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a b s t r a c t

We present a number of conditions which are necessary for an n-dimensional projective
structure (M, [∇]) to include the Levi-Civita connection ∇ of some metric on M . We
provide an algorithm, which effectively checks whether a Levi-Civita connection is in the
projective class and, which finds this connection and the metric, when it is possible. The
article also provides basic information on invariants of projective structures, including the
treatment via the Cartan normal projective connection. In particular we show that there
are a number of Fefferman-like conformal structures, defined on a subbundle of the Cartan
bundle of the projective structure, which encode the projectively invariant information
about (M, [∇]).

© 2011 Elsevier B.V. All rights reserved.

1. Projective structures and their invariants

1.1. Definition of a projective structure

A projective structure on an n-dimensional manifold M is an equivalence class of torsionless connections [∇] with an
equivalence relation identifying every two connections ∇̂ and ∇ for which

∇̂XY = ∇XY + A(X)Y + A(Y )X, ∀X, Y ∈ TM, (1)

with some 1-form A onM .
Two connections from a projective class have the same unparameterised geodesics inM , and the converse is also true: two

torsionless connections have the same unparameterised geodesics inM if they belong to the same projective class.
The main purpose of this article is to answer the following question:
‘When does a given projective class of connections [∇] onM include a Levi-Civita connection of some metric g onM?’
This problem has a long history; see e.g. [1–3]. It was recently solved in dimM = 2 in a beautiful paper [4], which also, in

its last section, indicates how to treat the problem in dimM ≥ 3. In the present paper we follow [4] and treat the problem
in full generality2 in dimM ≥ 3. For doing this we need the invariants of projective structures.

The system of local invariants for projective structures was constructed by Cartan [6] (see also [7]). We briefly present it
here for completeness (see e.g. [8–10] for more details).

For our purposes it is convenient to describe a connection ∇ in terms of the connection coefficients Γ a
bc associated with

any frame (Xa) onM . This is possible via the formula:

∇aXb = Γ c
baXc, ∇a := ∇Xa .

E-mail address: nurowski@fuw.edu.pl.
1 Research supported by Polish Ministry of Research and Higher Education, grants NN201 607540 and NN202 104838.
2 I have been recently informed by Dunajski that the problem is also being considered by him and Casey [5].
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Given a frame (Xa) these relations provide a one-to-one correspondence between connections ∇ and the connection
coefficients Γ a

bc . In particular, a connection is torsionless iff

Γ c
ab − Γ c

ba = −θ c([Xa, Xb]),

where (θ a) is a coframe dual to (Xa),

θ b(Xa) = δb
a.

Moreover, two connections ∇̂ and ∇ are in the same projective class iff there exists a coframe in which

Γ̂ c
ab = Γ c

ab + δc
aAb + δc

bAa,

for some 1-form A = Aaθ
a.

In the following, rather than using the connection coefficients, we will use a collective object

Γ a
b = Γ a

bcθ
c,

which we call connection 1-forms. In terms of them the projective equivalence reads:

Γ̂ a
b = Γ a

b + δa
bA + Abθ

a. (2)

1.2. Projective Weyl, Schouten and Cotton tensors

Now, given a projective structure [∇] on M , we take connection 1-forms (Γ i
j) of a particular representative ∇ . Because

of no torsion we have:

dθ a
+ Γ a

b ∧ θ b
= 0. (3)

The curvature of this connection

Ωa
b = dΓ a

b + Γ a
c ∧ Γ c

b, (4)

which defines the curvature tensor Ra
bcd via:

Ωa
b =

1
2
Ra

bcdθ
c
∧ θd,

is now decomposed onto the irreducible components with respect to the action of GL(n, R) group:

Ωa
b = W a

b + θ a
∧ ωb + δa

bθ
c
∧ ωc . (5)

HereW a
b is endomorphism-valued 2-form:

W a
b =

1
2
W a

bcdθ
c
∧ θd,

which is totally traceless:

W a
a = 0, W a

bac = 0,

and has all the symmetries of Ra
bcd. Quantity ωa is a covector-valued 1-form. It defines a tensor Pab via

ωb = θ aPab. (6)

The tensors W a
bcd and Pab are called the (projective) Weyl tensor, and the (projective) Schouten tensor, respectively. They

are related to the curvature tensor Ra
bcd via:

Ra
bcd = W a

bcd + δa
cPdb − δa

dPcb − 2δa
bP[cd].

In particular, we have also the relation between the Schouten tensor Pab and the Ricci tensor

Rab = Rc
acb,

which reads:

Pab =
1

n − 1
R(ab) −

1
n + 1

R[ab]. (7)

One also introduces the Cotton tensor Ybca, which is defined via the covector-valued 2-form

Ya =
1
2
Ybcaθ

b
∧ θ c, (8)

by

Ya = dωa + ωb ∧ Γ b
a. (9)

Note that Ybca is antisymmetric in {bc}.
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Now, combining Eqs. (3)–(5), (8) and (9), we get the Cartan structure equations:

dθ a
+ Γ a

b ∧ θ b
= 0

dΓ a
b + Γ a

c ∧ Γ c
b = W a

b + θ a
∧ ωb + δa

bθ
c
∧ ωc

dωa + ωb ∧ Γ b
a = Ya.

(10)

It is convenient to introduce the covariant exterior differential D, which on tensor-valued k-forms acts as:

DK a1...ar
b1...bs

= dK a1...ar
b1...bs

+


i

Γ ai
a ∧ K a1...a...ar

b1...bs
−


i

Γ b
bi ∧ K a1...ar

b1...b...bs
.

This, in particular satisfies the Ricci identity:

D2K a1...ar
b1...bs

=


i

Ωai
a ∧ K a1...a...ar

b1...bs
−


i

Ωb
bi ∧ K a1...ar

b1...b...bs
. (11)

This identity will be crucial in the rest of the paper.
Using D we can write the first and the third Cartan structure equation in respective compact forms:

Dθ a
= 0,

Dωa = Ya.
(12)

Noting that on tensor-valued 0-forms we have:

DK a1...ar
b1...bs

= θ c
∇cK

a1...ar
b1...bs

,

and comparing with definition (6) one sees that the second Eq. (12) is equivalent to:

Ybca = 2∇[bPc]a. (13)

1.3. Bianchi identities

We now apply D on both sides of the Cartan structure Eqs. (10) and use the Ricci formula (11) to obtain the Bianchi
identities.

Applying D on the first of (10) we get

0 = D2θ a
= Ωa

b ∧ θ b,

i.e., tensorially:

Ra
[bcd] = 0.

This, because the Weyl tensor has the same symmetries as Ra
bcd, also means that

W a
[bcd] = 0. (14)

Next, applying D on the second of (10) we get:

DW a
b = θ a

∧ Yb + δa
bθ

c
∧ Yc .

This, when written in terms of the tensorsW a
bcd and Yabc , reads:

∇aW d
ebc + ∇cW d

eab + ∇bW d
eca = δd

aYbce + δd
cYabe + δd

bYcae + δd
e(Yabc + Ycab + Ybca). (15)

This, when contracted in {ad}, and compared with (14), implies in particular that:

∇dW d
abc = (n − 2)Ybca (16)

and

Y[abc] = 0. (17)

Thus when n > 2 the Cotton tensor is determined by the divergence of the Weyl tensor.
It is also worthwhile to note that because of (17) the identity (15) simplifies to:

∇aW d
ebc + ∇cW d

eab + ∇bW d
eca = δd

aYbce + δd
cYabe + δd

bYcae. (18)

Another immediate but useful consequence of the identity (17) is

∇[aPbc] = 0. (19)

This fact suggests an introduction of a 2-form

β =
1
2
P[ab]θ

a
∧ θ b.
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Since β is a scalar 2-form we have:

dβ = Dβ = D

1
2
P[ab]θ

a
∧ θ b


=

1
2
(DP[ab])θ

a
∧ θ b

=
1
2
(∇cP[ab])θ

c
∧ θ a

∧ θ b

=
1
2
(∇[cPab])θ

c
∧ θ a

∧ θ b
= 0.

