3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

DTD 5

Available online at www.sciencedirect.com

JOURNAL OF
SCIENCE DIRECT®
i @ GEOMETRY anp
E PHYSICS
ELSEVIER Journal of Geometry and Physics xxx (2005) XXX—XXX

www.elsevier.com/locate/jgp

Obstructions to conformally Einstein metrics
iIn n dimensions

A. Rod Govef, Pawet Nurowsk 1+

2 Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand
b Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, ul. Hoza 69, Warszawa, Poland

Received 28 January 2005; received in revised form 1 March 2005; accepted 5 March 2005

Abstract

We construct polynomial conformal invariants, the vanishing of which is necessary and sufficient
for ann-dimensional suitably generic (pseudo-)Riemannian manifold to be conformal to an Einstein
manifold. We also construct invariants which give necessary and sufficient conditions for a metric
to be conformally related to a metric with vanishing Cotton tensor. One set of invariants we derive
generalises the set of invariants in dimension 4 obtained by Kozameh, Newman and Tod. For the
conformally Einstein problem, another set of invariants we construct gives necessary and sufficient
conditions for a wider class of metrics than covered by the invariants recently presented by Listing.
We also show that there is an alternative characterisation of conformally Einstein metrics based on
the tractor connection associated with the normal conformal Cartan bundle. This plays a key role in
constructing some of the invariants. Also using this we can interpret the previously known invariants
geometrically in the tractor setting and relate some of them to the curvature of the Fefferman—-Graham
ambient metric.
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1. Introduction

The central focus of this article is the problem of finding necessary and sufficient con-
ditions for a Riemannian or pseudo-Riemannian manifold, of any signature and dimension
n > 3, to be locally conformally related to an Einstein metric. In particular we seek invari-
ants, polynomial in the Riemannian curvature and its covariant derivatives, that give a sharp
obstruction to conformally Einstein metrics in the sense that they vanish if and only if the
metric concerned is conformally related to an Einstein metric. For example in dimension 3
it is well known that this problem is solved by the Cotton tensor, which is a certain tensor
part of the first covariant derivative of the Ricci tensor. So 3-manifolds are conformally
Einstein if and only if they are conformally flat. The situation is significantly more com-
plicated in higher dimensions. Our main result is that we are able to solve this problem
in all dimensions and for metrics of any signature, except that the metrics are required to
be non-degenerate in the sense that they are, what we term, weakly generic. This means
that, viewed as a bundle map/ — ®3TM, the Weyl curvature is injective. The results
are most striking for Riemanniammanifolds where we obtain a single trace-free rank
two tensor-valued conformal invariant that gives a sharp obstruction. Setting this invariant
to zero gives a quasi-linear equation on the metric. Returning to the setting of arbitrary
signature, we also show that a manifold is conformally Einstein if and only if a certain vec-
tor bundle, the so-called standard tractor bundle, admits a parallel section. This powerful
characterisation of conformally Einstein metrics is used to obtain the sharp obstructions
for conformally Einstein metrics in the general weakly generic pseudo-Riemannian and
Riemannian setting. It also yields a simple geometric derivation, and unifying framework,
for all the main theorems in the paper.

The study of conditions for a metric to be conformally Einstein has a long history that
dates back to the work of Brinkmd#,5] and Schouteri29]. Substantial progress was
made by Szekeres in 19630]. He solved the problem on 4-manifolds, of signats by
explicitly describing invariants that provide a sharp obstruction. However his approach is
based on a spinor formalism and is difficult to analyse when translated into the equivalent
tensorial picture. In the 1980s Kozameh, Newman and Tod (K&d])found a simpler set
of conditions. While their construction was based on Lorentzian 4-manifolds the invariants
obtained provide obstructions in any signature. However these invariants only give a sharp
obstruction to conformally Einstein metrics if a special class of metrics is excluded (see
also[20] for the reformulation of the KNT result in terms of the Cartan normal conformal
connection). Baston and Masf8] proposed another pair of conformally invariant obstruc-
tion invariants for 4-manifolds. However these give a sharp obstruction for a smaller class
of metrics than the KNT system (sgH).

