An ambient space \tilde{M} for $\left(M^{n},[g]\right)$ is locally a product
with respective coordinates $\left(t, x^{i}, \rho\right)$, and the ambient metric \tilde{g} for $\left(M^{n},[g]\right)$ is an $\left(n_{+}+1, n_{-}+1\right)$-signature Ricci flat metric on \tilde{M} given by:

such that

Ambient metric

- Consider a conformal structure ($M^{n},[g]$) as defined on the previous slide.
- An ambient space \tilde{M} for $\left(M^{n},[g]\right)$ is locally a product

$$
\tilde{M}=] 0,+\infty\left[\times M^{n} \times\right]-\epsilon, \epsilon[, \quad \epsilon>0,
$$

with respective coordinates (t, x^{i}, ρ), and the ambient metric \tilde{g} for $\left(M^{n},[g]\right)$ is an $\left(n_{+}+1, n_{-}+1\right)$-signature Ricci flat metric on \tilde{M} given by:
such that
for some metric

Ambient metric

- Consider a conformal structure $\left(M^{n},[g]\right)$ as defined on the previous slide.
- An ambient space \tilde{M} for ($\left.M^{n},[g]\right)$ is locally a product

$$
\tilde{M}=] 0,+\infty\left[\times M^{n} \times\right]-\epsilon, \epsilon[, \quad \epsilon>0,
$$

with respective coordinates $\left(t, x^{i}, \rho\right)$, and the ambient
metric \tilde{g} for $\left(M^{n},[g]\right)$ is an $\left(n_{+}+1, n_{-}+1\right)$-signature Ricci
flat metric on \tilde{M} given by:
such that

Ambient metric

- Consider a conformal structure $\left(M^{n},[g]\right)$ as defined on the previous slide.
- An ambient space \tilde{M} for ($\left.M^{n},[g]\right)$ is locally a product

$$
\tilde{M}=] 0,+\infty\left[\times M^{n} \times\right]-\epsilon, \epsilon[, \quad \epsilon>0,
$$

with respective coordinates $\left(t, x^{i}, \rho\right)$, and the ambient metric \tilde{g} for $\left(M^{n},[g]\right)$ is an $(n+1, n-1)$-signature Ricci flat metric on M given by:
such that

Ambient metric

- Consider a conformal structure $\left(M^{n},[g]\right)$ as defined on the previous slide.
- An ambient space \tilde{M} for $\left(M^{n},[g]\right)$ is locally a product

$$
\tilde{M}=] 0,+\infty\left[\times M^{n} \times\right]-\epsilon, \epsilon[, \quad \epsilon>0,
$$

with respective coordinates $\left(t, x^{i}, \rho\right)$, and the ambient metric \tilde{g} for $\left(M_{\tilde{n}}^{n},[g]\right)$ is an $\left(n_{+}+1, n_{-}+1\right)$-signature Ricci flat metric on \tilde{M} given by:

$$
\tilde{g}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2} g\left(x^{i}, \rho\right)
$$

such that

$$
g\left(x^{i}, \rho\right)_{\mid \rho=0}=g\left(x^{i}\right)
$$

for some metric $g=g\left(x^{i}\right)$ from the conformal structure $[g]$.

Explicit ambient metrics?

Assuming that the metric \tilde{g} admits a power series expansion with integer powers in ρ one can see that:

- If $[g]$ contains the flat metric g_{0} than

- If $[g]$ contains an Einstein metric $g_{0}, \operatorname{Ric}\left(g_{0}\right)=\wedge g_{0}$, then
- But otherwise finding explicit examples of ambient metrics is difficult.

Explicit ambient metrics?

Assuming that the metric \tilde{g} admits a power series expansion with integer powers in ρ one can see that:

- If $[g]$ contains the flat metric g_{0} than

$$
\tilde{g}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2} g_{0} .
$$

- If $[g]$ contains an Einstein metric $g_{0}, \operatorname{Ric}\left(g_{0}\right)=\wedge g_{0}$, then
- But otherwise finding explicit examples of ambient metrics is difficult.

Explicit ambient metrics?

Assuming that the metric \tilde{g} admits a power series expansion with integer powers in ρ one can see that:

- If $[g]$ contains the flat metric g_{0} than

$$
\tilde{g}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2} g_{0} .
$$

- If $[g]$ contains an Einstein metric $g_{0}, \operatorname{Ric}\left(g_{0}\right)=\wedge g_{0}$, then

$$
\tilde{g}=2 \operatorname{dtd}(\rho t)+t^{2}\left(1+\frac{\Lambda \rho}{2(n-1)}\right)^{2} g_{0} .
$$

- But otherwise finding explicit examples of ambient metrics is difficult.

Explicit ambient metrics?

Assuming that the metric \tilde{g} admits a power series expansion with integer powers in ρ one can see that:

- If $[g]$ contains the flat metric g_{0} than

$$
\tilde{g}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2} g_{0}
$$

- If $[g]$ contains an Einstein metric g_{0}, $\operatorname{Ric}\left(g_{0}\right)=\wedge g_{0}$, then

$$
\tilde{g}=2 \operatorname{dtd}(\rho t)+t^{2}\left(1+\frac{\Lambda \rho}{2(n-1)}\right)^{2} g_{0} .
$$

- But otherwise finding explicit examples of ambient metrics is difficult.

An old nontrivial example in five dimensions

Consider a function

$$
f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}, \quad f_{0}, f_{1}, \ldots f_{6}=\text { const },
$$

and a 5-manifold M^{5} parametrized by (x, y, p, q, z), and equipped with a conformal structure [g] represented by

Then the ambient metric for $\left(M^{5},[g]\right)$ is
with

An old nontrivial example in five dimensions

Consider a function

$$
f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}, \quad f_{0}, f_{1}, \ldots f_{6}=\text { const },
$$

and a 5-manifold M^{5} parametrized by (x, y, p, q, z), and equipped with a conformal structure [g] represented by

$$
g=2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2},
$$

Then the ambient metric for $\left(M^{5},[g]\right)$ is
with

An old nontrivial example in five dimensions

Consider a function

$$
f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}, \quad f_{0}, f_{1}, \ldots f_{6}=\text { const },
$$

and a 5-manifold M^{5} parametrized by (x, y, p, q, z), and equipped with a conformal structure [g] represented by

$$
g=2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2},
$$

$$
\omega^{1}=\mathrm{d} y-p \mathrm{~d} x
$$

Then the ambient metric for $\left(M^{5},[g]\right)$ is
with

An old nontrivial example in five dimensions

Consider a function

$$
f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}, \quad f_{0}, f_{1}, \ldots f_{6}=\text { const },
$$

and a 5-manifold M^{5} parametrized by (x, y, p, q, z), and equipped with a conformal structure [g] represented by

$$
\begin{gathered}
g=2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2}, \\
\omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3},
\end{gathered}
$$

Then the ambient metric for $\left(M^{5},[g]\right)$ is with

An old nontrivial example in five dimensions

Consider a function

$$
f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}, \quad f_{0}, f_{1}, \ldots f_{6}=\text { const },
$$

and a 5-manifold M^{5} parametrized by (x, y, p, q, z), and equipped with a conformal structure [g] represented by

$$
\begin{gathered}
g=2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2} \\
\omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x)
\end{gathered}
$$

Then the ambient metric for $\left(M^{5},[g]\right)$ is
with

An old nontrivial example in five dimensions

Consider a function

$$
f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}, \quad f_{0}, f_{1}, \ldots f_{6}=\text { const },
$$

and a 5-manifold M^{5} parametrized by (x, y, p, q, z), and equipped with a conformal structure [g] represented by

$$
\begin{aligned}
& g=2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2} \\
& \omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x), \quad \omega^{4}=3 \mathrm{~d} x
\end{aligned}
$$

Then the ambient metric for $\left(M^{5},[g]\right)$ is
with

An old nontrivial example in five dimensions

Consider a function

$$
f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}, \quad f_{0}, f_{1}, \ldots f_{6}=\text { const },
$$

and a 5-manifold M^{5} parametrized by (x, y, p, q, z), and equipped with a conformal structure [g] represented by

$$
\begin{aligned}
& \quad g=2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2} \\
& \omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x), \quad \omega^{4}=3 \mathrm{~d} x, \\
& \omega^{5}=\frac{\sqrt{2} b}{2} \omega^{3}-6 \mathrm{~d} q+3\left(2 b q+f_{p}\right) \mathrm{d} x+\frac{1}{10}\left(9 f_{p p}+4 b^{2}\right) \omega^{1},
\end{aligned}
$$

Then the ambient metric for $\left(M^{5},[g]\right)$ is
with

An old nontrivial example in five dimensions

Consider a function

$$
f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}, \quad f_{0}, f_{1}, \ldots f_{6}=\text { const },
$$

and a 5-manifold M^{5} parametrized by (x, y, p, q, z), and equipped with a conformal structure [g] represented by

$$
\begin{aligned}
& \quad g=2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2} \\
& \omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x), \quad \omega^{4}=3 \mathrm{~d} x, \\
& \omega^{5}=\frac{\sqrt{2} b}{2} \omega^{3}-6 \mathrm{~d} q+3\left(2 b q+f_{p}\right) \mathrm{d} x+\frac{1}{10}\left(9 f_{p p}+4 b^{2}\right) \omega^{1},
\end{aligned}
$$

Then the ambient metric for $\left(M^{5},[g]\right)$ is

$$
\tilde{g}=2 \mathrm{dtd}(\rho t)+t^{2}\left(g+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right),
$$

with

An old nontrivial example in five dimensions

Consider a function

$$
f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}, \quad f_{0}, f_{1}, \ldots f_{6}=\text { const },
$$

and a 5-manifold M^{5} parametrized by (x, y, p, q, z), and equipped with a conformal structure [g] represented by

$$
\begin{aligned}
& \quad g=2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2} \\
& \omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x), \quad \omega^{4}=3 \mathrm{~d} x, \\
& \omega^{5}=\frac{\sqrt{2} b}{2} \omega^{3}-6 \mathrm{~d} q+3\left(2 b q+f_{p}\right) \mathrm{d} x+\frac{1}{10}\left(9 f_{p p}+4 b^{2}\right) \omega^{1},
\end{aligned}
$$

Then the ambient metric for $\left(M^{5},[g]\right)$ is

$$
\tilde{g}=2 \mathrm{dtd}(\rho t)+t^{2}\left(g+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right),
$$

with

$$
A=\frac{27}{8} f_{6} \rho^{2}-\frac{9}{5}\left(f_{4}+5 p f_{5}+15 p^{2} f_{6}\right) \rho,
$$

An old nontrivial example in five dimensions

Consider a function

$$
f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}, \quad f_{0}, f_{1}, \ldots f_{6}=\text { const },
$$

and a 5-manifold M^{5} parametrized by (x, y, p, q, z), and equipped with a conformal structure [g] represented by

$$
\begin{aligned}
& \quad g=2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2} \\
& \omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x), \quad \omega^{4}=3 \mathrm{~d} x \\
& \omega^{5}=\frac{\sqrt{2} b}{2} \omega^{3}-6 \mathrm{~d} q+3\left(2 b q+f_{p}\right) \mathrm{d} x+\frac{1}{10}\left(9 f_{p p}+4 b^{2}\right) \omega^{1},
\end{aligned}
$$

Then the ambient metric for $\left(M^{5},[g]\right)$ is

$$
\tilde{g}=2 \operatorname{dtd}(\rho t)+t^{2}\left(g+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right)
$$

with

$$
\begin{aligned}
& A=\frac{27}{8} f_{6} \rho^{2}-\frac{9}{5}\left(f_{4}+5 p f_{5}+15 p^{2} f_{6}\right) \rho, \\
& B=\frac{1}{16}\left(f_{5}+6 p f_{6}\right) \rho^{2}-\frac{3}{20}\left(f_{3}+4 p f_{4}+10 p^{2} f_{5}+20 p^{3} f_{6}\right) \rho,
\end{aligned}
$$

An old nontrivial example in five dimensions

Consider a function

$$
f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}, \quad f_{0}, f_{1}, \ldots f_{6}=\text { const },
$$

and a 5-manifold M^{5} parametrized by (x, y, p, q, z), and equipped with a conformal structure [g] represented by

$$
\begin{aligned}
& \quad g=2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2} \\
& \omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x), \quad \omega^{4}=3 \mathrm{~d} x, \\
& \omega^{5}=\frac{\sqrt{2} b}{2} \omega^{3}-6 \mathrm{~d} q+3\left(2 b q+f_{p}\right) \mathrm{d} x+\frac{1}{10}\left(9 f_{p p}+4 b^{2}\right) \omega^{1},
\end{aligned}
$$

Then the ambient metric for $\left(M^{5},[g]\right)$ is

$$
\tilde{g}=2 \operatorname{dtd}(\rho t)+t^{2}\left(g+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right)
$$

with

$$
\begin{aligned}
& A=\frac{27}{8} f_{6} \rho^{2}-\frac{9}{5}\left(f_{4}+5 p f_{5}+15 p^{2} f_{6}\right) \rho \\
& B=\frac{1}{16}\left(f_{5}+6 p f_{6}\right) \rho^{2}-\frac{3}{20}\left(f_{3}+4 p f_{4}+10 p^{2} f_{5}+20 p^{3} f_{6}\right) \rho, \\
& C=\frac{1}{360}\left(f_{4}+5 p f_{5}+15 p^{2} f_{6}\right) \rho^{2}-\frac{1}{45}\left(f_{2}+3 p f_{3}+6 p^{2} f_{4}+10 p^{3} f_{5}+15 p^{4} f_{6}\right) \rho .
\end{aligned}
$$

An old nontrivial example in five dimensions

Consider a function

$$
f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}, \quad f_{0}, f_{1}, \ldots f_{6}=\text { const },
$$

and a 5-manifold M^{5} parametrized by (x, y, p, q, z), and equipped with a conformal structure [g] represented by

$$
\begin{aligned}
& \quad g=2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2} \\
& \omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x), \quad \omega^{4}=3 \mathrm{~d} x, \\
& \omega^{5}=\frac{\sqrt{2} b}{2} \omega^{3}-6 \mathrm{~d} q+3\left(2 b q+f_{p}\right) \mathrm{d} x+\frac{1}{10}\left(9 f_{p p}+4 b^{2}\right) \omega^{1},
\end{aligned}
$$

Then the ambient metric for $\left(M^{5},[g]\right)$ is

$$
\tilde{g}=2 \operatorname{dtd}(\rho t)+t^{2}\left(g+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right)
$$

with

$$
\begin{aligned}
& A=\frac{27}{8} f_{6} \rho^{2}-\frac{9}{5}\left(f_{4}+5 p f_{5}+15 p^{2} f_{6}\right) \rho \\
& B=\frac{1}{16}\left(f_{5}+6 p f_{6}\right) \rho^{2}-\frac{3}{20}\left(f_{3}+4 p f_{4}+10 p^{2} f_{5}+20 p^{3} f_{6}\right) \rho, \\
& C=\frac{1}{360}\left(f_{4}+5 p f_{5}+15 p^{2} f_{6}\right) \rho^{2}-\frac{1}{45}\left(f_{2}+3 p f_{3}+6 p^{2} f_{4}+10 p^{3} f_{5}+15 p^{4} f_{6}\right) \rho .
\end{aligned}
$$

Plan

(1) Ambient metrics and distributions

- Fefferman-Graham construction
- Conformal structures and Cartan's paper

(2)The main theorem

- An ansatz
- The theorem
(3) Examples of explicit ambient metrics
- Solutions analytic in ρ
- Nonanalytic in ρ solutions
- Poincaré-Einstein picture

Ambient metrics and distributions
The main theorem
Examples of explicit ambient metrics

Distributions associated with $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$

Associated with a differential equation

where $p=y^{\prime}, q=y^{\prime \prime}$, there is a 5-manifold M^{5} parametrized by (x, y, p, q, z), and a distribution

whose differential invariants, when $F_{q q} \neq 0$, are in one-to-one correspondance with conformal invariants of a certain conformal class $\left[g_{D}\right]$ of metrics of signature $(3,2)$ on M^{5}.