Thus, due to the Bianchi identity (19) and the first structure Eq. (12), the 2-form β is closed.
Finally, applying D on the last Cartan equation (10) we get

DYa + ωb ∧ W b
a = 0.

This relates the first derivatives of the Cotton tensor to a bilinear combination of the Weyl and the Schouten tensors:

∇aYbcd + ∇cYabd + ∇bYcad = PaeW e
dcb + PbeW e

dac + PceW e
dba. (20)

1.4. Gauge transformations

It is amatter of checking that ifwe take another connection ∇̂ from theprojective class [∇], i.e., ifwe startwith connection
1-forms Γ̂ i

j related to Γ i
j via

Γ̂ a
b = Γ a

b + δa
bA + Abθ

a,

then the basic objects ωa,W a
b and Ya transform as:

ω̂a = ωa − DAa + AAa

β̂ = β − dA

Ŵ a
b = W a

b

Ŷa = Ya + AbW b
a.

(21)

Equivalently:

Γ̂ a
bc = Γ a

bc + δa
cAb + δa

bAc

P̂ab = P ab − ∇aAb + AaAb

P̂[ab] = P[ab] − ∇[aAb]

Ŵ a
bcd = W a

bcd

Ŷabc = Yabc + AdW d
cab.

(22)

This in particular means that the Weyl tensor is a projectively invariant object. We also note that the 2-form β transforms
modulo addition of a total differential.

Corollary 1.1. Locally in every projective class [∇] there exists a torsionless connection ∇
0 for which the Schouten tensor is

symmetric, Pab = P(ab).

Proof. We know that due to the Bianchi identities (19) the 2-form β encoding the antisymmetric part of Pab is closed,
dβ = 0. Thus, using the Poincaré lemma, we know that there exists a 1-form Υ such that locally β = dΥ . It is therefore
sufficient to take A = Υ and Γ̂ a

b = Γ a
b + δa

bΥ + θ aΥb, to get β̂ = 0, by the second relation in (21). This proves that in the
connection Γ̂ a

b projectively equivalent to Γ a
b, we have P̂[ab] = 0. �

Remark 1.2. Note that if Γ a
b is a connection for which Pab is symmetric then it is also symmetric in any projectively

equivalent connection for which A = dφ, where φ is a function.

Definition 1.3. A subclass of projectively equivalent connections for which the Schouten tensor is symmetric is called a
special projective class.

Mutatis mutandis we have:

Corollary 1.4. Locally every projective class contains a special projective subclass. This subclass is given modulo transforma-
tions (2) with A being a gradient, A = dφ.



Author's personal copy

P. Nurowski / Journal of Geometry and Physics 62 (2012) 657–674 661

Corollary 1.5. The curvature Ωa
b of any connection from a special projective subclass of projective connections [∇] is traceless,

Ωa
a = 0.

Proof. For the connections from a special projective subclass we have Pab = Pba. Hence θ a
∧ ωa = θ a

∧ Pbaθ
b
∧ = 0, and

Ωa
b = W a

b + θ a
∧ ωb. Thus

Ωa
a = W a

a + θ a
∧ ωa = 0,

because the Weyl formW a
b is traceless. �

Remark 1.6. We also remark that in dimension n = 2 the Weyl tensor of a projective structure is identically zero. In this
dimension the Cotton tensor provides the lowest order projective invariant (see the last equation in (22)). In dimension
n = 3 theWeyl tensor is generically nonzero, andmay have asmuch as fifteen independent components. It is also generically
nonzero in dimensions higher than three.

Given an open set U with coordinates (xa) surely the simplest projective structure [∇] is the one represented by the
connection ∇a =

∂
∂xa . This is called the flat projective structure on U. The following theorem is well known [6,7]:

Theorem 1.7. In dimension n ≥ 3 a projective structure [∇] is locally projectively equivalent to the flat projective structure if
and only if its projective Weyl tensor vanishes identically, W a

bcd ≡ 0. In dimension n = 2, a projective structure [∇] is locally
projectively equivalent to the flat projective structure if and only if its projective Schouten tensor vanishes identically, Yabc ≡ 0.

1.5. Cartan connection

Objects (θ a, Γ b
c, ωd) can be collected to the Cartan connection on anH principal fiber bundleH → P → M over (M, [∇]).

Here H is a subgroup of the SL(n + 1, R) group defined by:

H =


b ∈ SL(n + 1, R) | b =


Aa

b 0
Ab a−1


, Aa

b ∈ GL(n, R), Aa ∈ (Rn)∗, a = det(Aa
b)


.

Using (θ a, Γ b
c, ωd) we define an sl(n + 1, R)-valued 1-form

A = b−1

Γ a
b −

1
n + 1

Γ c
cδ

a
b θ a

ωb −
1

n + 1
Γ c

c

 b + b−1db.

This can be also written as

A =

Γ̂ a
b −

1
n + 1

Γ̂ c
cδ

a
b θ̂ a

ω̂b −
1

n + 1
Γ̂ c

c

 ,

from which, knowing b, one can deduce the transformation rules

(θ a, Γ b
c, ωd) → (θ̂ a, Γ̂ b

c, ω̂d);

see e.g. [10]. Note that when the coframe θ a is fixed, i.e., when Aa
b = δa

b, these transformations coincide with (2) and (21);
the above setup extends these transformations to the situation when we allow the frame to change under the action of the
GL(n, R) group.

The form A defines an sl(n + 1, R) Cartan connection on H → P → M . Its curvature

R = dA + A ∧ A,

satisfies

R = b−1

W a

b 0
Yb 0


b =


Ŵ a

b 0
Ŷb 0


,

and consists of the 2-forms W a
b, Yb as defined in (10). In particular we have Ŵ a

b =
1
2Ŵ

a
bcdθ̂

c
∧ θ̂d, and Ŷa =

1
2 Ŷabc θ̂

b
∧ θ̂ c ,

where Ŵ a
bcd and Ŷabc are the transformed Weyl and Cotton tensors.

Note that the (n+n2
+n) 1-forms (θ̂ a, Γ̂ b

c, ω̂d) constitute a coframe on the (n2
+2n)-dimensional bundle H → P → M;

in particular these forms are linearly independent at each point of P . They satisfy the transformed Cartan structure equations

dθ̂ a
+ Γ̂ a

b ∧ θ̂ b
= 0

dΓ̂ a
b + Γ̂ a

c ∧ Γ̂ c
b = Ŵ a

b + θ̂ a
∧ ω̂b + δa

bθ̂
c
∧ ω̂c

dω̂a + ω̂b ∧ Γ̂ b
a = Ŷa.

(23)
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1.6. Fefferman metrics

In Ref. [11], with any point equivalence class of second order ODEs y′′
= Q (x, y, y′), we associated a certain 4-dimensional

manifold P/ ∼ equipped with a conformal class of metrics of split signature [gF ], whose conformal invariants encoded all the
point invariants of the ODEs from the point equivalent class. By analogy with the theory of 3-dimensional CR structures
we called the class [gF ] the Fefferman class. The manifold P from P/ ∼ was a principal fiber bundle H → P → N over a
3-dimensional manifold N , which was identified with the first jet space J1 of an ODE from the equivalence class. The bundle
P was eight dimensional, and H was a 5-dimensional parabolic subgroup of SL(3, R). For each point equivalence class of
ODEs y′′

= Q (x, y, y′), the Cartan normal conformal connection of the corresponding Fefferman metrics [gF ], was reduced
to a certain sl(3, R) Cartan connection A on P . The two main components of the curvature of this connection were the two
classical basic point invariants of the class y′′

= Q (x, y, y′), namely:

w1 = D2Qy′y′ − 4DQyy′ − DQy′y′Qy′ + 4Qy′Qyy′ − 3Qy′y′Qy + 6Qyy,

and

w2 = Qy′y′y′y′ .

