Simple models in Penrose's Conformal Cyclic Cosmology

Pawel Nurowski

Centrum Fizyki Teoretycznej
Polska Akademia Nauk
Relativity Seminar, UW, 29.01.2021

What is

- CCC or Conformal Cyclic Cosmology is a proposal for a Cosmology Hypothesis which answers the question 'What was before the Big Bang?'.
- The scheme of Penrose's CCC is as follows: ${ }^{1}$

[^0]- CCC or Conformal Cyclic Cosmology is a proposal for a Cosmology Hypothesis which answers the question 'What was before the Big Bang?'.
- The scheme of Penrose's CCC is as follows: ${ }^{1}$

[^1]- CCC or Conformal Cyclic Cosmology is a proposal for a Cosmology Hypothesis which answers the question 'What was before the Big Bang?'.
- The scheme of Penrose's CCC is as follows:
- CCC or Conformal Cyclic Cosmology is a proposal for a Cosmology Hypothesis which answers the question 'What was before the Big Bang?'.
- The scheme of Penrose's CCC is as follows: ${ }^{1}$

[^2]
Penrose's onformal yclic Cosmology

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- DISCLAIMER:
- cer says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}.
- DISCLAIMER:
- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- DISCLAIMER:
- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periocic Cosmology!
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- DISCLAIMER:
- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- DISCLAIMER:
- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal;
is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- DISCLAIMER:
- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old.
when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- DISCLAIMER:
- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- DISCLAIMER:
- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- DISCLAIMER:
- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history!
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- DISCLAIMER:
- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology,
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- DISCLAIMER:
- CCC says nothing about this what is the physics in a given eon when the physical age of it is normal; normal meaning that eon is neither too young nor too old. CCC tells what is going on when an eon is either about to die, or had just been born.
- In particular, CCC does not require that the eons have the same history! It is Conformal Cyclic Cosmology, and not Conformal Periodic Cosmology!

Penrose's onformal yclic Cosmology

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the 4-metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along \mathscr{I}^{+}of the past eon, and \mathscr{I}^{-}of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons - this region Penrose calls bandaged region for the two eons - is equipped with the following three metrics, which are conformally flat at the wound:
- a Lorentzian metric g which is regular everywhere,
- a Lorentzian metric g g, which represents the physical metric of the present eon, and which is singular at the wound,
- a Lorentzian metric \hat{g}, which represents the physical metric of the past eon, and which infinitely expands at the wound.
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along of the past eon, and of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons - this region Penrose calls bandaged region for the two eons - is equipped with the following three metrics, which are conformally flat at the wound:
- a Lorentzian metric g which is regular everywhere,
- a Lorentzian metric g, which represents the physical metric of the present eon, and which is singular at the wound,
- a Lorentzian metric \hat{g}, which represents the physical metric of the past eon, and which infinitely expands at the wound.
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the 4-metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along \mathscr{I}^{+}of the past eon, and \mathscr{I}^{-}of the present eon
- The vicinity of the matching surface (the wound) of the past and the present eons - this region Penrose calls bandaged region for the two eons - is equipped with the following three metrics, which are conformally flat at the wound:
- a Lorentzian metric g which is regular everywhere,
- a Lorentzian metric g, which represents the physical metric
of the present eon, and which is singular at the wound,
- a Lorentzian metric \dot{g}, which represents the physical metric
of the past eon, and which infinitely expands at the
wound
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the 4-metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons,
glued together along \mathscr{I}^{+}of the past eon, and \mathscr{I}^{-}of the
present eon
- The vicinity of the matching surface (the wound) of the past and the present eons - this region Penrose calls bandaged region for the two eons - is equipped with the following three metrics, which are conformally flat at the wound:
- a Lorentzian metric g which is regular everywhere,
- a Lorentzian metric g, which represents the physical metric
of the present eon, and which is singular at the wound,
- a Lorentzian metric \dot{g}, which represents the physical metric
of the past eon, and which infinitely expands at the
wound
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the 4-metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one,

```
glued together along
of the past eon, and
```

present eon

- The vicinity of the matching surface (the wound) of the past and the present eons - this region Penrose calls bandaged region for the two eons - is equipped with the following three metrics, which are conformally flat at the wound:

$$
\begin{aligned}
& \text { a Lorentzian metric } g \text { which is regular everywhere, } \\
& \text { a Lorentzian metric } g \text {, which represents the physical metric } \\
& \text { of the present eon, and which is singular at the wound, } \\
& \text { a Lorentzian metric } \hat{g} \text {, which represents the physical metric } \\
& \text { of the past eon, and which infinitely expands at the } \\
& \text { wound. }
\end{aligned}
$$

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the 4-metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together
of the past eon, and
of the
present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons - this region Penrose calls bandaged region for the two eons - is equipped with the following three metrics, which are conformally flat at the wound:

$$
\begin{aligned}
& \text { a Lorentzian metric } g \text { which is regular everywhere, } \\
& \text { a Lorentzian metric } g \text {, which represents the physical metric } \\
& \text { of the present eon, and which is singular at the wound, } \\
& \text { a Lorentzian metric } \hat{g} \text {, which represents the physical metric } \\
& \text { of the past eon, and which infinitely expands at the } \\
& \text { wound. }
\end{aligned}
$$

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the 4-metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along \mathscr{I}^{+}of the past eon,
present eon
- The vicinity of the matching surface (the wound) of the past and the present eons - this region Penrose calls bandaged region for the two eons - is equipped with the following three metrics, which are conformally flat at the wound:

$$
\begin{aligned}
& \text { a Lorentzian metric } g \text { which is regular everywhere, } \\
& \text { a Lorentzian metric } g \text {, which represents the physical metric } \\
& \text { of the present eon, and which is singular at the wound, } \\
& \text { a Lorentzian metric } \hat{g} \text {, which represents the physical metric } \\
& \text { of the past eon, and which infinitely expands at the } \\
& \text { wound. }
\end{aligned}
$$

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the 4-metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along \mathscr{I}^{+}of the past eon, and \mathscr{I}^{-}of the present eon.
The vicinity of the matching surface (the wound) of the past and the present eons - this region Penrose calls bandaged region for the two eons - is equipped with the following three metrics, which are conformally flat at the wound:

$$
\begin{aligned}
& \text { a Lorentzian metric } g \text { which is regular everywhere, } \\
& \text { a Lorentzian metric } g \text {, which represents the physical metric } \\
& \text { of the present eon, and which is singular at the wound, } \\
& \text { a Lorentzian metric } \hat{g} \text {, which represents the physical metric } \\
& \text { of the past eon, and which infinitely expands at the } \\
& \text { wound. }
\end{aligned}
$$

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the 4-metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along \mathscr{I}^{+}of the past eon, and \mathscr{I}^{-}of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons - this region Penrose calls bandaged region for the two eons - is equipped with the following three metrics, which are conformally flat at the wound:

> a Lorentzian metric g which is regular everymhere,
> a Lorentzian metric g, which represents the physical metric
> of the present eon, and which is singular at the wound,
> a Lorentzian metric g, which represents the physical metric
> of the past eon, and which infinitely expands at the
> wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the 4-metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along \mathscr{I}^{+}of the past eon, and \mathscr{I}^{-}of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons - this region Penrose calls bandaged region for the two eons is equipped with the following three metrics, which are conformally flat at the wound:

> a Lorentzian metric g which is regular everywhere,
> a Lorentzian metric g, which represents the physical metric
> of the present eon, and which is singular at the wound,
> a Lorentzian metric \hat{g}, which represents the physical metric
> of the past eon, and which infinitely expands at the
> wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the 4-metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along \mathscr{I}^{+}of the past eon, and \mathscr{I}^{-}of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons - this region Penrose calls bandaged region for the two eons - is equipped with the following three metrics, which are conformally flat at the wound:
> a Lorentzian metric g which is regular everywhere
> a Lorentzian metric g, which represents the physical metric
> of the present eon, and which is singular at the wound
> a Lorentzian metric \hat{g}, which represents the physical metric
> of the past eon, and which infinitely expands at the
> wound.
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the 4-metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along \mathscr{I}^{+}of the past eon, and \mathscr{I}^{-}of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons - this region Penrose calls bandaged region for the two eons - is equipped with the following three metrics, which are conformally flat at the wound:
- a Lorentzian metric g which is regular everywhere,

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the 4-metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along \mathscr{I}^{+}of the past eon, and \mathscr{I}^{-}of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons - this region Penrose calls bandaged region for the two eons - is equipped with the following three metrics, which are conformally flat at the wound:
- a Lorentzian metric g which is regular everywhere,
- a Lorentzian metric $̆$ ğ, which represents the physical metric of the present eon, and which is singular at the wound,
a Lorentzian metric \hat{g}, which represents the physical metric
of the past eon, and which infinitely expands at the
wound.
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the 4-metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say the past one and the present one, are glued together along \mathscr{I}^{+}of the past eon, and \mathscr{I}^{-}of the present eon.
- The vicinity of the matching surface (the wound) of the past and the present eons - this region Penrose calls bandaged region for the two eons - is equipped with the following three metrics, which are conformally flat at the wound:
- a Lorentzian metric g which is regular everywhere,
- a Lorentzian metric $̆$ ğ, which represents the physical metric of the present eon, and which is singular at the wound,
- a Lorentzian metric \hat{g}, which represents the physical metric of the past eon, and which infinitely expands at the wound.

Penrose's onformal yclic Cosmology

- In a bandage region, the three metrics g, g gand \hat{g}, are conformally related on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that $\check{g}=\Omega^{2} g$, and $\hat{g}=\frac{1}{\Omega^{2}} g$, with $\Omega \rightarrow 0$ on the wound.
- The metric g g in the present eon is a physical metric there. Likewise, the metric \hat{g} in the past eon is a physical metric there.
- Of course, the metric g in the present eon, and the metric \hat{g} in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.
- In a bandage region, the three metrics g, g gand \hat{g}, are conformally related on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that
- The metric \check{g} in the present eon is a physical metric there. Likewise, the metric \hat{g} in the past eon is a physical metric there.
- Of course, the metric g in the present eon, and the metric \hat{g} in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.
- In a bandage region, the three metrics g, $̆$ ğ and \hat{g}, are conformally related on their overlaping domains.
- How to make this relation specific is debatable, Penrose proposes that

The metric $g \check{g}$ in the present eon is a physical metric there. Likewise, the metric \hat{g} in the past eon is a physical metric there.

- Of course, the metric g in the present eon, and the metric \hat{g} in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.
- In a bandage region, the three metrics g, g and \hat{g}, are conformally related on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that
- The metric \check{g} in the present eon is a physical metric there. Likewise, the metric \hat{g} in the past eon is a physical metric there.
- Of course, the metric g in the present eon, and the metric \hat{g} in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.
- In a bandage region, the three metrics g, $̆$ g and \hat{g}, are conformally related on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that

$$
\check{g}=\Omega^{2} g, \text { and } \hat{g}=\frac{1}{\Omega^{2}} g, \text { with } \Omega \rightarrow 0 \text { on the wound. }
$$

- The metric g g in the present eon is a physical metric there. Likewise, the metric \hat{g} in the past eon is a physical metric there.
- Of course, the metric g in the present eon, and the metric \hat{g} in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.
- In a bandage region, the three metrics g, $̆$ g and \hat{g}, are conformally related on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that

$$
\check{g}=\Omega^{2} g, \text { and } \hat{g}=\frac{1}{\Omega^{2}} g, \text { with } \Omega \rightarrow 0 \text { on the wound. }
$$

- The metric $g \check{g}$ in the present eon is a physical metric there.
metric there.
- Of course, the metric g in the present eon, and the metric \hat{g} in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.
- In a bandage region, the three metrics g, $̆$ ğ and \hat{g}, are conformally related on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that

$$
\check{g}=\Omega^{2} g, \text { and } \hat{g}=\frac{1}{\Omega^{2}} g, \text { with } \Omega \rightarrow 0 \text { on the wound. }
$$

- The metric \check{g} in the present eon is a physical metric there. Likewise, the metric \hat{g} in the past eon is a physical metric there.

- In a bandage region, the three metrics g, $̆$ g and \hat{g}, are conformally related on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that
$\check{g}=\Omega^{2} g$, and $\hat{g}=\frac{1}{\Omega^{2}} g$, with $\Omega \rightarrow 0$ on the wound.
- The metric \check{g} in the present eon is a physical metric there. Likewise, the metric \hat{g} in the past eon is a physical metric there.
- Of course, the metric \check{g} in the present eon, and the metric
ĝ in the past eon, as physical spacetime metrics,
should satisfy Einstein's equations in their spacetimes, respectively.
- In a bandage region, the three metrics g, $̆$ g and \hat{g}, are conformally related on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that

$$
\check{g}=\Omega^{2} g, \text { and } \hat{g}=\frac{1}{\Omega^{2}} g, \text { with } \Omega \rightarrow 0 \text { on the wound. }
$$

- The metric \check{g} in the present eon is a physical metric there. Likewise, the metric \hat{g} in the past eon is a physical metric there.
- Of course, the metric g g in the present eon, and the metric \hat{g} in the past eon, should satisfy Einstein's equations in their spacetimes, respectively.
- In a bandage region, the three metrics g, $̆$ ğ and \hat{g}, are conformally related on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that

$$
\check{g}=\Omega^{2} g, \text { and } \hat{g}=\frac{1}{\Omega^{2}} g, \text { with } \Omega \rightarrow 0 \text { on the wound. }
$$

- The metric \check{g} in the present eon is a physical metric there. Likewise, the metric \hat{g} in the past eon is a physical metric there.
- Of course, the metric \check{g} in the present eon, and the metric \hat{g} in the past eon, as physical spacetime metrics,
should satisfy Einstein's equations in their spacetimes, respectively.
- In a bandage region, the three metrics g, $̆$ ğ and \hat{g}, are conformally related on their overlaping domains.
- How to make this relation specific is debatable, but Penrose proposes that

$$
\check{g}=\Omega^{2} g, \text { and } \hat{g}=\frac{1}{\Omega^{2}} g, \text { with } \Omega \rightarrow 0 \text { on the wound. }
$$

- The metric \check{g} in the present eon is a physical metric there. Likewise, the metric \hat{g} in the past eon is a physical metric there.
- Of course, the metric \check{g} in the present eon, and the metric \hat{g} in the past eon, as physical spacetime metrics, should satisfy Einstein's equations in their spacetimes, respectively.

Penrose's onformal yclic Cosmology

Penrose's onformal yclic Cosmology

Modelling Penrose's CCC scenario

- Question: How to make a model of Penrose's bandaged region of two eons?
- One needs a function Ω, vanishing on some spacelike hypersurface, and a regular Lorentzian 4-metric g, such that if $g ̆=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^{2}} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.
- Question: How to make a model of Penrose's bandaged region of two eons?
- One needs a function Ω, vanishing on some spacelike hypersurface, and a regular Lorentzian 4-metric g, such that if $\check{g}=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^{2}} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.
- Question: How to make a model of Penrose's bandaged region of two eons?
- One needs a function Ω, vanishing on some spacelike hypersurface, and a regular Lorentzian 4-metric g, such that if $\check{g}=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^{2}} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.
- Question: How to make a model of Penrose's bandaged region of two eons?
- One needs a function Ω, vanishing on some spacelike hypersurface,
that if $g=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^{2}} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.
- Question: How to make a model of Penrose's bandaged region of two eons?
- One needs a function Ω, vanishing on some spacelike hypersurface, and a regular Lorentzian 4-metric g, that if $g=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^{2}} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.
- Question: How to make a model of Penrose's bandaged region of two eons?
- One needs a function Ω, vanishing on some spacelike hypersurface, and a regular Lorentzian 4-metric g, such that if $\check{g}=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor,
different, but still physically reasonable energy momentum tensor.
- Question: How to make a model of Penrose's bandaged region of two eons?
- One needs a function Ω, vanishing on some spacelike hypersurface, and a regular Lorentzian 4-metric g, such that if $\check{g}=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^{2}} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.

Modelling Penrose's CCC scenario

- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \bar{M} part, and a reasonable energy momentum tensor on the other \check{M}.
- It seems to be very unlikely that one finds something interesting on (\breve{M}, \breve{g}), when $\hat{T}_{i j}$ and its corresponding $\hat{g}=\Omega^{-2} g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?
- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{K} part, and a reasonable energy momentum tensor on the other M M.
- It seems to be very unlikely that one finds something interesting on (M, \breve{g}), when $T_{i j}$ and its corresponding $\hat{g}=\Omega^{-2} g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) periect fluids?
- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'.
every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\hat{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{2} g$ of Einstein equations, with a prescribed energy momentum tensor on the M part, and a reasonable energy momentum tensor on the other
- It seems to be very unlikely that one finds something interesting on (M, \breve{g}), when $T_{i j}$ and its corresponding $\hat{g}=\Omega^{-2} g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?
- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four.
every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other
- It seems to be very unlikely that one finds something interesting on (M, \breve{g}), when $T_{i j}$ and its corresponding $\hat{g}=\Omega^{-2} g$ is given.