Distributions associated with $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$

Associated with a differential equation

$$
z^{\prime}=F(x, y, p, q, z)
$$

where $p=y^{\prime}, q=y^{\prime \prime}$, there is a 5-manifold M^{5} parametrized by (x, y, p, q, z), and a distribution

$$
\mathcal{D}=\operatorname{Span}\left(\partial_{q}, \partial_{x}+p \partial_{y}+q \partial_{p}+F \partial_{z}\right)
$$

whose differential invariants, when $F_{q q} \neq 0$, are in one-to-one correspondance with conformal invariants of a certain conformal class $\left[g_{\mathcal{D}}\right]$ of metrics of signature $(3,2)$ on M^{5}.

The conformal class for $F=q^{2}+f(x, p)+b z$

If $F=q^{2}+f(x, p)+b z$, where b is a real constant, the conformal class may be represented by a metric $g_{\mathcal{D}_{f}}$ in a relatively simple form:

$$
\begin{aligned}
g_{\mathcal{D}_{f}}= & 8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+\left(q^{2}-f-b z\right) \mathrm{d} x\right) \mathrm{d} x- \\
& 2(\mathrm{~d} y-p \mathrm{~d} x)\left(6 \mathrm{~d} q-2 b \mathrm{~d} p-\left(\frac{2}{5} b^{2}+\frac{9}{10} f_{p p}\right)(\mathrm{d} y-p \mathrm{~d} x)-\left(4 b q+3 f_{p}\right) \mathrm{d} x\right) .
\end{aligned}
$$

QUESTION: Can we find explicit formulae for
Fefferman-Graham ambient metrics for the conformal class $\left(M^{5},\left[g_{\mathcal{D}_{f}}\right]\right) ?$

The conformal class for $F=q^{2}+f(x, p)+b z$

If $F=q^{2}+f(x, p)+b z$, where b is a real constant, the conformal class may be represented by a metric $g_{\mathcal{D}_{f}}$ in a relatively simple form:

$$
\begin{aligned}
g_{\mathcal{D}_{f}}= & 8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+\left(q^{2}-f-b z\right) \mathrm{d} x\right) \mathrm{d} x- \\
& 2(\mathrm{~d} y-p \mathrm{~d} x)\left(6 \mathrm{~d} q-2 b \mathrm{~d} p-\left(\frac{2}{5} b^{2}+\frac{9}{10} f_{p p}\right)(\mathrm{d} y-p \mathrm{~d} x)-\left(4 b q+3 f_{p}\right) \mathrm{d} x\right)
\end{aligned}
$$

QUESTION: Can we find explicit formulae for Fefferman-Graham ambient metrics for the conformal class
$\left(M^{5},\left[g_{\mathcal{D}_{f}}\right]\right) ?$

Plan

Ambient metrics and distributions

- Fefferman-Graham construction
- Conformal structures and Cartan's paper
(2) The main theorem
- An ansatz
- The theorem
(3) Examples of explicit ambient metrics
- Solutions analytic in ρ
- Nonanalytic in ρ solutions
- Poincaré-Einstein picture

An ansatz

- Observation: The Schouten tensor for the class [go] has the form: $\mathbf{P}=\alpha \cdot\left(\omega^{1}\right)^{2}+2 \beta \cdot \omega^{1} \omega^{4}+\gamma \cdot\left(\omega^{4}\right)^{2}$, with $\omega^{1}=\mathrm{d} y-p \mathrm{~d} x$ and $\omega^{4}=3 \mathrm{~d} x$, and α, β, γ functions depending on f and its derivatives.
- Idea: Make an ansatz for the ambient metric $\tilde{g}_{D_{f}}$ in which $g_{\mathcal{D}_{f}}\left(x^{i}, \rho\right)$ assumes a similar form.
- Explicitly, make the following ansatz for gid:

with unknown functions $A=A(x, p, \rho), B=B(x, p, \rho)$ and $C=C(x, p, \rho)$.

An ansatz

- Observation: The Schouten tensor for the class $\left[g_{\mathcal{D}_{f}}\right]$ has the form: $\mathbf{P}=\alpha \cdot\left(\omega^{1}\right)^{2}+2 \beta \cdot \omega^{1} \omega^{4}+\gamma \cdot\left(\omega^{4}\right)^{2}$, with $\omega^{1}=\mathrm{d} y-p \mathrm{~d} x$ and $\omega^{4}=3 \mathrm{~d} x$, and α, β, γ functions depending on f and its derivatives.
- Idea: Make an ansatz for the ambient metric $\tilde{g}_{D_{f}}$ in which $g_{\mathcal{D}_{f}}\left(x^{i}, \rho\right)$ assumes a similar form.
- Fxnlicitly make the following ansatz for 9

An ansatz

- Observation: The Schouten tensor for the class $\left[g_{\mathcal{D}_{f}}\right]$ has the form: $\mathbf{P}=\alpha \cdot\left(\omega^{1}\right)^{2}+2 \beta \cdot \omega^{1} \omega^{4}+\gamma \cdot\left(\omega^{4}\right)^{2}$, with $\omega^{1}=\mathrm{d} y-p \mathrm{~d} x$ and $\omega^{4}=3 \mathrm{~d} x$, and α, β, γ functions depending on f and its derivatives.
- Idea: Make an ansatz for the ambient metric go in which assumes a similar form.
- Explicitly, make the following ansatz for 9
with unknown functions $A=A(x, p, \rho), B=B(x, p, \rho)$ and

An ansatz

- Observation: The Schouten tensor for the class $\left[g_{\mathcal{D}_{f}}\right]$ has the form: $\mathbf{P}=\alpha \cdot\left(\omega^{1}\right)^{2}+2 \beta \cdot \omega^{1} \omega^{4}+\gamma \cdot\left(\omega^{4}\right)^{2}$, with $\omega^{1}=\mathrm{d} y-p \mathrm{~d} x$ and $\omega^{4}=3 \mathrm{~d} x$, and α, β, γ functions depending on f and its derivatives.
- Idea: Make an ansatz for the ambient metric $\tilde{g}_{\mathcal{D}_{f}}$ in which $g_{\mathcal{D}_{f}}\left(x^{i}, \rho\right)$ assumes a similar form.
- Explicitly, make the following ansatz for ?
with unknown functions
A

An ansatz

- Observation: The Schouten tensor for the class $\left[g_{\mathcal{D}_{f}}\right]$ has the form: $\mathbf{P}=\alpha \cdot\left(\omega^{1}\right)^{2}+2 \beta \cdot \omega^{1} \omega^{4}+\gamma \cdot\left(\omega^{4}\right)^{2}$, with $\omega^{1}=\mathrm{d} y-p \mathrm{~d} x$ and $\omega^{4}=3 \mathrm{~d} x$, and α, β, γ functions depending on f and its derivatives.
- Idea: Make an ansatz for the ambient metric $\tilde{g}_{\mathcal{D}_{f}}$ in which $g_{\mathcal{D}_{f}}\left(x^{i}, \rho\right)$ assumes a similar form.
- Explicitly, make the following ansatz for $\tilde{g}_{\mathcal{D}_{f}}$:

$$
\begin{aligned}
& \tilde{g}_{\mathcal{D}_{f}}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+ \\
& \quad t^{2}\left(g_{\mathcal{D}_{f}}+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right),
\end{aligned}
$$

with unknown functions $A=A(x, p, \rho), B=B(x, p, \rho)$ and $C=C(x, p, \rho)$.

Plan

Ambient metrics and distributions

- Fefferman-Graham construction
- Conformal structures and Cartan's paper
(2) The main theorem
- An ansatz
- The theorem
(3) Examples of explicit ambient metrics
- Solutions analytic in ρ
- Nonanalytic in ρ solutions
- Poincaré-Einstein picture

Theorem (lan Anderson + PN)

The metric $\tilde{g}_{\mathcal{D}_{f}}$, as above, is an ambient metric for the conformal class $\left(M^{5},\left[g_{\mathcal{D}_{f}}\right]\right)$, if and only if the unknown functions $A=A(x, p, \rho), B=B(x, p, \rho)$ and $C=C(x, p, \rho)$, satisfy the initial conditions $A_{\mid \rho=0} \equiv 0, B_{\mid \rho=0} \equiv 0, C_{\mid \rho=0} \equiv 0$ and the following system of PDEs:
with the linear operator L given by

Theorem (lan Anderson + PN)

The metric $\tilde{g}_{\mathcal{D}_{f}}$, as above, is an ambient metric for the conformal class $\left(M^{5},\left[g_{\mathcal{D}_{f}}\right]\right)$, if and only if the unknown functions $A=A(x, p, \rho), B=B(x, p, \rho)$ and $C=C(x, p, \rho)$, satisfy the initial conditions $A_{\mid \rho=0} \equiv 0, B_{\mid \rho=0} \equiv 0, C_{\mid \rho=0} \equiv 0$ and the following system of PDEs:

$$
\begin{aligned}
& L A=\frac{9}{40} f_{p p p p} \\
& L B=-\frac{1}{36} A_{p}+\frac{3}{40} f_{p p p} \\
& L C=-\frac{1}{18} B_{p}+\frac{1}{324} A+\frac{1}{30} f_{p p}-\frac{2}{15} b^{2}
\end{aligned}
$$

with the linear operator L given by

Theorem (lan Anderson + PN)

The metric $\tilde{g}_{\mathcal{D}_{f}}$, as above, is an ambient metric for the conformal class $\left(M^{5},\left[g_{\mathcal{D}_{f}}\right]\right)$, if and only if the unknown functions $A=A(x, p, \rho), B=B(x, p, \rho)$ and $C=C(x, p, \rho)$, satisfy the initial conditions $A_{\mid \rho=0} \equiv 0, B_{\mid \rho=0} \equiv 0, C_{\mid \rho=0} \equiv 0$ and the following system of PDEs:

$$
\begin{aligned}
& L A=\frac{9}{40} f_{p p p p} \\
& L B=-\frac{1}{36} A_{p}+\frac{3}{40} f_{p p p} \\
& L C=-\frac{1}{18} B_{p}+\frac{1}{324} A+\frac{1}{30} f_{p p}-\frac{2}{15} b^{2}
\end{aligned}
$$

with the linear operator L given by

$$
L=2 \rho \frac{\partial^{2}}{\partial \rho^{2}}-3 \frac{\partial}{\partial \rho}-\frac{1}{8} \frac{\partial^{2}}{\partial p^{2}}
$$

Plan

Ambient metrics and distributions

- Fefferman-Graham construction
- Conformal structures and Cartan's paper
(2)

Tre main theorem

- An ansatz
- The theorem

3 Examples of explicit ambient metrics

- Solutions analytic in ρ
- Nonanalytic in ρ solutions
- Poincaré-Einstein picture

Power series expansion in ρ

One can solve the above equations, assuming power series expansion in ρ :

$$
A=\sum_{k=1}^{\infty} a_{k}(x, p) \rho^{k}, \quad B=\sum_{k=1}^{\infty} b_{k}(x, p) \rho^{k}, \quad C=\sum_{k=1}^{\infty} c_{k}(x, p) \rho^{k}
$$

obtaining:

Power series expansion in ρ

One can solve the above equations, assuming power series expansion in ρ :

$$
A=\sum_{k=1}^{\infty} a_{k}(x, p) \rho^{k}, \quad B=\sum_{k=1}^{\infty} b_{k}(x, p) \rho^{k}, \quad C=\sum_{k=1}^{\infty} c_{k}(x, p) \rho^{k}
$$

obtaining:

$$
A=\sum_{k=1}^{\infty} \frac{3}{5} \cdot \frac{(2 k-1)(2 k-3)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}} \cdot \rho^{k}
$$

Power series expansion in ρ

One can solve the above equations, assuming power series expansion in ρ :

$$
A=\sum_{k=1}^{\infty} a_{k}(x, p) \rho^{k}, \quad B=\sum_{k=1}^{\infty} b_{k}(x, p) \rho^{k}, \quad C=\sum_{k=1}^{\infty} c_{k}(x, p) \rho^{k}
$$

obtaining:

$$
\begin{aligned}
& A=\sum_{k=1}^{\infty} \frac{3}{5} \cdot \frac{(2 k-1)(2 k-3)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}} \cdot \rho^{k}, \\
& B=-\sum_{k=1}^{\infty} \frac{1}{15} \cdot \frac{(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+1)} f}{\partial p^{(2 k+1)}} \cdot \rho^{k},
\end{aligned}
$$

Power series expansion in ρ

One can solve the above equations, assuming power series expansion in ρ :

$$
A=\sum_{k=1}^{\infty} a_{k}(x, p) \rho^{k}, \quad B=\sum_{k=1}^{\infty} b_{k}(x, p) \rho^{k}, \quad C=\sum_{k=1}^{\infty} c_{k}(x, p) \rho^{k}
$$

obtaining:

$$
\begin{aligned}
& A=\sum_{k=1}^{\infty} \frac{3}{5} \cdot \frac{(2 k-1)(2 k-3)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}} \cdot \rho^{k}, \\
& B=-\sum_{k=1}^{\infty} \frac{1}{15} \cdot \frac{(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+1)} f}{\partial p^{(2 k+1)}} \cdot \rho^{k}, \\
& C=\sum_{k=1}^{\infty}\left(\frac{2}{135} \cdot \frac{(k-3)(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{2 k} f}{\partial p^{2 k}}+\frac{2}{45} b^{2} \delta_{1 k}\right) \cdot \rho^{k} .
\end{aligned}
$$

Solutions being ploynomials in ρ

An important feature of the analytic solutions is that their coefficients behave as:
$a_{k}(x, p) \sim \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}}, \quad b_{k}(x, p) \sim \frac{\partial^{(2 k+1)} f}{\partial p^{(2 k+1)}}, \quad c_{k}(x, p) \sim \frac{\partial^{(2 k)} f}{\partial p^{(2 k)}}$.
Thus, if we want to have an example of an ambient metric that does not involve powers in ρ higher than k_{0} we need to have 0 , i.e. the function $f=f(x, p)$ defining the distribution
must be a polynomial of order no higher than 2ℓ
Because of $c_{3}(x, p) \equiv 0$, this statement can be improved, if we
want to have ambient metrics truncated at order $k_{0}=2$. Here
must be a polynomial of order no higher than $2 k_{0}+2=6$,
which is the case of examples of Leistner and PN.