If both of these invariants were nonvanishing the Cartan bundle that encoded the structure of a point equivalence class of
ODEs y′′

= Q (x, y, y′) was just H → P → N with the Cartan connection A. The nonvanishing of w1w2, was reflected in
the fact that the corresponding Feffermanmetrics were always of the Petrov typeN×N ′, and never selfdual nor antiselfdual.

In the case of w1w2 ≡ 0, the situation was more special [10]: the Cartan bundle H → P → N was also defining a
Cartan bundle H → P → M , over a 2-dimensional manifold M , with the 6-dimensional parabolic subgroup H of SL(3, R)
as the structure group. The manifold M was identified with the solution space of an ODE representing the point equivalent
class. Furthermore the spaceM was naturally equipped with a projective structure [∇], whose invariants were in one-to-one
correspondence with the point invariants of the ODE. This one-to-one correspondence was realised in terms of the sl(3, R)
connection A. This, although initially defined as a canonical sl(3, R) connection on H → P → N , in the special case of
w1w2 ≡ 0 became the sl(3, R)-valued Cartan normal projective connection of the structure (M, [∇]) on the Cartan bundle
H → P → M . In such a case the corresponding Fefferman class [gF ] on P/ ∼ became selfdual or antiselfdual depending on
which of the invariants w1 or w2 vanished.

What we have overlooked in the discussions in [10,11] was that in the case of w2 ≡ 0, w1 ≠ 0 we could have defined
two, a priori different Fefferman classes [gF ] and [g ′

F ]. As we see below the construction of these classes totally relies on the
fact that we had a canonical projective structure [∇] onM . Actually we have the following theorem.

Theorem 1.8. Every n-dimensional manifoldM with a projective structure [∇] uniquely defines a number n of conformalmetrics
[ga

], each of split signature (n, n), and each defined on its own natural 2n-dimensional subbundle Pa = P/(∼a) of the Cartan
projective bundle H → P → M.

Proof. Given (M, [∇]) we will construct the pair (Pa, [ga
]) for each a = 1, . . . , n. We use the notation of Section 1.5.

Let (Xa, Xb
c, X

d) be a frame of vector fields on P dual to the coframe (θ̂ a, Γ̂ b
c, ω̂d). This means that

Xayθ̂ b
= δb

a, Xa
byΓ̂

c
d = δa

dδ
c
b, Xayω̂b = δa

b, (24)

at each point, with all other contractions being zero.
We now define a number of n bilinear forms ĝa on P defined by

ĝa
=


Γ̂ a

b −
2

n + 1
Γ̂ c

cδ
a
b


⊗ θ̂ b

+ θ̂ b
⊗


Γ̂ a

b −
2

n + 1
Γ̂ c

cδ
a
b


,

or

ĝa
= 2


Γ̂ a

b −
2

n + 1
Γ̂ c

cδ
a
b


θ̂ b,

for short. In this second formula we have used the classical notation, such as for example in g = gabθ aθ b, which abbreviates
the symmetrised tensor product of two 1-forms λ and µ on P to λ ⊗ µ + µ ⊗ λ = 2λµ.

We note that the formula for ĝa, when written in terms of the Cartan connection A, reads3:

ĝa
= 2Aa

µA
µ

n+1,

where the index µ is summed over µ = 1, . . . , n, n + 1. Indeed:

2Aa
µA

µ

n+1 = 2


Γ̂ a
b −

1
n + 1

Γ̂ c
cδ

a
b


θ̂ b

+ 2θ̂ a


−
1

n + 1
Γ̂ c

c


= 2


Γ̂ a

b −
2

n + 1
Γ̂ c

cδ
a
b


θ̂ b

= ĝa.

3 Compare with the defining formula for G in [11].
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The bilinear forms ĝa are degenerate on P . For each fixed value of the index a, a = 1, . . . , n, they haven2 degenerate directions
spanned by (Xb, Z c

D), where b, c = 1, . . . , n and D = 1, . . . , n without D = a. The n(n − 1) vector fields Z c
D are defined to

be

Z c
D = X c

D −
2

n − 1
Xd

dδ
c
D.

Obviously (Xb, Z c
D) annihilate all θ bs. Also obviously all Xbs annihilate all


Γ̂ a

b −
1

n+1 Γ̂
c
cδ

a
b


s. To see that all Z c

Ds annihilate

all

Γ̂ a

b −
1

n+1 Γ̂
c
cδ

a
b


s we extend the definition of Z c

Ds to

Z c
f = X c

f −
2

n − 1
Xd

dδ
c
f ,

where now f = 1, . . . , n. For these we get:

Z c
dy


Γ̂ a
b −

2
n + 1

Γ̂ h
hδ

a
b


= δc

bδ
a
d.

Thus, if d ≠ awe see that each Z c
d annihilates Γ̂ a

b −
2

n+1 Γ̂
h
hδ

a
b. Hence n(n−1) directions Za

D are degenerate directions for ĝa.
Another observation is that the n2 degenerate directions (Xb, Z c

D) form an integrable distribution. This is simplest to see

by considering their annihilator. At each point this is spanned by the 2n 1-forms

θ̂ b, Γ̂

(a)
b −

2
n+1 Γ̂

h
hδ

(a)
b


, where the index

(a) in brackets says that it is the fixed a which is not present in the range of indices D. Now using (23) it is straightforward
to see that the forms (θ̂ b, τ̂

(a)
b ) =


θ̂ b, Γ̂

(a)
b −

2
n+1 Γ̂

h
hδ

(a)
b


satisfy the Frobenius condition

dθ̂ a
∧ θ̂1

∧ · · · ∧ θ̂n
= 0,

dτ̂ (a)
b ∧ τ̂

(a)
1 ∧ · · · ∧ τ̂ (a)

n ∧ θ̂1
∧ · · · ∧ θ̂n

= 0.

Thus the n2-dimensional distribution spanned by (Xb, Z c
D) is integrable.

Now, using (23) we calculate the Lie derivatives of ĝa with respect to the directions (Xb, Z c
D). It is easy to see that:

LXb ĝa
= 0

and

LZcd
ĝa

= −δa
dĝ

c
+

2
n − 1

δc
dĝ

a.

The last equation means also that

LZcD
ĝa

=
2

n − 1
δc

Dĝ
a.

Thus, the bilinear form ĝa transforms conformally when Lie transported along the integrable distribution spanned by
(Xb, Z c

D).
Now, for each fixed a = 1, . . . , n, we introduce an equivalence relation ∼a on P , which identifies points on the same

integral leaf of Span(Xb, Z c
D). On the 2n-dimensional leaf space Pa = P/(∼a) the n2 degenerate directions for ĝa are squeezed

to points. Since the remainder of ĝa is given up to a conformal rescalling on each leaf, the bilinear form ĝa descends to a unique
conformal class [ga

] of metrics, which on Pa have split signature (n, n). Thus, for each a = 1, . . . , n we have constructed the
2n-dimensional split signature conformal structure (Pa, [ga

]). It follows from the construction that Pa may be identified
with any 2n-dimensional submanifold P̃a of P , which is transversal to the leaves of Span(Xb, Z c

D). The conformal class [ga
] is

represented on each P̃a by the restriction ga
= ĝa

|P̃a
. This completes the proof of the theorem. �

One can calculate the Cartan normal conformal connection for the conformal structures (Pa, ga). This is a lengthy, but
straightforward calculation. The result is given in the following theorem.