One of the invariants in the KNT system is the conformally invariant Bach tensor. In
higher even dimensions there is an interesting higher order analogue of this trace-free sym-
metric 2-tensor due to Fefferman and Graham and this is also an obstruction to conformally
Einstein metricd11,17,18] This tensor arises as an obstruction to their ambient metric
construction. It has a close relationship to some of the constructions in this article, but this
is described if17]. Here we focus on invariants which exist in all dimensions. Recently
Listing [21] made a substantial advance. He described a trace-free 2-tensor that gives, in
dimensions: > 4, a sharp obstruction for conformally Einstein metrics, subject to the re-
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striction that the metrics are what he terms “non-degenerate”. This means that the Weyl
curvature is maximal rank as a magTM — A2TM. In this paper metrics satisfying this
non-degeneracy condition are instead terméegeneric.

Following some general background, we show in Sectib8sand 2.4hat it is possible
to generalise to arbitrary dimensian> 4 the development of KNT. This culminates in the
construction of a pair of (pseudo-)Riemannian invaridis and F2, whose vanishing is
necessary and sufficient for the manifold to be conformally Einstein provided we exclude
a small class of metrics (but the class is larger than the class failing rw?kgeneric)
(seeTheorem 2.3 These invariants amaturalin the sense that they are given by a metric
partial contraction polynomial in the Riemannian curvature and its covariant derivatives.
is conformally covariant anéi? is conformally covariant on metrics for whidff vanishes.

Thus together they form a conformally covariant system.

In Section2.5we show that very simple ideas reveal new conformal invariants that are
more effective than the systeftt and F2 in the sense that they give sharp obstructions
to conformal Einstein metrics on a wider class of metrics. Here the broad treatment is
based on the assumption that the metrics are weakly generic as defined earlier. This is a
strictly weaker restriction than requiring metrics to h&-generic; anyA2-generic metric
is weakly generic but in general the converse fails to be true. One of the main results of the
paper isTheorem 2.&vhich gives a natural conformally invariant trace-free 2-tensor which
gives a sharp obstruction for conformally Einstein metrics on weakly generic Riemannian
manifolds. Thus in the Riemannian setting this improves Listing’s results. In Riemannian
dimension 4 there is an even simpler obstruction, esrem 2.9but an equivalent result
is in [21]. In Theorem 2.1Qve also recover Listing’s main results far-generic metrics
as special case of the general setup. In all cases the invariants give quasi-linear equations.
The results mentioned are derived from the general resitraposition 2.7We should
point out that while this proposition does not in general lead to natural obstructions, in
many practical situations, for example if a metric is given explicitly in terms of a basis field,
this would still provide an effective route to testing whether or not a metric is conformally
Einstein, since a choice of tensbrcan easily be described. (See the final remark at the end
of Section2.5.)

In Section2.5 we also pause, iProposition 2.5and Theorem 2.6to observe some
sharp obstructions to metrics being conformal to a metric with vanishing Cotton tensor. We
believe these should be of independent interest. Since the vanishing of the Cotton tensor
is necessary but not sufficient for a metric to be Einstein, it seems that the Cotton tensor
could play a role in setting up problems where one seeks metrics suitably “close” to being
Einstein or conformally Einstein.

In Sectiors, following some background on tractor calculus, we give the characterisation
of conformally Einstein metrics as exactly those for which the standard tractor bundle
admits a (suitably generic) parallel section. The standard (conformal) tractor bundle is an
associated structure to the normal Cartan conformal connection. The derivations in Section
2 are quite simple and use just elementary tensor analysis and Riemannian differential
geometry. However they also appear ad hoc. We show in Segtioat the constructions
and invariants of Sectio have a natural and unifying geometric interpretation in the
tractor/Cartan framework. This easily adapts to yield new characterisations of conformally
Einstein metrics, se€heorem 3.4From this we obtain, il€orollary 3.5 obstructions for
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conformally Einstein metrics that are sharp for weakly generic metrics of any signature.
Thus these also improve on the result§Z].

We believe the development in Secti8rshould have an important role in suggesting
how an analogous programme could be carried out for related conformal problems as well
as analogues on, for example, CR structures where the structure and tractor calculus is
very similar. We also use this machinery to show that the systémF2 has a simple
interpretation in terms of the curvature of the Fefferman—Graham ambient metric.

