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What is CCC?

CCC or Conformal Cyclic Cosmology is a proposal for a
Cosmology Hypothesis which answers the question ‘What
was before the Big Bang?’.
The scheme of Penrose’s CCC is as follows:1

1See: P. Tod (2015), ‘The equations of Conformal Cyclic Cosmology’,
Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7, for details.
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Penrose’s Conformal Cyclic Cosmology

The Universe consists of eons, each being a time oriented
spacetime, whose conformal compactifications have
spacelike I . The Weyl tensor of the metric on each I is zero.

DISCLAIMER:

CCC says nothing about this what is the physics in a given eon
when the physical age of it is normal; normal meaning that eon
is neither too young nor too old. CCC tells what is going on
when an eon is either about to die, or had just been born.

In particular, CCC does not require that the eons have the same
history! It is Conformal Cyclic Cosmology, and not Conformal
Periodic Cosmology!
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Penrose’s Conformal Cyclic Cosmology

The Universe consists of eons, each being a time oriented
spacetime, whose conformal compactifications have
spacelike I . The Weyl tensor of the 4-metric on each I is
zero.

Eons are ordered, and the conformal compactifications of
consecutive eons, say the past one and the present one, are
glued together along I + of the past eon, and I − of the
present eon.

The vicinity of the matching surface (the wound) of the past
and the present eons – this region Penrose calls bandaged
region for the two eons – is equipped with the following three
metrics, which are conformally flat at the wound:

a Lorentzian metric g which is regular everywhere,
a Lorentzian metric ǧ, which represents the physical metric
of the present eon, and which is singular at the wound,
a Lorentzian metric ĝ, which represents the physical metric
of the past eon, and which infinitely expands at the
wound.
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a Lorentzian metric ĝ, which represents the physical metric
of the past eon, and which infinitely expands at the
wound.

4/34



Penrose’s Conformal Cyclic Cosmology

The Universe consists of eons, each being a time oriented
spacetime, whose conformal compactifications have
spacelike I . The Weyl tensor of the 4-metric on each I is
zero.

Eons are ordered, and the conformal compactifications of
consecutive eons, say the past one and the present one, are
glued together along I + of the past eon, and I − of the
present eon.

The vicinity of the matching surface (the wound) of the past
and the present eons – this region Penrose calls bandaged
region for the two eons – is equipped with the following three
metrics, which are conformally flat at the wound:

a Lorentzian metric g which is regular everywhere,
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Penrose’s Conformal Cyclic Cosmology

In a bandage region, the three metrics g, ǧ and ĝ, are
conformally related on their overlaping domains.
How to make this relation specific is debatable, but
Penrose proposes that

ǧ = Ω2g, and ĝ = 1
Ω2 g, with Ω→ 0 on the wound.

The metric ǧ in the present eon is a physical metric
there. Likewise, the metric ĝ in the past eon is a physical
metric there.
Of course, the metric ǧ in the present eon, and the metric
ĝ in the past eon, as physical spacetime metrics,
should satisfy Einstein’s equations in their spacetimes,
respectively.
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there. Likewise, the metric ĝ in the past eon is a physical
metric there.
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Ω2 g, with Ω→ 0 on the wound.
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there. Likewise, the metric ĝ in the past eon is a physical
metric there.
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Of course, the metric ǧ in the present eon, and the metric
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ĝ in the past eon, as physical spacetime metrics,
should satisfy Einstein’s equations in their spacetimes,
respectively.