Theorem 1.9. In the null frame (τ̂
(a)
b , θ̂ c) the Cartan normal conformal connection for the metric ĝa is given by:

G =



−
1

n + 1
Γ̂ d
d 0 −ω̂c 0

τ̂
(a)
b −Γ̂ e

b +
1

n + 1
Γ̂ d

dδ
e
b θ̂dR̂(a)

dcb −ω̂b

θ̂ f 0 Γ̂ f
c −

1
n + 1

Γ̂ d
dδ

f
c 0

0 θ̂ e τ̂ (a)
c

1
n + 1

Γ̂ d
d


.
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Its curvature R = dG + G ∧ G is given by:

R =


0 0 −Ŷc 0
0 −Ŵ e

b Ŝcb −Ŷb

0 0 Ŵ f
c 0

0 0 0 0

 ,

where

Ŝcb = −θ̂d(D̂R̂(a)
dcb − τ̂ (a)

s Ŵ s
dcb)

= −θ̂d(D̂Ŵ (a)
d cb − τ̂ (a)

s Ŵ s
dcb) + δ

(a)
b Ŷc − δ(a)

c Ŷb.

2. When a projective class includes a Levi-Civita connection?

2.1. Projective structures of the Levi-Civita connection

Let us now assume that an n-dimensional manifold M is equipped with a (pseudo-)Riemannian metric ĝ . We denote its
Levi-Civita connection by ∇̂ . The Levi-Civita connection ∇̂ defines its projective class [∇] with connections ∇ such that (1)
holds. Now, with the Levi-Civita representative ∇̂ of [∇] we can define its curvature Ω̂a

b, as in (4), and decompose it into
the projective Weyl and Schouten tensors Ŵ a

bcd, P̂ab, as in (5):

Ω̂a
b = Ŵ a

b + θ a
∧ ω̂b + δa

bθ
c
∧ ω̂c . (25)

However, since now M has an additional metric structure ĝ = ĝabθ aθ b, with the inverse ĝab such that ĝabĝbc
= δc

a , another

decomposition of the curvature is possible. This is the decomposition onto themetric Weyl and Schouten tensors
LC
W a

bcd,
LC
Pab,

given by:

Ω̂a
b =

LC
W a

b + ĝac ĝbd
LC
ωc ∧ θd

+ θ a
∧

LC
ωb. (26)

The tensor counterparts of formulae (25)–(26) are respectively:

R̂a
bcd = Ŵ a

bcd + δa
c P̂db − δa

dP̂cb − 2δa
bP̂[cd]

R̂a
bcd =

LC
W a

bcd + δa
c
LC
Pdb − δa

d
LC
P cb + ĝbdĝaeLCP ec − ĝbc ĝaeLCP ed.

(27)

To find relations between the projective and the metric Weyl and Schouten tensors one compares the right-hand sides of
(27). For example, because of the equality on the left-hand sides of (27), the projective and the Levi-Civita–Ricci tensors are
equal:

R̂bd = R̂a
bad =

LC
Rbd.

Thus, via (7), we get

P̂ab =
1

n − 1

LC
Rab. (28)

Further relations between the projective and Levi-Civita objects can be obtained by recalling that:
LC
Rab = (n − 2)

LC
Pab + ĝab

LC
P,

where
LC
P= ĝabLCPab,

and that the Levi-Civita–Ricci scalar is given by:
LC
R= ĝabLCRab.

After some algebra we get the following proposition.

Proposition 2.1. The projective Schouten tensor P̂ab for the Levi-Civita connection ∇̂ is relatedto the metric Schouten tensor
LC
Pab

via:

P̂ab =
LC
Pab −

1
(n − 1)(n − 2)

Gab,

where Gab is the Einstein tensor for the Levi-Civita connection:

Gab =
LC
Rab −

1
2
ĝab

LC
R .
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The projective Weyl tensor Ŵ a
bcd for the Levi-Civita connection ∇̂ is related to the metric Weyl tensor

LC
W a

bcd via:

Ŵ a
bcd =

LC
W a

bcd +
1

n − 2
(ĝbdĝaeLCR ec − ĝbc ĝaeLCR ed)

+
1

(n − 1)(n − 2)
(δa

c

LC
Rdb − δa

d

LC
R cb) +

LC
R

(n − 1)(n − 2)
(δa

dĝbc − δa
c ĝbd). (29)

In particular we have the following corollary:

Corollary 2.2. The projective Schouten tensor P̂ab of the Levi-Civita connection ∇̂ is symmetric

P̂ab = P̂ba.

Moreover, the projective Weyl tensor W a
bcd of any connection ∇ from the projective class [∇] of a Levi-Civita connection satisfies

ĝaeĝbcW e
bcd = ĝdeĝbcW e

bca. (30)

Proof. The first part of the corollary is an immediate consequence of the fact that the metric Schouten tensor of the Levi-
Civita connection as well as the Einstein tensor are symmetric. The second part follows from the relation (29), which yields:

(n − 1)ĝaeĝbcŴ e
bcd = −n

LC
Rad+

LC
R ĝad.

Since
LC
Rab is symmetric we get ĝaeĝbcŴ e

bcd = ĝdeĝbcŴ e
bca. But according to the fourth transformation law in (22) the Weyl

tensor is invariant under the projective transformations, Ŵ a
bcd = W a

bcd. Thus (30) holds, for all connections ∇ from the
projective class of ∇̂ . This ends the proof. �

The above corollary is obviously related to the question in the title of this Section. It gives the first, very simple, obstruction
for a projective structure [∇] to include a Levi-Civita connection of somemetric.We reformulate it to the following theorem.

Theorem 2.3. A necessary condition for a projective structure (M, [∇]) to include a connection ∇̂ , which is the Levi-Civita
connection of some metric ĝab, is an existence of a symmetric nondegenerate bilinear form gab on M, such that the Weyl tensor
W a

bcd of the projective structure satisfies

gaegbcW e
bcd = gdegbcW e

bca, (31)

with gab being the inverse of gab, gacgcb
= δb

a. If the Levi-Civita connection ∇̂ from the projective class [∇] exists, then its
corresponding metric ĝab must be conformal to the inverse gab of some solution gab of Eq. (31), i.e., ĝab = e2φgab, for a solution
gab of (31) and some function φ on M.

As an example we consider a projective structure [∇] on a 3-dimensional manifold M parameterised by three real
coordinates (x, y, z). We choose a holonomic coframe (θ1, θ2, θ3) = (dx, dy, dz), and generate a projective structure from
the connection 1-forms

Γ a
b =

 0 adz ady
bdz 0 bdx
cdy cdx 0


, with a = a(z), b = b(z), c = c(z), (32)

via (2).
It is easy to calculate the projectiveWeyl formsW a

b, and the projective Schouten formsωb, for this connection. They read:

W a
b =


−

1
2
c ′dx ∧ dy 0 −a′dy ∧ dz

0
1
2
c ′dx ∧ dy −b′dx ∧ dz

−
1
2
c ′dy ∧ dz −

1
2
c ′dx ∧ dz 0

 ,

and

ωa =


−bcdx +

1
2
c ′dy, −acdy +

1
2
c ′dx, −abdz


.
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With this information in mind it is easy to check that

gab
=

−fa′ g12 0
g12

−fb′ 0
0 0 g33

 , (33)

with some undetermined functions f = f (x, y, z), g12
= g12(x, y, z), g33

= g33(x, y, z), satisfies (31). Thus the connection
Γ a

b may, in principle, be the Levi-Civita connection of some metric ĝab. According to Theorem 2.3 we may expect that the
inverse of this gab is proportional to ĝab.