Solutions being ploynomials in ρ

An important feature of the analytic solutions is that their coefficients behave as:

$$
a_{k}(x, p) \sim \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}}, \quad b_{k}(x, p) \sim \frac{\partial^{(2 k+1)} f}{\partial p^{(2 k+1)}}, \quad c_{k}(x, p) \sim \frac{\partial^{(2 k)} f}{\partial p^{(2 k)}}
$$

Thus, if we want to have an example of an ambient metric that does not involve powers in ρ higher than k_{0} we need to have $\frac{\partial^{\left(2 k_{0}+2\right)} f}{\partial p^{\left(2 k_{0}+2\right)}} \equiv 0$, i.e. the function $f=f(x, p)$ defining the distribution must be a polynomial of order no higher than $2 k_{0}+1$.

Because of $c_{3}(x, p) \equiv 0$, this statement can be improved, if we

want to have ambient metrics truncated at order
Here
must be a polynomial of order no higher than
which is the case of examples of Leistner and PN.

Solutions being ploynomials in ρ

An important feature of the analytic solutions is that their coefficients behave as:

$$
a_{k}(x, p) \sim \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}}, \quad b_{k}(x, p) \sim \frac{\partial^{(2 k+1)} f}{\partial p^{(2 k+1)}}, \quad c_{k}(x, p) \sim \frac{\partial^{(2 k)} f}{\partial p^{(2 k)}}
$$

Thus, if we want to have an example of an ambient metric that does not involve powers in ρ higher than k_{0} we need to have $\frac{\partial^{\left(2 k_{0}+2\right)} f}{\partial p^{\left(2 k_{0}+2\right)}} \equiv 0$, i.e. the function $f=f(x, p)$ defining the distribution must be a polynomial of order no higher than $2 k_{0}+1$. Because of $c_{3}(x, p) \equiv 0$, this statement can be improved, if we want to have ambient metrics truncated at order $k_{0}=2$. Here f must be a polynomial of order no higher than $2 k_{0}+2=6$, which is the case of examples of Leistner and PN.

Polynomial solutions have G_{2} holonomy

It is a matter of checking that the so obtained analytic in ρ Fefferman-Graham metrics generically have full G_{2} holonomy.

Polynomial solutions have G_{2} holonomy

It is a matter of checking that the so obtained analytic in ρ Fefferman-Graham metrics generically have full G_{2} holonomy. As an example we give a formula for a Fefferman-Graham full G_{2} holonomy metric that truncates at order 4 in ρ :

Polynomial solutions have G_{2} holonomy

It is a matter of checking that the so obtained analytic in ρ Fefferman-Graham metrics generically have full G_{2} holonomy. As an example we give a formula for a Fefferman-Graham full G_{2} holonomy metric that truncates at order 4 in ρ :
$f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}+f_{7} p^{7}+f_{8} p^{8}+f_{9} p^{9}$,

Polynomial solutions have G_{2} holonomy

It is a matter of checking that the so obtained analytic in ρ Fefferman-Graham metrics generically have full G_{2} holonomy. As an example we give a formula for a Fefferman-Graham full G_{2} holonomy metric that truncates at order 4 in ρ :

$$
\begin{aligned}
& f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}+f_{7} p^{7}+f_{8} p^{8}+f_{9} p^{9}, \\
& \omega^{1}=\mathrm{d} y-p \mathrm{~d} x,
\end{aligned}
$$

Polynomial solutions have G_{2} holonomy

It is a matter of checking that the so obtained analytic in ρ Fefferman-Graham metrics generically have full G_{2} holonomy. As an example we give a formula for a Fefferman-Graham full G_{2} holonomy metric that truncates at order 4 in ρ :

$$
\begin{aligned}
& f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}+f_{7} p^{7}+f_{8} p^{8}+f_{9} p^{9}, \\
& \omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3},
\end{aligned}
$$

Polynomial solutions have G_{2} holonomy

It is a matter of checking that the so obtained analytic in ρ Fefferman-Graham metrics generically have full G_{2} holonomy. As an example we give a formula for a Fefferman-Graham full G_{2} holonomy metric that truncates at order 4 in ρ :

$$
\begin{aligned}
& f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}+f_{7} p^{7}+f_{8} p^{8}+f_{9} p^{9} \\
& \omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x)
\end{aligned}
$$

Polynomial solutions have G_{2} holonomy

It is a matter of checking that the so obtained analytic in ρ Fefferman-Graham metrics generically have full G_{2} holonomy. As an example we give a formula for a Fefferman-Graham full G_{2} holonomy metric that truncates at order 4 in ρ :

$$
\begin{aligned}
& f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}+f_{7} p^{7}+f_{8} p^{8}+f_{9} p^{9} \\
& \omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x), \quad \omega^{4}=3 \mathrm{~d} x
\end{aligned}
$$

Polynomial solutions have G_{2} holonomy

It is a matter of checking that the so obtained analytic in ρ Fefferman-Graham metrics generically have full G_{2} holonomy. As an example we give a formula for a Fefferman-Graham full G_{2} holonomy metric that truncates at order 4 in ρ :

$$
\begin{aligned}
& f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}+f_{7} p^{7}+f_{8} p^{8}+f_{9} p^{9}, \\
& \omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x), \quad \omega^{4}=3 \mathrm{~d} x, \\
& \omega^{5}=\frac{\sqrt{2} b}{2} \omega^{3}-6 \mathrm{~d} q+3\left(2 b q+f_{p}\right) \mathrm{d} x+\frac{1}{10}\left(9 f_{p p}+4 b^{2}\right) \omega^{1},
\end{aligned}
$$

Polynomial solutions have G_{2} holonomy

It is a matter of checking that the so obtained analytic in ρ Fefferman-Graham metrics generically have full G_{2} holonomy. As an example we give a formula for a Fefferman-Graham full G_{2} holonomy metric that truncates at order 4 in ρ :

$$
\begin{aligned}
& f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}+f_{7} p^{7}+f_{8} p^{8}+f_{9} p^{9}, \\
& \omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x), \quad \omega^{4}=3 \mathrm{~d} x, \\
& \omega^{5}=\frac{\sqrt{2} b}{2} \omega^{3}-6 \mathrm{~d} q+3\left(2 b q+f_{p}\right) \mathrm{d} x+\frac{1}{10}\left(9 f_{p p}+4 b^{2}\right) \omega^{1}, \\
& \quad \tilde{g}_{\mathcal{D}_{f}}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2}+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right),
\end{aligned}
$$

Polynomial solutions have G_{2} holonomy

It is a matter of checking that the so obtained analytic in ρ Fefferman-Graham metrics generically have full G_{2} holonomy. As an example we give a formula for a Fefferman-Graham full G_{2} holonomy metric that truncates at order 4 in ρ :

$$
\begin{aligned}
& f=f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}+f_{7} p^{7}+f_{8} p^{8}+f_{9} p^{9}, \\
& \omega^{1}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x), \quad \omega^{4}=3 \mathrm{~d} x, \\
& \omega^{5}=\frac{\sqrt{2} b}{2} \omega^{3}-6 \mathrm{~d} q+3\left(2 b q+f_{p}\right) \mathrm{d} x+\frac{1}{10}\left(9 f_{p p}+4 b^{2}\right) \omega^{1}, \\
& \quad \tilde{g}_{\mathcal{D}_{f}}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2}+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right), \\
& A=\frac{63}{8}\left(f_{8}+9 p f_{9}\right) \rho^{3}+\frac{27}{8}\left(f_{6}+7 p f_{7}+28 p^{2} f_{8}+84 p^{3} f_{9}\right) \rho^{2}-\frac{9}{5}\left(f_{4}+5 p f_{5}+15 p^{2} f_{6}+35 p^{3} f_{7}+70 p^{4} f_{8}+126 p^{5} f_{9}\right) \rho,
\end{aligned}
$$

Polynomial solutions have G_{2} holonomy

It is a matter of checking that the so obtained analytic in ρ Fefferman-Graham metrics generically have full G_{2} holonomy. As an example we give a formula for a Fefferman-Graham full G_{2} holonomy metric that truncates at order 4 in ρ :

$$
\begin{aligned}
f= & f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}+f_{7} p^{7}+f_{8} p^{8}+f_{9} p^{9}, \\
\omega^{1}= & \mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x), \quad \omega^{4}=3 \mathrm{~d} x, \\
\omega^{5}= & \frac{\sqrt{2} b}{2} \omega^{3}-6 \mathrm{~d} q+3\left(2 b q+f_{p}\right) \mathrm{d} x+\frac{1}{10}\left(9 f_{p p}+4 b^{2}\right) \omega^{1}, \\
& \tilde{g}_{\mathcal{D}_{f}}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2}+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right), \\
A= & \frac{63}{8}\left(f_{8}+9 p f_{9}\right) \rho^{3}+\frac{27}{8}\left(f_{6}+7 p f_{7}+28 p^{2} f_{8}+84 p^{3} f_{9}\right) \rho^{2}-\frac{9}{5}\left(f_{4}+5 p f_{5}+15 p^{2} f_{6}+35 p^{3} f_{7}+70 p^{4} f_{8}+126 p^{5} f_{9}\right) \rho, \\
B= & -\frac{63}{256} f_{9} \rho^{4}-\frac{7}{64}\left(f_{7}+8 p f_{8}+36 p^{2} f_{9}\right) \rho^{3}+\frac{1}{16}\left(f_{5}+6 p f_{6}+21 p^{2} f_{7}+56 p^{3} f_{8}+126 p^{4} f_{9}\right) \rho^{2}- \\
& \frac{3}{20}\left(f_{3}+4 p f_{4}+10 p^{2} f_{5}+20 p^{3} f_{6}+35 p^{4} f_{7}+56 p^{5} f_{8}+84 p^{6} f_{9}\right) \rho,
\end{aligned}
$$

Polynomial solutions have G_{2} holonomy

It is a matter of checking that the so obtained analytic in ρ Fefferman-Graham metrics generically have full G_{2} holonomy. As an example we give a formula for a Fefferman-Graham full G_{2} holonomy metric that truncates at order 4 in ρ :

$$
\begin{aligned}
f= & f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}+f_{7} p^{7}+f_{8} p^{8}+f_{9} p^{9}, \\
\omega^{1}= & \mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x), \quad \omega^{4}=3 \mathrm{~d} x, \\
\omega^{5}= & \frac{\sqrt{2} b}{2} \omega^{3}-6 \mathrm{~d} q+3\left(2 b q+f_{p}\right) \mathrm{d} x+\frac{1}{10}\left(9 f_{p p}+4 b^{2}\right) \omega^{1}, \\
& \tilde{g}_{\mathcal{D}_{f}}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2}+\boldsymbol{A} \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right), \\
A= & \frac{63}{8}\left(f_{8}+9 p f_{9}\right) \rho^{3}+\frac{27}{8}\left(f_{6}+7 p f_{7}+28 p^{2} f_{8}+84 p^{3} f_{9}\right) \rho^{2}-\frac{9}{5}\left(f_{4}+5 p f_{5}+15 p^{2} f_{6}+35 p^{3} f_{7}+70 p^{4} f_{8}+126 p^{5} f_{9}\right) \rho, \\
B= & -\frac{63}{256} f_{9} \rho^{4}-\frac{7}{64}\left(f_{7}+8 p f_{8}+36 p^{2} f_{9}\right) \rho^{3}+\frac{1}{16}\left(f_{5}+6 p f_{6}+21 p^{2} f_{7}+56 p^{3} f_{8}+126 p^{4} f_{9}\right) \rho^{2}- \\
& \frac{3}{20}\left(f_{3}+4 p f_{4}+10 p^{2} f_{5}+20 p^{3} f_{6}+35 p^{4} f_{7}+56 p^{5} f_{8}+84 p^{6} f_{9}\right) \rho, \\
C= & \frac{7}{1152}\left(f_{8}+9 p f_{9}\right) \rho^{4}+\frac{1}{360}\left(f_{4}+5 p f_{5}+15 p^{2} f_{6}+35 p^{3} f_{7}+70 p^{4} f_{8}+126 p^{5} f_{9}\right) \rho^{2}+ \\
& \frac{1}{45}\left(2 b^{2}-f_{2}-3 p f_{3}-6 p^{2} f_{4}-10 p^{3} f_{5}-15 p^{4} f_{6}-21 p^{5} f_{7}-28 p^{6} f_{8}-36 p^{7} f_{9}\right) \rho .
\end{aligned}
$$