To get some intuitions, let us cheek what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \bar{M} part, and a reasonable energy momentum tensor on the other
- It seems to be very unlikely that one finds something interesting on (M, \check{g}), when $T_{i j}$ and its corresponding $\hat{g}=\Omega^{-2} g$ is given.

To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the same
function Ω should lead to two conformally related but different solutions $\check{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other

It seems to be very unlikely that one finds something interesting on (M, \breve{g}), when $T_{i j}$ and its corresponding $\hat{g}=\Omega^{-2} g$ is given.

To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler:
he same
function Ω should lead to two conformally related but different solutions $\check{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other

It seems to be very unlikely that one finds something interesting on (M, \breve{g}), when $T_{i j}$ and its corresponding $\hat{g}=\Omega^{-2} g$ is given.

To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{-2} g$ of Einstein equations, prescribed energy momentum tensor on the M part, and a
reasonable energy momentum tensor on the other \bar{M}.
It seems to be very unlikely that one finds something interesting
on (\bar{M}, g), when $\hat{T}_{i j}$ and its corresponding $\hat{g}=\Omega^{-2} g$ is given.
To get some intuitions, let us check what we can do in the
conformally flat situation (reasonable, because compatible
with the cosmological principle/FLRW paradigm), and
(various) perfect fluids?

Modelling Penrose's CCC scenario

- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a
reasonable energy momentum tensor on the other
It seems to be very unlikely that one finds something interesting on (M, \breve{g}), when $T_{i i}$ and its corresponding $\hat{g}=\Omega^{-2} g$ is given

To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

Modelling Penrose's CCC scenario

- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other \check{M}.

It seems to be very unlikely that one finds something interesting on (M, \breve{g}), when $T_{i j}$ and its corresponding
is given.
To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

Modelling Penrose's CCC scenario

- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other \check{M}.
- It seems to be very unlikely that one finds something interesting on $(\check{M}, g ̆)$,
and its corresponding
is given.
To get some intuitions, let us check what we can do in the
conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

Modelling Penrose's CCC scenario

- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other \check{M}.
- It seems to be very unlikely that one finds something interesting on (\check{M}, \breve{g}), when $\hat{T}_{i j}$ and its corresponding $\hat{g}=\Omega^{-2} g$ is given.

To get some intuitions, let us check what we can do in the
conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

Modelling Penrose's CCC scenario

- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other \check{M}.
- It seems to be very unlikely that one finds something interesting on (\check{M}, \breve{g}), when $\hat{T}_{i j}$ and its corresponding $\hat{g}=\Omega^{-2} g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation
with the cosmological principle/FLRW paradigm), and
(various) perfect fluids?

Modelling Penrose's CCC scenario

- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other \check{M}.
- It seems to be very unlikely that one finds something interesting on (\check{M}, \breve{g}), when $\hat{T}_{i j}$ and its corresponding $\hat{g}=\Omega^{-2} g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm),

Modelling Penrose's CCC scenario

- Similar question to the question posed and solved by \mathbf{H}. Brinkman. In 1925 he asked a question 'when in a conformal class of metrics there could be two nonisometric Einstein metrics?'. Brinkman found all such metrics in dimension four. In every signature.
- Here the problem is similar. It seems even simpler: the same function Ω should lead to two conformally related but different solutions $\check{g}=\Omega^{2} g$ and $\hat{g}=\Omega^{-2} g$ of Einstein equations, with a prescribed energy momentum tensor on the \hat{M} part, and a reasonable energy momentum tensor on the other \check{M}.
- It seems to be very unlikely that one finds something interesting on (\check{M}, \breve{g}), when $\hat{T}_{i j}$ and its corresponding $\hat{g}=\Omega^{-2} g$ is given.
- To get some intuitions, let us check what we can do in the conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

Polytrope perfect fluids in FLRW models

- Let us for a while restrict to the FLRW metrics with $\kappa=1$, $g_{\text {test }}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)$.
- It is convenient to introduce a conformal time $n=\int \frac{\mathrm{dt}}{\mathrm{dt}}$ so that the FLRW metric looks
i.e. $g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$.
- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying Einstein's equations

$$
\text { Ric }-\frac{1}{2} \text { Rgtest }=(\mu+p) u=u+p g_{t e s t}
$$

with polytropic equation of state $p=w \mu, w=$ const, is given by

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3},
$$

and

$$
\Omega(\eta)=\Omega_{0} \exp (b \eta) \text { if } w=-\frac{1}{3} \text {. }
$$

Polytrope perfect fluids in FLRW models

- Let us for a while restrict to the FLRW metrics with $\kappa=1$,
- It is convenient to introduce a conformal time so that the FLRW metric looks
i.e. $g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$.
- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying
Einstein's equations
Ric $-\frac{1}{2} R g_{\text {test }}=(\mu+p) u \Delta u+p g_{\text {test }}$
with polytropic equation of state $p=w \mu, w=$ const, is given by
and

Polytrope perfect fluids in FLRW models

- Let us for a while restrict to the FLRW metrics with $\kappa=1$,

$$
g_{\text {test }}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time so that the FLRW metric looks
i.e. $g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$.
- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying
Einstein's equations
with polytropic equation of state $p=w \mu, w=$ const, is given by
and
- Let us for a while restrict to the FLRW metrics with $\kappa=1$,

$$
g_{\text {test }}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{\mathrm{a}(t)}$ so that the FLRW metric looks
- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying
Einstein's equations
with polytropic equation of state $p=w \mu, w=$ const, is given by
and
- Let us for a while restrict to the FLRW metrics with $\kappa=1$,

$$
g_{\text {test }}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{\mathrm{a}(t)}$ so that the FLRW metric looks

$$
g_{\text {test }}=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)
$$

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying
Einstein's equations
with polytropic equation of state $p=w \mu, w=$ const, is given by
and
- Let us for a while restrict to the FLRW metrics with $\kappa=1$,

$$
g_{\text {test }}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{\mathrm{a}(t)}$ so that the FLRW metric looks

$$
g_{\text {test }}=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)
$$

i.e. $g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$.

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying

Einstein's equations

with polytropic equation of state $p=w \mu, w=$ const, is
given by
and

- Let us for a while restrict to the FLRW metrics with $\kappa=1$,

$$
g_{\text {test }}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{\mathrm{a}(t)}$ so that the FLRW metric looks

$$
g_{\text {test }}=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)
$$

$$
\text { i.e. } g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }} \text {. }
$$

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying Einstein's equations
with polytropic equation of state $p=w \mu, w=$ const, is
given by
and

Polytrope perfect fluids in FLRW models

- Let us for a while restrict to the FLRW metrics with $\kappa=1$,

$$
g_{\text {test }}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{a(t)}$ so that the FLRW metric looks

$$
g_{\text {test }}=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)
$$

$$
\text { i.e. } g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}
$$

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying Einstein's equations

$$
\text { Ric }-\frac{1}{2} R g_{\text {test }}=(\mu+p) u \otimes u+p g_{\text {test }}
$$

with polytropic equation of state $p=w \mu, w=$ const, is given by
and

Polytrope perfect fluids in FLRW models

- Let us for a while restrict to the FLRW metrics with $\kappa=1$,

$$
g_{\text {test }}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{a(t)}$ so that the FLRW metric looks

$$
g_{\text {test }}=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)
$$

$$
\text { i.e. } g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }} \text {. }
$$

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying Einstein's equations

$$
\text { Ric }-\frac{1}{2} R g_{\text {test }}=(\mu+p) u \otimes u+p g_{\text {test }}
$$

with polytropic equation of state $p=w \mu, w=$ const, is given by

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3}
$$

and

Polytrope perfect fluids in FLRW models

- Let us for a while restrict to the FLRW metrics with $\kappa=1$,

$$
g_{\text {test }}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{a(t)}$ so that the FLRW metric looks

$$
g_{\text {test }}=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)
$$

$$
\text { i.e. } g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }} \text {. }
$$

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying Einstein's equations

$$
\text { Ric }-\frac{1}{2} R g_{\text {test }}=(\mu+p) u \otimes u+p g_{\text {test }}
$$

with polytropic equation of state $p=w \mu, w=$ const, is given by

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3}
$$

and

- Let us for a while restrict to the FLRW metrics with $\kappa=1$,

$$
g_{\text {test }}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{\mathrm{a}(t)}$ so that the FLRW metric looks

$$
g_{\text {test }}=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)
$$

i.e. $g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$.

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying Einstein's equations

$$
\text { Ric }-\frac{1}{2} R g_{\text {test }}=(\mu+p) u \otimes u+p g_{\text {test }}
$$

with polytropic equation of state $p=w \mu, w=$ const, is given by

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3}
$$

and

$$
\Omega(\eta)=\Omega_{0} \exp (b \eta) \text { if } w=-\frac{1}{3} .
$$

Polytrope perfect fluids in FLRW models

- Now we go back to the Penrose-Tod's bandage triple (\check{g}, g, \hat{g}).
- Take g as g Einst, $g=g_{\text {Einst }}$
- Take $\check{g}=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Take as $\hat{g}=\Omega^{-2}(\eta) g_{\text {Einst. }}$
- Since $\check{g}=\Omega^{2} g$ satisfying these Einstein's equations has:

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1+3 w}{1+}} \text { if } w \neq-\frac{1}{3},
$$

and

$$
\Omega(\eta)=\Omega_{0} \exp (b \eta) \text { if } w=-\frac{1}{3},
$$

then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that $(1+3 \hat{w})^{-1}=-(1+3 w)^{-1}$, or what is the same, $\hat{w}=-2 / 3-w$.

- As a consequence $g=\Omega^{-2}$ geinst $=\Omega^{4} g$ also satisfies Einstein's equations with perfect fluid, but with $\hat{\rho}=\hat{\omega} \hat{\mu}$.

Polytrope perfect fluids in FLRW models

- Now we go back to the Penrose-Tod's bandage triple (\check{g}, g, \hat{g}).
- Take g as $g_{\text {Einst }}, g=g_{\text {Einst }}$
- Take $\breve{g}=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Take as $\hat{g}=\Omega^{-2}(\eta) g_{\text {Einst. }}$.
- Since $\check{g}=\Omega^{2} g$ satisfying these Einstein's equations has:

and
then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that $(1+3 \hat{w})^{-1}=-(1+3 w)^{-1}$, or what is the same, $\hat{w}=-2 / 3-w$.
- As a consequence $g=\Omega^{-2}$ geinst $-\Omega^{-4} g$ also satisfies Einstein's equations with perfect fluid, but with

Polytrope perfect fluids in FLRW models

- Now we go back to the Penrose-Tod's bandage triple ($\left.{ }^{\prime}, g, \hat{g}\right)$.
- Take g as $g_{\text {Einst }}, g=g_{\text {Einst }}$
- Take g g $=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Take as $\hat{g}=\Omega^{-2}(\eta) g_{\text {Einst }}$.
- Since $\check{g}=\Omega^{2} g$ satisfying these Einstein's equations has:

and
then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that $(1+3 \hat{w})^{-1}=-(1+3 w)^{-1}$, or what is the same, $\hat{w}=-2 / 3-w$.
- As a consequence $g=\Omega^{-2}$ geinst $\Omega^{-4} g$ also satisfies Einstein's equations with perfect fluid, but with

Polytrope perfect fluids in FLRW models

- Now we go back to the Penrose-Tod's bandage triple (${ }^{g}, g, \hat{g}$).
- Take g as $g_{\text {Einst }}, g=g_{\text {Einst }}$
- Take $\check{g}=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Take as $\hat{g}=\Omega^{-2}(\eta) g_{\text {Einst }}$.
- Since $\check{g}=\Omega^{2} g$ satisfying the Einstein's equations has:

and
then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that $(1+3 \hat{w})^{-1}=-(1+3 w)^{-1}$, or what is the same, $\hat{w}=-2 / 3-w$.
- As a consequence $g=\Omega^{-2}$ geinst $\Omega^{-4} g$ also satisfies Einstein's equations with perfect fluid, but with

Polytrope perfect fluids in FLRW models

- Now we go back to the Penrose-Tod's bandage triple (${ }^{g}, g, \hat{g}$).
- Take g as $g_{\text {Einst }}, g=g_{\text {Einst }}$
- Take $\check{g}=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Take as $\hat{g}=\Omega^{-2}(\eta) g_{\text {Einst }}$.
- Since $\check{g}=\Omega^{2} g$ satisfying the Einstein's equations has:

and
then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that $(1+3 \hat{w})^{-1}=-(1+3 w)^{-1}$, or what is the same, $\hat{w}=-2 / 3-w$.
- As a consequence $g=\Omega^{-2}$ geinst $\Omega^{-4} g$ also satisfies Einstein's equations with perfect fluid, but with
- Now we go back to the Penrose-Tod's bandage triple (\check{g}, g, \hat{g}).
- Take g as $g_{\text {Einst }}, g=g_{\text {Einst }}$
- Take $\check{g}=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Since $\check{g}=\Omega^{2} g$ satisfying these Einstein's equations has:
and
then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that or what is the same,
- As a consequence $\hat{g}=\Omega^{-2} g_{\text {Einst }}=\Omega^{-4} \check{g}$ also satisfies

Einstein's equations with perfect fluid, but with

- Now we go back to the Penrose-Tod's bandage triple (\check{g}, g, \hat{g}).
- Take g as $g_{\text {Einst }}, g=g_{\text {Einst }}$
- Take $\check{g}=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Take as $\hat{g}=\Omega^{-2}(\eta) g_{\text {Einst }}$.
- Since $\check{g}=\Omega^{2} g$ satisfying these Einstein's equations has:
and
then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that or what is the same,
- As a consequence $\hat{g}=\Omega^{-2} g_{\text {Einst }}=\Omega^{-4} \check{g}$ also satisfies Einstein's equations with perfect fluid, but with
- Now we go back to the Penrose-Tod's bandage triple (\check{g}, g, \hat{g}).
- Take g as $g_{\text {Einst }}, g=g_{\text {Einst }}$
- Take $\check{g}=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Take as $\hat{g}=\Omega^{-2}(\eta) g_{\text {Einst }}$.
- Since $\check{g}=\Omega^{2} g$ satisfying these Einstein's equations has:

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3},
$$

and
then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that or what is the same,

- Now we go back to the Penrose-Tod's bandage triple (\check{g}, g, \hat{g}).
- Take g as $g_{\text {Einst }}, g=g_{\text {Einst }}$
- Take $\check{g}=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Take as $\hat{g}=\Omega^{-2}(\eta) g_{\text {Einst }}$.
- Since $\check{g}=\Omega^{2} g$ satisfying these Einstein's equations has:

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3},
$$

and

$$
\Omega(\eta)=\Omega_{0} \exp (b \eta) \text { if } w=-\frac{1}{3},
$$

then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that or what is the same,

- Now we go back to the Penrose-Tod's bandage triple (\check{g}, g, \hat{g}).
- Take g as $g_{\text {Einst }}, g=g_{\text {Einst }}$
- Take $\check{g}=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Take as $\hat{g}=\Omega^{-2}(\eta) g_{\text {Einst }}$.
- Since $\check{g}=\Omega^{2} g$ satisfying these Einstein's equations has:

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3},
$$

and

$$
\Omega(\eta)=\Omega_{0} \exp (b \eta) \text { if } w=-\frac{1}{3},
$$

then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that

- Now we go back to the Penrose-Tod's bandage triple (\check{g}, g, \hat{g}).
- Take g as $g_{\text {Einst }}, g=g_{\text {Einst }}$
- Take $\check{g}=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Take as $\hat{g}=\Omega^{-2}(\eta) g_{\text {Einst }}$.
- Since $\check{g}=\Omega^{2} g$ satisfying these Einstein's equations has:

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3},
$$

and

$$
\Omega(\eta)=\Omega_{0} \exp (b \eta) \text { if } w=-\frac{1}{3},
$$

then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that $(1+3 \hat{w})^{-1}=-(1+3 w)^{-1}$, or what is the same,

- Now we go back to the Penrose-Tod's bandage triple (\check{g}, g, \hat{g}).
- Take g as $g_{\text {Einst }}, g=g_{\text {Einst }}$
- Take $\check{g}=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Take as $\hat{g}=\Omega^{-2}(\eta) g_{\text {Einst }}$.
- Since $\check{g}=\Omega^{2} g$ satisfying these Einstein's equations has:

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3},
$$

and

$$
\Omega(\eta)=\Omega_{0} \exp (b \eta) \text { if } w=-\frac{1}{3},
$$

then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that $(1+3 \hat{w})^{-1}=-(1+3 w)^{-1}$, or what is the same,

- Now we go back to the Penrose-Tod's bandage triple (\check{g}, g, \hat{g}).
- Take g as $g_{\text {Einst }}, g=g_{\text {Einst }}$
- Take $\check{g}=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Take as $\hat{g}=\Omega^{-2}(\eta) g_{\text {Einst }}$.
- Since $\check{g}=\Omega^{2} g$ satisfying these Einstein's equations has:

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3},
$$

and

$$
\Omega(\eta)=\Omega_{0} \exp (b \eta) \text { if } w=-\frac{1}{3},
$$

then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that $(1+3 \hat{w})^{-1}=-(1+3 w)^{-1}$, or what is the same, $\hat{w}=-2 / 3-w$.