2.2. Comparing natural projective and (pseudo-)Riemannian tensors

Proposition 2.1 in an obvious way implies the following corollary:

Corollary 2.4. The Levi-Civita connection ∇̂ of a metric ĝab has its projective Schouten tensor equal to the Levi-Civita one,

P̂ab =
LC
Pab, if and only if its Einstein (hence the Ricci) tensor vanishes. If this happens P̂ab ≡ 0, and both the projective and

the Levi-Civita–Weyl tensors are equal, Ŵ a
bcd =

LC
W a

bcd.

Now we answer the question whether there are Ricci non-flat metrics having equal projective and Levi-Civita–Weyl

tensors. We use (29). The requirement that Ŵ a
bcd =

LC
W a

bcd yields the following proposition.

Proposition 2.5. The Levi-Civita connection ∇̂ of a metric ĝab has its projective Weyl tensor equal to the Levi-Civita one,

Ŵ a
bcd =

LC
W a

bcd, if and only if its Levi-Civita–Ricci tensor satisfies

Mabcd
ef LC

R ef = 0, (34)

where

Mabcd
ef

= ĝacδe
dδ

f
b − ĝadδe

cδ
f
b + ĝadĝcbĝef

− ĝac ĝdbĝef
+ (n − 1)(ĝbdδe

aδ
f
c − ĝbcδe

aδ
f
d).

One easily checks that the Einstein metrics, i.e., the metrics for which
LC
Rab = Λĝab,

satisfy (34). Therefore we have the following corollary:

Corollary 2.6. The projective and the Levi-Civita–Weyl tensors of Einstein metrics are equal. In particular, all conformally flat
Einstein metrics (metrics of constant curvature) are projectively equivalent.

It is interesting to know if there are non-Einstein metrics satisfying condition (34).

2.3. Formulation a’la Roger Liouville

In this subsection we shall link our work with the approach of [1].
If ∇ is in the projective class of the Levi-Civita connection ∇̂ of a metric ĝ we have:

0 = D̂ĝab = Dĝab − 2Aĝab − Aaθ
c ĝcb − Abθ

c ĝac,

for some 1-form A = Aaθ
a. Thus the condition that a torsionless connection ∇ is projectively equivalent to the Levi-Civita

connection of some metric, is equivalent to the existence of a pair (ĝab, Aa) such that

Dĝab = 2Aĝab + θ c(Aaĝcb + Abĝac),

with an invertible symmetric tensor ĝab. Dually this last means that a torsionless connection ∇ is projectively equivalent to
a Levi-Civita connection of some metric, iff there exists a pair (ĝab, Aa) such that

Dĝab
= −2Aĝab

− Ac(θ
bĝca

+ θ aĝcb), (35)

with an invertible ĝab.
The unknown A can be easily eliminated from these equations by contracting with the inverse ĝab:

A = −
ĝabDĝab

2(n + 1)
,
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so that the ‘if an only if’ condition for ∇ to be in a projective class of a Levi-Civita connection ∇̂ is the existence of ĝab such
that

2(n + 1)Dĝab
= 2(ĝcdDĝcd)ĝab

+ (ĝef ∇c ĝef )(θ bĝca
+ θ aĝcb), ĝac ĝcb

= δb
c .

This is an unpleasant-to-analyse, nonlinear system of PDEs, for the unknown ĝab. It follows that it is more convenient to
discuss the equivalent system (35) for the unknowns (ĝab, Aa), which we will do in the following.

The aim of this subsection is to prove the following theorem:

Theorem 2.7. A torsionless connection ∇̃ on an n-dimensional manifold M is projectively equivalent to a Levi-Civita connection
∇̂ of a metric ĝab if and only if its projective class [∇̃] contains a special projective subclass [∇] whose connections ∇ satisfy the
following: for every ∇ ∈ [∇] there exists a nondegenerate symmetric tensor gab and a vector field µa on M such that

∇cgab
= µaδb

c + µbδa
c,

or, which is the same, there exists a nondegenerate gab and µa such that:

Dgab
= µaθ b

+ µbθ a. (36)

Proof. If ∇̂ is the Levi-Civita connection of a metric ĝ = ĝabθ aθ b, we consider connections ∇ associated with ∇̂ via (1), in
which A = dφ, with arbitrary functions (potentials) onM . This is a special class of connections, since the projective Schouten
tensor P̂ab for ∇̂ is symmetric (see Corollary 2.2), and the transformation (22) with gradient As, preserves the symmetry of
the projective Schouten tensor (see Remark 1.2).

Any connection ∇ from this special class satisfies (35) with A = dφ, and therefore is characterised by the potential
φ, ∇ = ∇(φ).

We now take the inverse ĝab of the metric ĝab, ĝac ĝcb
= δ b

a , and rescale it to

gab
= e2f ĝab,

where f is a function onM . Using (35) with A = dφ, after a short algebra, we get:

Dgab
= −2(dφ − df )gab

− (∇cφ)(θ bgca
+ θ agcb).

Thus taking

f = φ + const,

for each ∇ = ∇(φ) from the special class [∇], we associate gab
= e2f ĝab satisfying

Dgab
= −(∇cφ)(θ bgca

+ θ agcb).

Defining µa
= −Acgca

= −e2f (∇cφ)ĝca we get (36). Obviously gab is symmetric and nondegenerate since ĝab was.
The proof in the opposite direction is as follows:
We start with (∇, gab, µa) satisfying (36). In particular, connection∇ is special, i.e., it has symmetric projective Schouten

tensor and, by Corollary 1.5, its curvature satisfies

Ωa
a = 0.

Since gab is invertible, we have a symmetric gab such that gacgcb
= δb

a. We define

A = −gabµbθ a. (37)

Contracting with (36) we get:

gabDgab
= −2A, or A = −

1
2
gabDgab.

Now this last equation implies that:

dA = −
1
2
Dgab ∧ Dgab

−
1
2
gabD2gab.

This compared with the Ricci identity D2gab
= Ωa

cg
cb

+ Ωb
cg

ac , the defining Eq. (35), and its dual

Dgab = −gacgbd(µcθd
+ µdθ c),

yields

dA = −Ωa
a = 0.

Thus the 1-form A defined by (37) is locally a gradient of a function φ0 on M, A = dφ0. The potential φ0 is defined by
(∇, gab, µa) up to φ0 → φ = φ0 + const,

A = dφ.
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We use it to rescale the inverse gab of gab. We define

ĝab = e2φgab.

This is a nondegenerate symmetric tensor onM .
Using our definitions we finally get

Dĝab = 2dφĝab − e2φgacgbd(µcθd
+ µdθ c)

= 2Aĝab + Aaĝbcθ c
+ Abĝacθ c .

This means that the new torsionless connection ∇̂ defined by (1), with A as above, satisfies

D̂ĝab = Dĝab − 2Aĝab − Aaĝbcθ c
− Abĝacθ c

= 0,

and thus is the Levi-Civita connection for a metric ĝ = ĝabθ aθ b. Since A = dφ this shows that in the special projective class
defined by ∇ there is a Levi-Civita connection ∇̂ . This completes the proof. �

We also have the following corollary, which can be traced back to Roger Liouville [1], (see also [4,12,2,3]):

Corollary 2.8. A projective structure [∇̂] on an n-dimensional manifold M contains a Levi-Civita connection of some metric if
and only if at least one special connection ∇ in [∇̂] admits a solution to the equation

∇cgab
−

1
n + 1

δa
c∇dgbd

−
1

n + 1
δb

c∇dgad
= 0. (38)

with a symmetric and nondegenerate tensor gab.
Proof. We use Theorem 2.7.