5/34



Penrose’s Conformal Cyclic Cosmology

In a bandage region, the three metrics g, ǧ and ĝ, are
conformally related on their overlaping domains.
How to make this relation specific is debatable, but
Penrose proposes that
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there. Likewise, the metric ĝ in the past eon is a physical
metric there.
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Modelling Penrose’s CCC scenario

Question: How to make a model of Penrose’s bandaged
region of two eons?
One needs a function Ω, vanishing on some spacelike
hypersurface, and a regular Lorentzian 4-metric g, such
that if ǧ = Ω2g satisfies Einstein equations with some
physically reasonable energy momentum tensor, then
ĝ = 1

Ω2 g also satisfies Einstein equations with possibly
different, but still physically reasonable energy momentum
tensor.
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Modelling Penrose’s CCC scenario

Similar question to the question posed and solved by H.
Brinkman. In 1925 he asked a question ‘when in a conformal
class of metrics there could be two nonisometric Einstein
metrics?’. Brinkman found all such metrics in dimension four. In
every signature.

Here the problem is similar. It seems even simpler: the same
function Ω should lead to two conformally related but different
solutions ǧ = Ω2g and ĝ = Ω−2g of Einstein equations, with a
prescribed energy momentum tensor on the M̂ part, and a
reasonable energy momentum tensor on the other M̌.

It seems to be very unlikely that one finds something interesting
on (M̌, ǧ), when T̂ ij and its corresponding ĝ = Ω−2g is given.

To get some intuitions , let us check what we can do in the
conformally flat situation (reasonable, because compatible
with the cosmological principle/FLRW paradigm), and
(various) perfect fluids?
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on (M̌, ǧ), when T̂ ij and its corresponding ĝ = Ω−2g is given.
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To get some intuitions , let us check what we can do in the
conformally flat situation (reasonable, because compatible
with the cosmological principle/FLRW paradigm), and
(various) perfect fluids?

8/34



Modelling Penrose’s CCC scenario

Similar question to the question posed and solved by H.
Brinkman. In 1925 he asked a question ‘when in a conformal
class of metrics there could be two nonisometric Einstein
metrics?’. Brinkman found all such metrics in dimension four. In
every signature.

Here the problem is similar. It seems even simpler: the same
function Ω should lead to two conformally related but different
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To get some intuitions , let us check what we can do in the
conformally flat situation (reasonable, because compatible
with the cosmological principle/FLRW paradigm), and
(various) perfect fluids?

8/34



Modelling Penrose’s CCC scenario

Similar question to the question posed and solved by H.
Brinkman. In 1925 he asked a question ‘when in a conformal
class of metrics there could be two nonisometric Einstein
metrics?’. Brinkman found all such metrics in dimension four. In
every signature.

Here the problem is similar. It seems even simpler: the same
function Ω should lead to two conformally related but different
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Polytrope perfect fluids in FLRW models

Let us for a while restrict to the FLRW metrics with κ = 1,
gtest = −dt2 + Ω2(t)r2

0

(
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2)).

It is convenient to introduce a conformal time η =
∫ dt

a(t)
so that the FLRW metric looks

gtest = Ω2(η)
(
− dη2 + r2

0
(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

))
,

i.e. gtest = Ω2(η)gEinst .
This parametrization is very convenient since taking
u = −Ω(η)dη, the most general FLRW metric g satisfying
Einstein’s equations

Ric − 1
2Rgtest = (µ+ p)u ⊗ u + pgtest

with polytropic equation of state p = wµ, w = const , is
given by

Ω(η) = Ω0

(
sin2 (1+3w)η

2r0

) 1
1+3w if w 6= −1

3 ,
and

Ω(η) = Ω0 exp(bη) if w = −1
3 .
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Take ǧ = gtest = Ω2(η)gEinst . This satisfies Einstein’s
equations with perfect fluid with p̌ = w µ̌.
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Take ǧ = gtest = Ω2(η)gEinst . This satisfies Einstein’s
equations with perfect fluid with p̌ = w µ̌.
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10/34



Polytrope perfect fluids in FLRW models

Now we go back to the Penrose-Tod’s bandage triple
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(ǧ,g, ĝ).
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then ĝ = Ω−2g satisfies the same kind of Einstein’s
equations, but now with w replaced by ŵ such that
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Take g as gEinst , g = gEinst
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ŵ = −2/3− w .
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Take as ĝ = Ω−2(η)gEinst .
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Einstein’s equations with perfect fluid, but with p̂ = ŵ µ̂.
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Take g as gEinst , g = gEinst
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ŵ = −2/3− w .
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Since ǧ = Ω2g satisfying these Einstein’s equations has:

Ω(η) = Ω0

(
sin2 (1+3w)η

2r0

) 1
1+3w if w 6= −1

3 ,
and

Ω(η) = Ω0 exp(bη) if w = −1
3 ,
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then ĝ = Ω−2g satisfies the same kind of Einstein’s
equations, but now with w replaced by ŵ such that
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Take g as gEinst , g = gEinst
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Symmetry of solutions conformal to the Einstein Universe

Theorem
If Ω = Ω(η) is such that ǧ = Ω2gEinst satisfies Einstein’s
equations, with Λ = 0, and with the energy momentum
tensor Ť of a perfect fluid, whose presure p̌ is proportional to
the energy density µ̌, via p̌ = w̌ µ̌, w̌ = const , then

ĝ =
1

Ω2 gEinst satisfies Einstein’s equations, with Λ = 0, and

with the energy momentum tensor T̂ of a perfect fluid,
whose presure p̂ and the energy density µ̂ are related by
p̂ = ŵ µ̂ with

ŵ = −1
3

(2 + 3w̌) .

The Ricci sclar of the metric ǧ is
R = 3(1−3w̌)

Ω2
0r2

0

(
sin6 (1+3w̌)η

2r0

) 1+w
1+3w

if w̌ 6= −1/3 and R =
6(1+b2r2

0 )

Ω2
0r2

0 exp(2bη)
if w̌ = −1/3,

so it is positive if −1 ≤ w̌ < 1/3 (recall the energy conditions
−1 ≤ w̌ ≤ 1).11/34
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ĝ =
1

Ω2 gEinst satisfies Einstein’s equations, with Λ = 0, and

with the energy momentum tensor T̂ of a perfect fluid,
whose presure p̂ and the energy density µ̂ are related by
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ŵ = −1
3

(2 + 3w̌) .

The Ricci sclar of the metric ǧ is
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ĝ =
1

Ω2 gEinst satisfies Einstein’s equations, with Λ = 0, and

with the energy momentum tensor T̂ of a perfect fluid,
whose presure p̂ and the energy density µ̂ are related by
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Transformation ǧ → ĝ → ǧ → ĝ → . . . of fluids
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12/34



Transformation ǧ → ĝ → ǧ → ĝ → . . . of fluids

Suspiscious points: w̌ = −1,1/3 (cosmological constant -
radiation), since the scalar curvature R = 0, when w̌ = 1/3;
and w̌ = −1/3 (gas of strings), when Ω 6= 0 on I .
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Suspiscious points: w̌ = −1,1/3 (cosmological constant -
radiation), since the scalar curvature R = 0, when w̌ = 1/3;
and w̌ = −1/3 (gas of strings), when Ω 6= 0 on I .

13/34
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Transformation ǧ → ĝ → ǧ → ĝ → . . . of fluids: more careful approach

We come back to the FLRW metric ǧ = −dt2 + Ω2(t)r2
0 gS3 .

We write it as ǧ = Ω2(t)
(
− dt2

Ω2(t) + r2
0 gS3

)
, so that it is clear that

ǧ = Ω2(t)gEinst .

Then the condition that ǧ satisfies perfect fluid Eisntein’s
equations with ǔ = −dt , p̌ = w̌ µ̌, and the cosmological constant
Λ̌, is equivalent to the following ODE for Ω:

2r2
0 ΩΩ′′ = −(1 + 3w̌)(1 + r2

0 Ω′2) + (1 + w̌)Λ̌r2
0 Ω2.

We want that w̌ = const and that ĝ = 1
Ω2 gEinst satisfies perfect

fluid Eisntein’s equations with û = − dt
Ω2 , p̂ = ŵ µ̂, the

cosmological constant Λ̂, and ŵ = const .