Polytrope perfect fluids in FLRW models

- Now we go back to the Penrose-Tod's bandage triple (\check{g}, g, \hat{g}).
- Take g as $g_{\text {Einst }}, g=g_{\text {Einst }}$
- Take $\check{g}=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Take as $\hat{g}=\Omega^{-2}(\eta) g_{\text {Einst }}$.
- Since $\check{g}=\Omega^{2} g$ satisfying these Einstein's equations has:

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3},
$$

and

$$
\Omega(\eta)=\Omega_{0} \exp (b \eta) \text { if } w=-\frac{1}{3},
$$

then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that $(1+3 \hat{w})^{-1}=-(1+3 w)^{-1}$, or what is the same, $\hat{w}=-2 / 3-w$.

- As a consequence $\hat{g}=\Omega^{-2} g_{\text {Einst }}=\Omega^{-4} \check{g}$ also satisfies Einstein's equations with perfect fluid,

Polytrope perfect fluids in FLRW models

- Now we go back to the Penrose-Tod's bandage triple (\check{g}, g, \hat{g}).
- Take g as $g_{\text {Einst }}, g=g_{\text {Einst }}$
- Take $\check{g}=g_{\text {test }}=\Omega^{2}(\eta) g_{\text {Einst }}$. This satisfies Einstein's equations with perfect fluid with $\check{p}=w \check{\mu}$.
- Take as $\hat{g}=\Omega^{-2}(\eta) g_{\text {Einst }}$.
- Since $\check{g}=\Omega^{2} g$ satisfying these Einstein's equations has:

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3}
$$

and

$$
\Omega(\eta)=\Omega_{0} \exp (b \eta) \text { if } w=-\frac{1}{3},
$$

then $\hat{g}=\Omega^{-2} g$ satisfies the same kind of Einstein's equations, but now with w replaced by \hat{w} such that $(1+3 \hat{w})^{-1}=-(1+3 w)^{-1}$, or what is the same, $\hat{w}=-2 / 3-w$.

- As a consequence $\hat{g}=\Omega^{-2} g_{\text {Einst }}=\Omega^{-4} \check{g}$ also satisfies Einstein's equations with perfect fluid, but with $\hat{p}=\hat{w} \hat{\mu}$.

Symmetry of solutions conformal to the Einstein Universe

Theorem

If $\Omega=\Omega(\eta)$ is such that $g \check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \bar{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}, \check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}}$ gEinst satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by
$\hat{p}=\hat{w} \hat{\mu}$ with

The Ricci sclar of the metric g is

so it is positive if $-1 \leq \check{w}<1 / 3$ (recall the energy conditions

Symmetry of solutions conformal to the Einstein Universe

Theorem

If $\Omega=\Omega(\eta)$ is such that $g ̆=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{W} \check{\mu}$, $\check{W}=$ const, then
 with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

The Ricci sclar of the metric g is

> so it is positive if $-1 \leq \check{W}<1 / 3$ (recall the energy conditions

Symmetry of solutions conformal to the Einstein Universe

Theorem
If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \bar{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}, \check{w}=$ const, then
with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=$ wh with

The Ricci sclar of the metric g is
so it is positive if $-1 \leq \check{w}<1 / 3$ (recall the energy conditions

Symmetry of solutions conformal to the Einstein Universe

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid,
> the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
> satisfies Einstein's equations, with $\Lambda=0$, and
> with the energy momentum tensor \mathcal{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

The Ricci sclar of the metric g is
so it is positive if

Symmetry of solutions conformal to the Einstein Universe

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$,

satisfies Einstein's equations, with $\Lambda=0$, and

with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

The Ricci sclar of the metric g is

Symmetry of solutions conformal to the Einstein Universe

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}, \check{w}=$ const,

satisfies Einstein's equations, with

with the energy momentum tensor T of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

The Ricci sclar of the metric g is

Symmetry of solutions conformal to the Einstein Universe

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then

$$
\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}
$$

satisfies Einstein's equations, with
with the energy momentum tensor T of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

The Ricci sclar of the metric g is

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \hat{T} of a perfect fluid, whose presure p and the energy density 11 are related by with

The Ricci sclar of the metric g g is

so it is positive if

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and
with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by

$$
\text { The Ricci sclar of the metric } \stackrel{g}{g} \text { is }
$$

so it is positive if

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}, \check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and
with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

$$
\text { The Ricci sclar of the metric } g \text { is }
$$

so it is positive if

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and
with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

$$
\hat{w}=-\frac{1}{3}(2+3 \check{w})
$$

The Ricci sclar of the metric g is
and
so it is positive if

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and
with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with
\square

$$
\hat{w}=-\frac{1}{3}(2+3 \check{w})
$$

The Ricci sclar of the metric g g is

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and
with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with
$\hat{w}=-\frac{1}{3}(2+3 \check{w})$.
The Ricci sclar of the metric g is

$$
R=\frac{3(1-3 \check{W})}{\Omega_{0}^{2} r_{0}^{2}\left(\sin ^{6} \frac{(1+3 \check{W}) \eta}{2 r_{0}}\right)^{\frac{1+w}{1+3 \check{w}}}} \text { if } \check{W} \neq-1 / 3 \text { and }
$$

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

$$
\hat{w}=-\frac{1}{3}(2+3 \check{w})
$$

The Ricci sclar of the metric g g is

$$
R=\frac{3(1-3 \check{w})}{\Omega_{0}^{2} r_{0}^{2}\left(\sin ^{6} \frac{(1+3 \check{w}) \eta}{2 r_{0}}\right)^{\frac{1+w}{1+3 w}}} \text { if } \check{w} \neq-1 / 3 \text { and } R=\frac{6\left(1+b^{2} r_{0}^{2}\right)}{\Omega_{0}^{2} r_{0}^{2} \exp (2 b \eta)} \text { if } \check{w}=-1 / 3 \text {, }
$$

Symmetry of solutions conformal to the Einstein Universe

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}, \check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

$$
\hat{w}=-\frac{1}{3}(2+3 \check{w}) .
$$

The Ricci sclar of the metric g gs
$R=\frac{3(1-3 \check{w})}{\Omega_{0}^{2} r_{0}^{2}\left(\sin ^{6} \frac{(1+3 \check{w}) \eta}{2 r_{0}}\right)^{\frac{1+w}{1+3 w}}}$ if $\check{w} \neq-1 / 3$ and $R=\frac{6\left(1+b^{2} r_{0}^{2}\right)}{\Omega_{0}^{2} r_{0}^{2} \exp (2 b \eta)}$ if $\check{w}=-1 / 3$, so it is positive if $-1 \leq \check{w}<1 / 3$

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

$$
\hat{w}=-\frac{1}{3}(2+3 \check{w}) .
$$

The Ricci sclar of the metric g is
$R=\frac{3(1-3 \check{w})}{\Omega_{0}^{2} r_{0}^{2}\left(\sin ^{6} \frac{(1+3 \check{w}) \eta}{2 r_{0}}\right)^{\frac{1+w}{1+3 w}}}$ if $\check{w} \neq-1 / 3$ and $R=\frac{6\left(1+b^{2} r_{0}^{2}\right)}{\Omega_{0}^{2} r_{0}^{2} \exp (2 b \eta)}$ if $\check{w}=-1 / 3$, so it is positive if $-1 \leq \check{W}<1 / 3$ (recall the energy conditions

perfect fluid

$$
\begin{aligned}
& \dot{w}: \dot{w} \\
& p=w . \mu
\end{aligned}
$$

wound

$$
2=0
$$

perfect fluid with

$$
\hat{p}=\hat{w} \cdot \hat{\mu}
$$

perfect fluid

$$
\begin{aligned}
& \dot{w}: \dot{w} \\
& p=w . \mu
\end{aligned}
$$

wound

$$
2=0
$$

perfect fluid with

$$
\hat{p}=\hat{w} \cdot \hat{\mu}
$$

Transformation

Suspiscious points: $\check{W}=-1,1 / 3$ (cosmological constant radiation), since the scalar curvature $R=0$, when $\check{w}=1 / 3$; and $\check{w}=-1 / 3$ (gas of strings), when $\Omega \neq 0$ on \mathscr{I}.

Suspiscious points:

Suspiscious points: $\check{w}=-1,1 / 3$ (cosmological constant radiation), since the scalar curvature $R=0$, when $w=1 / 3$; and $\mathscr{W}=-1 / 3$ (gas of strings), when $\Omega \neq 0$ on

Suspiscious points: $\check{W}=-1,1 / 3$ (cosmological constant radiation), since the scalar curvature $R=0$, when $\check{w}=1 / 3$; and $\check{W}=-1 / 3$ (gas of strings), when $\Omega \neq 0$ on

Suspiscious points: $\check{w}=-1,1 / 3$ (cosmological constant radiation), since the scalar curvature $R=0$, when $\check{w}=1 / 3$; and $\check{w}=-1 / 3$ (gas of strings), when $\Omega \neq 0$ on \mathscr{I}.

- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{s^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{d}^{2}}{\Omega^{2}(t)}+r_{0}^{2} g_{s^{3}}\right)$, so that it is clear that $\breve{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
$2 t^{2} \Omega \Omega^{\prime \prime}-\left(1+3 W_{1}\right)\left(1+t^{-2} \Omega^{\prime 2}\right)+\left(1+\psi_{1} x+2 \Omega^{2}\right.$.
- We want that $\check{W}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{dt}}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\wedge}$, and $\hat{W}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:

$$
\dot{M}(1+w)(1-3 w)=0 .
$$

- Thus, a neccessary condition for both Ω and Ω^{-1} to describe the polytropes, is that either one of the \wedge s is zero, or \check{w} is of the 'radiation- \wedge ' type.
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{d^{2}}{\Omega^{2}(t)}+r_{0}^{2} g_{s^{3}}\right)$, so that it is clear that
$\check{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that gatisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
- We want that $\hat{i}=$ const and that $\hat{g}=1$ geinst satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{d t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\wedge}$, and $\hat{W}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate w, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:
- Thus, a neccessary condition for both Ω and Ω^{-1} to describe the polytropes, is that either one of the \wedge s is zero, or \check{W} is of the ‘radiation- ^’ type.
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{dt}}{}{ }^{2}(t)+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant \star, is equivalent to the following ODE for Ω :
- We want that $\check{w}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{d t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\wedge}$, and $\hat{W}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:
- Thus, a neccessary condition for both Ω and Ω^{-1} to describe the polytropes, is that either one of the \wedge s is zero, or \check{W} is of the 'radiation- \uparrow ' type.
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{d t^{2}}{\Omega^{2}(t)}+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\check{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
- We want that $\check{w}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{d} t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{W}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:
- Thus, a neccessary condition for both Ω and Ω^{-1} to describe the polytropes, is that either one of the $\wedge s$ is zero, or \check{W} is of the 'radiation- \wedge ' type.
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}_{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{d t^{2}}{\Omega^{2}(t)}+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\breve{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
- We want that $\check{w}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect
fluid Eisntein's equations with \hat{u}
cosmological constant
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:
- Thus, a neccessary condition for both Ω and Ω^{-1} to describe the polytropes, is that either one of the \wedge s is zero, or w is of the 'radiation- \wedge ' type.
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{d t^{2}}{\Omega^{2}(t)}+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\breve{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :

$$
2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\Lambda} r_{0}^{2} \Omega^{2} .
$$

- We want that $\check{W}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect
fluid Eisntein's equations with \hat{u}
the
cosmological constant $\hat{\Lambda}$, and \hat{w}
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{dt}}{\Omega^{2}}(t)+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\check{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :

$$
2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\wedge} r_{0}^{2} \Omega^{2} .
$$

- We want that $\check{W}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{d t}{\Omega^{2}}$,
cosmological constant
- From the Einstein's equations for \hat{g} we easilly calculate forcing it to be constant, because of the above ODE satisfied by we find that it is possible provided that:
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{d t^{2}}{\Omega^{2}(t)}+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\check{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :

$$
2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\wedge} r_{0}^{2} \Omega^{2} .
$$

- We want that $\check{w}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{d t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$,
cosmological constant
- From the Einstein's equations for \hat{g} we easilly calculate forcing it to be constant, because of the above ODE satisfied by we find that it is possible provided that:
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{dt}}{\Omega^{2}}(t)+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\breve{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :

$$
2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\wedge} r_{0}^{2} \Omega^{2} .
$$

- We want that $\check{w}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{dt}}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\wedge}$,
> - From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by we find that it is possible provided that:
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{dt}}{\Omega^{2}}(t)+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\breve{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
$2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\Lambda} r_{0}^{2} \Omega^{2}$.
- We want that $\check{w}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{d} t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{W}, and
forcing it to be constant, because of the above ODE satisfied by
Ω, we find that it is possible provided that:
- Thus, a neccessary condition for both
and Ω^{-1} to describe the polytropes, is that either one of the \wedge s is zero, or ww is of the 'radiation- \uparrow ' type.
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{dt}}{\Omega^{2}}(t)+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\check{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
$2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\Lambda} r_{0}^{2} \Omega^{2}$.
- We want that $\check{w}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{d} t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:
- Thus, a neccessary condition for both the polytropes, is that either one of the 'radiation- $\$ ' type.
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{dt}}{\Omega^{2}}(t)+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\check{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
$2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\Lambda} r_{0}^{2} \Omega^{2}$.
- We want that $\check{W}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{d} t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:

$$
\check{\wedge} \hat{\Lambda}(1+\check{w})(1-3 \check{w})=0 .
$$

- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{dt}}{\Omega^{2}}(t)+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\check{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
$2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\Lambda} r_{0}^{2} \Omega^{2}$.
- We want that $\check{W}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{d} t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:

$$
\check{\wedge} \hat{\Lambda}(1+\check{w})(1-3 \check{w})=0 .
$$

- Thus, a neccessary condition for both Ω and Ω^{-1} to describe the polytropes, is that either one of the $\wedge s$ is zero, or \check{w} is of the 'radiation- \wedge ' type.
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=w=1 / 3$ (radiation), and with the corresponding cosmological constants Λ and $\hat{\wedge}$. Here $g_{\text {Einst }}=-\Omega^{-2} \mathrm{~d} t^{2}+r_{0}^{2} g_{\mathbb{S}^{3}}$.
- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha...
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:
has the property that both $\breve{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\tilde{W}=1 / 3$ (radiation), and with the corresponding cosmological constants \wedge and $\hat{\wedge}$. Here $g_{\text {Einst }}$
- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha...
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod).
- Theorem. The function $\Omega=\Omega(t)$ given by:
has the property that both $\breve{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Eins }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$ (radiation), and with the corresponding cosmological constants \wedge and Here
- Colloauially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha...
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:
\square
satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$ (radiation), and
with the corresponding cosmological constants Λ and Here
- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. На..
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\Lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)}{\hat{\Lambda} r_{0}^{2}}
$$

has the property that both $\breve{g}=\Omega^{2} g_{\text {Einst }}$ and \hat{g}
satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\breve{w}=1 / 3$ (radiation), and
with the corresponding cosmological constants \wedge and Here

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\Lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\lambda}{3}} t\right)}{\grave{\Lambda} r_{0}^{2}}
$$

has the property that both
satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$ (radiation), and
with the corresponding cosmological constants Λ and Here

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\check{\Lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)}{\grave{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and
satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$ (radiation), and
with the corresponding cosmological constants Λ and Here

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\Lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)}{\Lambda r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$
satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$ (radiation), and
with the corresponding cosmological constants Λ and Here

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\lambda}{3}} t\right)}{\grave{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$
with the corresponding cosmological constants \wedge and
Here

- Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha..
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\lambda}{3}} t\right)}{\grave{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\widehat{w}=\check{w}=1 / 3$ (radiation),
with the corresponding cosmological constants \wedge and
Here

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\lambda \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\lambda}{3}} t\right)}{\hat{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\widehat{w}=\check{w}=1 / 3$ (radiation), and with the corresponding cosmological constants Λ and $\hat{\Lambda}$.

Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha.

- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\lambda}{3}} t\right)}{\hat{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\widehat{w}=\check{w}=1 / 3$ (radiation), and with the corresponding cosmological constants Λ and $\hat{\Lambda}$. Here $g_{\text {Einst }}=-\Omega^{-2} \mathrm{~d} t^{2}+r_{0}^{2} g_{\mathbb{S}^{3}}$.
Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..

- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\lambda}{3}} t\right)}{\hat{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$ (radiation), and with the corresponding cosmological constants Λ 久 and $\hat{\Lambda}$. Here $g_{\text {Einst }}=-\Omega^{-2} \mathrm{~d} t^{2}+r_{0}^{2} g_{\mathbb{S}^{3}}$.

- Colloquially speaking incoherent radiation passes happily through the wound.
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)}{\hat{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\widehat{w}=\check{w}=1 / 3$ (radiation), and with the corresponding cosmological constants Λ 久 and $\hat{\Lambda}$. Here $g_{\text {Einst }}=-\Omega^{-2} \mathrm{~d} t^{2}+r_{0}^{2} g_{\mathbb{S}^{3}}$.

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one.
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)}{\hat{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$ (radiation), and with the corresponding cosmological constants Λ 久 and $\hat{\Lambda}$. Here $g_{\text {Einst }}=-\Omega^{-2} \mathrm{~d} t^{2}+r_{0}^{2} g_{\mathbb{S}^{3}}$.

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha...

Motivation for the next model (picture by R. Penrose)

Motivation for the next model (picture by R. Penrose)

Motivation for the next model (picture by P.N.)

Motivation for the next model (picture by P.N.)

Possible generalizations

- I consider two consecutives eons \hat{M} and M from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon ($\bar{M})$ determines the matter content of the present eon (M) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$
\hat{T}^{i j}-\hat{\omega} K^{i} K^{i} \quad \quad \hat{\sigma} K^{i} K^{i}-0,
$$

and with cosmological constant $\hat{\wedge}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+h_{t}\right)$, which is a Lorentzian analog of the Poincaré-Einstein metric known from the theory of conformal invariants. The solution is obtained under the assumption that the 3-dimensional conformal structure [h] on the \mathscr{I}^{+}of \hat{M} is flat, that the metric \hat{g} admits a power series expansian in the time variable t, and that $h_{0}=h_{t=0} \in[h]$. It follows that such a solution depends on precisely one real arbitrary function of the radial variable r.

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (M) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

```
and with cosmological constant }\hat{\wedge}\mathrm{ . I solve these Einstein's
equations associating to }\hat{M}\mathrm{ the metric }\hat{g
which is a Lorentzian analog of the Poincaré-Einstein metric
known from the theory of conformal invariants. The solution is
obtained under the assumption that the 3-dimensional
```



```
g}\mathrm{ admits a power series expansian in the time variable t}\mathrm{ , and
that }\mp@subsup{h}{0}{}=\mp@subsup{h}{t=0}{}\in[h]\mathrm{ . It follows that such a solution depends on
precisely one real arbitrary function of the radial variable
```

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (M) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$
\hat{T}^{i j}=\hat{\Phi} K^{i} K^{j}, \quad \hat{g}_{i j} K^{i} K^{j}=0,
$$

and with cosmological constant $\hat{\wedge}$. I solve these Einstein's

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (M) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$
\hat{T}^{i j}=\hat{\Phi} K^{i} K^{j}, \quad \hat{g}_{i j} K^{i} K^{j}=0,
$$

and with cosmological constant $\hat{\wedge}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+h_{t}\right)$, known from the theory of conformal invariants. The solution is obtained under the assumption that the 3 -dimensional conformal structure $[h]$ on the $\mathscr{G}+$ of \hat{M} is flat, that the metric admits a power series expansian in the time variable t, and that It follows that such a solution depends on precisely one real arbitrary function of the radial variable

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (M) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$
\hat{T}^{i j}=\hat{\Phi} K^{i} K^{j}, \quad \hat{g}_{i j} K^{i} K^{j}=0,
$$

and with cosmological constant $\hat{\wedge}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+h_{t}\right)$, which is a Lorentzian analog of the Poincaré-Einstein metric known from the theory of conformal invariants.

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (M) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$
\hat{T}^{i j}=\hat{\Phi} K^{i} K^{j}, \quad \hat{g}_{i j} K^{i} K^{j}=0,
$$

and with cosmological constant $\hat{\wedge}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+h_{t}\right)$, which is a Lorentzian analog of the Poincaré-Einstein metric known from the theory of conformal invariants. The solution is obtained under the assumption that the 3-dimensional conformal structure [h] on the \mathscr{I}^{+}of \hat{M} is flat,

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (M) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$
\hat{T}^{i j}=\hat{\Phi} K^{i} K^{j}, \quad \hat{g}_{i j} K^{i} K^{j}=0,
$$

and with cosmological constant $\hat{\wedge}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+h_{t}\right)$, which is a Lorentzian analog of the Poincaré-Einstein metric known from the theory of conformal invariants. The solution is obtained under the assumption that the 3-dimensional conformal structure [h] on the \mathscr{J}^{+}of \hat{M} is flat, that the metric \hat{g} admits a power series expansian in the time variable t,
precisely one real arbitrary function of the radial variable

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (M) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$
\hat{T}^{i j}=\hat{\Phi} K^{i} K^{j}, \quad \hat{g}_{i j} K^{i} K^{j}=0,
$$

and with cosmological constant $\hat{\wedge}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+h_{t}\right)$, which is a Lorentzian analog of the Poincaré-Einstein metric known from the theory of conformal invariants. The solution is obtained under the assumption that the 3-dimensional conformal structure [h] on the \mathscr{J}^{+}of \hat{M} is flat, that the metric \hat{g} admits a power series expansian in the time variable t, and that $h_{0}=h_{t=0} \in[h]$.

- I consider two consecutives eons \hat{M} and \check{M} from Penrose's Conformal Cyclic Cosmology and study how the matter content of the past eon (\hat{M}) determines the matter content of the present eon (M) by means of the reciprocity hypothesis.
- I assume that the only matter content in the final stages of the past eon is a spherical wave described by Einstein's equations with the pure radiation energy momentum tensor

$$
\hat{T}^{i j}=\hat{\Phi} K^{i} K^{j}, \quad \hat{g}_{i j} K^{i} K^{j}=0,
$$

and with cosmological constant $\hat{\wedge}$. I solve these Einstein's equations associating to \hat{M} the metric $\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+h_{t}\right)$, which is a Lorentzian analog of the Poincaré-Einstein metric known from the theory of conformal invariants. The solution is obtained under the assumption that the 3-dimensional conformal structure [h] on the \mathscr{J}^{+}of \hat{M} is flat, that the metric \hat{g} admits a power series expansian in the time variable t, and that $h_{0}=h_{t=0} \in[h]$. It follows that such a solution depends on precisely one real arbitrary function of the radial variable r.

Possible generalizations

- Applying the reciprocal hypothesis, $\hat{g} \rightarrow \check{g}=t^{4} \hat{g}$, I show that the new eon (M, g) created from the one containing a single spherical wave, is filled at its initial state with three types of radiation: (i) the damped spherical wave which continues its life from the previous eon, (ii) the ingoing spherical wave obtained as a result of a colision of the wave from the past eon with the Bang hypersulface and (iii) randomily scattered waves that could be interpreted as perfect fluid with the energy density \check{p} and the isotropic pressure \check{p} such that $\check{p}=\frac{1}{3} \check{\rho}$. The metric \check{g} solves the Einstein's equations without cosmological constant and with the energy-momentum tensor
$\check{T}^{i j}=\check{\phi} K^{i} K^{j}+\breve{\psi} L^{i} L^{j}+(\check{p}+\check{p}) \breve{u}^{i} \check{u}^{j}+\check{p}^{\prime \prime}{ }^{i j}$,
in which $\check{u}^{i} \check{u}^{j} \check{g}_{i j}=-1, \check{g}_{i j} L^{i} L^{j}=0$ and $L^{i} K^{i} \check{g}_{i j}=-2$.
- Applying the reciprocal hypothesis, $\hat{g} \rightarrow \check{g}=t^{4} \hat{g}$, I show that the new eon ($\check{M}, g ̆ g)$ created from the one containing a single spherical wave, is filled at its initial state with three types of radiation: (i) the damped spherical wave which continues its life from the previous eon, (ii) the ingoing spherical wave obtained as a result of a colision of the wave from the past eon with the Bang hypersurface and (iii) randomly scattered waves that could be interpreted as perfect fluid with the energy density and the isotropic pressure \check{p} such that $\check{p}=\frac{1}{3} \check{p}$. The metric \check{g} solves the Einstein's equations without cosmological constant and with the energy-momentum tensor
in which $\widetilde{u}^{i} u^{\prime} \breve{g}_{i}$
- Applying the reciprocal hypothesis, $\hat{g} \rightarrow \check{g}=t^{4} \hat{g}$, I show that the new eon (\check{M}, \breve{g}) created from the one containing a single spherical wave, is filled at its initial state with three types of radiation: (i) the damped spherical wave which continues its life from the previous eon, (ii) the ingoing spherical wave
- Applying the reciprocal hypothesis, $\hat{g} \rightarrow \check{g}=t^{4} \hat{g}$, I show that the new eon (\check{M}, \breve{g}) created from the one containing a single spherical wave, is filled at its initial state with three types of radiation: (i) the damped spherical wave which continues its life from the previous eon, (ii) the ingoing spherical wave obtained as a result of a colision of the wave from the past eon with the Bang hypersurface and
that could be interpreted as perfect fluid with the energy density
and the isotropic pressure \check{p} such that $\check{p}=\frac{1}{2} \check{p}$. The metric
solves the Einstein's equations without cosmological constant
and with the energy-momentum tensor
in which
- Applying the reciprocal hypothesis, $\hat{g} \rightarrow \check{g}=t^{4} \hat{g}$, I show that the new eon (\check{M}, \breve{g}) created from the one containing a single spherical wave, is filled at its initial state with three types of radiation: (i) the damped spherical wave which continues its life from the previous eon, (ii) the ingoing spherical wave obtained as a result of a colision of the wave from the past eon with the Bang hypersurface and (iii) randomly scattered waves that could be interpreted as perfect fluid with the energy density $\check{\rho}$ and the isotropic pressure \check{p} such that $\check{p}=\frac{1}{3} \check{\rho}$.

solves the Einstein's equations without cosmological constant
 and with the energy-momentum tensor

- Applying the reciprocal hypothesis, $\hat{g} \rightarrow \check{g}=t^{4} \hat{g}$, I show that the new eon (\check{M}, \breve{g}) created from the one containing a single spherical wave, is filled at its initial state with three types of radiation: (i) the damped spherical wave which continues its life from the previous eon, (ii) the ingoing spherical wave obtained as a result of a colision of the wave from the past eon with the Bang hypersurface and (iii) randomly scattered waves that could be interpreted as perfect fluid with the energy density $\check{\rho}$ and the isotropic pressure \check{p} such that $\check{p}=\frac{1}{3} \check{\rho}$. The metric \check{g} solves the Einstein's equations without cosmological constant and with the energy-momentum tensor

$$
\check{T}^{i j}=\check{\phi} K^{i} K^{j}+\check{\psi} L^{i} L^{j}+(\check{\rho}+\check{p}) \check{u}^{i} \breve{u}^{j}+\check{p} \breve{g}^{i j},
$$

in which $\check{u} \check{i}^{\prime} \check{u} \check{g}_{i j}=-1, \check{g}_{i j} L^{i} L^{j}=0$ and $L^{i} K^{j} \check{g}_{i j}=-2$.

Possible generalizations

- I start with a conformal class $\left[h_{0}\right]$ represented by the flat 3-dimensional metric

$$
h_{0}=\frac{2 r^{2} \mathrm{~d} z \mathrm{~d} \bar{z}}{\left(1+\frac{z \bar{z}}{2}\right)^{2}}+\mathrm{d} r^{2}
$$

- Then I make Poincar'e anstaz by considering a 1-paramater family of 3-d metrics h_{t}. This will be a spherically symmetric family

$$
h_{t}=\frac{2 r^{2}(1+\nu(t, r)) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{z z}{2}\right)^{2}}+(1+\mu(t, r)) \mathrm{d} r^{2}
$$

where the unknown function $\nu=\nu(t, r)$ and $\mu=\mu(t, r)$ are both real analytic in the variable t and such that: $\nu(0, r)=0$ and $\mu(0, r)=0$.

- This satisfies $h_{t=0}=h_{0}$ and because of the analyticity assumption we have $\nu(t, r)=\sum_{i=1}^{\infty} a_{i}(r) t^{i}$ and $\mu(t, r)=\sum_{i=1}^{\infty} b_{i}(r) t^{\prime}$. with a set of differentiable functions $a_{i}=a_{i}(r)$ and $b_{i}=b_{i}(r)$ depending on the r variable only.
- I start with a conformal class [h_{0}] represented by the flat 3-dimensional metric

$$
h_{0}=\frac{2 r^{2} d z \overline{\mathrm{z}}}{\left(1+\frac{z \bar{z}}{2}\right)^{2}}+\mathrm{d} r^{2} .
$$

- Then I make Poincar'e anstaz by considering a 1-paramater family of 3-d metrics h_{t}. This will be a spherically symmetric family
where the unknown function $\nu=\nu(t, r)$ and $\mu=\mu(t, r)$ are both real analytic in the variable t and such that: $\nu(0, r)=0$ and $\mu(0, r)=0$
- This satisfies $h_{t=0}=h_{0}$ and because of the analyticity assumption we have and $a_{1}=a_{1}(r)$ and $b_{r}=b_{1}(r)$ depending on the r variable only.
- I start with a conformal class $\left[h_{0}\right]$ represented by the flat 3-dimensional metric

$$
h_{0}=\frac{2 r^{2} \mathrm{dzd} \overline{\bar{z}}}{\left(1+\frac{\frac{z}{2}}{2}\right)^{2}}+\mathrm{d} r^{2} .
$$

- Then I make Poincar'e anstaz by considering a 1-paramater family of 3-d metrics h_{t}. This will be a spherically symmetric family

$$
h_{t}=\frac{2 r^{2}(1+\nu(t, r)) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{z 2}{2}\right)^{2}}+(1+\mu(t, r)) \mathrm{d} r^{2}
$$

where the unknown function

- I start with a conformal class $\left[h_{0}\right]$ represented by the flat 3-dimensional metric

$$
h_{0}=\frac{2 r^{2} \mathrm{dzd} \overline{\bar{z}}}{\left(1+\frac{z \bar{z}}{2}\right)^{2}}+\mathrm{d} r^{2}
$$

- Then I make Poincar'e anstaz by considering a 1-paramater family of 3-d metrics h_{t}. This will be a spherically symmetric family

$$
h_{t}=\frac{2 r^{2}(1+\nu(t, r)) \mathrm{dzd} \bar{z}}{\left(1+\frac{2 \overline{2}}{2}\right)^{2}}+(1+\mu(t, r)) \mathrm{d} r^{2}
$$

where the unknown function $\nu=\nu(t, r)$ and $\mu=\mu(t, r)$ are both real analytic in the variable t and such that: $\nu(0, r)=0$ and $\mu(0, r)=0$.

- This satisfies $h_{t=0}=h_{0}$ and because of the analyticity assumption we have
- I start with a conformal class $\left[h_{0}\right]$ represented by the flat 3-dimensional metric

$$
h_{0}=\frac{2 r^{2} \mathrm{dzd} \overline{\mathrm{z}}}{\left(1+\frac{z \bar{z}}{2}\right)^{2}}+\mathrm{d} r^{2}
$$

- Then I make Poincar'e anstaz by considering a 1-paramater family of 3-d metrics h_{t}. This will be a spherically symmetric family

$$
h_{t}=\frac{2 r^{2}(1+\nu(t, r)) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{z 2}{2}\right)^{2}}+(1+\mu(t, r)) \mathrm{d} r^{2}
$$

where the unknown function $\nu=\nu(t, r)$ and $\mu=\mu(t, r)$ are both real analytic in the variable t and such that:

$$
\nu(0, r)=0 \quad \text { and } \quad \mu(0, r)=0 .
$$

- This satisfies $h_{t=0}=h_{0}$ and because of the analyticity assumption we have
with a set of differentiable functions depending on the r variable only.
- I start with a conformal class $\left[h_{0}\right]$ represented by the flat 3-dimensional metric

$$
h_{0}=\frac{2 r^{2} \mathrm{dzd} \overline{\bar{z}}}{\left(1+\frac{\frac{z}{2}}{2}\right)^{2}}+\mathrm{d} r^{2} .
$$

- Then I make Poincar'e anstaz by considering a 1-paramater family of 3-d metrics h_{t}. This will be a spherically symmetric family

$$
h_{t}=\frac{2 r^{2}(1+\nu(t, r)) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{z 2}{2}\right)^{2}}+(1+\mu(t, r)) \mathrm{d} r^{2}
$$

where the unknown function $\nu=\nu(t, r)$ and $\mu=\mu(t, r)$ are both real analytic in the variable t and such that: $\nu(0, r)=0 \quad$ and $\mu(0, r)=0$.