Finally in Sectiord we discuss explicit metrics to shed light on the invariants constructed
and their applicability. This includes examples of classes metrics which are weakly generic
but not A2-generic. Also here, as an example use of the machinery on explicit metrics,
we identify the conformally Einstein metrics among a special class of Robinson—Trautman
metrics.

The authors wish to thank Ruibin Zhang, Paul-Andi Nagy and Michael Eastwood for
very helpful discussions. Finally the authors are grateful to the referee for several helpful
suggestions.

2. Conformal characterisations via tensors

In this section we use standard tensor analysis on (pseudo-)Riemannian manifolds to
derive sharp obstructions to conformally Einstein metrics.

2.1. Basic (pseudo-)Riemannian objects

Let M be a smooth manifold, of dimension> 3, equipped with a Riemannian or
pseudo-Riemannian metrig,,. We employ Penrose’s abstract index notatjaid] and
indices should be assumed abstract unless otherwise indicated. Wetatelenote the
space of smooth sections of the tangent bundl gemdé,, for the space of smooth sections
of the cotangent bundle. (In fact we will often use the same symbols for the corresponding
bundles, and also in other situations we will often use the same symbol for a given bundle
and its space of smooth sections, since the meaning will be clear by context.) WE forite
the space of smooth functions and all tensors considered will be assumed smooth without
further comment. An index which appears twice, once raised and once lowered, indicates
a contraction. The metrig,;, and its inversg® enable the identification & and&, and
we indicate this by raising and lowering indices in the usual way.

The metricg,, defines the Levi—Civita connectiovi, with the curvature tensaoky .,
given by

(VaVip — Vi Vo) VE = RS, VY, whereve e &

This can be decomposed into the totally trace-Wésyl curvatureC,,;.; and the symmetric
Schouten tensd?,;, according to

Rabed = Capea + ch[apb]d + ng[bpa]c-

GEOPHY 1097 1-35
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11 ThusPyy is a trace modification of the Ricci tensBy, = R.. p:
152 Rap = (n — 2)Pap + Igap, J:=P4.
153 Note that the Weyl tensor has the symmetries
154 Capca = Clabl[cd] = Cedab,  Clabcla = 0,
155 Where we have used the square brackets to denote the antisymmetrisation of the indices.

156 We recall that the metrig,;, is an Einstein metric if the trace-free part of the Ricci tensor
157 vanishes. This condition, when written in terms of the Schouten tensor, is given by

1
158 Pab — —Jga;, =0.
n

159 In the following we will also need the Cotton tenséy,. and the Bach tensd,;,. These
10 are defined by

161 Aabe = 2V[pPea (2.1)
12 and
163 Bup =V Aup + Pdccdacb. (2.2)

. Itis straightforward to verify that the Bach tensor is symmetric. From the contracted Bianchi
s identity V4P, = V,J it follows that the Cotton tensor is totally trace-free. Using this, and
s that the Weyl tensor is trace-free, it follows that the Bach tensor is also trace-free.

167 Let us adopt the convention that sequentially labelled indices are implicitly skewed over.
s For example with this notation the Bianchi symmetry is simBly,q,» = 0. Using this

10 symmetry and the definitiof2.1) of A;,,,, we obtain a useful identity

1

3

170 ValAbagag = Pglcagagbc- (23)

w1 Further important identities arise from the Bianchi iden¥y Ry,44. = 0:

172 Va1 Carazed = 8cayAdaras — 8day Acazazs (2.4)
173 (n — 3)Aape = V! Caave. (2.5)
- VP, = VJ, (2.6)
175 V@A = 0. (2.7)

e 2.2. Conformal properties and naturality

177 Metrics g, andg,, are said to be conformally related if

178 gab = GZTgab, T e €, (28)
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and the replacement gf,;, with 2., is termed aonformal rescalingConformal rescaling
in this way results in a conformal transformation of the Levi—Civita connection. This is
given by

V/au\b = Vaup — Yaup — Tpug + gachuc (29)

for a 1-formu,. The conformal transformation of the Levi—Civita connection on other
tensors is determined by this, the duality between 1-forms and tangent fields, and the Leibniz
rule.