Polynomial solutions have G_{2} holonomy

It is a matter of checking that the so obtained analytic in ρ Fefferman-Graham metrics generically have full G_{2} holonomy. As an example we give a formula for a Fefferman-Graham full G_{2} holonomy metric that truncates at order 4 in ρ :

$$
\begin{aligned}
f= & f_{0}+f_{1} p+f_{2} p^{2}+f_{3} p^{3}+f_{4} p^{4}+f_{5} p^{5}+f_{6} p^{6}+f_{7} p^{7}+f_{8} p^{8}+f_{9} p^{9}, \\
\omega^{1}= & \mathrm{d} y-p \mathrm{~d} x, \quad \omega^{2}=\mathrm{d} z-\left(q^{2}+f+b z\right) \mathrm{d} x-\frac{\sqrt{2}}{2} q \omega^{3}, \quad \omega^{3}=2 \sqrt{2}(\mathrm{~d} p-q \mathrm{~d} x), \quad \omega^{4}=3 \mathrm{~d} x, \\
\omega^{5}= & \frac{\sqrt{2} b}{2} \omega^{3}-6 \mathrm{~d} q+3\left(2 b q+f_{p}\right) \mathrm{d} x+\frac{1}{10}\left(9 f_{p p}+4 b^{2}\right) \omega^{1}, \\
& \tilde{g}_{\mathcal{D}_{f}}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(2 \omega^{1} \omega^{5}-2 \omega^{2} \omega^{4}+\left(\omega^{3}\right)^{2}+\boldsymbol{A} \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right), \\
A= & \frac{63}{8}\left(f_{8}+9 p f_{9}\right) \rho^{3}+\frac{27}{8}\left(f_{6}+7 p f_{7}+28 p^{2} f_{8}+84 p^{3} f_{9}\right) \rho^{2}-\frac{9}{5}\left(f_{4}+5 p f_{5}+15 p^{2} f_{6}+35 p^{3} f_{7}+70 p^{4} f_{8}+126 p^{5} f_{9}\right) \rho, \\
B= & -\frac{63}{256} f_{9} \rho^{4}-\frac{7}{64}\left(f_{7}+8 p f_{8}+36 p^{2} f_{9}\right) \rho^{3}+\frac{1}{16}\left(f_{5}+6 p f_{6}+21 p^{2} f_{7}+56 p^{3} f_{8}+126 p^{4} f_{9}\right) \rho^{2}- \\
& \frac{3}{20}\left(f_{3}+4 p f_{4}+10 p^{2} f_{5}+20 p^{3} f_{6}+35 p^{4} f_{7}+56 p^{5} f_{8}+84 p^{6} f_{9}\right) \rho, \\
C= & \frac{7}{1152}\left(f_{8}+9 p f_{9}\right) \rho^{4}+\frac{1}{360}\left(f_{4}+5 p f_{5}+15 p^{2} f_{6}+35 p^{3} f_{7}+70 p^{4} f_{8}+126 p^{5} f_{9}\right) \rho^{2}+ \\
& \frac{1}{45}\left(2 b^{2}-f_{2}-3 p f_{3}-6 p^{2} f_{4}-10 p^{3} f_{5}-15 p^{4} f_{6}-21 p^{5} f_{7}-28 p^{6} f_{8}-36 p^{7} f_{9}\right) \rho .
\end{aligned}
$$

Here all $f_{0}, f_{1}, \ldots f_{9}$ are arbitrary functions of the variable x.

Plan

Ambient metrics and distributions

- Fefferman-Graham construction
- Conformal structures and Cartan's paper
(2)

Tre main theorem

- An ansatz
- The theorem
(3) Examples of explicit ambient metrics
- Solutions analytic in ρ
- Nonanalytic in ρ solutions
- Poincaré-Einstein picture

Indicial exponents

To find all, and in particular nonanalytic in ρ, solutions to the system

$$
\begin{aligned}
& L A=\frac{9}{40} f_{p p p p}, \quad \angle B=-\frac{1}{36} A_{p}+\frac{3}{40} f_{p p p} \\
& L C=-\frac{1}{18} B_{p}+\frac{1}{324} A+\frac{1}{30} f_{p p}-\frac{2}{15} b^{2},
\end{aligned}
$$

we first observe that the two independent solutions to $L\left(\rho^{k}\right)=0$ are ρ^{0} and $\rho^{5 / 2}$. Thus, the most general solution to the above system can be obtained by the following series:

Indicial exponents

To find all, and in particular nonanalytic in ρ, solutions to the system

$$
\begin{aligned}
& L A=\frac{9}{40} f_{p p p p}, \quad \angle B=-\frac{1}{36} A_{p}+\frac{3}{44} f_{p p p} \\
& L C=-\frac{1}{18} B_{p}+\frac{1}{324} A+\frac{1}{30} f_{p p}-\frac{2}{15} b^{2},
\end{aligned}
$$

we first observe that the two independent solutions to $L\left(\rho^{k}\right)=0$ are ρ^{0} and $\rho^{5 / 2}$. Thus, the most general solution to the above system can be obtained by the following series:

$$
\begin{aligned}
& A=\sum_{k=1}^{\infty} a_{k}(x, p) \rho^{k}+\rho^{5 / 2} \sum_{k=0}^{\infty} \alpha_{k}(x, p) \rho^{k} \\
& B=\sum_{k=1}^{\infty} b_{k}(x, p) \rho^{k}+\rho^{5 / 2} \sum_{k=0}^{\infty} \beta_{k}(x, p) \rho^{k} \\
& C=\sum_{k=1}^{\infty} c_{k}(x, p) \rho^{k}+\rho^{5 / 2} \sum_{k=0}^{\infty} \gamma_{k}(x, p) \rho^{k}
\end{aligned}
$$

General solutions

$$
A=\sum_{k=1}^{\infty} \frac{3}{5} \cdot \frac{(2 k-1)(2 k-3)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}} \cdot \rho^{k}
$$

General solutions

$$
\begin{aligned}
& A=\sum_{k=1}^{\infty} \frac{3}{5} \cdot \frac{(2 k-1)(2 k-3)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}} \cdot \rho^{k} \\
& B=-\sum_{k=1}^{\infty} \frac{1}{15} \cdot \frac{(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+1)} f}{\partial p^{(2 k+1)}} \cdot \rho^{k}
\end{aligned}
$$

General solutions

$$
\begin{aligned}
& A=\sum_{k=1}^{\infty} \frac{3}{5} \cdot \frac{(2 k-1)(2 k-3)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}} \cdot \rho^{k} \\
& B=-\sum_{k=1}^{\infty} \frac{1}{15} \cdot \frac{(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+1)} f}{\partial p^{(2 k+1)}} \cdot \rho^{k} \\
& C=\sum_{k=1}^{\infty}\left(\frac{2}{135} \cdot \frac{(k-3)(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{2 k} f}{\partial p^{2 k}}+\frac{2}{45} b^{2} \delta_{1 k}\right) \cdot \rho^{k}
\end{aligned}
$$

General solutions

$$
\begin{aligned}
& A=\sum_{k=1}^{\infty} \frac{3}{5} \cdot \frac{(2 k-1)(2 k-3)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}} \cdot \rho^{k} \\
& B=-\sum_{k=1}^{\infty} \frac{1}{15} \cdot \frac{(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+1)} f}{\partial p^{(2 k+1)}} \cdot \rho^{k} \\
& C=\sum_{k=1}^{\infty}\left(\frac{2}{135} \cdot \frac{(k-3)(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{2 k} f}{\partial p^{2 k}}+\frac{2}{45} b^{2} \delta 1 k\right) \cdot \rho^{k}
\end{aligned}
$$

Note that the analytic solutions are totally determined by the distribution, i.e. by the function f and the constant b.

General solutions

$$
\begin{aligned}
& A=\sum_{k=1}^{\infty} \frac{3}{5} \cdot \frac{(2 k-1)(2 k-3)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}} \cdot \rho^{k}+\rho^{5 / 2} \sum_{k=0}^{\infty} 60 \cdot \frac{(k+2)(k+1)}{2^{2 k}(2 k+5)!} \cdot \frac{\partial^{2 k} \alpha_{0}}{\partial p^{2 k}} \cdot \rho^{k}, \\
& B=-\sum_{k=1}^{\infty} \frac{1}{15} \cdot \frac{(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+1)} f}{\partial p^{(2 k+1)}} \cdot \rho^{k} \\
& C=\sum_{k=1}^{\infty}\left(\frac{2}{135} \cdot \frac{(k-3)(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{2 k} f}{\partial p^{2 k}}+\frac{2}{45} b^{2} \delta_{1 k}\right) \cdot \rho^{k}
\end{aligned}
$$

Note that the analytic solutions are totally determined by the distribution, i.e. by the function f and the constant b. On the other hand, the nonalytic sloutions do not depend on a distribution at all!!

General solutions

$$
\begin{aligned}
& A=\sum_{k=1}^{\infty} \frac{3}{5} \cdot \frac{(2 k-1)(2 k-3)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}} \cdot \rho^{k}+\rho^{5 / 2} \sum_{k=0}^{\infty} 60 \cdot \frac{(k+2)(k+1)}{2^{2 k}(2 k+5)!} \cdot \frac{\partial^{2 k} \alpha_{0}}{\partial p^{2 k}} \cdot \rho^{k}, \\
& B=-\sum_{k=1}^{\infty} \frac{1}{15} \cdot \frac{(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+1)} f}{\partial p^{(2 k+1)}} \cdot \rho^{k}+ \\
& \quad \rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{3} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(9 \frac{\partial^{2 k} \beta_{0}}{\partial p^{2 k}}-2 k \frac{\partial^{(2 k-1)} \alpha_{0}}{\left.\partial p^{(2 k-1)}\right) \cdot \rho^{k},}\right. \\
& C=\sum_{k=1}^{\infty}\left(\frac{2}{135} \cdot \frac{(k-3)(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{2 k} f}{\partial p^{2 k}}+\frac{2}{45} b^{2} \delta_{1 k}\right) \cdot \rho^{k}
\end{aligned}
$$

Note that the analytic solutions are totally determined by the distribution, i.e. by the function f and the constant b. On the other hand, the nonalytic sloutions do not depend on a distribution at all!!

General solutions

$$
\begin{aligned}
A= & \sum_{k=1}^{\infty} \frac{3}{5} \cdot \frac{(2 k-1)(2 k-3)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}} \cdot \rho^{k}+\rho^{5 / 2} \sum_{k=0}^{\infty} 60 \cdot \frac{(k+2)(k+1)}{2^{2 k}(2 k+5)!} \cdot \frac{\partial^{2 k} \alpha_{0}}{\partial p^{2 k}} \cdot \rho^{k}, \\
B= & -\sum_{k=1}^{\infty} \frac{1}{15} \cdot \frac{(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+1)} f}{\partial p^{(2 k+1)}} \cdot \rho^{k}+ \\
& \rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{3} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(9 \frac{\partial^{2 k} \beta_{0}}{\partial p^{2 k}}-2 k \frac{\partial^{(2 k-1)} \alpha_{0}}{\partial p^{(2 k-1)}}\right) \cdot \rho^{k}, \\
C= & \sum_{k=1}^{\infty}\left(\frac{2}{135} \cdot \frac{(k-3)(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{2 k} f}{\partial p^{2 k}}+\frac{2}{45} b^{2} \delta_{1 k}\right) \cdot \rho^{k}+ \\
& \rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{27} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(81 \frac{\partial^{2 k} \gamma_{0}}{\partial p^{2 k}}-36 k \frac{\partial^{(2 k-1)} \beta_{0}}{\partial p^{(2 k-1)}}+2 k(2 k-1) \frac{\partial^{(2 k-2)} \alpha 0}{\partial p^{(2 k-2)}}\right) \cdot \rho^{k} .
\end{aligned}
$$

Note that the analytic solutions are totally determined by the distribution, i.e. by the function f and the constant b. On the other hand, the nonalytic sloutions do not depend on a distribution at all!!

General solutions

$$
\begin{aligned}
A= & \sum_{k=1}^{\infty} \frac{3}{5} \cdot \frac{(2 k-1)(2 k-3)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}} \cdot \rho^{k}+\rho^{5 / 2} \sum_{k=0}^{\infty} 60 \cdot \frac{(k+2)(k+1)}{2^{2 k}(2 k+5)!} \cdot \frac{\partial^{2 k} \alpha_{0}}{\partial p^{2 k}} \cdot \rho^{k}, \\
B= & -\sum_{k=1}^{\infty} \frac{1}{15} \cdot \frac{(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+1)} f}{\partial p^{(2 k+1)}} \cdot \rho^{k}+ \\
& \rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{3} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(9 \frac{\partial^{2 k} \beta_{0}}{\partial p^{2 k}}-2 k \frac{\partial^{(2 k-1)} \alpha_{0}}{\partial p^{(2 k-1)}}\right) \cdot \rho^{k}, \\
C= & \sum_{k=1}^{\infty}\left(\frac{2}{135} \cdot \frac{(k-3)(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{2 k} f}{\partial p^{2 k}}+\frac{2}{45} b^{2} \delta_{1 k}\right) \cdot \rho^{k}+ \\
& \rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{27} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(81 \frac{\partial^{2 k} \gamma_{0}}{\partial p^{2 k}}-36 k \frac{\partial^{(2 k-1)} \beta_{0}}{\partial p^{(2 k-1)}}+2 k(2 k-1) \frac{\partial^{(2 k-2)} \alpha 0}{\partial p^{(2 k-2)}}\right) \cdot \rho^{k} .
\end{aligned}
$$

Note that the analytic solutions are totally determined by the distribution, i.e. by the function f and the constant b. On the other hand, the nonalytic sloutions do not depend on a distribution at all!!

General solutions

$$
\begin{aligned}
A= & \sum_{k=1}^{\infty} \frac{3}{5} \cdot \frac{(2 k-1)(2 k-3)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+2)} f}{\partial p^{(2 k+2)}} \cdot \rho^{k}+\rho^{5 / 2} \sum_{k=0}^{\infty} 60 \cdot \frac{(k+2)(k+1)}{2^{2 k}(2 k+5)!} \cdot \frac{\partial^{2 k} \alpha_{0}}{\partial p^{2 k}} \cdot \rho^{k} \\
B= & -\sum_{k=1}^{\infty} \frac{1}{15} \cdot \frac{(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{(2 k+1)} f}{\partial p^{(2 k+1)}} \cdot \rho^{k}+ \\
& \rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{3} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(9 \frac{\partial^{2 k} \beta_{0}}{\partial p^{2 k}}-2 k \frac{\partial^{(2 k-1)} \alpha_{0}}{\partial p^{(2 k-1)}}\right) \cdot \rho^{k} \\
C= & \sum_{k=1}^{\infty}\left(\frac{2}{135} \cdot \frac{(k-3)(2 k-1)(2 k-3)(2 k-5)}{2^{2 k}(2 k)!} \cdot \frac{\partial^{2 k} f}{\partial p^{2 k}}+\frac{2}{45} b^{2} \delta_{1 k}\right) \cdot \rho^{k}+ \\
& \rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{27} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(81 \frac{\partial^{2 k} \gamma_{0}}{\partial p^{2 k}}-36 k \frac{\partial^{(2 k-1)} \beta_{0}}{\partial p^{(2 k-1)}}+2 k(2 k-1) \frac{\partial^{(2 k-2)} \alpha_{0}}{\partial p^{(2 k-2)}}\right) \cdot \rho^{k} .
\end{aligned}
$$

Note that the analytic solutions are totally determined by the distribution, i.e. by the function f and the constant b.
On the other hand, the nonalytic sloutions do not depend on a distribution at all!! They depend on α_{0}, β_{0} and γ_{0}, which can be arbitrary functions of the variables x and p.