- This satisfies $h_{t=0}=h_{0}$ and because of the analyticity assumption we have $\nu(t, r)=\sum_{i=1}^{\infty} a_{i}(r) t^{i}$ and $\mu(t, r)=\sum_{i=1}^{\infty} b_{i}(r) t^{i}$, with a set of differentiable functions depending on the r variable only.
- I start with a conformal class $\left[h_{0}\right]$ represented by the flat 3-dimensional metric

$$
h_{0}=\frac{2 r^{2} \mathrm{dzd} \overline{\bar{z}}}{\left(1+\frac{\frac{z}{2}}{2}\right)^{2}}+\mathrm{d} r^{2} .
$$

- Then I make Poincar'e anstaz by considering a 1-paramater family of 3-d metrics h_{t}. This will be a spherically symmetric family

$$
h_{t}=\frac{2 r^{2}(1+\nu(t, r)) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{z 2}{2}\right)^{2}}+(1+\mu(t, r)) \mathrm{d} r^{2}
$$

where the unknown function $\nu=\nu(t, r)$ and $\mu=\mu(t, r)$ are both real analytic in the variable t and such that: $\nu(0, r)=0 \quad$ and $\mu(0, r)=0$.

- This satisfies $h_{t=0}=h_{0}$ and because of the analyticity assumption we have $\nu(t, r)=\sum_{i=1}^{\infty} a_{i}(r) t^{i}$ and $\mu(t, r)=\sum_{i=1}^{\infty} b_{i}(r) t^{i}$, with a set of differentiable functions $a_{i}=a_{i}(r)$ and $b_{i}=b_{i}(r)$ depending on the r variable only.

Possible generalizations

- This leads to the following ansatz for the Poincaré-type metric \hat{g} for the past eon \hat{M} :
$\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}\left(1+\sum_{i=1}^{\infty} a_{i}(r) t^{\prime}\right) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{z \overline{2}}{2}\right)^{2}}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right) \mathrm{d} r^{2}\right)$.
Our (pre)past eon manifold \hat{M} is parameterized by $t>0, r>0$ and $z \in \mathbb{C} \cup\{\infty\}$.
- I now consider the following null vector field K on \hat{M} :

$$
K=\partial_{t}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right)^{-\frac{1}{2}} \partial_{r}
$$

- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface $r=0$.
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{i j}=\hat{\Lambda} \hat{g}^{i j}+\hat{\Phi} K^{i} K^{j}$ with this null vector field K and some functions $\hat{\Phi}$ and $\hat{\Lambda}$. We have the following theorem/conjecture.
- This leads to the following ansatz for the Poincaré-type metric \hat{g} for the past eon \hat{M} :

Our (pre)past eon manifold \hat{M} is parameterized by and z

- I now consider the following null vector field K on \hat{M} :
- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface $r=0$.
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{i j}=\hat{\Lambda} \hat{g}^{i j}+\hat{\Phi} K^{i} K^{j}$ with this null vector field K and some functions $\hat{\phi}$ and \hat{A}. We have the following theorem/conjecture.
- This leads to the following ansatz for the Poincaré-type metric \hat{g} for the past eon \hat{M} :
$\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}\left(1+\sum_{i=1}^{\infty} a_{i}(r)^{\prime}\right) \mathrm{d} z \mathrm{~d} \overline{\mathrm{z}}}{\left(1+\frac{\bar{z}}{2}\right)^{2}}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right) \mathrm{d} r^{2}\right)$.
Our (pre)past eon manifold \hat{M} is parameterized by t
and
- I now consider the following null vector field K on M :
- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface $r=0$.
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{i j}=\hat{\Lambda} \hat{g}^{i j}+\hat{\Phi} K^{i} K^{j}$ with this null vector field K and some functions $\hat{\Phi}$ and $\hat{\Lambda}$. We have the following theorem/conjecture.
- This leads to the following ansatz for the Poincaré-type metric \hat{g} for the past eon \hat{M} :
$\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}\left(1+\sum_{i=1}^{\infty} a_{i}(r) t^{i}\right) \mathrm{dzd} \overline{\mathrm{z}}}{\left(1+\frac{\bar{z}}{2}\right)^{2}}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right) \mathrm{d} r^{2}\right)$.
Our (pre)past eon manifold \hat{M} is parameterized by $t>0, r>0$ and $z \in \mathbb{C} \cup\{\infty\}$.
- I now consider the following null vector field K on \hat{M} :
- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface $r=0$.
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{i j}=\hat{\Lambda} \hat{g}^{i j}+\hat{\Phi} K^{i} K^{j}$ with this null vector field K and
some functions ϕ and $\hat{\wedge}$. We have the following
theorem/conjecture.
- This leads to the following ansatz for the Poincaré-type metric \hat{g} for the past eon \hat{M} :
$\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}\left(1+\sum_{i=1}^{\infty} a_{i}(r)^{i}\right) \mathrm{d} z \mathrm{~d} \overline{\mathrm{z}}}{\left(1+\frac{\bar{z}}{2}\right)^{2}}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right) \mathrm{d} r^{2}\right)$.
Our (pre)past eon manifold \hat{M} is parameterized by $t>0, r>0$ and $z \in \mathbb{C} \cup\{\infty\}$.
- I now consider the following null vector field K on \hat{M} :
- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{i j}=\hat{\Lambda} \hat{g}^{i j}+\phi K^{i} K^{j}$ with this null vector field K and some functions ϕ and $\hat{\wedge}$. We have the following theorem/conjecture.
- This leads to the following ansatz for the Poincaré-type metric \hat{g} for the past eon \hat{M} :
$\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}\left(1+\sum_{i=1}^{\infty} a_{i}(r) t^{i}\right) \mathrm{dzd} \overline{\mathrm{z}}}{\left(1+\frac{\bar{z}}{2}\right)^{2}}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right) \mathrm{d} r^{2}\right)$.
Our (pre)past eon manifold \hat{M} is parameterized by $t>0, r>0$ and $z \in \mathbb{C} \cup\{\infty\}$.
- I now consider the following null vector field K on \hat{M} :

$$
K=\partial_{t}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right)^{-\frac{1}{2}} \partial_{r}
$$

- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{i j}=\hat{\Lambda} \hat{g}^{i j}+\hat{\Phi} K^{i} K^{j}$ with this null vector field K and some functions $\hat{\phi}$ and $\hat{\wedge}$. We have the following theorem/conjecture.
- This leads to the following ansatz for the Poincaré-type metric \hat{g} for the past eon \hat{M} :
$\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}\left(1+\sum_{i=1}^{\infty} a_{i}(r) t^{i}\right) \mathrm{dzd} \overline{\mathrm{z}}}{\left(1+\frac{\bar{z}}{2}\right)^{2}}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right) \mathrm{d} r^{2}\right)$.
Our (pre)past eon manifold \hat{M} is parameterized by $t>0, r>0$ and $z \in \mathbb{C} \cup\{\infty\}$.
- I now consider the following null vector field K on \hat{M} :

$$
K=\partial_{t}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right)^{-\frac{1}{2}} \partial_{r}
$$

- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface $r=0$.
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{i j}=\hat{\Lambda} \hat{g}^{i j}+\hat{\Phi} K^{i} K^{j}$ with this null vector field K and some functions $\hat{\phi}$ and $\hat{\wedge}$. We have the following theorem/conjecture.
- This leads to the following ansatz for the Poincaré-type metric \hat{g} for the past eon \hat{M} :
$\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}\left(1+\sum_{i=1}^{\infty} a_{i}(r) t^{t^{\prime}}\right) \mathrm{d} z \mathrm{~d} \overline{\mathrm{z}}}{\left(1+\frac{\bar{z}}{2}\right)^{2}}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right) \mathrm{d} r^{2}\right)$.
Our (pre)past eon manifold \hat{M} is parameterized by $t>0, r>0$ and $z \in \mathbb{C} \cup\{\infty\}$.
- I now consider the following null vector field K on \hat{M} :

$$
K=\partial_{t}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right)^{-\frac{1}{2}} \partial_{r}
$$

- It is tangent to a congruence of null geodesics without shear and twist, which represents light rays emanating from the source at the surface $r=0$.
- I require that the Poincaré-type metric \hat{g} satisfies the Einstein equations $\hat{R}^{i j}=\hat{\Lambda} \hat{g}^{i j}+\hat{\phi} K^{i} K^{j}$ with this null vector field K and some functions $\hat{\phi}$ and $\hat{\wedge}$. We have the following theorem/conjecture.

Possible generalizations

Theorem 1.
 If the metric

satisfies Einstein's equations

$$
\hat{E}_{i j}: \hat{n}_{j j}-\hat{\hat{\Lambda}}_{j i j}-\hat{\Phi} K_{i} \hat{K}_{j}=0
$$

with

then we have:

Possible generalizations

Theorem 1.

satisfies Einstein's equations

with
then we have:

Possible generalizations

Theorem 1.

If the metric
$\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+h_{t}\right)=$

$$
t^{-2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}\left(1+\sum_{i=1}^{\infty} a_{i}(r) t^{i}\right) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{z \bar{z}}{2}\right)^{2}}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right) \mathrm{d} r^{2}\right)
$$

satisfies Einstein's equations

with

then we have:

Possible generalizations

Theorem 1.

If the metric
$\hat{g}=t^{-2}\left(-\mathrm{d} t^{2}+h_{t}\right)=$

$$
t^{-2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}\left(1+\sum_{i=1}^{\infty} a_{i}(r) t^{i}\right) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{z \bar{z}}{2}\right)^{2}}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right) \mathrm{d} r^{2}\right)
$$

satisfies Einstein's equations

$$
\hat{E}_{i j}:=\hat{R}_{i j}-\hat{\Lambda} \hat{g}_{i j}-\hat{\Phi} \hat{K}_{i} \hat{K}_{j}=0
$$

with

$$
K=K^{i} \partial_{i}=\partial_{t}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right)^{-\frac{1}{2}} \partial_{r}, \quad \hat{K}_{i}=\hat{g}_{i j} K^{j},
$$

then we have:

Possible generalizations

- The coefficients $a_{1}(r), a_{2}(r) b_{1}(r)$ and $b_{2}(r)$ identically vanish, $a_{1}(r)=a_{2}(r)=b_{1}(r)=b_{2}(r)=0$, and the power series expansion of histarts at the t^{3} terms, $h_{r}=r^{3} \lambda(r)+O\left(t^{\wedge}\right)$.
- The metric \hat{g}, or what is the same, the power series expansions $\nu(t, r)=\sum_{i=1}^{\infty} a_{i}(r) t^{i}$ and $\mu(t, r)=\sum_{i=1}^{\infty} b_{i}(r) t^{i}$, are totally determined up to infinite order by an arbitrary differentiable function $f=f(r)$.
- More precisely, the Einstein equations $\hat{E}_{i j}=\mathcal{O}\left(t^{k+1}\right)$ solved up to an order k, together with an arbitrary differentiable function $i=!(r)$, uniquely determine $\mu(t, r)$ and $\mu(t, r)$ up to an order $(k+2)$.
- The coefficients $a_{1}(r), a_{2}(r) b_{1}(r)$ and $b_{2}(r)$ identically vanish, $a_{1}(r)=a_{2}(r)=b_{1}(r)=b_{2}(r)=0$, and the power series expansion of h_{t} starts at the t^{3} terms, $h_{t}=t^{3} \chi(r)+\mathcal{O}\left(t^{4}\right)$.
- The metric \hat{g}, or what is the same, the power series expansions $\nu(t, r)=\sum_{i=1}^{\infty} a_{i}(r) t^{i}$ and $\mu(t, r)=\sum_{i=1}^{\infty} b_{i}(r) t^{i}$, are totally determined up to infinite order by an arbitrary differentiable function
- More precisely, the Einstein equations $\hat{E}_{i j}=\mathcal{O}\left(t^{k+1}\right)$ solved up to an order k, together with an arbitrary differentiable function $f=f(t)$, uniquely determine ($t, t)$ and (t, -) up to an order
- The coefficients $a_{1}(r), a_{2}(r) b_{1}(r)$ and $b_{2}(r)$ identically vanish, $a_{1}(r)=a_{2}(r)=b_{1}(r)=b_{2}(r)=0$, and the power series expansion of h_{t} starts at the t^{3} terms, $h_{t}=t^{3} \chi(r)+\mathcal{O}\left(t^{4}\right)$.
- The metric \hat{g}, or what is the same, the power series expansions $\nu(t, r)=\sum_{i=1}^{\infty} a_{i}(r) t^{i}$ and $\mu(t, r)=\sum_{i=1}^{\infty} b_{i}(r) t^{i}$, are totally determined up to infinite order by an arbitrary differentiable function $f=f(r)$.
- More precisely, the Einstein equations $\hat{E}_{i j}=\mathcal{O}\left(t^{k+1}\right)$ solved up
to an order k, together with an arbitrary differentiable function uniquely determine $\nu(t, r)$ and $\mu(t, r)$ up to an order
- The coefficients $a_{1}(r), a_{2}(r) b_{1}(r)$ and $b_{2}(r)$ identically vanish, $a_{1}(r)=a_{2}(r)=b_{1}(r)=b_{2}(r)=0$, and the power series expansion of h_{t} starts at the t^{3} terms, $h_{t}=t^{3} \chi(r)+\mathcal{O}\left(t^{4}\right)$.
- The metric \hat{g}, or what is the same, the power series expansions $\nu(t, r)=\sum_{i=1}^{\infty} a_{i}(r) t^{i}$ and $\mu(t, r)=\sum_{i=1}^{\infty} b_{i}(r) t^{i}$, are totally determined up to infinite order by an arbitrary differentiable function $f=f(r)$.
- More precisely, the Einstein equations $\hat{E}_{i j}=\mathcal{O}\left(t^{k+1}\right)$ solved up to an order k, together with an arbitrary differentiable function $f=f(r)$, uniquely determine $\nu(t, r)$ and $\mu(t, r)$ up to an order $(k+2)$.

Possible generalizations

- In the lowest order the solution reads:

The energy function $\hat{\phi}$ and the cosmological constant $\hat{\wedge}$ are:

$$
\hat{\phi}=3 \frac{f^{\prime}}{r^{3}} t^{6}+O\left(t^{7}\right) \text { and } \hat{\Lambda}=3+O\left(t^{k+3}\right)
$$

the Weyl tensor of the solution is

$$
w_{n i} i_{k \mid}=o^{\prime}(t) \text {. }
$$

In particular, the Weyl tensor $W^{i}{ }_{j k l}$ vanishes at $t=0$ and $\hat{\Lambda}=3>0$ there.

Possible generalizations

- In the lowest order the solution reads:

$$
\nu=\frac{f}{r^{3}} t^{3}+\mathcal{O}\left(t^{4}\right) \quad \text { and } \quad \mu=-\frac{2 f}{r^{3}} t^{3}+\mathcal{O}\left(t^{4}\right) ;
$$

The energy function $\hat{\phi}$ and the cosmological constant $\hat{\wedge}$ are:

the Weyl tensor of the solution is

In particular, the Weyl tensor $W^{i}{ }_{j k l}$ vanishes at $t=0$ and $\hat{\Lambda}=3>0$ there.

- In the lowest order the solution reads:

$$
\nu=\frac{f}{r^{3}} t^{3}+\mathcal{O}\left(t^{4}\right) \quad \text { and } \quad \mu=-\frac{2 f}{r^{3}} t^{3}+\mathcal{O}\left(t^{4}\right)
$$

The energy function $\hat{\phi}$ and the cosmological constant $\hat{\wedge}$ are:

Possible generalizations

- In the lowest order the solution reads:

$$
\nu=\frac{f}{r^{3}} t^{3}+\mathcal{O}\left(t^{4}\right) \quad \text { and } \quad \mu=-\frac{2 f}{r^{3}} t^{3}+\mathcal{O}\left(t^{4}\right)
$$

The energy function $\hat{\phi}$ and the cosmological constant $\hat{\wedge}$ are:

$$
\hat{\Phi}=3 \frac{f^{\prime}}{r^{3}} t^{6}+\mathcal{O}\left(t^{7}\right) \quad \text { and } \quad \hat{\Lambda}=3+\mathcal{O}\left(t^{k+3}\right)
$$

the Weyl tensor of the solution is

In particular, the Weyl tensor $W^{i}{ }_{j k l}$ vanishes at $t=0$ and $\hat{\Lambda}=3>0$ there.