A tensorT (with any number of covariant and contravariant indices) is said toobe
formally covariant(of weightw) if, under a conformal rescalin(?.8) of the metric, it
transforms according to

T—T=e"T

for somew € R. We will say T is conformallyinvariant if w = 0. We are particularly
interested in natural tensors with this property. A teflsismaturalif there is an expression
for T which is a metric partial contraction, polynomial in the metric, the inverse metric, the
Riemannian curvature and its covariant derivatives.

The weight of a conformally covariant depends on the placement of indices. It is well
known that the Cotton tensor in dimensior= 3 and the Weyl tensor in dimensian> 3
are conformally invariant with their natural placement of indices,ﬁ.@,c = Aupe and
@abcd = C,°4. In dimensionn > 4, vanishing of the Weyl tensor is equivalent to the
existence of a scal® such that the transformed metgig, = €¥¥ g is flat (and so if the
Weyl tensor vanishes we say the metricamformally fla}. In dimensiorm = 3 the Weyl
tensor vanishes identically. In this dimensigp is conformally flat if and only if the Cotton
tensor vanishes.

An example of tensor which fails to be conformally covariant is the Schouten tensor. We
have

Pab = Pab = Pap = VaTp + Y p = 3T T gap, (2.10)
where
Y, =V,T.

Thus the property of the metric being Einstein is not conformally invariant. A mglics
said to beconformally Einsteirif there exists a conformal scate such thatg}, = €Y gu»
is Einstein.

For natural tensors the property of being conformally covariant or invariant may depend
on dimension. For example it is well known that the Bach tensor is conformally covariant
in dimension 4. In other dimensions the Bach tensor fails to be conformally covariant.

2.3. Necessary conditions for conformally Einstein metrics

Suppose that,, is conformally Einstein. As mentioned above this means that there exists
a scaleY such that the Ricci tensor, or equivalently the Schouten tensgrfoE €Y gup,
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is pure trace. That is

1-~.
Pab - _‘Jgab =0.
n

This equation, when written in terms of Levi—Civita connecfioand Schouten tenséx,,
associated witlg,;, reads,

1
Pap — Vo Tp + T Tp — ;Tgab =0, (211)

where
T=J— V%, + YTY,.

Conversely if there is a gradient, = V, Y satisfying(2.11) then g, := €Y gup, is an
Einstein metric. Thus, with the understanding thgt= Vv, Y, (2.11) will be termed the
conformal Einstein equation3here exists a smooth function solving these if and only
if the metricg is conformally Einstein.

To find consequences of these equations we applio both sides of2.11)and then
antisymmetrise the result over the:} index pair. Using that the both the Weyl tensor and
the Cotton tensor are completely trace-free this leads to the first integrability condition
which is

Aabc + Tdcdabc =0.

Now taking V¢ of this equation, using the definition of the Bach tengoR), the identity
(2.5), and again this last displayed equation, we get

Bap + P*Caane — (V1! = (n = 3)Y"1) Cape = O,

Eliminating V¢ Y¢ by means of the Einstein conditigf.11)yields a second integrability
condition:

Bup + (}’l - 4)TdTCCdahc =0.
Summarising we have the following proposition.

Proposition 2.1. If g, is a conformally Einstein metric then the corresponding Cotton
tensorA,. and the Bach tensaB,;, satisfy the following conditions

Aabc + Tdcdabc = O’ (212)
and

Bap + (n — DY Y Cape = 0. (2.13)
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for some gradient
Yy = V47T

Here Y is a function which conformally rescales the meigjg to an Einstein metric
- 24
8ab = € 8ab-

Remarks

e Note that in dimension = 3 the first integrability conditio2.12)reduces tAA ;. = 0
and the Weyl curvature vanishes. Thus, in dimensien 3, if (2.12)holds thern(2.13)is
automatically satisfied and the conformally Einstein metrics are exactly the conformally
flat metrics. The vanishing of the Cotton tensor is the necessary and sufficient condition
forametric to satisfy these equivalent conditions. This well known fact solves the problem
in dimensiom = 3. Therefore, for the remainder of Sect®we willassume that > 4.