Holonomy questions

- If $\alpha_{0} \equiv \beta_{0} \equiv \gamma_{0} \equiv 0$ and for a randomly chosen f the holonomy of the corresponding ambient metric is equal to G_{2} (Graham-Willse result).

- What about the holonomy of FG metrics corresponding to the solutions with nontrivial $\rho^{5 / 2+k}$ terms?

- Problems:
- These solutions are only defined for
- They are only twice differentiable at p
- Holonomy on a manifold with a boundary?
- First calculate holonomy in the points where

Holonomy questions

- If $\alpha_{0} \equiv \beta_{0} \equiv \gamma_{0} \equiv 0$ and for a randomly chosen f the holonomy of the corresponding ambient metric is equal to G_{2} (Graham-Willse result).
- What about the holonomy of FG metrics corresponding to the solutions with nontrivial $\rho^{5 / 2+k}$ terms?
- Problems:
- These solutions are only defined for - They are only twice differentiable at - Holonomy on a manifold with a boundary? - First calculate holonomy in the points where

Holonomy questions

- If $\alpha_{0} \equiv \beta_{0} \equiv \gamma_{0} \equiv 0$ and for a randomly chosen f the holonomy of the corresponding ambient metric is equal to G_{2} (Graham-Willse result).
- What about the holonomy of FG metrics corresponding to the solutions with nontrivial $\rho^{5 / 2+k}$ terms?
- Problems:

> These solutions are only defined for $\rho \geq 0$. They are only twice differentiable at $\rho=0$. Holonomy on a manifold with a boundary? First calculate holonomy in the points where

Holonomy questions

- If $\alpha_{0} \equiv \beta_{0} \equiv \gamma_{0} \equiv 0$ and for a randomly chosen f the holonomy of the corresponding ambient metric is equal to G_{2} (Graham-Willse result).
- What about the holonomy of FG metrics corresponding to the solutions with nontrivial $\rho^{5 / 2+k}$ terms?
- Problems:
- These solutions are only defined for $\rho \geq 0$.
- They are only twice differentiable at
- Holonomy on a manifold with a boundary?
- First calculate holonomy in the points where

Holonomy questions

- If $\alpha_{0} \equiv \beta_{0} \equiv \gamma_{0} \equiv 0$ and for a randomly chosen f the holonomy of the corresponding ambient metric is equal to G_{2} (Graham-Willse result).
- What about the holonomy of FG metrics corresponding to the solutions with nontrivial $\rho^{5 / 2+k}$ terms?
- Problems:
- These solutions are only defined for $\rho \geq 0$.
- They are only twice differentiable at $\rho=0$.
- Holonomy on a manifold with a boundary?

Holonomy questions

- If $\alpha_{0} \equiv \beta_{0} \equiv \gamma_{0} \equiv 0$ and for a randomly chosen f the holonomy of the corresponding ambient metric is equal to G_{2} (Graham-Willse result).
- What about the holonomy of FG metrics corresponding to the solutions with nontrivial $\rho^{5 / 2+k}$ terms?
- Problems:
- These solutions are only defined for $\rho \geq 0$.
- They are only twice differentiable at $\rho=0$.
- Holonomy on a manifold with a boundary?

Holonomy questions

- If $\alpha_{0} \equiv \beta_{0} \equiv \gamma_{0} \equiv 0$ and for a randomly chosen f the holonomy of the corresponding ambient metric is equal to G_{2} (Graham-Willse result).
- What about the holonomy of FG metrics corresponding to the solutions with nontrivial $\rho^{5 / 2+k}$ terms?
- Problems:
- These solutions are only defined for $\rho \geq 0$.
- They are only twice differentiable at $\rho=0$.
- Holonomy on a manifold with a boundary?
- First calculate holonomy in the points where $\rho>0, \ldots$

Solutions with $f \equiv 0, b=0$

In case of a flat distribution, i.e. when $f \equiv 0$ and $b=0$ the solutions are:
> and, as in the general case, they depend on three arbitrary functions $\alpha_{0}, \beta_{0}, \gamma_{0}$ of variables x and p.
> As an illustration we discuss holonomy properties of the corresponding ambient metrics on a very simple example, in
> which we have made a particular choice of these 3
> functionsons.
> We believe that the discussed behaviour is a typical one.

Solutions with $f \equiv 0, b=0$

In case of a flat distribution, i.e. when $f \equiv 0$ and $b=0$ the solutions are:

$$
A=\rho^{5 / 2} \sum_{k=0}^{\infty} 60 \cdot \frac{(k+2)(k+1)}{2^{2 k}(2 k+5)!} \cdot \frac{\partial^{2 k} \alpha_{0}}{\partial p^{2 k}} \cdot \rho^{k},
$$

> and, as in the general case, they depend on three arbitrary functions $\alpha_{0}, \beta_{0}, \gamma_{0}$ of variables x and p.
> As an illustration we discuss holonomy properties of the corresponding ambient metrics on a very simple example, in
> which we have made a particular choice of these 3
> functionsons.
> We believe that the discussed behaviour is a typical one.

Solutions with $f \equiv 0, b=0$

In case of a flat distribution, i.e. when $f \equiv 0$ and $b=0$ the solutions are:

$$
\begin{aligned}
& A=\rho^{5 / 2} \sum_{k=0}^{\infty} 60 \cdot \frac{(k+2)(k+1)}{2^{2 k}(2 k+5)!} \cdot \frac{\partial^{2 k} \alpha_{0}}{\partial \rho^{2 k}} \cdot \rho^{k}, \\
& B=\rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{3} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(9 \frac{\partial^{2 k} \beta_{0}}{\partial p^{2 k}}-2 k \frac{\partial^{(2 k-1)} \alpha_{0}}{\partial p^{(2 k-1)}}\right) \cdot \rho^{k},
\end{aligned}
$$

and, as in the general case, they depend on three arbitrary functions $\alpha_{0}, \beta_{0}, \gamma_{0}$ of variables x and p.
As an illustration we discuss holonomy properties of the corresponding ambient metrics on a very simple example, in
which we have made a particular choice of these 3
functionsons.
We believe that the discussed behaviour is a typical one.

Solutions with $f \equiv 0, b=0$

In case of a flat distribution, i.e. when $f \equiv 0$ and $b=0$ the solutions are:

$$
\begin{aligned}
& A=\rho^{5 / 2} \sum_{k=0}^{\infty} 60 \cdot \frac{(k+2)(k+1)}{2^{2 k}(2 k+5)!} \cdot \frac{\partial^{2 k} \alpha_{0}}{\partial p^{2 k}} \cdot \rho^{k}, \\
& B=\rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{3} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(9 \frac{\partial^{2 k} \beta_{0}}{\partial p^{2 k}}-2 k \frac{\partial^{(2 k-1)} \alpha_{0}}{\partial p^{(2 k-1)}}\right) \cdot \rho^{k}, \\
& C=\rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{27} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(81 \frac{\partial^{2 k} \gamma_{0}}{\partial p^{2 k}}-36 k \frac{\partial^{(2 k-1)} \beta_{0}}{\partial p^{(2 k-1)}}+2 k(2 k-1) \frac{\partial^{(2 k-2)} \alpha_{0}}{\partial p^{(2 k-2)}}\right) \cdot \rho^{k},
\end{aligned}
$$

and, as in the general case, they depend on three arbitrary functions $\alpha_{0}, \beta_{0}, \gamma_{0}$ of variables x and p.
As an illustration we discuss holonomy properties of the corresponding ambient metrics on a very simple example, in
which we have made a particular choice of these 3
functionsons.
We believe that the discussed behaviour is a typical one.

Solutions with $f \equiv 0, b=0$

In case of a flat distribution, i.e. when $f \equiv 0$ and $b=0$ the solutions are:

$$
\begin{aligned}
& A=\rho^{5 / 2} \sum_{k=0}^{\infty} 60 \cdot \frac{(k+2)(k+1)}{2^{2 k}(2 k+5)!} \cdot \frac{\partial^{2 k} \alpha_{0}}{\partial p^{2 k}} \cdot \rho^{k}, \\
& B=\rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{3} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(9 \frac{\partial^{2 k} \beta_{0}}{\partial p^{2 k}}-2 k \frac{\partial^{(2 k-1)} \alpha_{0}}{\partial p^{(2 k-1)}}\right) \cdot \rho^{k}, \\
& C=\rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{27} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(81 \frac{\partial^{2 k} \gamma_{0}}{\partial p^{2 k}}-36 k \frac{\partial^{(2 k-1)} \beta_{0}}{\partial p^{(2 k-1)}}+2 k(2 k-1) \frac{\partial^{(2 k-2)} \alpha_{0}}{\partial p^{(2 k-2)}}\right) \cdot \rho^{k},
\end{aligned}
$$

and, as in the general case, they depend on three arbitrary functions $\alpha_{0}, \beta_{0}, \gamma_{0}$ of variables x and p.
As an illustration we discuss holonomy properties of the corresponding ambient metrics on a very simple example, in
which we have made a particular choice of these 3
functionsons.
We believe that the discussed behaviour is a typical one.

Solutions with $f \equiv 0, b=0$

In case of a flat distribution, i.e. when $f \equiv 0$ and $b=0$ the solutions are:

$$
\begin{aligned}
& A=\rho^{5 / 2} \sum_{k=0}^{\infty} 60 \cdot \frac{(k+2)(k+1)}{2^{2 k}(2 k+5)!} \cdot \frac{\partial^{2 k} \alpha_{0}}{\partial p^{2 k}} \cdot \rho^{k}, \\
& B=\rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{3} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(9 \frac{\partial^{2 k} \beta_{0}}{\partial p^{2 k}}-2 k \frac{\partial^{(2 k-1)} \alpha_{0}}{\partial p^{(2 k-1)}}\right) \cdot \rho^{k}, \\
& C=\rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{27} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(81 \frac{\partial^{2 k} \gamma_{0}}{\partial p^{2 k}}-36 k \frac{\partial^{(2 k-1)} \beta_{0}}{\partial p^{(2 k-1)}}+2 k(2 k-1) \frac{\partial^{(2 k-2)} \alpha_{0}}{\partial p^{(2 k-2)}}\right) \cdot \rho^{k},
\end{aligned}
$$

and, as in the general case, they depend on three arbitrary functions $\alpha_{0}, \beta_{0}, \gamma_{0}$ of variables x and p.
As an illustration we discuss holonomy properties of the corresponding ambient metrics on a very simple example, in which we have made a particular choice of these 3 functionsons.
We believe that the discussed behaviour is a typical one.

Solutions with $f \equiv 0, b=0$

In case of a flat distribution, i.e. when $f \equiv 0$ and $b=0$ the solutions are:

$$
\begin{aligned}
& A=\rho^{5 / 2} \sum_{k=0}^{\infty} 60 \cdot \frac{(k+2)(k+1)}{2^{2 k}(2 k+5)!} \cdot \frac{\partial^{2 k} \alpha_{0}}{\partial p^{2 k}} \cdot \rho^{k}, \\
& B=\rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{3} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(9 \frac{\partial^{2 k} \beta_{0}}{\partial p^{2 k}}-2 k \frac{\partial^{(2 k-1)} \alpha_{0}}{\partial p^{(2 k-1)}}\right) \cdot \rho^{k}, \\
& C=\rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{27} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(81 \frac{\partial^{2 k} \gamma_{0}}{\partial p^{2 k}}-36 k \frac{\partial^{(2 k-1)} \beta_{0}}{\partial p^{(2 k-1)}}+2 k(2 k-1) \frac{\partial^{(2 k-2)} \alpha_{0}}{\partial p^{(2 k-2)}}\right) \cdot \rho^{k},
\end{aligned}
$$

and, as in the general case, they depend on three arbitrary functions $\alpha_{0}, \beta_{0}, \gamma_{0}$ of variables x and p.
As an illustration we discuss holonomy properties of the corresponding ambient metrics on a very simple example, in which we have made a particular choice of these 3 functionsons.
We believe that the discussed behaviour is a typical one.

Ambient metrics for the flat equation $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$

- Take

$$
\begin{aligned}
\alpha_{0} & =\beta(x)+p \alpha(x), \quad \beta_{0}=f_{0}(x)+p f_{1}(x)+252 c p^{2} \alpha(x), \\
\gamma_{0} & =f_{3}(x)+p f_{4}(x)+\frac{1}{81} p^{2}\left(2268 f_{2}(x)-\beta(x)+18 f_{1}(x)\right),
\end{aligned}
$$

with c a real constant.

- This gives the following solution:
> corresponding to the following Fefferman-Graham family of metrics for the flat conformal structure:

Ambient metrics for the flat equation $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$

- Take

$$
\begin{aligned}
\alpha_{0} & =\beta(x)+p \alpha(x), \quad \beta_{0}=f_{0}(x)+p f_{1}(x)+252 c p^{2} \alpha(x), \\
\gamma_{0} & =f_{3}(x)+p f_{4}(x)+\frac{1}{81} p^{2}\left(2268 f_{2}(x)-\beta(x)+18 f_{1}(x)\right),
\end{aligned}
$$

with c a real constant.