From the Einstein’s equations for ĝ we easilly calculate ŵ , and
forcing it to be constant, because of the above ODE satisfied by
Ω, we find that it is possible provided that:

Λ̌Λ̂(1 + w̌)(1− 3w̌) = 0.

Thus, a neccessary condition for both Ω and Ω−1 to describe
the polytropes, is that either one of the Λs is zero, or w̌ is of the
‘radiation-Λ’ type.
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Transformation ǧ → ĝ → ǧ → ĝ → . . . of fluids: more careful approach

We come back to the FLRW metric ǧ = −dt2 + Ω2(t)r2
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equations with ǔ = −dt , p̌ = w̌ µ̌, and the cosmological constant
Λ̌, is equivalent to the following ODE for Ω:

2r2
0 ΩΩ′′ = −(1 + 3w̌)(1 + r2

0 Ω′2) + (1 + w̌)Λ̌r2
0 Ω2.

We want that w̌ = const and that ĝ = 1
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0 gS3 .

We write it as ǧ = Ω2(t)
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forcing it to be constant, because of the above ODE satisfied by
Ω, we find that it is possible provided that:

Λ̌Λ̂(1 + w̌)(1− 3w̌) = 0.

Thus, a neccessary condition for both Ω and Ω−1 to describe
the polytropes, is that either one of the Λs is zero, or w̌ is of the
‘radiation-Λ’ type.

14/34
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Ω2 , p̂ = ŵ µ̂, the
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(
− dt2

Ω2(t) + r2
0 gS3

)
, so that it is clear that
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From the Einstein’s equations for ĝ we easilly calculate ŵ , and
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(
− dt2

Ω2(t) + r2
0 gS3

)
, so that it is clear that
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Then the condition that ǧ satisfies perfect fluid Eisntein’s
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cosmological constant Λ̂, and ŵ = const .

From the Einstein’s equations for ĝ we easilly calculate ŵ , and
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Transformation ǧ → ĝ → ǧ → ĝ → . . . of fluids: more careful approach

Considering the case w̌ = 1/3, one shows that
remarkably ŵ = 1/3 (generalization of the result of Paul
Tod). More explicitly this case can be integrated to the very
end.
Theorem. The function Ω = Ω(t) given by:

Ω2 =
3−3 cosh(2

√
Λ̌
3 t)−2r2

0

√
Λ̌Λ̂ sinh(2

√
Λ̌
3 t)

Λ̌r2
0

has the property that both ǧ = Ω2gEinst and ĝ = Ω−2gEinst
satisfy Einstein’s equations with polytropic perfect fluid
equation of state, for which ŵ = w̌ = 1/3 (radiation), and
with the corresponding cosmological constants Λ̌ and Λ̂.
Here gEinst = −Ω−2dt2 + r2

0 gS3 .
Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha...
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equation of state, for which ŵ = w̌ = 1/3 (radiation), and
with the corresponding cosmological constants Λ̌ and Λ̂.
Here gEinst = −Ω−2dt2 + r2

0 gS3 .
Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha...

15/34
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Motivation for the next model (picture by R. Penrose)
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Motivation for the next model (picture by P.N.)
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Possible generalizations

I consider two consecutives eons M̂ and M̌ from Penrose’s
Conformal Cyclic Cosmology and study how the matter content
of the past eon (M̂) determines the matter content of the present
eon (M̌) by means of the reciprocity hypothesis.