¢ Indimensiom = 4 the second integrability condition reduces to the conformally invari-
ant Bach equation:

Ba, = 0. (2.14)
2.4. Generalising the KNT characterisation

Here we generalise to dimensian> 4 the characterisation of conformally Einstein
metrics given by Kozameh et dlLl9]. Our considerations are local and so we assume,
without loss of generality, tha#l is oriented and write for the volume form. Given the
Weyl tensorC .4 of the metricg,,, we WriteC;jlm bypcd = €py-b,_»"12Cyya,cq- NOte that
this is completely trace-free due to the Weyl Bianchi symmeétry,,.., = 0. Consider the
equations

CapeaF? =0, (2.15)

CapeaH™ = 0, (2.16)
and

ChobypeaH™ =0, (2.17)

for a skew symmetric tensar*” and a symmetric trace-free tenséf’. We say that the
metric g, is genericif and only if the only solutions to Eq$2.15)—(2.17are F** = 0 and
H® = 0. Occasionally we will be interested in the superclass of metrics for wBidi5)
has only trivial solutions but for which we make no assumptions afibi6) and (2.17)
we will call theseA 2-genericmetrics. That is, a metric is2-generic if and only if the Weyl
curvature is injective (equivalently, maximal rank) as a bundle m&pM — A2TM. Let
||C|| be the natural conformal invariant which is the pointwise determinant of the map

C: A’T*M — A’T*M, (2.18)

given byW,, — C;“,f W.q and writeC a4 for the tensor field which is the pointwise adjugate
(i.e. “matrix of cofactors”) of the Weyl curvature tensor, viewed as an endomorphism in
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this way. Then
cabeed = |clefosy)

and ifg is a A%-generic metric theyC|| is non-vanishing and we have

ICI~ e = 5{;’5‘]{]]. (2.19)
For later use note that it is easily verified tifag.q is natural (in fact simply polynomial in
the Weyl curvature) and conformally covariant.

For the remainder of this subsection we consider only generic metrics, except where
otherwise indicated. In this setting, we will prove that the following two conditions are
equivalent:

(i) The metricg,, is conformally Einstein.
(i) There exists a vector field@“ on M such that the following conditions [C] and [B] are
satisfied:

[C] Awpe + chdabc =0, [B] B+ (n— 4)KdKCCdabc =0.

Adapting a tradition from the General Relativity literature (originatinfBioy), we call a
manifold for which the metrig,, admitsK“ such that condition [C] is satisfieccanformal
C-space Note that such a metric isot necessarily conformal to a metric with vanishing
Cotton tensor since in [C] we are not requiriAgy to be a gradient. (Thus some care is
necessary when comparing wi0,19]for example where a space with vanishing Cotton
tensor is termed a C-space.) However, in the casegain@ricmetric satisfying condition
[C] the field K; must be a gradient. To see this take of equation [C]. This gives

vaAabc + Cdubcva Kd + (I’l - 3)Ka chadbc = O:

where, in the last term, we have used iden{y6) and eliminatedd 4. via [C]. The last

term in this expression obviously vanishes identically. On the other hand the first term
also vanishes, because of ident{/7). Thus a simple consequence of equation [C] is
Caare VK4 = 0. Thus, since the metric is generic (in fact for this result we only need that
itis A2-generic), we can conclude that

viegd — o

Therefore, at least locally, there exists a functibsuch that
Kq=V47T. (2.20)
Thus, we have shown that our conditions [C] and [B] are equivalent to the necessary con-

ditions(2.12) and (2.13jor a metric to be conformally Einstein.
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To prove the sufficiency we first také of [C]. This, after using the identit{2.5) and
the definition of the Bach tens¢2.2), takes the form

Bap + P*Caave — Caabe VK* + (n — 3)K* KCyape = 0.

Now, subtracting from this equation our second condition [B] we get
Caape(P* — VK + KK¢) = 0. (2.21)

Next we differentiate equation [C] and skew to obtain
Vay Acazas = Cazased Var K — KVay Cagagea = 0.

Then using2.3), the Weyl Bianchi identity(2.4), and [C] once more we obtain
Cagazed(Pd, — Vo K + Koy K9) = 0

or equivalently
Chyootypea P = VK + K71 K = 0. (2.22)

But this condition an@2.21)together imply thaP% — v¢k? + K4K* mustbe a pure trace,
due to(2.16) and (2.17)Thus,

n

This, when compared with our previous regal20)on K¢, and with the conformal Einstein
equationg2.11) shows that our metric can be scaled to the Einstein metric with the function
T defined by(2.20) This proves the following theorem.