- In the lowest order the solution reads:

$$
\nu=\frac{f}{r^{3}} t^{3}+\mathcal{O}\left(t^{4}\right) \quad \text { and } \quad \mu=-\frac{2 f}{r^{3}} t^{3}+\mathcal{O}\left(t^{4}\right)
$$

The energy function $\hat{\phi}$ and the cosmological constant $\hat{\wedge}$ are:

$$
\hat{\Phi}=3 \frac{f^{\prime}}{r^{3}} t^{6}+\mathcal{O}\left(t^{7}\right) \quad \text { and } \quad \hat{\Lambda}=3+\mathcal{O}\left(t^{k+3}\right)
$$

the Weyl tensor of the solution is

$$
W^{i}{ }_{j k l}=\mathcal{O}(t) .
$$

In particular, the Weyl tensor $W^{i}{ }_{j k l}$ vanishes at $t=0$ and $\hat{\Lambda}=3>0$ there.

Possible generalizations

- With the use of computers we calculated this solution up to the order $k=10$, finding explicitly $\nu=\sum_{k=3}^{10} a_{k} t^{k}$ and $\mu=\sum_{k=3}^{10} b_{k} t^{k}$. The formulas are compact enough up to $k=8$ and up to the order $k=8$ they read:

Possible generalizations

- With the use of computers we calculated this solution up to the order $k=10$, finding explicitly $\nu=\sum_{k=3}^{10} a_{k} t^{k}$ and
$\mu=\sum_{k=3}^{10} b_{k} t^{k}$. The formulas are compact enough up to $k=8$ and up to the order $k=8$ they read:
- With the use of computers we calculated this solution up to the order $k=10$, finding explicitly $\nu=\sum_{k=3}^{10} a_{k} t^{k}$ and $\mu=\sum_{k=3}^{10} b_{k} t^{k}$. The formulas are compact enough up to $k=8$ and up to the order $k=8$ they read:

$$
\begin{aligned}
\nu(t, r)= & f \frac{t^{3}}{r^{3}}-\frac{3}{4} f^{\prime} \frac{t^{4}}{r^{4}}+\frac{1}{10}\left(-2 r f^{\prime}+3 r^{2} f^{\prime \prime}\right) \frac{t^{5}}{r^{5}}+ \\
& \frac{1}{24}\left(3 f^{2}-3 r f^{\prime}+3 r^{2} f^{\prime \prime}-2 r^{3} f^{(3)}\right) \frac{t^{6} 6}{r^{6}}+ \\
& \frac{r}{280}\left(-24 f^{\prime}-105 f^{\prime}+24 f^{\prime \prime}-12 r^{2} f^{(3)}+5 r^{3} f^{(4)}\right) \frac{t^{7}}{r^{7}}- \\
& \frac{r}{960}\left(60 f^{\prime}+288 f f^{\prime}-150 r f^{\prime 2}-60 r f^{\prime \prime}-216 r f f^{\prime \prime}+30 r^{2} f^{(3)}-10 r^{3} f^{(4)}+3 r^{4} f^{(5)}\right) \frac{t^{8}}{r^{8}}+ \\
& \mathcal{O}\left(\left(\frac{t}{r}\right)^{9}\right)
\end{aligned}
$$

- With the use of computers we calculated this solution up to the order $k=10$, finding explicitly $\nu=\sum_{k=3}^{10} a_{k} t^{k}$ and
$\mu=\sum_{k=3}^{10} b_{k} t^{k}$. The formulas are compact enough up to $k=8$ and up to the order $k=8$ they read:

$$
\begin{aligned}
\nu(t, r)= & f \frac{t^{3}}{r^{3}}-\frac{3}{4} f^{\prime} \frac{t^{4}}{r^{4}}+\frac{1}{10}\left(-2 r f^{\prime}+3 r^{2} f^{\prime \prime}\right) \frac{t^{5}}{r^{5}}+ \\
& \frac{1}{24}\left(3 f^{2}-3 r f^{\prime}+3 r^{2} f^{\prime \prime}-2 r^{3} f^{(3)}\right) \frac{t^{6}}{r^{6}}+ \\
& \frac{r}{280}\left(-24 f^{\prime}-105 f f^{\prime}+24 r f^{\prime \prime}-12 r^{2} f^{(3)}+5 r^{3} f^{(4)}\right) \frac{t^{7}}{r^{7}}- \\
& \frac{r}{960}\left(60 f^{\prime}+288 f f^{\prime}-150 r f^{\prime 2}-60 r f^{\prime \prime}-216 r f f^{\prime \prime}+30 r^{2} f^{(3)}-10 r^{3} f^{(4)}+3 r^{4} f^{(5)}\right) \frac{t^{8}}{r^{8}}+ \\
& \mathcal{O}\left(\left(\frac{t}{r}\right)^{9}\right) \\
\mu(t, r)= & -2 f \frac{t^{3}}{r^{3}}+\frac{3}{4} f^{\prime} \frac{4^{4}}{r^{4}}-\frac{1}{5} f^{\prime \prime} \frac{t^{5}}{r^{5}}+\frac{1}{24}\left(39 f^{2}+r^{3} f^{(3)}\right) \frac{t^{6}}{r^{6}}-\frac{r}{280}\left(390 f f^{\prime}+2 r^{3} f^{(4)}\right) \frac{t^{7}}{r^{7}}+ \\
& \frac{r}{960}\left(-18 f f^{\prime}+300 r f^{\prime 2}+378 r f^{\prime \prime}+r^{4} f^{(5)}\right) \frac{t^{8}}{r^{8}}+\mathcal{O}\left(\left(\frac{t}{r}\right)^{9}\right) .
\end{aligned}
$$

Possible generalizations

- For a solution up to this order we find that:

$\frac{r^{3}}{40}\left(120 f^{\prime}+522 f f^{\prime}-177 r f^{\prime 2}-120 r f^{\prime \prime}-378 r f^{\prime \prime}+93 r^{2} f^{\prime} f^{\prime \prime}+60 r^{2} f^{(3)}+90 r^{2} f f^{(3)}-20 r^{3} f^{(4)}+5 r^{4} f^{(5)}\right.$ mul t$)^{12}$.
- I have no patience to type the Weyl tensor components up to high order. It is enough to say that that up to the 4th order in t, modulo a nonzero constant tensor $C^{\prime} j k$, it is equal to:

$$
W^{i}{ }_{j k l}=\left(\frac{f}{r^{2}} \frac{t}{r}-\frac{f^{\prime}}{r} \frac{t^{2}}{r^{2}}+\frac{f^{\prime \prime}}{2} \frac{t^{3}}{r^{3}}\right) C^{i}{ }_{j k l}+\mathcal{O}\left(\left(\frac{t}{r}\right)^{4}\right) .
$$

- Of course, for the positivity of the energy density $\hat{\phi}$ close to the surface \mathscr{I}^{+}of \hat{M} we need

Possible generalizations

- For a solution up to this order we find that:

$$
\begin{aligned}
\hat{\phi}= & 3 r^{3} f^{\prime} \frac{t^{6}}{r^{6}}+3 r^{3}\left(f^{\prime}-r f^{\prime \prime}\right) \frac{t^{7}}{r^{7}}+\frac{3 r^{3}}{2}\left(2 f^{\prime}-2 r f^{\prime \prime}+r^{2} f^{(3)}\right) \frac{t^{8}}{r^{8}}+ \\
& \frac{r^{3}}{2}\left(6 f^{\prime}+6 f f^{\prime}-6 r f^{\prime \prime}+3 r^{2} f^{(3)}-r^{3} f^{(4)}\right) \frac{t^{9}}{r^{9}}+ \\
& \frac{r^{3}}{8}\left(24 f^{\prime}+66 f f^{\prime}-12 r f^{\prime 2}-24 r f^{\prime \prime}-30 r f f^{\prime \prime}+12 r^{2} f^{(3)}-4 r^{3} f^{(4)}+r^{4} f^{(5)}\right) \frac{t^{10}}{r^{10}}+ \\
& \frac{r^{3}}{40}\left(120 f^{\prime}+522 f f^{\prime}-177 r f^{\prime 2}-120 r f^{\prime \prime}-378 r f f^{\prime \prime}+93 r^{2} f^{\prime} f^{\prime \prime}+60 r^{2} f^{(3)}+90 r^{2} f f^{(3)}-20 r^{3} f^{(4)}+5 r^{4} f^{(5)}\right. \\
& \mathcal{O}\left(\left(\frac{t}{r}\right)^{12}\right),
\end{aligned}
$$

- I have no patience to type the Weyl tensor components up to high order. It is enough to say that that up to the 4th order in t, modulo a nonzero constant tensor $C^{\prime} j k$, it is equal to:

- Of course, for the positivity of the energy density $\hat{\phi}$ close to the surface \mathscr{I}^{+}of \hat{M} we need

Possible generalizations

- For a solution up to this order we find that:

$$
\begin{aligned}
& \hat{\Phi}=3 r^{3} f^{\prime} \frac{t^{6}}{r^{6}}+3 r^{3}\left(f^{\prime}-r f^{\prime \prime}\right) \frac{t^{7}}{r^{7}}+\frac{3 r^{3}}{2}\left(2 f^{\prime}-2 r f^{\prime \prime}+r^{2} f^{(3)}\right) \frac{t^{8}}{r^{8}}+ \\
& \frac{r^{3}}{2}\left(6 f^{\prime}+6 f f^{\prime}-6 r f^{\prime \prime}+3 r^{2} f^{(3)}-r^{3} f^{(4)}\right) \frac{t^{9}}{r^{9}}+ \\
& \frac{r^{3}}{8}\left(24 f^{\prime}+66 f f^{\prime}-12 r f^{\prime 2}-24 r f^{\prime \prime}-30 r f f^{\prime \prime}+12 r^{2} f^{(3)}-4 r^{3} f^{(4)}+r^{4} f^{(5)}\right) \frac{t^{10}}{r^{10}}+ \\
& \frac{r^{3}}{40}\left(120 f^{\prime}+522 f f^{\prime}-177 r f^{\prime 2}-120 r f^{\prime \prime}-378 r f f^{\prime \prime}+93 r^{2} f^{\prime} f^{\prime \prime}+60 r^{2} f^{(3)}+90 r^{2} f f^{(3)}-20 r^{3} f^{(4)}+5 r^{4} f^{(5)}\right. \\
& \mathcal{O}\left(\left(\frac{t}{r}\right)^{12}\right), \\
& \hat{\Lambda}=3+\mathcal{O}\left(t^{9}\right) .
\end{aligned}
$$

- I have no patience to type the Weyl tensor components up to high order. It is enough to say that that up to the 4th order in t, modulo a nonzero constant tensor $C^{i} j k /$, it is equal to:

- Of course, for the positivity of the energy density $\hat{\Phi}$ close to the surface \mathscr{I}^{+}of \hat{M} we need
- For a solution up to this order we find that:

$$
\begin{aligned}
\hat{\Phi}= & 3 r^{3} f^{\prime} \frac{t^{6}}{r^{6}}+3 r^{3}\left(f^{\prime}-r f^{\prime \prime}\right) \frac{t^{7}}{r^{7}}+\frac{3 r^{3}}{2}\left(2 f^{\prime}-2 r f^{\prime \prime}+r^{2} f^{(3)}\right) \frac{t^{8}}{r^{8}}+ \\
& \frac{r^{3}}{2}\left(6 f^{\prime}+6 f f^{\prime}-6 r f^{\prime \prime}+3 r^{2} f^{(3)}-r^{3} f^{(4)}\right) \frac{t^{9}}{r^{9}}+ \\
& \frac{r^{3}}{8}\left(24 f^{\prime}+66 f f^{\prime}-12 r f^{\prime 2}-24 r f^{\prime \prime}-30 r f f^{\prime \prime}+12 r^{2} f^{(3)}-4 r^{3} f^{(4)}+r^{4} f^{(5)}\right) \frac{t^{10}}{r^{10}}+ \\
& \frac{r^{3}}{40}\left(120 f^{\prime}+522 f f^{\prime}-177 r f^{\prime 2}-120 r f^{\prime \prime}-378 r f f^{\prime \prime}+93 r^{2} f^{\prime} f^{\prime \prime}+60 r^{2} f^{(3)}+90 r^{2} f f^{(3)}-20 r^{3} f^{(4)}+5 r^{4} f^{(5)}\right. \\
& \mathcal{O}\left(\left(\frac{t}{r}\right)^{12}\right)
\end{aligned}
$$

$$
\hat{\Lambda}=3+\mathcal{O}\left(t^{9}\right) .
$$

- I have no patience to type the Weyl tensor components up to high order. It is enough to say that that up to the 4th order in t, modulo a nonzero constant tensor $C^{i}{ }_{j k l}$, it is equal to:
- Of course, for the positivity of the energy density $\hat{\phi}$ close to the surface \mathscr{I}^{+}of \hat{M} we need

Possible generalizations

- For a solution up to this order we find that:

$$
\begin{aligned}
\hat{\Phi}= & 3 r^{3} f^{\prime} \frac{t^{6}}{r^{6}}+3 r^{3}\left(f^{\prime}-r f^{\prime \prime}\right) \frac{t^{7}}{r^{7}}+\frac{3 r^{3}}{2}\left(2 f^{\prime}-2 r f^{\prime \prime}+r^{2} f^{(3)}\right) \frac{t^{8}}{r^{8}}+ \\
& \frac{r^{3}}{2}\left(6 f^{\prime}+6 f f^{\prime}-6 r f^{\prime \prime}+3 r^{2} f^{(3)}-r^{3} f^{(4)}\right) \frac{t^{9}}{r^{9}}+ \\
& \frac{r^{3}}{8}\left(24 f^{\prime}+66 f f^{\prime}-12 r f^{\prime 2}-24 r f^{\prime \prime}-30 r f f^{\prime \prime}+12 r^{2} f^{(3)}-4 r^{3} f^{(4)}+r^{4} f^{(5)}\right) \frac{t^{10}}{r^{10}}+ \\
& \frac{r^{3}}{40}\left(120 f^{\prime}+522 f f^{\prime}-177 r f^{\prime 2}-120 r f^{\prime \prime}-378 r f f^{\prime \prime}+93 r^{2} f^{\prime} f^{\prime \prime}+60 r^{2} f^{(3)}+90 r^{2} f f^{(3)}-20 r^{3} f^{(4)}+5 r^{4} f^{(5)}\right. \\
& \mathcal{O}\left(\left(\frac{t}{r}\right)^{12}\right)
\end{aligned}
$$

$$
\hat{\wedge}=3+\mathcal{O}\left(t^{9}\right) .
$$

- I have no patience to type the Weyl tensor components up to high order. It is enough to say that that up to the 4th order in t, modulo a nonzero constant tensor $C^{i}{ }_{j k l}$, it is equal to:

$$
W^{i}{ }_{j k l}=\left(\frac{f}{r^{2}} \frac{t}{r}-\frac{f^{\prime}}{r} \frac{t^{2}}{r^{2}}+\frac{f^{\prime \prime}}{2} \frac{t^{3}}{r^{3}}\right) C^{i}{ }_{j k l}+\mathcal{O}\left(\left(\frac{t}{r}\right)^{4}\right) .
$$

- Of course, for the positivity of the energy density $\hat{\phi}$ close to the surface of \hat{M} we need

Possible generalizations

- For a solution up to this order we find that:

$$
\begin{aligned}
& \hat{\Phi}=3 r^{3} f^{\prime} \frac{t^{6}}{r^{6}}+3 r^{3}\left(f^{\prime}-r^{\prime \prime}\right) \frac{7^{7}}{r^{7}}+\frac{33^{3}}{2}\left(2 f^{\prime}-2 r^{\prime \prime}+r^{2} f^{(3)}\right) \frac{t^{8}}{8^{8}}+ \\
& \frac{r^{3}}{2}\left(6 f^{\prime}+6 f^{\prime}-6 r^{\prime \prime}+3 r^{2} f^{(3)}-r^{3} f^{(4)}\right) \frac{t^{9}}{r^{9}}+ \\
& \frac{r^{3}}{8}\left(24 f^{\prime}+66 f f^{\prime}-12 r f^{\prime 2}-24 r f^{\prime \prime}-30 r f f^{\prime \prime}+12 r^{2} f^{(3)}-4 r^{3} f^{(4)}+r^{4} f^{(5)}\right) \frac{t^{10}}{r^{10}}+ \\
& \frac{r^{3}}{40}\left(120 f^{\prime}+522 f f^{\prime}-177 r f^{\prime 2}-120 r f^{\prime \prime}-378 r f f^{\prime \prime}+93 r^{2} f^{\prime} f^{\prime \prime}+60 r^{2} f^{(3)}+90 r^{2} f f^{(3)}-20 r^{3} f^{(4)}+5 r^{4} f^{(5)}\right. \\
& \text { O(} \left.\left(\frac{t}{r}\right)^{12}\right) \text {, }
\end{aligned}
$$

$$
\hat{\wedge}=3+\mathcal{O}\left(t^{9}\right) .
$$

- I have no patience to type the Weyl tensor components up to high order. It is enough to say that that up to the 4th order in t, modulo a nonzero constant tensor $C^{i}{ }_{j k}$, it is equal to:

$$
W^{i}{ }_{j k l}=\left(\frac{f}{r^{2}} \frac{t}{r}-\frac{f^{\prime}}{r} \frac{t^{2}}{r^{2}}+\frac{f^{\prime \prime}}{2} \frac{t^{3}}{r^{3}}\right) C^{i}{ }_{j k l}+\mathcal{O}\left(\left(\frac{t}{r}\right)^{4}\right) .
$$

- Of course, for the positivity of the energy density $\hat{\phi}$ close to the surface \mathscr{I}^{+}of \hat{M} we need

$$
f^{\prime}>0
$$

Possible generalizations

The Poincaré-type metric \hat{g} can be interpreted as the ending stage of the evolution of the past eon in Penrose's CCC. The eon has a positive cosmological constant $\hat{\Lambda} \simeq 3$, which is filled with a spherically symmetric pure radiation moving along the null congruence generated by the vector field K.