I assume that the only matter content in the final stages of the
past eon is a spherical wave described by Einstein’s equations
with the pure radiation energy momentum tensor

T̂ ij = Φ̂K iK j , ĝijK iK j = 0,

and with cosmological constant Λ̂ . I solve these Einstein’s
equations associating to M̂ the metric ĝ = t−2

(
− dt2 + ht

)
,

which is a Lorentzian analog of the Poincaré-Einstein metric
known from the theory of conformal invariants. The solution is
obtained under the assumption that the 3-dimensional
conformal structure [h] on the I + of M̂ is flat, that the metric
ĝ admits a power series expansian in the time variable t , and
that h0 = ht=0 ∈ [h]. It follows that such a solution depends on
precisely one real arbitrary function of the radial variable r .
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Possible generalizations

Applying the reciprocal hypothesis, ĝ → ǧ = t4ĝ, I show that the
new eon (M̌, ǧ) created from the one containing a single
spherical wave, is filled at its initial state with three types of
radiation: (i) the damped spherical wave which continues its
life from the previous eon, (ii) the ingoing spherical wave
obtained as a result of a colision of the wave from the past eon
with the Bang hypersurface and (iii) randomly scattered waves
that could be interpreted as perfect fluid with the energy density
ρ̌ and the isotropic pressure p̌ such that p̌ = 1

3 ρ̌. The metric ǧ
solves the Einstein’s equations without cosmological constant
and with the energy-momentum tensor

Ť ij = Φ̌K iK j + Ψ̌LiLj + (ρ̌+ p̌)ǔi ǔj + p̌ǧ ij ,

in which ǔi ǔj ǧij = −1, ǧijLiLj = 0 and LiK j ǧij = −2.

19/34



Possible generalizations

Applying the reciprocal hypothesis, ĝ → ǧ = t4ĝ, I show that the
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solves the Einstein’s equations without cosmological constant
and with the energy-momentum tensor
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solves the Einstein’s equations without cosmological constant
and with the energy-momentum tensor
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Possible generalizations

I start with a conformal class [h0] represented by the flat
3-dimensional metric

h0 = 2r2dzdz̄
(1+ zz̄

2 )2 + dr2.

Then I make Poincar’e anstaz by considering a 1-paramater
family of 3-d metrics ht . This will be a spherically symmetric
family

ht =
2r2
(

1+ν(t,r)
)

dzdz̄

(1+ zz̄
2 )2 +

(
1 + µ(t , r)

)
dr2,

where the unknown function ν = ν(t , r) and µ = µ(t , r) are both
real analytic in the variable t and such that:
ν(0, r) = 0 and µ(0, r) = 0.

This satisfies ht=0 = h0 and because of the analyticity
assumption we have ν(t , r) =

∑∞
i=1 ai (r)t i and

µ(t , r) =
∑∞

i=1 bi (r)t i , with a set of differentiable functions
ai = ai (r) and bi = bi (r) depending on the r variable only.
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Possible generalizations

This leads to the following ansatz for the Poincaré-type metric ĝ
for the past eon M̂:

ĝ = t−2
(
− dt2 +

2r2
(

1+
∑∞

i=1 ai (r)t i
)

dzdz̄

(1+ zz̄
2 )2 +

(
1 +

∑∞
i=1 bi (r)t i

)
dr2
)
.

Our (pre)past eon manifold M̂ is parameterized by t > 0, r > 0
and z ∈ C ∪ {∞}.

I now consider the following null vector field K on M̂:

K = ∂t +
(

1 +
∑∞

i=1 bi (r)t i
)− 1

2
∂r .

It is tangent to a congruence of null geodesics without shear and
twist, which represents light rays emanating from the source at
the surface r = 0.

I require that the Poincaré-type metric ĝ satisfies the Einstein
equations R̂ ij = Λ̂ĝ ij + Φ̂K iK j with this null vector field K and
some functions Φ̂ and Λ̂. We have the following
theorem/conjecture.
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equations R̂ ij = Λ̂ĝ ij + Φ̂K iK j with this null vector field K and
some functions Φ̂ and Λ̂. We have the following
theorem/conjecture.