If (∇, gab, µa) satisfies (36) it is a simple calculation to show that (38) holds.
The other way around: if (38) holds for a special connection ∇ and an invertible gab, then defining µa by µa

=
1

n+1∇dgad

we get ∇cgab
= µaδb

c + µbδa
c , i.e., Eq. (36), after contracting with θ c . Now, if we take any other special connection

∇̂ , then it is related to ∇ via ∇̂X (Y ) = ∇X (Y ) + X(φ)Y + Y (φ)X . Rescalling gab to ĝab
= e−2φgab one checks that

∇̂c ĝab
−

1
n+1δ

a
c∇̂dĝbd

−
1

n+1δ
b
c∇̂dgad

= 0. Thus in any special connection ∇̂ we find an invertible ĝab
= e−2φgab with

µ̂a
=

1
n+1 ∇̂dĝad satisfying ∇̂c ĝab

= µ̂aδb
c + µ̂bδa

c . �

Remark 2.9. It is worthwhile to note that µ̂a and µb as in the above proof are related by

µ̂a
= e−2φ(µa

+ gda
∇dφ).

2.4. Prolongation and obstructions

In this section, given a projective structure [∇], we restrict it to a corresponding special projective subclass. All the
calculations below are performed assuming that ∇a is in this special projective subclass.

We will find consequences of the necessary and sufficient conditions (36) for this special class to include a Levi-Civita
connection.

Applying D on both sides of (36), and using the Ricci identity (11) we get as a consequence:

Ωb
ag

ac
+ Ωc

ag
ba

= Dµc
∧ θ b

+ Dµb
∧ θ c . (39)

This expands to the following tensorial equation:

δb
d∇aµ

c
− δb

a∇dµ
c
+ δc

d∇aµ
b
− δc

a∇dµ
b
= Rb

eadg
ec

+ Rc
eadg

be. (40)
Now contracting this equation in {ac} we get:

∇aµ
b
= δb

aρ − Pacgbc
−

1
n
W b

cdag
cd (41)

with some function ρ onM . This is the prolonged equation (36). It can be also written as:

Dµb
= ρθ b

− ωcgbc
−

1
n
W b

cdag
cdθ a. (42)

Applying D on both sides of this equation, after some manipulations, one gets the equation for the function ρ:

∇aρ = −2Pabµ
b
+

2
n
Yabcgbc . (43)

This is the last prolonged equation implied by (36). It can be also written as:

Dρ = −2ωbµ
b
+

2
n
Yabcgbcθ a. (44)
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Thus we have the following theorem [12]:

Theorem 2.10. Eq. (38) admits a solution for gab if and only if the following system

Dgbc
= µcθ b

+ µbθ c

Dµb
= ρθ b

− ωcgbc
−

1
n
W b

cdag
cdθ a

Dρ = −2ωbµ
b
+

2
n
Yabcgbcθ a,

(45)

has a solution for (gab, µc, ρ).

Simple obstructions for having solutions to (45) are obtained by inserting Dµb from (42) into the integrability conditions
(39), or what is the same, into (40). This insertion, after some algebra, yields the following proposition.

Proposition 2.11. Eq. (42) is compatible with the integrability conditions (39)–(40) only if gab satisfies the following algebraic
equation:

T[ed]
cb

af gaf
= 0, (46)

where

T[ed]
cb

af =
1
2
δc

(aW
b
f )ed +

1
2
δb

(aW
c
f )ed +

1
n
W c

(af )[eδ
b
d] +

1
n
W b

(af )[eδ
c
d]. (47)

Remark 2.12. Note that although the integrability condition (46) was derived in the special gauge when the connection
∇ was special, it is gauge independent. This is because the condition involves the projectively invariant Weyl tensor, and
because it is homogeneous in gab.

For each pair of distinct indices [ed] the tensor T[ed]
cb

af provides a map

S2M ∋ κab T[ed]
−→ κ ′ab

= T[ed]
ab

cdκ
cd

∈ S2M, (48)

which is an endomorphism T[ed] of the space S2M of symmetric 2-tensors onM . It is therefore clear that Eq. (46) has a nonzero
solution for gab only if each of these endomorphisms is singular. Therefore we have the following theorem (see also the last
section in [4]):

Theorem 2.13. A necessary condition for a projective structure [∇] to include a Levi-Civita connection of some metric g is that
all the endomorphisms T[ed] : S2M → S2M, built from its Weyl tensor, as in (47), have nonvanishing determinants. In dimension
n ≥ 3 this gives in general n(n−1)

2 obstructions to metrisability.

Remark 2.14 (Puzzle). Note that here we have I =
n(n−1)

2 obstructions, whereas the naive count, as adapted from [4], yields
I ′ =

1
4 (n

4
− 7n2

− 6n + 4). For n = 3, we see that we constructed I = 3 invariants, wheres I ′ says that there is only one.
Why?

Remark 2.15. Note that Remark 2.12 enabled us to use any connection from the projective class, not only the special ones,
in this theorem.

Further integrability conditions for (36) may be obtained by applying D on both sides of (42) and (44). Applying it on (42),
using again the Ricci identity (11), after some algebra, we get the following proposition.

Proposition 2.16. The integrability condition D2µb
= Ωb

aµ
a, for (gab, µc, ρ) satisfying (45), is equivalent to:

S[ae]
b
cdgcd

=


n + 4
2

W b
cae + W b

[ae]c


µc, (49)

where the tensor S[ae]
b
cd is given by:

S[ae]
b
cd =

n − 2
2

Yea(cδ
b
d) + ∇(cW b

d)ea + W b
(cd)[e;a].

Here, in the last term, for simplicity of the notation, we have used the semicolon to denote the covariant derivative, ∇ef = f;e.

Remark 2.17. Note that in dimension n = 2, where W a
bcd ≡ 0, the integrability conditions (46) and (49) are automatically

satisfied.
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The last integrability condition D2ρ = 0 yields:

Proposition 2.18. The integrability condition D2ρ = 0, for (gab, µc, ρ), satisfying (45) is equivalent to:

U[ab]cdgcd
= −

n + 3
2

Ybacµ
c, (50)

where the tensor U[ab](cd) reads:

U[ab]cd = ∇[aYb](cd) + W e
(cd)[aPb]e.

Remark 2.19. For the sufficiency of conditions (46), (49) and (50) see Remark 4.1.

3. Metrisability of a projective structure check list

Here, based on Theorems 2.3, 2.7, 2.10 and 2.13 and Propositions 2.11, 2.16 and 2.18, we outline a procedure how to check
if a given projective structure contains a Levi-Civita connection of some metric. The procedure is valid for the dimension
n ≥ 3.

Given a projective structure (M, [∇]) on an n-dimensional manifoldM:

(1) calculate its Weyl tensor W a
bcd and the corresponding operators T[ed] as in (48). If at least one of the determinants

τed = det(T[ed]), e < d = 1, 2, . . . , n, is not zero the projective structure (M, [∇]) does not include any Levi-Civita
connection.

(2) If all the determinants τed vanish, find a special connection ∇
0 in [∇], and restrict to a special projective subclass

[∇
0
] ⊂ [∇].

(3) Now taking any connection∇ from [∇
0
] calculate theWeyl, (symmetric) Schouten, and Cotton tensors, and the tensors

T[ed]
cb

af , S[ae]
b
cd,U[ab]cd of Propositions 2.11, 2.16 and 2.18.

(4) Solve the linear algebraic equations (46), (49) and (50) for the unknown symmetric tensor gab and vector field µa.
(5) If these equations have no solutions, or the n × n symmetric matrix gab has vanishing determinant, then (M, [∇]) does

not include any Levi-Civita connection.
(6) If Eqs. (46), (49) and (50) admit solutionswith nondegenerate gab, find the inverse gab of the general solution for gab, and

check whether Eq. (30) is satisfied. If this equation cannot be satisfied by restricting the free functions in the general
solution gab of Eqs. (46), (49) and (50), then (M, [∇]) does not include any Levi-Civita connection.

(7) If (30) may be satisfied, restrict the general solution gab of (46), (49) and (50) to only gabs satisfying (30), and insert
(gab, µa), with such gabs and the most general µa solving (46), (49) and (50), in Eqs. (45).