Theorem 2.2. A generic metrig,, on an n-manifold M is conformally Einstein if and only
if its Cotton tensord ;. and its Bach tensoB,;, satisfy

[C] Agpe + chdabc =0, [B] By + (I’l - 4)Kd chdabc =0

for some vector fiel&“ on M.

We will show below, and in the next section that [C] is conformally invariant and that,
while [B] is not conformally invariant, the system [C], [B]is. In particular [B] is conformally
invariant for metrics satisfying [C], the conformal C-space metrics. Next note that, although
we settled dimension 3 earlier, the above theorem also holds in that case since the Weyl
tensor vanishes identically and the Bach tensor is just a divergence of the Cotton tensor.
In other dimensions we can easily eliminate theleterminedrector field kK from this
theorem. Indeed, using the tensﬁ«ﬁ‘n‘l@i’; of (2.19)and applying it on the condition [C]
we obtain

ICILC Aupe + 3(Kegaa — Kagea) = O.
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By contracting over the indicega}, this gives
2 Ca~
K9 = T ICl Lodabe g . (2.23)

Inserting(2.23)into the equations [C] and [B] ofFheorem 2.2we may reformulate the
theorem as the observation that a generic metgon ann-manifoldM (wheren > 4) is
conformally Einstein if and only if its Cotton tensdr,;,. and its Bach tensaB,;, satisfy

[CT (1 —n)Auwe + 21CI  Chupc C¥E Apy = 0
and
[B] (n — 1YBap + 41 — A)|Cl72C%%8 C e CM™ Ao Apiy = .

These are equivalent to conditions polynomial in the curvature. Multiplying the left-hand
sides of [C] and [B] by, respectively| C|| and||C||2 we obtain natural (pseudo-)Riemannian
invariants which are obstructions to a metric being conformally Einstein,

Fhe = (1= n)I|Cll Aae + 2Caabe CP A gy
and
Fazb =(n— 1)2||C||zBab +4n — 4)6defgCdabcéchklAenghkl.

By construction the first of these is conformally covariant (see below), the second tensor is
conformally covariant for metrics such thﬁjbc = 0, and we have the following theorem.

Theorem 2.3. A generic metricg,, on an n-manifold Mwheren > 4) is conformally
Einstein if and only if the natural invariantg?, _and Fazb both vanish.

abc

Remarks

¢ Indimensiom = 4 there exist examples of metrics satisfying the Bach equations [B] and
not being conformally Einstein (see e[84]). In higher dimensions it is straightforward
to write down generic Riemannian metrics which, atleast at aformal level, have vanishing
Bach tensor but for which the Cotton tensor is non-vanishing. Thus the integrability
condition [B] does not suffice to guarantee the conformally Einstein property of the
metric. In Sectiod we discuss an example of special Robinson—Trautman metrics, which
satisfy the condition [C] and do not satisfy [B]. (These are generic.) Thus condition [C]
alone is not sufficient to guarantee the conformal Einstein property.

e The development above parallels and generalises the tensor treatrfieitwhich is
based in dimension 4. It should be pointed out however that there are some simplifica-
tions in dimension 4. Firstlwfb simplifies to 9C||2Byp. It is thus sensible to use the
conformally invariant Bach tensd,;, as a replacement faF? in dimension 4. Also
note, from the development [t9], that the conditions that a metrig, be generic may
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ar2 be characterised in a particularly simple way in Lorentzian dimension 4. In this case they
ar3 are equivalent to the non-vanishing of at least one of the following two quantities:

a7 C® 1= Capca CSf C™ 01 % €% 1= %Capea * C5f % CI,

375 wherexC peq = C:bcd = eabe,-cf;";.
s 2.5. Conformal invariants giving a sharp obstruction

a7 We will show in the next section that the systems [C] and [B] have a natural and valuable
s geometric interpretation. However its value, or the equivalent obstruckibasid F2, as a

are  test for conformally Einstein metrics is limited by the requirement that the metric is generic.
0 Many metrics fail to be generic. For example in the setting of dimension 4 Riemannian
w1 structures any selfdual metric fails to be generic (and even fails th%generic), since

sz any anti-selfdual two form is a solution (#.15) at each point the solution space(&f15)

sz IS at least three-dimensional (see Secti@for an explicit Ricci-flat example of this type).

s In the remainder of this section we show that there are natural conformal invariants that are
ws more effective, for detecting conformally Einstein metrics, than the paand F2.