21/34



Possible generalizations

This leads to the following ansatz for the Poincaré-type metric ĝ
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for the past eon M̂:
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Possible generalizations

Theorem 1.
If the metric

ĝ =t−2(−dt2 + ht ) =

t−2
(
− dt2 +

2r2
(

1 +
∑∞

i=1 ai (r)t i
)
dzdz̄

(1 + zz̄
2 )2

+
(

1 +
∞∑
i=1

bi (r)t i )dr2
)

satisfies Einstein’s equations

Ê ij := R̂ ij − Λ̂ĝ ij − Φ̂K̂ i K̂ j = 0

with

K = K i∂i = ∂t +
(

1 +
∞∑
i=1

bi (r)t i
)− 1

2
∂r , K̂i = ĝijK j ,
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Possible generalizations

The coefficients a1(r), a2(r) b1(r) and b2(r) identically vanish,
a1(r) = a2(r) = b1(r) = b2(r) = 0, and the power series
expansion of ht starts at the t3 terms, ht = t3χ(r) +O(t4).

The metric ĝ, or what is the same, the power series expansions
ν(t , r) =

∑∞
i=1 ai (r)t i and µ(t , r) =

∑∞
i=1 bi (r)t i , are totally

determined up to infinite order by an arbitrary differentiable
function f = f (r).

More precisely, the Einstein equations Ê ij = O(tk+1) solved up
to an order k , together with an arbitrary differentiable function
f = f (r), uniquely determine ν(t , r) and µ(t , r) up to an order
(k + 2).

23/34



Possible generalizations

The coefficients a1(r), a2(r) b1(r) and b2(r) identically vanish,
a1(r) = a2(r) = b1(r) = b2(r) = 0, and the power series
expansion of ht starts at the t3 terms, ht = t3χ(r) +O(t4).
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Possible generalizations

In the lowest order the solution reads:

ν =
f
r3 t3 +O(t4) and µ = −2f

r3 t3 +O(t4);

The energy function Φ̂ and the cosmological constant Λ̂ are:

Φ̂ = 3
f ′

r3 t6 +O(t7) and Λ̂ = 3 +O(tk+3);

the Weyl tensor of the solution is

W i
jkl = O(t).

In particular, the Weyl tensor W i
jkl vanishes at t = 0 and

Λ̂ = 3 > 0 there.
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Possible generalizations

With the use of computers we calculated this solution up to the
order k = 10, finding explicitly ν =

∑10
k=3 ak tk and

µ =
∑10

k=3 bk tk . The formulas are compact enough up to k = 8
and up to the order k = 8 they read:

ν(t, r) =f t3

r3 −
3
4 f ′ t4

r4 + 1
10
(
− 2rf ′ + 3r2f ′′

) t5

r5 +

1
24
(
3f 2 − 3rf ′ + 3r2f ′′ − 2r3f (3)) t6

r6 +

r
280
(
− 24f ′ − 105ff ′ + 24rf ′′ − 12r2f (3) + 5r3f (4)) t7

r7−

r
960
(
60f ′ + 288ff ′ − 150rf ′2 − 60rf ′′ − 216rff ′′ + 30r2f (3) − 10r3f (4) + 3r4f (5)) t8

r8 +

O(
( t

r
)9)

µ(t, r) =− 2f t3

r3 + 3
4 f ′ t4

r4 −
1
5 f ′′ t5

r5 + 1
24
(
39f 2 + r3f (3)) t6

r6 −
r

280
(
390ff ′ + 2r3f (4)) t7

r7 +

r
960
(
− 18ff ′ + 300rf ′2 + 378rff ′′ + r4f (5)) t8

r8 +O(
( t

r
)9).
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Possible generalizations

For a solution up to this order we find that:

Φ̂ = 3r3f ′ t6

r6 + 3r3(f ′ − rf ′′
) t7

r7 + 3r3
2
(
2f ′ − 2rf ′′ + r2f (3)) t8

r8 +

r3
2
(
6f ′ + 6ff ′ − 6rf ′′ + 3r2f (3) − r3f (4)) t9

r9 +

r3
8
(
24f ′ + 66ff ′ − 12rf ′2 − 24rf ′′ − 30rff ′′ + 12r2f (3) − 4r3f (4) + r4f (5)) t10

r10 +

r3
40
(
120f ′ + 522ff ′ − 177rf ′2 − 120rf ′′ − 378rff ′′ + 93r2f ′f ′′ + 60r2f (3) + 90r2ff (3) − 20r3f (4) + 5r4f (5) − r5f (6)) t11

r11 +

O(
(

t
r

)12
),

Λ̂ = 3 +O(t9).