- This gives the following solution:

$$
\begin{aligned}
A= & (252 p \alpha(x)+\beta(x)) \rho^{5 / 2} \\
B= & (9 c-1) \alpha(x) \rho^{7 / 2}+\left(f_{0}(x)+p f_{1}(x)+252 c p^{2} \alpha(x)\right) \rho^{5 / 2} \\
C= & \left(f_{2}(x)+\left(\frac{1}{9}-4 c\right) p \alpha(x)\right) \rho^{7 / 2}+ \\
& \left(f_{3}(x)+p f_{4}(x)+\frac{1}{81} p^{2}\left(18 f_{1}(x)+2268 f_{2}(x)-\beta(x)\right)\right) \rho^{5 / 2}
\end{aligned}
$$

corresponding to the following Fefferman-Graham family of metrics for the flat conformal structure:

Ambient metrics for the flat equation $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$

$$
\begin{aligned}
& \tilde{g}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+q^{2} \mathrm{~d} x\right) \mathrm{d} x-12(\mathrm{~d} y-p \mathrm{~d} x) \mathrm{d} q+\right. \\
& (252 p \alpha+\beta) \sqrt{\rho}^{5} \cdot(\mathrm{~d} y-p \mathrm{~d} x)^{2}+ \\
& 6\left((9 c-1) \alpha \sqrt{\rho}^{7}+\left(f_{0}+p f_{1}+252 c p^{2} \alpha\right) \sqrt{\rho}^{5}\right) \cdot(\mathrm{d} y-p \mathrm{~d} x) \mathrm{d} x+ \\
& \left.9\left(\left(f_{2}+\left(\frac{1}{9}-4 c\right) p \alpha\right) \sqrt{\rho}^{7}+\left(f_{3}+p f_{4}+\frac{1}{81} p^{2}\left(18 f_{1}+2268 f_{2}-\beta\right)\right) \sqrt{\rho}^{5}\right) \cdot \mathrm{d} x^{2}\right) .
\end{aligned}
$$

- The family depends on seven arbitrary functions $\alpha=\alpha(x), \beta=\beta(x), f_{0}=f_{0}(x), f_{1}=f_{1}(x)$,
a real constant c.
- \tilde{g} is an ambient metric for the flat conformal structure represented by a flat metric

- Note that \tilde{g} is only two times differentiable at $\rho=0$; the third derivative at $\rho=0$ does not exist.

Ambient metrics for the flat equation $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$

$$
\begin{aligned}
& \tilde{g}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+q^{2} \mathrm{~d} x\right) \mathrm{d} x-12(\mathrm{~d} y-p \mathrm{~d} x) \mathrm{d} q+\right. \\
& (252 p \alpha+\beta) \sqrt{\rho}^{5} \cdot(\mathrm{~d} y-p \mathrm{~d} x)^{2}+ \\
& 6\left((9 c-1) \alpha \sqrt{\rho}^{7}+\left(f_{0}+p f_{1}+252 c p^{2} \alpha\right) \sqrt{\rho}^{5}\right) \cdot(\mathrm{d} y-p \mathrm{~d} x) \mathrm{d} x+ \\
& \left.9\left(\left(f_{2}+\left(\frac{1}{9}-4 c\right) p \alpha\right) \sqrt{\rho}^{7}+\left(f_{3}+p f_{4}+\frac{1}{81} p^{2}\left(18 f_{1}+2268 f_{2}-\beta\right)\right) \sqrt{\rho}^{5}\right) \cdot \mathrm{d} x^{2}\right) .
\end{aligned}
$$

- The family depends on seven arbitrary functions
$\alpha=\alpha(x), \beta=\beta(x), f_{0}=f_{0}(x), f_{1}=f_{1}(x), \ldots, f_{4}=f_{4}(x)$ and a real constant c.
\tilde{g} is an ambient metric for the flat conformal structure represented by a flat metric
- Note that \tilde{g} is only two times differentiable at $\rho=0$; the third derivative at $\rho=0$ does not exist.

Ambient metrics for the flat equation $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$

$$
\begin{aligned}
& \tilde{g}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+q^{2} \mathrm{~d} x\right) \mathrm{d} x-12(\mathrm{~d} y-p \mathrm{~d} x) \mathrm{d} q+\right. \\
& (252 p \alpha+\beta) \sqrt{\rho}^{5} \cdot(\mathrm{~d} y-p \mathrm{~d} x)^{2}+ \\
& 6\left((9 c-1) \alpha \sqrt{\rho}^{7}+\left(f_{0}+p f_{1}+252 c p^{2} \alpha\right) \sqrt{\rho}^{5}\right) \cdot(\mathrm{d} y-p \mathrm{~d} x) \mathrm{d} x+ \\
& \left.9\left(\left(f_{2}+\left(\frac{1}{9}-4 c\right) p \alpha\right) \sqrt{\rho}^{7}+\left(f_{3}+p f_{4}+\frac{1}{81} p^{2}\left(18 f_{1}+2268 f_{2}-\beta\right)\right) \sqrt{\rho}^{5}\right) \cdot \mathrm{d} x^{2}\right) .
\end{aligned}
$$

- The family depends on seven arbitrary functions
$\alpha=\alpha(x), \beta=\beta(x), f_{0}=f_{0}(x), f_{1}=f_{1}(x), \ldots, f_{4}=f_{4}(x)$ and
a real constant c.
- \tilde{g} is an ambient metric for the flat conformal structure represented by a flat metric
$g=8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+q^{2} \mathrm{~d} x\right) \mathrm{d} x-12(\mathrm{~d} y-p \mathrm{~d} x) \mathrm{d} q$.
- Note that \tilde{g} is only two times differentiable at $\rho=0$; the third derivative at $\rho=0$ does not exist.

Ambient metrics for the flat equation $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$

$$
\begin{aligned}
& \tilde{g}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+q^{2} \mathrm{~d} x\right) \mathrm{d} x-12(\mathrm{~d} y-p \mathrm{~d} x) \mathrm{d} q+\right. \\
& (252 p \alpha+\beta) \sqrt{\rho}^{5} \cdot(\mathrm{~d} y-p \mathrm{~d} x)^{2}+ \\
& 6\left((9 c-1) \alpha \sqrt{\rho}^{7}+\left(f_{0}+p f_{1}+252 c p^{2} \alpha\right) \sqrt{\rho}^{5}\right) \cdot(\mathrm{d} y-p \mathrm{~d} x) \mathrm{d} x+ \\
& \left.9\left(\left(f_{2}+\left(\frac{1}{9}-4 c\right) p \alpha\right) \sqrt{\rho}^{7}+\left(f_{3}+p f_{4}+\frac{1}{81} p^{2}\left(18 f_{1}+2268 f_{2}-\beta\right)\right) \sqrt{\rho}^{5}\right) \cdot \mathrm{d} x^{2}\right) .
\end{aligned}
$$

- The family depends on seven arbitrary functions
$\alpha=\alpha(x), \beta=\beta(x), f_{0}=f_{0}(x), f_{1}=f_{1}(x), \ldots, f_{4}=f_{4}(x)$ and a real constant c.
- \tilde{g} is an ambient metric for the flat conformal structure represented by a flat metric

$$
g=8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+q^{2} \mathrm{~d} x\right) \mathrm{d} x-12(\mathrm{~d} y-p \mathrm{~d} x) \mathrm{d} q .
$$

- Note that \tilde{g} is only two times differentiable at $\rho=0$; the third derivative at $\rho=0$ does not exist.

Holonomy of the ambient metrics from this family

Holonomy properties of this family are quite interesting:

- In general these metrics have full $S O(4,3)$ holonomy!!!!

the holonomy algebra behaves as this:
- the curvature defines 6 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 9 independent ones
- the second derivative of curvature produces next 3 independent ones
- the third derivative of curvature produces still 3 new
- and after this the algebra stabilizes.
- So the holonomy algebra is $6+9+3+3=21$ dimensional, so it must be the full $s o(4,3)$ Lie algebra.

Holonomy of the ambient metrics from this family

Holonomy properties of this family are quite interesting:

- In general these metrics have full $S O(4,3)$ holonomy!!!!
- Even if we
the holonomy algebra behaves as this:
- the curvature defines 6 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 9 independent ones
- the second derivative of curvature produces next independent ones
- the third derivative of curvature produces still 3 new
- and after this the algebra stabilizes.
- So the holonomy algebra is $6+9+3+3=21$ dimensional, so it must be the full so $(4,3)$ Lie algebra.

Holonomy of the ambient metrics from this family

Holonomy properties of this family are quite interesting:

- In general these metrics have full $\operatorname{SO}(4,3)$ holonomy!!!!
- Even if we put: $\beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv \cdots \equiv f_{4}(x) \equiv 0$, and $\alpha(x) \equiv 1$, the holonomy algebra behaves as this:
- the curvature defines 6 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 9 independent ones
- the second derivative of curvature produces next independent ones
- the third derivative of curvature produces still 3 new
- and after this the algebra stabilizes.
- So the holonomy algebra is 6 dimensional, so it must be the full so $(4,3)$ Lie algebra.

Holonomy of the ambient metrics from this family

Holonomy properties of this family are quite interesting:

- In general these metrics have full $\operatorname{SO}(4,3)$ holonomy!!!!
- Even if we put: $\beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv \cdots \equiv f_{4}(x) \equiv 0$, and $\alpha(x) \equiv 1$, the holonomy algebra behaves as this:
- the curvature defines 6 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 9 independent ones
- the second derivative of curvature produces next independent ones
- the third derivative of curvature produces still 3 new
- and after this the algebra stabilizes.
- So the holonomy algebra is dimensional, so it must be the full so $(4,3)$ Lie algebra.

Holonomy of the ambient metrics from this family

Holonomy properties of this family are quite interesting:

- In general these metrics have full $\operatorname{SO}(4,3)$ holonomy!!!!
- Even if we put: $\beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv \cdots \equiv f_{4}(x) \equiv 0$, and $\alpha(x) \equiv 1$, the holonomy algebra behaves as this:
- the curvature defines 6 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 9 independent ones
- the second derivative of curvature produces next independent ones
- the third derivative of curvature produces still 3 new
- and after this the algebra stabilizes.
- So the holonomy algebra is 6
dimensional, so it must be the full so (4.3) Lie algebra.

Holonomy of the ambient metrics from this family

Holonomy properties of this family are quite interesting:

- In general these metrics have full $\operatorname{SO}(4,3)$ holonomy!!!!
- Even if we put: $\beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv \cdots \equiv f_{4}(x) \equiv 0$, and $\alpha(x) \equiv 1$, the holonomy algebra behaves as this:
- the curvature defines 6 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 9 independent ones
- the second derivative of curvature produces next 3 independent ones
- the third derivative of curvature produces still 3 new
- and after this the algebra stabilizes.
- So the holonomy algebra is
dimensional, so it must be the full so $(4,3)$ Lie algebra.

Holonomy of the ambient metrics from this family

Holonomy properties of this family are quite interesting:

- In general these metrics have full $S O(4,3)$ holonomy!!!!
- Even if we put: $\beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv \cdots \equiv f_{4}(x) \equiv 0$, and $\alpha(x) \equiv 1$, the holonomy algebra behaves as this:
- the curvature defines 6 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 9 independent ones
- the second derivative of curvature produces next 3 independent ones
- the third derivative of curvature produces still 3 new and after this the algebra stabilizes.

So the holonomy algebra is
dimensional, so it must be the full so(4.3) Lie algebra.

Holonomy of the ambient metrics from this family

Holonomy properties of this family are quite interesting:

- In general these metrics have full $\operatorname{SO}(4,3)$ holonomy!!!!
- Even if we put: $\beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv \cdots \equiv f_{4}(x) \equiv 0$, and $\alpha(x) \equiv 1$, the holonomy algebra behaves as this:
- the curvature defines 6 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 9 independent ones
- the second derivative of curvature produces next 3 independent ones
- the third derivative of curvature produces still 3 new
- and after this the algebra stabilizes.

Holonomy of the ambient metrics from this family

Holonomy properties of this family are quite interesting:

- In general these metrics have full $\operatorname{SO}(4,3)$ holonomy!!!!
- Even if we put: $\beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv \cdots \equiv f_{4}(x) \equiv 0$, and $\alpha(x) \equiv 1$, the holonomy algebra behaves as this:
- the curvature defines 6 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 9 independent ones
- the second derivative of curvature produces next 3 independent ones
- the third derivative of curvature produces still 3 new
- and after this the algebra stabilizes.
- So the holonomy algebra is $6+9+3+3=21$ dimensional, so it must be the full $s o(4,3)$ Lie algebra.

Holonomy of the ambient metrics from this family

- Interestingly these metrics include, as special cases, metrics with full G_{2} holonomy, which can not be extended to anything larger!!!

```
- For this we put:
            Then the holonomy algebra behaves as this:
    - the curvature defines 4 independent components of the
    holonomy algebra
    - the first covariant derivative of the curvature produces next
    independent ones
    - the second derivative of curvature produces next 2
    independent ones
    - the third derivative of curvature produces still 1 new
    - and after this the algebra stabilizes.
```

 - So the holonomy algebra is \(4+7+2+1=14\) dimensional,
 and one can check that it is the \(g_{2}\) Lie algebra.

Holonomy of the ambient metrics from this family

- Interestingly these metrics include, as special cases, metrics with full G_{2} holonomy, which can not be extended to anything larger!!!
- For this we put: $\beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv \cdots \equiv f_{4}(x) \equiv 0$, and $c=0$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next
independent ones
- the second derivative of curvature produces next 2
independent ones
- the third derivative of curvature produces still 1 new
- and after this the algebra stabilizes.
- So the holonomy algehra is 4

Holonomy of the ambient metrics from this family

- Interestingly these metrics include, as special cases, metrics with full G_{2} holonomy, which can not be extended to anything larger!!!
- For this we put: $\beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv \cdots \equiv f_{4}(x) \equiv 0$, and $c=0$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
the first covariant derivative of the curvature produces next
7 independent ones
the second derivative of curvature produces next 2
independent ones
the third derivative of curvature produces still 1 new
and after this the algebra stabilizes.
- So the holonomy algebra is dimensional, and one can check that it is the

Holonomy of the ambient metrics from this family

- Interestingly these metrics include, as special cases, metrics with full G_{2} holonomy, which can not be extended to anything larger!!!
- For this we put: $\beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv \cdots \equiv f_{4}(x) \equiv 0$, and $c=0$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 7 independent ones
- the second derivative of curvature produces next 2 independent ones
- the third derivative of curvature produces still inew
and after this the algebra stabilizes.
- So the holonomy algebra is 4

Holonomy of the ambient metrics from this family

- Interestingly these metrics include, as special cases, metrics with full G_{2} holonomy, which can not be extended to anything larger!!!
- For this we put: $\beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv \cdots \equiv f_{4}(x) \equiv 0$, and $c=0$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 7 independent ones
- the second derivative of curvature produces next 2 independent ones
the third derivative of curvature produces still 1 new
and after this the algebra stabilizes.
So the holonomy algehra is 4

Holonomy of the ambient metrics from this family

- Interestingly these metrics include, as special cases, metrics with full G_{2} holonomy, which can not be extended to anything larger!!!
- For this we put: $\beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv \cdots \equiv f_{4}(x) \equiv 0$, and $c=0$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 7 independent ones
- the second derivative of curvature produces next 2 independent ones
- the third derivative of curvature produces still 1 new
- So the holonomy algebra is $4+7+2+1=14$ dimensional, and one can check that it is the g_{2} Lie algebra.