The Poincaré-type metric \hat{g} can be interpreted as the ending stage of the evolution of the past eon in Penrose's CCC. The eon has a positive cosmological constant $\hat{\Lambda} \simeq 3$, which is filled with a spherically symmetric pure radiation moving along the null congruence generated by the vector field K.

Possible generalizations

Theorem 2.
Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{i j}=0$. Then, the reciprocal metric

satisfies the Einstein equations

Here \breve{K}_{i} and K_{i} are the null 1-forms corresponding to the pair of outgoing-ingoing null vector fields
via $\check{K}_{i}=\breve{g}_{i j} K^{j}$ and $\check{L}=\breve{g}_{i j} L^{j}$, and the 1 -form vector field \breve{u}_{i} corresponds to the future oriented - Note that now $t<0$ (!) timelike unit vector field

Possible generalizations

Theorem 2.
Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{i j}=0$. Then, the reciprocal metric

satisfies the Einstein equations

Here \breve{K}_{i} and L_{i} are the null 1-forms corresponding to the pair of outgoing-ingoing null vector fields
via $\check{K}_{i}=\breve{g}_{i j} K^{j}$ and $\check{L}=\check{g}_{i j} L^{j}$, and the 1 -form vector field \check{u}_{i} corresponds to the future oriented - Note that now $t<0$ (!) timelike unit vector fie'd

Possible generalizations

Theorem 2.
Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{i j}=0$. Then, the reciprocal metric

satisfies the Einstein equations

Here K_{i} and L_{i} are the null 1-forms corresponding to the pair of going-ingoing null vector fields

via $K_{i}=\breve{g}_{i j} K^{j}$ and $L=\check{g}_{i j} L^{j}$, and the 1 -form vector field \check{u}_{i}

corresponds to the future oriented - Note that now $t<0$ (!) timelike unit vector field
via

Possible generalizations

Theorem 2.
Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{i j}=0$. Then, the reciprocal metric

$$
\begin{aligned}
& \check{g}=t^{2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}(1+\nu(t, r)) \mathrm{d} z \mathrm{~d} \overline{\mathrm{z}}}{\left(1+\frac{z \bar{z}}{2}\right)^{2}}+(1+\mu(t, r)) \mathrm{d} r^{2}\right)= \\
& \quad t^{2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}\left(1+\sum_{i=1}^{\infty} a_{i}(r) t^{i}\right) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{z \bar{z}}{2}\right)^{2}}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right) \mathrm{d} r^{2}\right)
\end{aligned}
$$

satisfies the Einstein equations

Here \check{K}_{i} and \check{L}_{i} are the null 1-forms corresponding to the pair of going-ingoing null vector fields

via $\breve{K}_{i}=\breve{g}_{i j} K^{j}$ and $L=\breve{g}_{i j} L^{j}$, and the 1-form vector field \check{u}_{i}

corresponds to the future oriented - Note that now
timelike unit vector field

Possible generalizations

Theorem 2.
Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{i j}=0$. Then, the reciprocal metric

$$
\begin{aligned}
& \check{g}=t^{2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}(1+\nu(t, r)) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{z \bar{z}}{2}\right)^{2}}+(1+\mu(t, r)) \mathrm{d} r^{2}\right)= \\
& \quad t^{2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}\left(1+\sum_{i=1}^{\infty} a_{i}(r) t^{i}\right) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{\bar{z}}{2}\right)^{2}}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right) \mathrm{d} r^{2}\right)
\end{aligned}
$$

satisfies the Einstein equations

$$
\check{E}_{i j}=\check{R}_{i j}-\Phi \check{K}_{i} \check{K}_{j}-\check{\psi} L_{i} L_{j}-(\check{\rho}+\check{\rho}) \check{u}_{i} \check{u}_{j}-\frac{1}{2}(\check{\rho}-\check{p}) \check{g}_{i j}=0 .
$$

Here \breve{K}_{i} and \mathscr{L}_{i} are the null 1 -forms corresponding to the pair of going-ingoing null vector fields

Possible generalizations

Theorem 2.
Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{i j}=0$. Then, the reciprocal metric

$$
\begin{aligned}
& \check{g}=t^{2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}(1+\nu(t, r)) \mathrm{d} z \mathrm{~d} \overline{\mathrm{z}}}{\left(1+\frac{z \bar{z}}{2}\right)^{2}}+(1+\mu(t, r)) \mathrm{d} r^{2}\right)= \\
& \quad t^{2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}\left(1+\sum_{i=1}^{\infty} a_{i}(r) t^{i}\right) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{\bar{z}}{2}\right)^{2}}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right) \mathrm{d} r^{2}\right)
\end{aligned}
$$

satisfies the Einstein equations

$$
\check{E}_{i j}=\check{R}_{i j}-\check{\Phi} \check{K}_{i} \check{K}_{j}-\check{\psi} \check{L}_{i} L_{j}-(\check{\rho}+\check{p}) \check{u}_{i} \check{u}_{j}-\frac{1}{2}(\check{\rho}-\check{\rho}) \check{g}_{i j}=0 .
$$

Here \check{K}_{i} and \check{L}_{i} are the null 1 -forms corresponding to the pair of outgoing-ingoing null vector fields

Theorem 2.
Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{i j}=0$. Then, the reciprocal metric

$$
\begin{aligned}
& \check{g}=t^{2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}(1+\nu(t, r)) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{z \bar{z}}{2}\right)^{2}}+(1+\mu(t, r)) \mathrm{d} r^{2}\right)= \\
& \quad t^{2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}\left(1+\sum_{i=1}^{\infty} a_{i}(r) t^{i}\right) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{\bar{z}}{2}\right)^{2}}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right) \mathrm{d} r^{2}\right)
\end{aligned}
$$

satisfies the Einstein equations

$$
\check{E}_{i j}=\check{R}_{i j}-\check{\Phi} \check{K}_{i} \check{K}_{j}-\check{\psi} \check{L}_{i} L_{j}-(\check{\rho}+\check{p}) \check{u}_{i} \check{u}_{j}-\frac{1}{2}(\check{\rho}-\check{\rho}) \check{g}_{i j}=0 .
$$

Here \check{K}_{i} and \check{L}_{i} are the null 1 -forms corresponding to the pair of outgoing-ingoing null vector fields

$$
K=K^{i} \partial_{i}=\partial_{t}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right)^{-\frac{1}{2}} \partial_{r} \text { and } L=L^{i} \partial_{i}=\partial_{t}-\left(1+\sum_{i=1}^{\infty} b_{i}(r)^{i}\right)^{-\frac{1}{2}} \partial_{r},
$$

via $\check{K}_{i}=\check{g}_{i j} K^{j}$ and $\check{L}=\check{g}_{i j} L^{j}$, and the 1 -form vector field

Theorem 2.
Assume that the metric \hat{g} as before satisfies the Einstein equations $\hat{E}_{i j}=0$. Then, the reciprocal metric

$$
\begin{aligned}
& \check{g}=t^{2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}(1+\nu(t, r)) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{z \bar{z}}{2}\right)^{2}}+(1+\mu(t, r)) \mathrm{d} r^{2}\right)= \\
& t^{2}\left(-\mathrm{d} t^{2}+\frac{2 r^{2}\left(1+\sum_{i=1}^{\infty} a_{i}(r) t^{i}\right) \mathrm{d} z \mathrm{~d} \bar{z}}{\left(1+\frac{\bar{z}}{2}\right)^{2}}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right) \mathrm{d} r^{2}\right)
\end{aligned}
$$

satisfies the Einstein equations

$$
\check{E}_{i j}=\check{K}_{i j}-\check{\Phi} \check{K}_{i} \check{K}_{j}-\check{\psi} \check{L}_{i} L_{j}-(\check{\rho}+\check{p}) \check{u}_{i} \check{u}_{j}-\frac{1}{2}(\check{\rho}-\check{p}) \check{g}_{i j}=0 .
$$

Here \check{K}_{i} and \check{L}_{i} are the null 1-forms corresponding to the pair of outgoing-ingoing null vector fields

$$
K=K^{i} \partial_{i}=\partial_{t}+\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right)^{-\frac{1}{2}} \partial_{r} \text { and } L=L^{i} \partial_{i}=\partial_{t}-\left(1+\sum_{i=1}^{\infty} b_{i}(r) t^{i}\right)^{-\frac{1}{2}} \partial_{r},
$$

via $\check{K}_{i}=\breve{g}_{i j} K^{j}$ and $\check{L}=\check{g}_{i j} L^{j}$, and the 1 -form vector field \check{u}_{i} corresponds to the future oriented - Note that now $t<0$ (!) timelike unit vector field

$$
\check{u}=\check{u}^{i} \partial_{i}=-t^{-1} \partial_{t}
$$

$\operatorname{via} \check{u}_{i}=\check{g}_{i j} \check{u}^{j}$.

Possible generalizations

For the solutions $\nu(t, r), \mu(t, r)$ of the past eon's Einstein's equations, which were given in terms of the power series expansions as
$\nu(t, r)=\sum_{i=3}^{k+2} a_{i}(r) t^{i}+\mathcal{O}\left(t^{k+3}\right)$ and $\mu(t, r)=\sum_{i=3}^{k+2} b_{i}(r) t^{i}+\mathcal{O}\left(t^{k+3}\right)$
in Theorem 1, the formulae for the power series expansions of the energy densities $\varnothing \breve{\psi}, \check{\rho}$ and the pressure \check{p} are as follows:

For the solutions $\nu(t, r), \mu(t, r)$ of the past eon's Einstein's equations, which were given in terms of the power series expansions as
$\nu(t, r)=\sum_{i=3}^{k+2} a_{i}(r) t^{i}+\mathcal{O}\left(t^{k+3}\right)$ and $\mu(t, r)=\sum_{i=3}^{k+2} b_{i}(r) t^{i}+\mathcal{O}\left(t^{k+3}\right)$ in Theorem 1, the formulae for the power series expansions of the energy densities $\check{\phi} \check{\psi}$, $\check{\rho}$ and the pressure \check{p} are as follows:

Possible generalizations

For the solutions $\nu(t, r), \mu(t, r)$ of the past eon's Einstein's equations, which were given in terms of the power series expansions as $\nu(t, r)=\sum_{i=3}^{k+2} a_{i}(r) t^{i}+\mathcal{O}\left(t^{k+3}\right)$ and $\mu(t, r)=\sum_{i=3}^{k+2} b_{i}(r) t^{i}+\mathcal{O}\left(t^{k+3}\right)$ in Theorem 1, the formulae for the power series expansions of the energy densities $\check{\phi} \check{\psi}$, $\check{\rho}$ and the pressure $\check{\rho}$ are as follows:

$$
\begin{aligned}
\check{\Phi}= & -\frac{9 f}{r^{3}} t^{-3}+\frac{9 f^{\prime}}{r^{3}} t^{-2}+\frac{1}{2 r^{4}}\left(8 f^{\prime}-11 r f^{\prime \prime}\right) t+\frac{3}{4 r^{5}}\left(5 f^{\prime}-5 r f^{\prime \prime}+3 r^{2} f^{(3)}\right)+ \\
& \frac{9}{40 r^{6}}\left(16 f^{\prime}+5 f^{\prime}-16 r f^{\prime \prime}+8 r^{2} f^{(3)}-3 r^{3} f^{(4)}\right) t+ \\
& \frac{1}{120 r^{7}}\left(420 f^{\prime}+1068 f f^{\prime}-30 r f^{\prime 2}-420 r f^{\prime \prime}-384 r f f^{\prime \prime}+210 r^{2} f^{(3)}-70 r^{3} f^{(4)}+19 r^{4} f^{(5)}\right) t^{2}+ \\
& \cdots+\mathcal{O}\left(t^{k-3}\right),
\end{aligned}
$$

For the solutions $\nu(t, r), \mu(t, r)$ of the past eon's Einstein's equations, which were given in terms of the power series expansions as $\nu(t, r)=\sum_{i=3}^{k+2} a_{i}(r) t^{i}+\mathcal{O}\left(t^{k+3}\right)$ and $\mu(t, r)=\sum_{i=3}^{k+2} b_{i}(r) t^{i}+\mathcal{O}\left(t^{k+3}\right)$ in Theorem 1, the formulae for the power series expansions of the energy densities $\check{\phi} \check{\psi}$, $\check{\rho}$ and the pressure $\check{\rho}$ are as follows:

$$
\begin{aligned}
\check{\Phi}= & -\frac{9 f}{r^{3}} t^{-3}+\frac{9 f^{\prime}}{r^{3}} t^{-2}+\frac{1}{2 r^{4}}\left(8 f^{\prime}-11 r f^{\prime \prime}\right) t+\frac{3}{4 r^{5}}\left(5 f^{\prime}-5 r f^{\prime \prime}+3 r^{2} f^{(3)}\right)+ \\
& \frac{9}{40 r^{6}}\left(16 f^{\prime}+5 f f^{\prime}-16 r f^{\prime \prime}+8 r^{2} f^{(3)}-3 r^{3} f^{(4)}\right) t+ \\
& \frac{1}{120 r^{7}}\left(420 f^{\prime}+1068 f f^{\prime}-30 r f^{\prime 2}-420 r f^{\prime \prime}-384 r f f^{\prime \prime}+210 r^{2} f^{(3)}-70 r^{3} f^{(4)}+19 r^{4} f^{(5)}\right) t^{2}+ \\
& \cdots+\mathcal{O}\left(t^{k-3}\right) \\
\check{\Psi}= & -\frac{9 f}{r^{3}} t^{-3}+\frac{6 f^{\prime}}{r^{3}} t^{-2}+\frac{1}{2 r^{4}}\left(2 f^{\prime}-5 r f^{\prime \prime}\right) t^{-1}+\frac{3}{4 r^{5}}\left(f^{\prime}-r f^{\prime \prime}+r^{2} f^{(3)}\right)+ \\
& \frac{1}{40 r^{6}}\left(24 f^{\prime}-75 f f^{\prime}-24 r f^{\prime \prime}+12 r^{2} f^{(3)}-7 r^{3} f^{(4)}\right) t+ \\
& \frac{1}{60 r^{7}}\left(30 f^{\prime}+39 f f^{\prime}+75 r f^{\prime 2}-30 r f^{\prime \prime}+33 r f f^{\prime \prime}+15 r^{2} f^{(3)}-5 r^{3} f^{(4)}+2 r^{4} f^{(5)}\right) t^{2}+ \\
& \cdots+\mathcal{O}\left(t^{k-3}\right)
\end{aligned}
$$

Possible generalizations

In these formulas all the doted terms are explicitly determined in terms of f and its derivatives (I was lazy, and typed only the terms adapted to the choice $k=6$ in Theorem 1).