I have no patience to type the Weyl tensor components up to
high order. It is enough to say that that up to the 4th order in t ,
modulo a nonzero constant tensor C i

jkl , it is equal to:

W i
jkl =

( f
r2

t
r
− f ′

r
t2

r2 +
f ′′

2
t3

r3

)
C i

jkl +O(
(

t
r

)4
).

Of course, for the positivity of the energy density Φ̂ close to the
surface I + of M̂ we need

f ′ > 0.
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Possible generalizations

The Poincaré-type metric ĝ can be interpreted as the ending
stage of the evolution of the past eon in Penrose’s CCC. The
eon has a positive cosmological constant Λ̂ ' 3, which is filled
with a spherically symmetric pure radiation moving along the
null congruence generated by the vector field K .
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Possible generalizations

Theorem 2.
Assume that the metric ĝ as before satisfies the Einstein
equations Ê ij = 0. Then, the reciprocal metric

ǧ =t2
(
− dt2 +

2r2( 1 + ν(t, r)
)

dzdz̄

(1 + zz̄
2 )2

+
(

1 + µ(t, r)
)

dr2
)

=

t2
(
− dt2 +

2r2( 1 +
∑∞

i=1 ai (r)t i )dzdz̄

(1 + zz̄
2 )2

+
(

1 +
∞∑
i=1

bi (r)t i )dr2
)

satisfies the Einstein equations
Ě ij = Řij − Φ̌Ǩi Ǩj − Ψ̌Ľi Ľj − (ρ̌ + p̌)ǔi ǔj − 1

2 (ρ̌− p̌)ǧij = 0.
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equations Ê ij = 0. Then, the reciprocal metric
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Possible generalizations

Theorem 2.
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ǧ =t2
(
− dt2 +

2r2( 1 + ν(t, r)
)

dzdz̄

(1 + zz̄
2 )2

+
(

1 + µ(t, r)
)

dr2
)

=

t2
(
− dt2 +

2r2( 1 +
∑∞

i=1 ai (r)t i )dzdz̄

(1 + zz̄
2 )2

+
(

1 +
∞∑
i=1

bi (r)t i )dr2
)

satisfies the Einstein equations
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Possible generalizations

For the solutions ν(t , r), µ(t , r) of the past eon’s Einstein’s equations,
which were given in terms of the power series expansions as
ν(t , r) =

∑k+2
i=3 ai (r)t i +O(tk+3) and µ(t , r) =

∑k+2
i=3 bi (r)t i +O(tk+3)

in Theorem 1, the formulae for the power series expansions of the
energy densities Φ̌ Ψ̌, ρ̌ and the pressure p̌ are as follows:

Φ̌ =−
9f

r3
t−3 +

9f ′

r3
t−2 +

1

2r4

(
8f ′ − 11rf ′′

)
t +

3

4r5

(
5f ′ − 5rf ′′ + 3r2f (3))+

9

40r6

(
16f ′ + 5ff ′ − 16rf ′′ + 8r2f (3) − 3r3f (4))t +

1

120r7

(
420f ′ + 1068ff ′ − 30rf ′2 − 420rf ′′ − 384rff ′′ + 210r2f (3) − 70r3f (4) + 19r4f (5))t2 +

· · · +O
(
tk−3)