(8) Find the general solution to Eqs. (45) for (gab, µa, ρ), with (gab, µa) from the ansatz described in point (7).
(9) If the solution for such (gab, µa, ρ) does not exist, or the symmetric tensor gab is degenerate, then (M, [∇]) does not

include any Levi-Civita connection.
(10) Otherwise find the inverse gab of gab from the solution (gab, µa, ρ), and solve for a function φ on M such that

dφ = −gabµaθ b.
(11) The metric ĝ = e2φgabθ aθ b has the Levi-Civita connection ∇̂ which is in the special projective class [∇

0
] ⊂ [∇].

4. 3-dimensional examples

Example 1. Here, as the first example, we consider a 3-dimensional projective structure (M, [∇]) with the projective class
represented by the connection 1-forms:

Γ a
b =


1
2
adx −

1
4
bdy −

1
4
bdx 0

−
1
4
ady −

1
4
adx +

1
2
bdy 0

cdy −
1
4
adz cdx −

1
4
bdz −

1
4
adx −

1
4
bdy

 . (51)

The 3-manifoldM is parameterised by (x, y, z), and a = a(z), b = b(z), c = c(z) are sufficiently smooth real functions of z.
In addition we assume that

a ≠ 0, b ≠ 0, c ≠ const.
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It can be checked that this connection is special. More specifically we have:

W a
b =


−

1
2
c ′dxy −

3
8
a′dxz +

1
4
b′dyz

3
8
b′dxz

1
8
b′dxy

3
8
a′dyz

1
2
c ′dxy +

1
4
a′dxz −

3
8
b′dyz −

1
8
a′dxy

−acdxy −
1
2
c ′dyz bcdxy −

1
2
c ′dxz

1
8
a′dxz +

1
8
b′dyz

 ,

where (dxy, dxz, dyz) is an abbreviation for (dx ∧ dy, dx ∧ dz, dy ∧ dz), and

ωa =


−

3
16

a2dx +
1
16

(8c ′
+ ab)dy −

1
8
a′dz,

1
16

(8c ′
+ ab)dx −

3
16

b2dy −
1
8
b′dz, −

1
8
a′dx −

1
8
b′dy


.

Having these relations we easily calculate the obstructions τ[ed]. These are:

τ13 = −
9

8192
(a′)6, τ23 = −

9
8192

(b′)6,

and

τ12 = −
3

128
c2(c ′)2(ba′

− ab′)2.

This shows that (M, [∇]) may be metrisable only if

a = const, b = const.

For such a and b all the obstructions τ[ed] vanish. Assuming this we pass to point (4) of our procedure from Section 3.

It follows that with our assumptions, the general solution of Eq. (46) is:

g11
= g22

= 0, g13
=

bc
c ′

g12, g23
=

ac
c ′

g12. (52)

Inserting this in (49) shows that its general solution is given by the above relations for gab and

µ1
=

1
12


1 −

4cc ′′

(c ′)2


bg12, µ2

=
1
12


1 −

4cc ′′

(c ′)2


ag12. (53)

The general solution (52) and (53) of (46) and (49) is compatible with the last integrability condition (50) if and only if the
function c = c(z) defining our projective structure (M, [∇]) satisfies a third order ODE:

c(3)c ′c +


(c ′)2 − 2cc ′′


c ′′

= 0. (54)

If this condition for c = c(z) is satisfied then (52) and (53) is the general solution of (46), (49) and (50). Moreover, it follows
that the solution (52) and (53) also satisfies (30), and the tensor gab is nondegenerate for this solution provided that g12

≠ 0.
This means that (i) the projective structure (M, [∇]) with a ≠ 0, b ≠ 0, c ≠ const may include a Levi-Civita connection

only if (54) holds, and (ii) if it holds, the integrability conditions (46), (49) and (50) are all satisfied with the general solution
(52) and (53), with g12

≠ 0.
We now pass to point (8) of the procedure from Section 3: assuming that (54) holds, we want to solve (45) for (gab, µa)

satisfying (52) and (53).
It follows that the {11} component of the first of Eq. (45) gives a further restriction on the function c. Namely, if (gab, µa)

are as in (52) and (53), then Dg11
= 2µ1θ1 iff c ′′c − (c ′)2 = 0, i.e., iff

c = c1ec2z, where c1, c2 are constants s.t. c1c2 ≠ 0.

Luckily this c satisfies (54). Looking at the next component, {12}, of the first Eq. (45), we additionally get dg12
= −

1
2 (adx +

bdy)g12. And now, this is compatible with the {13} component of the first Eq. (45), if and only if b = 0 or g12
= 0. We have

to exclude g12
= 0, since in such a case gab is degenerate. On the other hand b = 0 contradicts our assumptions about the

function b. Thus, according to the procedure from Section 3, we conclude that (M, [∇]) with the connection represented by
(51) with ab ≠ 0 and c ≠ const never includes a Levi-Civita connection.

Remark 4.1. Note that this example shows that even if all the integrability conditions (30), (46), (49) and (50) are satisfied
Eqs. (45) may have no solutions with nondegenerate gab. Thus conditions (46), (49) and (50) and (30) are not sufficient for the
existence of a Levi-Civita connection in the projective class.
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Example 2. As a next example we consider the same 3-dimensional manifold M as above, and equip it with a projective
structure [∇] corresponding to Γ a

b as in (51), but now assuming that the functions a = a(z) and b = b(z) satisfy

a ≡ 0 and b ≡ 0.

For further convenience we change the variable c = c(z) to the new function h = h(z) ≠ 0 such that c(z) = h′(z).

When running through the procedure of Section 3, which enables us to say if such a structure includes a Levi-Civita
connection, everything goes in the same way as in the previous example, up to Eqs. (53). Thus applying our procedure of
Section 3 we get that the general solution to (46) and (49) is given by

g11
= g22

= g13
= g23

= µ1
= µ2

= 0.
It follows that this general solution to (46) and (49), automatically satisfies (50) and (30).

Now, with g11
= g22

= g13
= g23

= µ1
= µ2

= 0, the first of Eq. (45) gives:
g12

= const, dg33
= 2h′g12dz, µ3

= h′g12,

and the second, in addition, gives:

ρ =
2
3
h′′g12.

This makes the last of Eqs. (45) automatically satisfied.
The only differential equation to be solved is dg33

= 2h′g12dz, which after a simple integration yields:
g33

= 2g12h.
Thus we have

gab
= g12

0 1 0
1 0 0
0 0 2h


,

with the inverse

gab =
1
g12

0 1 0
1 0 0

0 0
1
2h

 , g12
= const ≠ 0, h = h(z) ≠ 0.

Now, realising point (10) of the procedure of Section 3, we define

A = −gabµaθ b
= −

h′

2h
dz = −

1
2
d log(h). (55)

This means that the potential φ = −
1
2 log(h), and that the metric ĝab whose Levi-Civita connection is in the projective class

of

Γ a
b =

 0 0 0
0 0 0

h′dy h′dx 0


, (56)

is given by

ĝab = −
1
g12


0

1
h

0
1
h

0 0

0 0
1

2h2

 , g12
= const ≠ 0, h = h(z) ≠ 0,

or what is the same by:

ĝ = −
1

g12h2


2hdxdy + dz2), g12

= const ≠ 0, h = h(z) ≠ 0.

It is easy to check that in the coframe (θ1, θ2, θ3) = (dx, dy, dz), the Levi-Civita connection 1-forms for the metric ĝ as
above is given by

Γ̂ a
b =


−

h′

2h
dz 0 −

h′

2h
dx

0 −
h′

2h
dz −

h′

2h
dy

h′dy h′dx −
h′

2h
dz

 ,

which satisfies (2) with Γ a
b given by (56) and A given by (55).
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Remark 4.2. Thus we have shown that the projective structure [∇] generated by the connection 1-forms (56) is metrisable,
and thatmodulo rescalling, ĝ → const ĝ , there is a uniquemetric, whose Levi-Civita connection is in the projective structure
[∇]. Note that the metric ĝ has Lorentzian signature.