Holonomy of the ambient metrics from this family

- Interestingly these metrics include, as special cases, metrics with full G_{2} holonomy, which can not be extended to anything larger!!!
- For this we put: $\beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv \cdots \equiv f_{4}(x) \equiv 0$, and $c=0$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 7 independent ones
- the second derivative of curvature produces next 2 independent ones
- the third derivative of curvature produces still 1 new
- and after this the algebra stabilizes.

So the holonomy algebra is
and one can check that it is the

Holonomy of the ambient metrics from this family

- Interestingly these metrics include, as special cases, metrics with full G_{2} holonomy, which can not be extended to anything larger!!!
- For this we put: $\beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv \cdots \equiv f_{4}(x) \equiv 0$, and $c=0$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 7 independent ones
- the second derivative of curvature produces next 2 independent ones
- the third derivative of curvature produces still 1 new
- and after this the algebra stabilizes.
- So the holonomy algebra is $4+7+2+1=14$ dimensional, and one can check that it is the \mathfrak{g}_{2} Lie algebra.

Holonomy of the ambient metrics from this family

- If we put: $\alpha(x) \equiv \beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv f_{2}(x) \equiv f_{4}(x) \equiv 0$, and $c=1 / 9$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 5 independent ones
- the second derivative of curvature produces next independent ones
- and after this the algebra stabilizes.
- So the holonomy algebra g is $4+5+1=10$ dimensional.
- one can check that it is a semidirect product of a 7-dimensional radical and 3-dimensional semisimple Lie algebra.
- Of course it is a subgroup of so (4.3), but it is not a subgroup of g_{2}.

Holonomy of the ambient metrics from this family

- If we put: $\alpha(x) \equiv \beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv f_{2}(x) \equiv f_{4}(x) \equiv 0$, and $c=1 / 9$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 5 independent ones
- the second derivative of curvature produces next independent ones
- and after this the algebra stabilizes.
- So the holonomy algebra n is $4+5+1=10$ dimensional.
- one can check that it is a semidirect product of a 7-dimensional radical and 3-dimensional semisimple Lie algebra.
- Of course it is a subgroup of so $(4,3)$, but it is not a subgroup of

Holonomy of the ambient metrics from this family

- If we put: $\alpha(x) \equiv \beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv f_{2}(x) \equiv f_{4}(x) \equiv 0$, and $c=1 / 9$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 5 independent ones
- the second derivative of curvature produces next independent ones
- and after this the algebra stabilizes.
- So the holonomy algebra g is $4+5+1=10$ dimensional.
- one can check that it is a semidirect product of a 7-dimensional radical and 3-dimensional semisimple Lie algebra.
- Of course it is a subgroup of $s o(4,3)$, but it is not a subgroup of

Holonomy of the ambient metrics from this family

- If we put: $\alpha(x) \equiv \beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv f_{2}(x) \equiv f_{4}(x) \equiv 0$, and $c=1 / 9$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 5 independent ones
- the second derivative of curvature produces next 1 independent ones
- and after this the algebra stabilizes.
- So the holonomy algebra \mathfrak{g} is $4+5+1=10$ dimensional.
- one can check that it is a semidirect product of a 7-dimensional radical and 3-dimensional semisimple Lie algebra.
- Of course it is a subgroup of so(4.3), but it is not a subgroup of

Holonomy of the ambient metrics from this family

- If we put: $\alpha(x) \equiv \beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv f_{2}(x) \equiv f_{4}(x) \equiv 0$, and $c=1 / 9$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 5 independent ones
- the second derivative of curvature produces next 1 independent ones
- and after this the algebra stabilizes.
- So the holonomy algebra g is $4+5+1=10$ dimensional.
- one can check that it is a semidirect product of a 7-dimensional radical and 3-dimensional semisimple Lie algebra.
- Of course it is a subgroup of $s o(4,3)$, but it is not a subgroup of

Holonomy of the ambient metrics from this family

- If we put: $\alpha(x) \equiv \beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv f_{2}(x) \equiv f_{4}(x) \equiv 0$, and $c=1 / 9$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 5 independent ones
- the second derivative of curvature produces next 1 independent ones
- and after this the algebra stabilizes.
- So the holonomy algebra \mathfrak{g} is $4+5+1=10$ dimensional.

Holonomy of the ambient metrics from this family

- If we put: $\alpha(x) \equiv \beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv f_{2}(x) \equiv f_{4}(x) \equiv 0$, and $c=1 / 9$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 5 independent ones
- the second derivative of curvature produces next 1 independent ones
- and after this the algebra stabilizes.
- So the holonomy algebra \mathfrak{g} is $4+5+1=10$ dimensional.
- one can check that it is a semidirect product of a 7-dimensional radical and 3-dimensional semisimple Lie algebra.

Holonomy of the ambient metrics from this family

- If we put: $\alpha(x) \equiv \beta(x) \equiv f_{0}(x) \equiv f_{1}(x) \equiv f_{2}(x) \equiv f_{4}(x) \equiv 0$, and $c=1 / 9$. Then the holonomy algebra behaves as this:
- the curvature defines 4 independent components of the holonomy algebra
- the first covariant derivative of the curvature produces next 5 independent ones
- the second derivative of curvature produces next 1 independent ones
- and after this the algebra stabilizes.
- So the holonomy algebra \mathfrak{g} is $4+5+1=10$ dimensional.
- one can check that it is a semidirect product of a 7-dimensional radical and 3-dimensional semisimple Lie algebra.
- Of course it is a subgroup of $s o(4,3)$, but it is not a subgroup of \mathfrak{g}_{2}.

Plan

Ambient metrics and distributions

- Fefferman-Graham construction
- Conformal structures and Cartan's paper
(2)

Tre main theorem

- An ansatz
- The theorem
(3) Examples of explicit ambient metrics
- Solutions analytic in ρ
- Nonanalytic in ρ solutions
- Poincaré-Einstein picture

Passing from ρ to r such that $\rho=r^{2}$

- The nonanalytic in ρ solutions have troubles at $\rho \leq 0$ because they are expessible in odd powers of $\sqrt{\rho}$.
- One can try to remedy the situation by passing to the coordinate r such that
- On doing this we first assume that $r>0$, and bring the metric \tilde{g} to the form
$\tilde{g}=2 \mathrm{dtd}\left(r^{2} t\right)+t^{2}(8(\mathrm{~d} p$ $(252 p \alpha+\beta) r^{5} \cdot(d y-p d x)^{2}$ $6\left((9 c-1) a r^{7}+\left(f_{0}+p f_{1}+252 c p^{2} \alpha\right) r^{5}\right) \cdot(\mathrm{d} y-p \mathrm{dx}) \mathrm{dx}+$ $\left.9\left(\left(f_{2}+\left(\frac{1}{9}-4 c\right) p \alpha\right) r^{7}+\left(f_{3}+p f_{4}+\frac{1}{81} p^{2}\left(18 f_{1}+2268 f_{2}-\beta\right)\right) r^{5}\right) \cdot d x^{2}\right)$.
- This metric is regular and Ricci flat for all $r \neq 0$, but because $2 \mathrm{~d} t \mathrm{~d}\left(r^{2} t\right)=4 r \mathrm{~d} r \mathrm{~d} t+2 r^{2} \mathrm{~d} t^{2}$, it is degenerate at

Passing from ρ to r such that $\rho=r^{2}$

- The nonanalytic in ρ solutions have troubles at $\rho \leq 0$ because they are expessible in odd powers of $\sqrt{\rho}$.
- One can try to remedy the situation by passing to the coordinate r such that $\rho=r^{2}$.
- On doing this we first assume that $r>0$, and bring the metric \tilde{g} to the form
$\tilde{g}=2 a+d(-2 t)+t^{2}(81+-+\cdots$
$(252 p \alpha+\beta) r^{5} \cdot(\mathrm{~d} y-p \mathrm{~d} x)^{2}+$ $6\left((9 c-1) \alpha r^{7}+\left(f_{0}+p f_{1}+252 c p^{2} \alpha\right) r^{5}\right) \cdot(\mathrm{d} y-p \mathrm{~d} x) \mathrm{d} x+$ $\left.9\left(\left(f_{2}+\left(\frac{1}{9}-4 c\right) p n\right) r^{7}+\left(f_{3}+p f_{4}+\frac{1}{81} n^{2}\left(18 f_{1}+2268 f_{2}-\beta\right)\right) r^{5}\right) \cdot d x^{2}\right)$
- This metric is regular and Ricci flat for all $r \neq 0$, but because $2 \mathrm{~d} t \mathrm{~d}\left(r^{2} t\right)=4 r d r d t+2 r^{2} \mathrm{~d} t^{2}$, it is deaenerate at

Passing from ρ to r such that $\rho=r^{2}$

- The nonanalytic in ρ solutions have troubles at $\rho \leq 0$ because they are expessible in odd powers of $\sqrt{\rho}$.
- One can try to remedy the situation by passing to the coordinate r such that $\rho=r^{2}$.
- On doing this we first assume that $r>0$, and bring the metric \tilde{g} to the form
$\tilde{g}=2 \mathrm{~d} t \mathrm{~d}\left(r^{2} t\right)+t^{2}\left(8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+q^{2} \mathrm{~d} x\right) \mathrm{d} x-12(\mathrm{~d} y-p \mathrm{~d} x) \mathrm{d} q+\right.$ $(252 p \alpha+\beta) r^{5} \cdot(\mathrm{~d} y-p \mathrm{~d} x)^{2}+$
$6\left((9 c-1) \alpha r^{7}+\left(f_{0}+p f_{1}+252 c p^{2} \alpha\right) r^{5}\right) \cdot(\mathrm{d} y-p \mathrm{~d} x) \mathrm{d} x+$
$\left.9\left(\left(f_{2}+\left(\frac{1}{9}-4 c\right) p \alpha\right) r^{7}+\left(f_{3}+p f_{4}+\frac{1}{81} p^{2}\left(18 f_{1}+2268 f_{2}-\beta\right)\right) r^{5}\right) \cdot \mathrm{d} x^{2}\right)$.
- This metric is regular and Ricci flat for all $r \neq 0$, but because $2 \mathrm{~d} t \mathrm{~d}\left(r^{2} t\right)=4 r \mathrm{~d} r \mathrm{~d} t+2 r^{2} \mathrm{~d} t^{2}$, it is degenerate at

Passing from ρ to r such that $\rho=r^{2}$

- The nonanalytic in ρ solutions have troubles at $\rho \leq 0$ because they are expessible in odd powers of $\sqrt{\rho}$.
- One can try to remedy the situation by passing to the coordinate r such that $\rho=r^{2}$.
- On doing this we first assume that $r>0$, and bring the metric \tilde{g} to the form
$\tilde{g}=2 \mathrm{~d} t \mathrm{~d}\left(r^{2} t\right)+t^{2}\left(8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+q^{2} \mathrm{~d} x\right) \mathrm{d} x-12(\mathrm{~d} y-p \mathrm{~d} x) \mathrm{d} q+\right.$
$(252 p \alpha+\beta) r^{5} \cdot(\mathrm{~d} y-p \mathrm{~d} x)^{2}+$
$6\left((9 c-1) \alpha r^{7}+\left(f_{0}+p f_{1}+252 c p^{2} \alpha\right) r^{5}\right) \cdot(\mathrm{d} y-p \mathrm{~d} x) \mathrm{d} x+$
$\left.9\left(\left(f_{2}+\left(\frac{1}{9}-4 c\right) p \alpha\right) r^{7}+\left(f_{3}+p f_{4}+\frac{1}{81} p^{2}\left(18 f_{1}+2268 f_{2}-\beta\right)\right) r^{5}\right) \cdot \mathrm{d} x^{2}\right)$.
- This metric is regular and Ricci flat for all $r \neq 0$, but because $2 \mathrm{dtd}\left(r^{2} t\right)=4 r d r d t+2 r^{2} d t^{2}$, it is degenerate at

Passing from ρ to r such that $\rho=r^{2}$

- The nonanalytic in ρ solutions have troubles at $\rho \leq 0$ because they are expessible in odd powers of $\sqrt{\rho}$.
- One can try to remedy the situation by passing to the coordinate r such that $\rho=r^{2}$.
- On doing this we first assume that $r>0$, and bring the metric \tilde{g} to the form
$\tilde{g}=2 \mathrm{~d} t \mathrm{~d}\left(r^{2} t\right)+t^{2}\left(8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+q^{2} \mathrm{~d} x\right) \mathrm{d} x-12(\mathrm{~d} y-p \mathrm{~d} x) \mathrm{d} q+\right.$
$(252 p \alpha+\beta) r^{5} \cdot(\mathrm{~d} y-p \mathrm{~d} x)^{2}+$
$6\left((9 c-1) \alpha r^{7}+\left(f_{0}+p f_{1}+252 c p^{2} \alpha\right) r^{5}\right) \cdot(\mathrm{d} y-p \mathrm{~d} x) \mathrm{d} x+$
$\left.9\left(\left(f_{2}+\left(\frac{1}{9}-4 c\right) p \alpha\right) r^{7}+\left(f_{3}+p f_{4}+\frac{1}{81} p^{2}\left(18 f_{1}+2268 f_{2}-\beta\right)\right) r^{5}\right) \cdot \mathrm{d} x^{2}\right)$.
- This metric is regular and Ricci flat for all $r \neq 0$, but because $2 \mathrm{~d} t \mathrm{~d}\left(r^{2} t\right)=4 r \mathrm{~d} r \mathrm{~d} t+2 r^{2} \mathrm{~d} t^{2}$, it is degenerate at $r=0$.