,

Ψ̌ =−
9f

r3
t−3 +

6f ′

r3
t−2 +

1

2r4

(
2f ′ − 5rf ′′

)
t−1 +

3

4r5

(
f ′ − rf ′′ + r2f (3))+

1

40r6

(
24f ′ − 75ff ′ − 24rf ′′ + 12r2f (3) − 7r3f (4))t +

1

60r7

(
30f ′ + 39ff ′ + 75rf ′2 − 30rf ′′ + 33rff ′′ + 15r2f (3) − 5r3f (4) + 2r4f (5))t2 +

· · · +O
(
tk−3)

,
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Possible generalizations

ρ̌ =3t−4 +
18f

r3
t−1 −

18f ′

r3
+
−6f ′ + 9rf ′′

r4
t −

3

4r6

(
9f 2 + 3rf ′ − 3r2f ′′ + 2r3f (3))t2 +

3

20r6

(
− 24f ′ + 105ff ′ + 24rf ′′ − 12r2f (3) + 5r3f (4))t3 −

1

20r7

(
60f ′ + 96ff ′ + 120rf ′2 − 60rf ′′ + 72rff ′′ + 30r2f (3) − 10r3f (4) + 3r4f (5))t4 +

· · · +O
(
tk−1)

,

p̌ =t−4 +
6f

r3
t−1 +

1

r4

(
2f ′ − rf ′′

)
t +

1

2r6

(
18f 2 + 3rf ′ − 3r2f ′′ + r3f (3))t2 −

3

20r6

(
− 8f ′ + 45ff ′ + 8rf ′′ − 4r2f (3) + r3f (4))t3 +

1

30r7

(
30f ′ + 57ff ′ + 45rf ′2 − 30rf ′′ + 39rff ′′ + 15r2f (3) − 5r3f (4) + r4f (5))t4 +

· · · +O
(
tk−1)

.

In these formulas all the doted terms are explicitly determined in
terms of f and its derivatives (I was lazy, and typed only the terms
adapted to the choice k = 6 in Theorem 1).
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(
18f 2 + 3rf ′ − 3r2f ′′ + r3f (3))t2 −

3

20r6

(
− 8f ′ + 45ff ′ + 8rf ′′ − 4r2f (3) + r3f (4))t3 +

1

30r7

(
30f ′ + 57ff ′ + 45rf ′2 − 30rf ′′ + 39rff ′′ + 15r2f (3) − 5r3f (4) + r4f (5))t4 +

· · · +O
(
tk−1)

.

In these formulas all the doted terms are explicitly determined in
terms of f and its derivatives (I was lazy, and typed only the terms
adapted to the choice k = 6 in Theorem 1).
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Possible generalizations

Remarks.

Note that since in M̌ the time t < 0, the requirement that the
energy densities are positive near the Big Bang hypersurface
t = 0 implies that f > 0 in addition to f ′ > 0, the requirement we
got from the past eon. Note also that f > 0 and f ′ > 0 are the
only conditions needed for the positivity of energy densities, as
the leading term in ρ̌ is ρ̌ ' 3t−4, and is positive regardless of
the sign of t .

Remarkably the leading terms in ρ̌ and p̌, i.e. the terms with
negative powers in t , are proportional to each other with the
numerical factor three. We have

p̌ = 1
3 ρ̌+O(t0).

This means that immediately after the Bang, apart from the
matter content of the two spherical ingoing and outgoing waves
in the new eon, there is also a scattered radiation there,
described by the perfect fluid with p̌ = 1

3 ρ̌.
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Possible generalizations

This solution to the three metrics in Penrose-Tod’s
bandage region has the following apealing physical
property: Immediately after the Bang, the spherical wave
from the previous eon not only produces two spherical
waves - one is obvious: it is the still expanding but damped
wave that survived the Bang; the other is less obvious,
becuase although it is still sphereical it focuses - but there
is also there a third ingredient: it is a randomly scattered
radiation described by the perfect fluid with p̌ = 1

3 ρ̌.
So what the Penrose-Tod scenario does to the new eon out
of a single spherical wave in the past eon, is that it splits
this wave into three portions of radiation: the two spherical
waves, and in addition a lump of scattered radiation
described by the statistical physics.
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