Example 3. Nowwe continue with the example of a projective structure defined in Section 2.1 by formula (32). Calculating
the projective Cotton tensor for this structure we find that it is projectively flat if and only if

c ′′
= 0 and 2cb′

+ 3bc ′
= 0 and 2ca′

+ 3ac ′
= 0.

This happens when a′
= b′

= c ′
= 0, but also e.g. when c = z, b = s1z−

3
2 and a = s2z−

3
2 , with s1, s2 being constants. If the

structure is not projectively flat the most general nondegenerate solution to Eq. (46) is

gab
=


−

g33

c ′
a′ g12 0

g12
−

g33

c ′
b′ 0

0 0 g33

 . (57)

It follows that if c ′
= 0, projectively non-flat structures which are metrisable do not exist. In formula (57) we recognise (33)

with f =
g33

c′ . Looking for projectively non-flat structures, we now pass to Eq. (49). With gab as in (57) this, in particular,
yields

µ1
= µ2

= 0 and ba′
− ab′

= 0.

Thus only the structures satisfying this last equation can bemetrisable. In the following we assume that both a and b are not
constant. Then

b = s1a,

with sa a constant. This solution satisfies all the other Eqs. (49) if and only if

µ3
=

2g12(2cc ′a′
+ ac ′2) + g33(a′c ′′

− c ′a′′)

6a′c ′
.

Now, with all these choices Eqs. (50) are also satisfied. Thus we may pass to the differential equation (36) for the remaining
undetermined gab. It follows that these equations can be satisfied if and only if

c = s2a

with s2 = const. Now, the remaining Eqs. (36) are satisfied provided that the unknown functions g12 and g33 satisfy:

g12
z = 2

s1
s2

a g33 and g33
z = 2s2 a g12 (58)

and are independent of the variables x and y. If g12 and g33 solve (58) then all the other Eqs. (45) are satisfied if and only if

ρ = s1 a2 g33
+

2
3
s2 a′ g12.

System (58) can be solved explicitly (the solution is not particularly interesting), showing that in this case also our procedure
defined in Section 3 leads effectively to the solution of metrisability problem.

Example 4. Our last example goes beyond three dimensions. It deals with the so-called (anti-)de Sitter spaces.
Let Xa be a constant vector, and ηab be a nondegenerate symmetric n× n constant matrix. We focus on an example when

ηab = diag(1, . . . , 1, −1, . . . ,−1),

with p ‘+1’s, and q ‘−1’s.
In

U = {(xa) ∈ Rn
| ηcdX cxd ≠ 0}

we consider metrics ĝ of the form

ĝ =
ηabdxadxb

(ηcdX cxd)2
. (59)

We analyse these metrics in an orthonormal coframe

θ a
=

dxa

ηbcXbxc
, (60)
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in which

ĝ = ηabθ
aθ b.

In the following we will use a convenient notation such that:

ηfgX f Xg
= η(X, X).

We call the vector X timelike iff η(X, X) > 0, spacelike iff η(X, X) < 0, and null iff η(X, X) = 0.

It is an easy exercise to find that in the coframe (60) the Levi-Civita connection 1-forms Γ̂ a
b associated with metrics (59)

are:

Γ̂ a
b = ηbd (Xaθd

− Xdθ a).

Thus the Levi-Civita connection curvature, Ω̂a
b = dΓ̂ a

b + Γ̂ a
c ∧ Γ̂ c

b, is given by

Ω̂a
b = −η(X, X)θ a

∧ θdηbd.

This, in particular, means that the Levi-Civita curvature tensor, R̂a
bcd, the Levi-Civita–Weyl tensor,

LC
W a

bcd, and the Ricci tensor
LC
Rab, look, respectively, as:

R̂a
bcd = η(X, X) (ηbcδ

a
d − ηbdδ

a
c),

LC
W a

bcd = 0,

and
LC
Rbd = (1 − n)η(X, X)ηbd.

This proves the following proposition:

Proposition 4.3. The metrics

ĝ =
ηabdxadxb

(ηcdX cxd)2

are the metrics of constant curvature. Their curvature is totally determined by their constant Ricci scalar
LC
R= n(1− n)η(X, X). It

is positive, vanishing or negative depending on the causal properties of the vector X. Hence if X is spacelike (U, ĝ) is locally the
de Sitter space, if X is timelike (U, ĝ) is locally the anti-de Sitter space, and if X is null (U, ĝ) is flat.

Using this proposition and Corollary 2.6 we see that metrics (59) are all projectively equivalent. This fact may have some
relevance in cosmology, as discussed e.g. in [13–16]. We discuss this point in more detail in a separate paper [17].

References

[1] R. Liouville, Sur une classe d’equations differentiells, parmi lequelles, in particulier, toutes celles des lignes geodesiques se trouvent comprises, C. R.
Hebd. Seances Acad. Sci. 105 (1887) 1062–1064.

[2] J. Mikes, Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci. 78 (1996) 311–333.
[3] N.S. Sinjukov, Geodesic Mappings of Riemannian Spaces, Nauka, Moscow, 1979, (in Russian).
[4] R.L. Bryant, M. Dunajski, M. Eastwood, Metrisability of two-dimensional projective structures, 2008. Available from: arXiv:0801.0300.
[5] S. Casey, M. Dunajski, Metrisability of path geometries, 2010 (in preparation).
[6] E. Cartan, Sur les varietes a connection projective, Bull. Soc. Math. France 52 (1924) 205–241;

E. Cartan, Oeuvres III 1 (1955) 825–862.
[7] T.Y. Thomas, Announcement of a projective theory of affinely connected manifolds, Proc. Natl. Acad. Sci. 11 (1925) 588–589.
[8] M.G. Eastwood, Notes on projective differential geometry, in: Symmetries and Overdetermined Systems of Partial Differential Equations, in: IMA

Volumes in Mathematics and its Applications, vol. 144, Springer Verlag, 2007, pp. 41–60.
[9] S. Kobayashi, Transformation Groups in Differential Geometry, Springer, Berlin, 1970.

[10] E.T. Newman, P. Nurowski, Projective connections associated with second-order ODEs, Class. Quantum Gravity 20 (2003) 2325–2335.
[11] P. Nurowski, G.A.J. Sparling, Three-dimensional Cauchy–Riemann structures and second-order ordinary differential equations, Class. QuantumGravity

20 (2003) 4995–5016.
[12] M.G. Eastwood, V.Matveev,Metric connections in projective differential geometry, in: Symmetries andOverdetermined Systems of Partial Differential

Equations, in: IMA Volumes in Mathematics and its Applications, vol. 144, Springer Verlag, 2007, pp. 339–350.
[13] G.S. Hall, D.P. Lonie, The principle of equivalence and projective structure in spacetimes, Class. Quantum Gravity 24 (2007) 3617–3636.
[14] G.S. Hall, D.P. Lonie, The principle of equivalence and cosmological metrics, J. Math. Phys. 49 (2008) 022502.
[15] G.S. Hall, D.P. Lonie, Projective equivalence of Einstein spaces in general relativity, Class. Quantum Gravity 26 (2009) 125009. 10pp.
[16] G.S. Hall, D.P. Lonie, Holonomy and projective equivalence in 4-dimensional Lorentz manifolds, SIGMA Symmetry Integrability Geom. Methods Appl.

5 (2009) 066. 23 pages.
[17] P. Nurowski, Is dark energy meaningless? Rend. del Semin. Mat. Univ. a Politech. di Torino 68 (2010) 361–367.