386 Letus say that a (pseudo-)Riemannian manifoldgakly generid, at each poink € M,

w7 the only solutionV? € T, M to

a8 CapeaVi =0atxe M (2.24)

s is V4 = 0. From(2.19)it is immediate that all 2-generic spaces are weakly generic and
w0 hence all generic spaces are weakly generic. Via elementary arguments we will observe that
w1 on weakly generic manifolds there is a (smooth) tensor fi#te.¢ with the property that

392 bacdecbcde = —(SZ.

. Of courseD? 4 is not uniquely determined by this property. However in many settings there
aa IS @ canonical choice. For example in the case of Riemannian sigmgiimeeakly generic

w5 ifandonlyif Ly ;= C“Cde(;bcde is invertible. Let us Writei;j for the tensor field which is the

w6 pointwise adjugate afj. Lj is given by a formula which is a partial contraction polynomial
s7  (and homogeneous of degree 2 2) in the Weyl curvature and for any structure we have

208 LaLt = Lyse,
w0 Where||L|| denotes the determinant bf. Let us define
400 Dacde = —iszCde.

w1 ThenD“ is anatural conformal covariant defined on all structures. On weakly generic Rie-
w2 Mannian structures, or pseudo-Riemannian structures where wej hjaren-vanishing,
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there is a canonical choice f@, viz.
Dacde = ”Lnleacde — _||L||71ZZCdee (225)

In other signatures we may obtain a smod¥f ¢ by a similar argument but the
construction is no longer canonical. On a manifddwith a metricg of indefinite sig-
nature this goes as follows. Instead of definlngs above letL? := C%¥Cj,.4, where
Cacde = gl gthgdigei C i with g/ the inverse of any f|xeath0|ceof smooth positive
definite metricg onM. (HereC p,;; is the Weyl curvature for the original metigc) Then as

above we have that the metgés weakly genericif and only uff‘ isinvertible. Thus, wnkLb
and||L| denoting, respectively, the pointwise adjugate and the determmagt itfis clear

that by constructio®d¢ := —||L |~ 1L Cbede js smooth and g|ve£)“‘ “Chede = —59.

The last construction argument proves the existence of a snibothindefinite weakly
generic manifolds but the construction is not canonical since it depends on the artificial
choice of the auxiliary metrig. The main interest is in canonical constructions. Another
such construction arises if (in any signatugey A2-generic. Then we may take

~ 2 ~
Dacde = 1_ - ”C”*lcacd(:‘ (226)

as was done implicitly in the previous section. Re@#fl ;¢ is conformally invariant and
natural. The example@.25) and (2.26are particularly important since they are easily
described and apply to any dimension (greater than 3). However in a given dimension there
are many other possibilities which lead to formulae of lower polynomial order if we know,
or are prepared to insist that, certain invariants are non-vanishinfl@der a discussion

in the context ofA2-generic structures). For example in the setting of dimension 4 and
Lorentzian signatureh2-generic impliesC? = C;‘,jcefc"b is non-vanishing and one may

take D?cde — C‘]{;Cfgw/cs‘ cf.[19]. In any case let us fix some choice for Note that since

the Weyl curvatureCy,.?, for a metricg is the same as the Weyl tensor for a conformally
related metrigg! it follows that we can (and will) use the same tensor fibth .4 for all
metrics in the conformal class.

For weakly generic manifolds it is straightforward to give a conformally invariant tensor
that vanishes if and only if the manifold is conformally Einstein. For the remainder of this
section we assume the manifold is weakly generic.

We have observed already that the conformally Einstein manifolds are a subclass of
conformal C-spaces. Recall that a conformal C-space is a (pseudo-)Riemannian manifold
which admits a 1-form field, which solves the equation [C]:

Aabe + chdabc =0.