Poincaré-Einstein metrics in general

Given a normal form of a (4,3)-signature ambient metric $\tilde{g}_{D_{t}}$

$$
\tilde{g}_{\mathcal{D}_{f}}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(g_{\mathcal{D}_{t}}+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right),
$$

one can associate with it a $(3,3)$ signature metric $g_{P E}$, called a Poincaré-Einstein metric,

Poincaré-Einstein metrics in general

Given a normal form of a (4,3)-signature ambient metric $\tilde{g}_{D_{f}}$

$$
\begin{gathered}
\tilde{g}_{\mathcal{D}_{f}}=2 \mathrm{~d} t \mathrm{t}(\rho t)+t^{2}\left(g_{\mathcal{D}_{f}}+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right), \\
\operatorname{Ric}(\tilde{g})=0, \\
A_{\mid \rho=0}=B_{\mid \rho=0}=C_{\mid \rho=0}=0,
\end{gathered}
$$

one can associate with it a $(3,3)$ signature metric $g_{P E}$, called a Poincaré-Einstein metric,
obtained in the following way:

Poincaré-Einstein metrics in general

Given a normal form of a (4,3)-signature ambient metric $\tilde{g}_{D_{t}}$

$$
\begin{gathered}
\tilde{g}_{D_{f}}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(g_{\mathcal{D}_{t}}+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right), \\
\\
\operatorname{Ric}(\tilde{g})=0, \\
A_{\mid \rho=0}=B_{\mid \rho=0}=C_{\mid \rho=0}=0,
\end{gathered}
$$

one can associate with it a $(3,3)$ signature metric $g_{P E}$, called
a Poincaré-Einstein metric,
obtained in the following way:

Poincaré-Einstein metrics in general

Given a normal form of a (4,3)-signature ambient metric $\tilde{g}_{D_{t}}$

$$
\begin{gathered}
\tilde{g}_{D_{f}}=2 \mathrm{~d} t \mathrm{td}(\rho t)+t^{2}\left(g_{\mathcal{D}_{f}}+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right), \\
\\
\operatorname{Ric}(\tilde{g})=0, \\
A_{\mid \rho=0}=B_{\mid \rho=0}=C_{\mid \rho=0}=0,
\end{gathered}
$$

one can associate with it a $(3,3)$ signature metric $g_{P E}$, called a Poincaré-Einstein metric,
obtained in the following way:

Poincaré-Einstein metrics in general

Given a normal form of a (4,3)-signature ambient metric $\tilde{g}_{D_{t}}$

$$
\begin{gathered}
\tilde{g}_{D_{f}}=2 \mathrm{~d} t \mathrm{td}(\rho t)+t^{2}\left(g_{\mathcal{D}_{f}}+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right), \\
\\
\operatorname{Ric}(\tilde{g})=0, \\
A_{\mid \rho=0}=B_{\mid \rho=0}=C_{\mid \rho=0}=0,
\end{gathered}
$$

one can associate with it a $(3,3)$ signature metric $g_{P E}$, called a Poincaré-Einstein metric,
obtained in the following way:

Poincaré-Einstein metrics in general

- Let \mathbb{R}^{6} be coordinatized by (r, x, y, p, q, z), and consider an open neigbourhood \mathcal{U}_{6} around a point with $r \neq 0$ there.
- Pullback $\tilde{\mathscr{D}}_{D_{t}}$ from \tilde{M} to \mathcal{U}_{6} obtaining
- $g_{P E}$ is a $(3,3)$-signature metric everywhere except

Poincaré-Einstein metrics in general

- Let \mathbb{R}^{6} be coordinatized by (r, x, y, p, q, z), and consider an open neigbourhood \mathcal{U}_{6} around a point with $r \neq 0$ there.
- Imbedd \mathcal{U}_{6} in \tilde{M} by $\iota: \mathcal{U}_{6} \rightarrow \tilde{M}$, where ι is given by:

$$
\iota(r, x, y, p, q, z):=\left(t=\frac{1}{r}, \rho=r^{2}, x, y, p, q, z\right)
$$

- Pullback $\tilde{g}_{\mathcal{D}_{f}}$ from \tilde{M} to \mathcal{U}_{6} obtaining

- $g_{P E}$ is a $(3,3)$-signature metric everywhere except

Poincaré-Einstein metrics in general

- Let \mathbb{R}^{6} be coordinatized by (r, x, y, p, q, z), and consider an open neigbourhood \mathcal{U}_{6} around a point with $r \neq 0$ there.
- Imbedd \mathcal{U}_{6} in \tilde{M} by $\iota: \mathcal{U}_{6} \rightarrow \tilde{M}$, where ι is given by:

$$
\iota(r, x, y, p, q, z):=\left(t=\frac{1}{r}, \rho=r^{2}, x, y, p, q, z\right)
$$

- Pullback $\tilde{g}_{\mathcal{D}_{f}}$ from \tilde{M} to \mathcal{U}_{6} obtaining

$$
\begin{aligned}
& g_{P E}:=\iota^{*}(\tilde{g})= \\
& \quad \frac{1}{r^{2}}\left(-2 \mathrm{~d} r^{2}+g_{\mathcal{D}_{f}}+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right)
\end{aligned}
$$

- $g_{P E}$ is a (3,3)-signature metric everywhere except r

Poincaré-Einstein metrics in general

- Let \mathbb{R}^{6} be coordinatized by (r, x, y, p, q, z), and consider an open neigbourhood \mathcal{U}_{6} around a point with $r \neq 0$ there.
- Imbedd \mathcal{U}_{6} in \tilde{M} by $\iota: \mathcal{U}_{6} \rightarrow \tilde{M}$, where ι is given by:

$$
\iota(r, x, y, p, q, z):=\left(t=\frac{1}{r}, \rho=r^{2}, x, y, p, q, z\right)
$$

- Pullback $\tilde{g}_{\mathcal{D}_{f}}$ from \tilde{M} to \mathcal{U}_{6} obtaining

$$
\begin{aligned}
& g_{P E}:=\iota^{*}(\tilde{g})= \\
& \quad \frac{1}{r^{2}}\left(-2 \mathrm{~d} r^{2}+g_{\mathcal{D}_{f}}+A \cdot\left(\omega^{1}\right)^{2}+2 B \cdot \omega^{1} \omega^{4}+C \cdot\left(\omega^{4}\right)^{2}\right) .
\end{aligned}
$$

- $g_{P E}$ is a $(3,3)$-signature metric everywhere except $r=0$.

Poincaré-Einstein metrics in general

- The metric $g_{P E}$ is Einstein,

$$
\operatorname{Ric}\left(g_{P E}\right)=\frac{5}{2} g_{P E},
$$

if and only if the functions A, B, C satisfy

$$
\begin{aligned}
& L A=\frac{9}{40} f_{p p p p}, \quad L B=-\frac{1}{36} A_{p}+\frac{3}{40} f_{p p p} \\
& L C=-\frac{1}{18} B_{p}+\frac{1}{324} A+\frac{1}{30} f_{p p}-\frac{2}{15} b^{2},
\end{aligned}
$$

i.e. iff they correspond to the Fefferman-Graham (Ricci flat) metric $\tilde{g}_{\mathcal{D}_{f}}$.

- Note that in coordinate r the linear operator is

Poincaré-Einstein metrics in general

- The metric $g_{P E}$ is Einstein,

$$
\operatorname{Ric}\left(g_{P E}\right)=\frac{5}{2} g_{P E},
$$

if and only if the functions A, B, C satisfy

$$
\begin{aligned}
& L A=\frac{9}{40} f_{p p p p}, \quad L B=-\frac{1}{36} A_{p}+\frac{3}{40} f_{p p p} \\
& L C=-\frac{1}{18} B_{p}+\frac{1}{324} A+\frac{1}{30} f_{p p}-\frac{2}{15} b^{2}
\end{aligned}
$$

i.e. iff they correspond to the Fefferman-Graham (Ricci flat) metric $\tilde{g}_{\mathcal{D}_{f}}$.

- Note that in coordinate r the linear operator is

$$
L=\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}-\frac{2}{r} \frac{\partial}{\partial r}-\frac{1}{8} \frac{\partial^{2}}{\partial p^{2}}
$$

so now the indicial exponents are 0 and 5 , and we have no troubles with $r<0$ range.

Nontrivial Poincare-Einstein metrics associated with flat conformal structure

For example: a Poincaré-Einstein metric corresponding to the Fefferman-Graham metric associated with the flat conformal structure discussed few slides ago is then given by:

$$
\begin{aligned}
& \tilde{g}=r^{-2}\left(-2 \mathrm{~d} r^{2}+8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+q^{2} \mathrm{~d} x\right) \mathrm{d} x-12(\mathrm{~d} y-p \mathrm{~d} x) \mathrm{d} q+\right. \\
& (252 p \alpha+\beta) r^{5} \cdot(\mathrm{~d} y-p \mathrm{~d} x)^{2}+6\left((9 c-1) \alpha r^{7}+\left(f_{0}+p f_{1}+252 c p^{2} \alpha\right) r^{5}\right) \cdot(\mathrm{d} y-p \mathrm{~d} x) \mathrm{d} x+ \\
& \left.\left.9\left(\left(f_{2}+\left(\frac{1}{9}-4 c\right) p \alpha\right) r^{7}+\left(f_{3}+p f_{4}+\frac{1}{81} p^{2}\left(18 f_{1}+2268 f_{2}-\beta\right)\right) r^{5}\right) \cdot \mathrm{d} x^{2}\right)\right) .
\end{aligned}
$$

Nonanalytic PE metrics and flat structure

The most general one associated with $f \equiv 0$ and $b=0$ is:

$$
\begin{aligned}
& \tilde{g}=r^{-2}\left(-2 \mathrm{~d} r^{2}+8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+q^{2} \mathrm{~d} x\right) \mathrm{d} x-12(\mathrm{~d} y-p \mathrm{~d} x) \mathrm{d} q+\right. \\
& \left.A(\mathrm{~d} y-p \mathrm{~d} x)^{2}+6 B(\mathrm{~d} y-p \mathrm{~d} x) \mathrm{d} x+9 C \mathrm{~d} x^{2}\right) \\
& A=\rho^{5 / 2} \sum_{k=0}^{\infty} 60 \cdot \frac{(k+2)(k+1)}{2^{2 k}(2 k+5)!} \cdot \frac{\partial^{2 k} \alpha_{0}}{\partial p^{2 k}} \cdot \rho^{k}, \\
& B=\rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{3} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(9 \frac{\partial^{2 k} \beta_{0}}{\partial p^{2 k}}-2 k \frac{\partial^{(2 k-1)} \alpha_{0}}{\partial p^{(2 k-1)}}\right) \cdot \rho^{k}, \\
& C=\rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{27} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(81 \frac{\partial^{2 k} \gamma_{0}}{\partial p^{2 k}}-36 k \frac{\partial^{(2 k-1)} \beta_{0}}{\partial p^{(2 k-1)}}+2 k(2 k-1) \frac{\partial^{(2 k-2)} \alpha_{0}}{\partial p^{(2 k-2)}}\right) \cdot \rho^{k} .
\end{aligned}
$$

This can be truncated at any half-integer order of ρ, starting at by choosing $\alpha_{0}, \beta_{0}, \gamma_{0}$ as polynomials in p of an apropriate order.

Nonanalytic PE metrics and flat structure

The most general one associated with $f \equiv 0$ and $b=0$ is:

$$
\begin{aligned}
& \tilde{g}=r^{-2}\left(-2 \mathrm{~d} r^{2}+8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+q^{2} \mathrm{~d} x\right) \mathrm{d} x-12(\mathrm{~d} y-p \mathrm{~d} x) \mathrm{d} q+\right. \\
& \left.A(\mathrm{~d} y-p \mathrm{~d} x)^{2}+6 B(\mathrm{~d} y-p \mathrm{~d} x) \mathrm{d} x+9 C \mathrm{~d} x^{2}\right) \\
& A=\rho^{5 / 2} \sum_{k=0}^{\infty} 60 \cdot \frac{(k+2)(k+1)}{2^{2 k}(2 k+5)!} \cdot \frac{\partial^{2 k} \alpha_{0}}{\partial p^{2 k}} \cdot \rho^{k}, \\
& B=\rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{3} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(9 \frac{\partial^{2 k} \beta_{0}}{\partial p^{2 k}}-2 k \frac{\partial^{(2 k-1)} \alpha_{0}}{\partial p^{(2 k-1)}}\right) \cdot \rho^{k}, \\
& C=\rho^{5 / 2} \sum_{k=0}^{\infty} \frac{20}{27} \cdot \frac{(k+1)(k+2)}{2^{2 k}(2 k+5)!} \cdot\left(81 \frac{\partial^{2 k} \gamma_{0}}{\partial p^{2 k}}-36 k \frac{\partial^{(2 k-1)} \beta_{0}}{\partial p^{(2 k-1)}}+2 k(2 k-1) \frac{\partial^{(2 k-2)} \alpha_{0}}{\partial p^{(2 k-2)}}\right) \cdot \rho^{k} .
\end{aligned}
$$

This can be truncated at any half-integer order of ρ, starting at $\rho^{5 / 2}$ by choosing $\alpha_{0}, \beta_{0}, \gamma_{0}$ as polynomials in p of an apropriate order.

TT tensors

The explicit solutions for the PE metrics can be used to calculate the trace-free, divergence-free tensors for each of the conformal structure $\left[g_{\mathcal{D}_{f}}\right]$:

$$
T T=\alpha_{0}(x, p)(\mathrm{d} y-p \mathrm{~d} x)^{2}+6 \beta_{0}(x, p)(\mathrm{d} y-p \mathrm{~d} x) \mathrm{d} x+9 \gamma_{0}(x, p) \mathrm{d} x^{2}
$$

For all choices of the free functions α_{0}, β_{0} and γ_{0} they are trace-free and divergence-free in the metric

TT tensors

The explicit solutions for the PE metrics can be used to calculate the trace-free, divergence-free tensors for each of the conformal structure $\left[g_{\mathcal{D}_{f}}\right]$:

$$
T T=\alpha_{0}(x, p)(\mathrm{d} y-p \mathrm{~d} x)^{2}+6 \beta_{0}(x, p)(\mathrm{d} y-p \mathrm{~d} x) \mathrm{d} x+9 \gamma_{0}(x, p) \mathrm{d} x^{2}
$$

For all choices of the free functions α_{0}, β_{0} and γ_{0} they are trace-free and divergence-free in the metric

$$
\begin{aligned}
g_{\mathcal{D}_{f}}= & 8(\mathrm{~d} p-q \mathrm{~d} x)^{2}-6\left(\mathrm{~d} z-2 q \mathrm{~d} p+\left(q^{2}-f-b z\right) \mathrm{d} x\right) \mathrm{d} x- \\
& 2(\mathrm{~d} y-p \mathrm{~d} x)\left(6 \mathrm{~d} q-2 b \mathrm{~d} p-\left(\frac{2}{5} b^{2}+\frac{9}{10} f_{p p}\right)(\mathrm{d} y-p \mathrm{~d} x)-\left(4 b q+3 f_{p}\right) \mathrm{d} x\right),
\end{aligned}
$$

associated with $z^{\prime}=\left(y^{\prime \prime}\right)^{2}+f\left(x, y^{\prime}\right)+b z$.

THANK YOU!