Possible generalizations

$$
\begin{aligned}
\check{\rho}= & 3 t^{-4}+\frac{18 f}{r^{3}} t^{-1}-\frac{18 f^{\prime}}{r^{3}}+\frac{-6 f^{\prime}+9 r f^{\prime \prime}}{r^{4}} t-\frac{3}{4 r^{6}}\left(9 f^{2}+3 r f^{\prime}-3 r^{2} f^{\prime \prime}+2 r^{3} f^{(3)}\right) t^{2}+ \\
& \frac{3}{20 r^{6}}\left(-24 f^{\prime}+105 f f^{\prime}+24 r f^{\prime \prime}-12 r^{2} f^{(3)}+5 r^{3} f^{(4)}\right) t^{3}- \\
& \frac{1}{20 r^{7}}\left(60 f^{\prime}+96 f f^{\prime}+120 r f^{\prime 2}-60 r f^{\prime \prime}+72 r f f^{\prime \prime}+30 r^{2} f^{(3)}-10 r^{3} f^{(4)}+3 r^{4} f^{(5)}\right) t^{4}+ \\
& \cdots+\mathcal{O}\left(t^{k-1}\right),
\end{aligned}
$$

In these formulas all the doted terms are explicitly determined in terms of f and its derivatives (I was lazy, and typed only the terms adapted to the choice $k=6$ in Theorem 1).

Possible generalizations

$$
\begin{aligned}
& \check{\rho}= 3 t^{-4}+\frac{18 f}{r^{3}} t^{-1}-\frac{18 f^{\prime}}{r^{3}}+\frac{-6 f^{\prime}+9 r f^{\prime \prime}}{r^{4}} t-\frac{3}{4 r^{6}}\left(9 f^{2}+3 r f^{\prime}-3 r^{2} f^{\prime \prime}+2 r^{3} f^{(3)}\right) t^{2}+ \\
& \frac{3}{20 r^{6}}\left(-24 f^{\prime}+105 f f^{\prime}+24 r f^{\prime \prime}-12 r^{2} f^{(3)}+5 r^{3} f^{(4)}\right) t^{3}- \\
& \frac{1}{20 r^{7}}\left(60 f^{\prime}+96 f f^{\prime}+120 r f^{\prime 2}-60 r f^{\prime \prime}+72 r f f^{\prime \prime}+30 r^{2} f^{(3)}-10 r^{3} f^{(4)}+3 r^{4} f^{(5)}\right) t^{4}+ \\
& \cdots+\mathcal{O}\left(t^{k-1}\right), \\
& \check{p}= t^{-4}+\frac{6 f}{r^{3}} t^{-1}+\frac{1}{r^{4}}\left(2 f^{\prime}-r f^{\prime \prime}\right) t+\frac{1}{2 r^{6}}\left(18 f^{2}+3 r f^{\prime}-3 r^{2} f^{\prime \prime}+r^{3} f^{(3)}\right) t^{2}- \\
& \quad \frac{3}{20 r^{6}}\left(-8 f^{\prime}+45 f f^{\prime}+8 r f^{\prime \prime}-4 r^{2} f^{(3)}+r^{3} f^{(4)}\right) t^{3}+ \\
& \frac{1}{30 r^{7}}\left(30 f^{\prime}+57 f f^{\prime}+45 r f^{\prime 2}-30 r f^{\prime \prime}+39 r f f^{\prime \prime}+15 r^{2} f^{(3)}-5 r^{3} f^{(4)}+r^{4} f^{(5)}\right) t^{4}+ \\
& \cdots+\mathcal{O}\left(t^{k-1}\right) .
\end{aligned}
$$

In these formulas all the doted terms are explicitly determined in terms of f and its derivatives (I was lazy, and typed only the terms adapted to the choice $k=6$ in Theorem 1).

$$
\begin{aligned}
& \check{\rho}= 3 t^{-4}+\frac{18 f}{r^{3}} t^{-1}-\frac{18 f^{\prime}}{r^{3}}+\frac{-6 f^{\prime}+9 r f^{\prime \prime}}{r^{4}} t-\frac{3}{4 r^{6}}\left(9 f^{2}+3 r f^{\prime}-3 r^{2} f^{\prime \prime}+2 r^{3} f^{(3)}\right) t^{2}+ \\
& \frac{3}{20 r^{6}}\left(-24 f^{\prime}+105 f f^{\prime}+24 r f^{\prime \prime}-12 r^{2} f^{(3)}+5 r^{3} f^{(4)}\right) t^{3}- \\
& \frac{1}{20 r^{7}}\left(60 f^{\prime}+96 f f^{\prime}+120 r f^{\prime 2}-60 r f^{\prime \prime}+72 r f f^{\prime \prime}+30 r^{2} f^{(3)}-10 r^{3} f^{(4)}+3 r^{4} f^{(5)}\right) t^{4}+ \\
& \cdots+\mathcal{O}\left(t^{k-1}\right), \\
& \check{p}= t^{-4}+\frac{6 f}{r^{3}} t^{-1}+\frac{1}{r^{4}}\left(2 f^{\prime}-r f^{\prime \prime}\right) t+\frac{1}{2 r^{6}}\left(18 f^{2}+3 r f^{\prime}-3 r^{2} f^{\prime \prime}+r^{3} f^{(3)}\right) t^{2}- \\
& \quad \frac{3}{20 r^{6}}\left(-8 f^{\prime}+45 f f^{\prime}+8 r f^{\prime \prime}-4 r^{2} f^{(3)}+r^{3} f^{(4)}\right) t^{3}+ \\
& \frac{1}{30 r^{7}}\left(30 f^{\prime}+57 f f^{\prime}+45 r f^{\prime 2}-30 r f^{\prime \prime}+39 r f f^{\prime \prime}+15 r^{2} f^{(3)}-5 r^{3} f^{(4)}+r^{4} f^{(5)}\right) t^{4}+ \\
& \cdots+\mathcal{O}\left(t^{k-1}\right) .
\end{aligned}
$$

In these formulas all the doted terms are explicitly determined in terms of f and its derivatives (I was lazy, and typed only the terms adapted to the choice $k=6$ in Theorem 1).

Possible generalizations

Remarks.

- Note that since in \check{M} the time $t<0$, the requirement that the energy densities are positive near the Big Bang hypersurface i = 0 implies that ' >0 in additition to "" >0, the requirement we got from the past eon. Note also that $f>0$ and $f^{\prime}>0$ are the only conditions needed for the positivity of energy densities, as the leading term in $\check{\rho}$ is $\check{\rho} \simeq 3 t^{-4}$, and is positive regardless of the sign of i.
- Remarkably the leading terms in $\check{\rho}$ and \check{p}, i.e. the terms with negative powers in t, are proportional to each other with the numerical factor three. We have

$$
\check{p}=\frac{1}{3} \check{\rho}+\mathcal{O}\left(t^{0}\right) .
$$

- This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outgoing waves in the new eon, there is also a scattered radiation there, described by the perfect fluid with $\check{p}=\frac{1}{3} \check{\rho}$.

Remarks.

- Note that since in \check{M} the time $t<0$, the requirement that the energy densities are positive near the Big Bang hypersurface $t=0$ implies that $f>0$ in addition to $f^{\prime}>0$, the requirement we got from the past eon. Note also that $f>0$ and $f>0$ are the
only conditions needed for the positivity of energy densities, as
the leading term in $\check{\rho}$ is $\check{\rho} \simeq 3 t^{-4}$, and is positive regardless of
the sign of
- Remarkably the leading terms in p and p, i.e. the terms with
negative powers in t, are proportional to each other with the numerical factor three. We have
- This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outgoing waves in the new eon, there is also a scattered radiation there, described by the perfect fluid with

Remarks.

- Note that since in \check{M} the time $t<0$, the requirement that the energy densities are positive near the Big Bang hypersurface $t=0$ implies that $f>0$ in addition to $f^{\prime}>0$, the requirement we got from the past eon. Note also that $f>0$ and $f^{\prime}>0$ are the only conditions needed for the positivity of energy densities, as the leading term in $\check{\rho}$ is $\check{\rho} \simeq 3 t^{-4}$, and is positive regardless of the sign of t.
- Remarkably the leading terms in \check{p} and \check{p}, i.e. the terms with negative powers in t, are proportional to each other with the numerical factor three. We have

This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outgoing waves in the new eon, there is also a scattered radiation there, described by the perfect fluid with

Remarks.

- Note that since in \check{M} the time $t<0$, the requirement that the energy densities are positive near the Big Bang hypersurface $t=0$ implies that $f>0$ in addition to $f^{\prime}>0$, the requirement we got from the past eon. Note also that $f>0$ and $f^{\prime}>0$ are the only conditions needed for the positivity of energy densities, as the leading term in $\check{\rho}$ is $\check{\rho} \simeq 3 t^{-4}$, and is positive regardless of the sign of t.
- Remarkably the leading terms in $\check{\rho}$ and \check{p}, i.e. the terms with negative powers in t, are proportional to each other with the numerical factor three.

This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outgoing waves in the new eon, there is also a scattered radiation there, described by the perfect fluid with

Remarks.

- Note that since in \check{M} the time $t<0$, the requirement that the energy densities are positive near the Big Bang hypersurface $t=0$ implies that $f>0$ in addition to $f^{\prime}>0$, the requirement we got from the past eon. Note also that $f>0$ and $f^{\prime}>0$ are the only conditions needed for the positivity of energy densities, as the leading term in $\check{\rho}$ is $\check{\rho} \simeq 3 t^{-4}$, and is positive regardless of the sign of t.
- Remarkably the leading terms in $\check{\rho}$ and \check{p}, i.e. the terms with negative powers in t, are proportional to each other with the numerical factor three. We have

$$
\check{p}=\frac{1}{3} \check{\rho}+\mathcal{O}\left(t^{0}\right) .
$$

This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outaoing waves in the new eon, there is also a scattered radiation there, described by the perfect fluid with

Remarks.

- Note that since in \check{M} the time $t<0$, the requirement that the energy densities are positive near the Big Bang hypersurface $t=0$ implies that $f>0$ in addition to $f^{\prime}>0$, the requirement we got from the past eon. Note also that $f>0$ and $f^{\prime}>0$ are the only conditions needed for the positivity of energy densities, as the leading term in $\check{\rho}$ is $\check{\rho} \simeq 3 t^{-4}$, and is positive regardless of the sign of t.
- Remarkably the leading terms in $\check{\rho}$ and \check{p}, i.e. the terms with negative powers in t, are proportional to each other with the numerical factor three. We have

$$
\check{p}=\frac{1}{3} \check{\rho}+\mathcal{O}\left(t^{0}\right) .
$$

- This means that immediately after the Bang, apart from the
matter content of the two spherical ingoing and outgoing waves in the new eon, there is also a scattered radiation there, described by the perfect fluid with

Remarks.

- Note that since in \check{M} the time $t<0$, the requirement that the energy densities are positive near the Big Bang hypersurface $t=0$ implies that $f>0$ in addition to $f^{\prime}>0$, the requirement we got from the past eon. Note also that $f>0$ and $f^{\prime}>0$ are the only conditions needed for the positivity of energy densities, as the leading term in $\check{\rho}$ is $\check{\rho} \simeq 3 t^{-4}$, and is positive regardless of the sign of t.
- Remarkably the leading terms in $\check{\rho}$ and $\check{\rho}$, i.e. the terms with negative powers in t, are proportional to each other with the numerical factor three. We have

$$
\check{p}=\frac{1}{3} \check{\rho}+\mathcal{O}\left(t^{0}\right) .
$$

- This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outgoing waves in the new eon,

Possible generalizations

Remarks.

- Note that since in \check{M} the time $t<0$, the requirement that the energy densities are positive near the Big Bang hypersurface $t=0$ implies that $f>0$ in addition to $f^{\prime}>0$, the requirement we got from the past eon. Note also that $f>0$ and $f^{\prime}>0$ are the only conditions needed for the positivity of energy densities, as the leading term in $\check{\rho}$ is $\check{\rho} \simeq 3 t^{-4}$, and is positive regardless of the sign of t.
- Remarkably the leading terms in $\check{\rho}$ and $\check{\rho}$, i.e. the terms with negative powers in t, are proportional to each other with the numerical factor three. We have

$$
\check{p}=\frac{1}{3} \check{\rho}+\mathcal{O}\left(t^{0}\right) .
$$

- This means that immediately after the Bang, apart from the matter content of the two spherical ingoing and outgoing waves in the new eon, there is also a scattered radiation there, described by the perfect fluid with $\check{p}=\frac{1}{3} \check{\rho}$.

Possible generalizations

- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves - one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it focuses - but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $p=\frac{1}{3} p$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.
- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves - one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it focuses - but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with \check{p}
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.
- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves - one is obvious: it is the still expanding but damped
wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it focuses - but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with \check{p}
- So what the Penrose-Tod scenario does to the new eon out
of a single spherical wave in the past eon, is that it splits
this wave into three portions of radiation: the two spherical
waves, and in addition a lump of scattered radiation
described by the statistical physics.
- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves - one is obvious: it is the still expanding but damped wave that survived the Bang;
becuase although it is still sphereical it focuses - but there
is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with
So what the Penrose-Tod scenario does to the new eon out
of a single spherical wave in the past eon, is that it splits
this wave into three portions of radiation: the two spherical
waves, and in addition a lump of scattered radiation
described by the statistical physics.
- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves - one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it focuses - but there
is also there a third ingredient: it is a randomly scattered
radiation described by the perfect fluid with
So what the Penrose-Tod scenario does to the new eon out
of a single spherical wave in the past eon, is that it splits
this wave into three portions of radiation: the two spherical
waves, and in addition a lump of scattered radiation
described by the statistical physics.
- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves - one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it focuses - but there is also there a third ingredient:
- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves - one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it focuses - but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $\check{p}=\frac{1}{3} \check{\rho}$.

- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves - one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it focuses - but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $\check{p}=\frac{1}{3} \check{\rho}$.
- So what the Penrose-Tod scenario does to the new eon out
of a single spherical wave in the past eon, is that it splits
this wave into three portions of radiation: the two spherical
waves and in addition a lumn of scattered radiation
described by the statistical physics.
- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves - one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it focuses - but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $\check{p}=\frac{1}{3} \check{\rho}$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, this wave into three portions of radiation: the two spherical
waves, and in addition a lump of scattered radiation
described by the statistical physics.
- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves - one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it focuses - but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $\check{p}=\frac{1}{3} \check{\rho}$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation:
waves, and in addition a lump of scattered radiation
described by the statistical physics.
- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves - one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it focuses - but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $\check{p}=\frac{1}{3} \check{\rho}$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, described by the statistical physics.
- This solution to the three metrics in Penrose-Tod's bandage region has the following apealing physical property: Immediately after the Bang, the spherical wave from the previous eon not only produces two spherical waves - one is obvious: it is the still expanding but damped wave that survived the Bang; the other is less obvious, becuase although it is still sphereical it focuses - but there is also there a third ingredient: it is a randomly scattered radiation described by the perfect fluid with $\check{p}=\frac{1}{3} \check{\rho}$.
- So what the Penrose-Tod scenario does to the new eon out of a single spherical wave in the past eon, is that it splits this wave into three portions of radiation: the two spherical waves, and in addition a lump of scattered radiation described by the statistical physics.

Literature

- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2010), 'Conformal methods in General Delativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', Phys. Rev. D 95, Issue 8, 84016, 1-5.
- P. Nurowski (2021), 'Radiative Poincaré type eon and its follower', https://arxiv.org/abs/2101.12670.
- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', Phys. Rev. D 95, Issue 8, 84016, 1-5.
- P. Nurowski (2021), 'Radiative Poincaré type eon and its follower', https://arxiv.org/abs/2101.12670.
- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', Phys. Rev. D 95, Issue 8, 84016, 1-5.
- P. Nurowski (2021), 'Radiative Poincaré type eon and its follower', https://arxiv.org/abs/2101.12670.
- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw'
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', Phys. Rev. D 95, Issue 8, 84016, 1-5.
- P. Nurowski (2021), 'Radiative Poincaré type eon and its follower', https://arxiv.org/abs/2101.12670.
- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology’, Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', Phys. Rev. D95, Issue 8, 84016, 1-5.
- P. Nurowski (2021), 'Radiative Poincaré type eon and its follower', https://arxiv.org/abs/2101.12670.
- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology’, Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', Phys. Rev. D 95, Issue 8, 84016, 1-5.
- P. Nurowski (2021), 'Radiative Poincaré type eon and its follower', https://arxiv.org/abs/2101.12670.
- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology’, Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', Phys. Rev. D 95, Issue 8, 84016, 1-5.
- P. Nurowski (2021), 'Radiative Poincaré type eon and its follower', https://arxiv.org/abs/2101.12670.

THANK YOU!

[^0]: ${ }^{1}$ See: P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-01,5-1,852 7, for detaîls. इ صac

[^1]: ${ }^{1}$ See: P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-01.5a1,858-7, for detạils.

[^2]: ${ }^{1}$ See: P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7, for details.