If K andK¢ are both solutions to [C] then, evidentl{ — K9)Cuusc = 0. Thus, if the
manifold is weakly generick{ = K4. In fact if K, is a solution to [C] then clearly

K, = bflbcAubC, (2.27)
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which also shows that at most one vector figlfisolves [C] on weakly generic manifolds.
From either result, combined with the observations that the Cotton tensor is preserved by
constant conformal metric rescalings and that constant conformal rescalings take Einstein
metrics to Einstein metrics, gives the following results.

Proposition 2.4. On a manifold with a weakly generic metric g, the equation [C] has at
most one solution for the vector fiekt’.

Either there are no metrics, conformally related to g, that have vanishing Cotton tensor
or the space of such metrics is one-dimensional. Either there are no Einstein metrics,
conformally related to g, or the space of such metrics is one-dimensional.

If gis a metric with vanishing Cotton tensor we will say this i€-&pace scale

Now, for an alternative view of conformal C-spaces, we may (ak&7)as thedefinition
of K,;. Note then that fron@2.10) a routine calculation shows that,. = Aape + Y¥Crape,
and so (using the conformal invariancef’*) K4 = D% Ay, has the conformal trans-
formation

Ka=Kq— Y4,

where A, andK,; are calculated in terms of the metge=e?Y g and Y, = V, Y. Thus
Aape + K4Caape is conformally invariant. FronProposition 2.4and(2.27)this tensor is a
sharp obstructiorio conformal C-spaces in the following sense.

Proposition 2.5. A weakly generic manifold is a conformal C-space if and only if the
conformal invariant

Agpe + bdijkAijdeabc

vanishes

In any case wher®?/* is given by a Riemannian invariant formulae rational in the
curvature and its covariant derivatives (eggs of Riemannian signature, or thgis A2-
generic) we can multiply the invariant here by an appropriate polynomial invariant to obtain
anatural conformal invariant. Indeed, in the setting8fgeneric metrics, the invariaﬁ;}bc

(from Section2.4) is an example. Since, afi2-generic manifolds, the vanishing (Ei;lbc
implies that(2.23)is locally a gradient, we have the following theorem.

Theorem 2.6. For a A2-generic Riemannian or pseudo-Riemannian metric g the conformal
covariantFy, ,

(L —=n)lIClAgpe + chahc&dengefg

vanishes if and only if g is conformally related to a Cotton mefire a metricg such that
its Cotton tensor vanished ;. = 0).

In the case of Riemannian signatuxé-generic metrics we may replace the conformal
invariantFale in the theorem with the conformal invariant,

LIl Agbe — C?fghAfthZCduba n>4. (2.28)
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In dimension 4 there is an even simpler invariant. Note that in dimension 4 we have
4CadeCahce — |C|232, (2.29)

where|C|2 := cedC,,., and soL is a multiple of the identity. Eliminating, frort2.28)
the factor of (C|%)2 and a numerical scale we obtain the conformal invariant

|C|2Aabc - 4Cdengefngabm n =4,

which again can be used to repldéﬂ%c in the theorem for dimension4?-generic metrics.
We can also characterise conformally Einstein spaces.

Proposition 2.7. A weakly generic metric g is conformally Einstein if and only if the
conformally invariant tensor

Euwp = Trace'freépab - Vu(bbcdeACde) + baijkAijk bbcdeACde]

vanishes

Proof. The proof thatt,, is conformally invariant is a simple calculation usigg10)and
the transformation formula fak; = Dfl”CAabc.
If gis conformally Einstein then there is a gradia@ntsuch that

Trace-freeP,, — V,Yp + Y, Yp] = 0.

From Sectior?.3this impliesY, solves the C-space equation ($2€.2) and hence, from
(2.27) Yu = Daije A%, and SoE,, = 0.

Conversely suppose that;, = 0. Then the skew part &, vanishes and sind&,, and
Daijk A7 Dpege A% are symmetric we conclude thBi,.q. A is closed and hence, locally
at least, is a gradient.(]

Now suppose|L || is non-vanishing and takB,.; to be given as ir{2.25) Note that
since E;, is conformally invariant it follows thali L||2E,;, is conformally invariant. This
expands to

Gap = Trace-freeL||*Puy — || L Va(Dpede A) + (Val ILI)(Dpede A“%)
+ Daijk Aijk DbcdeACde] .

This is natural by construction. Since it is given by a universal polynomial formula which
is conformally covariant on structures for whid.|| is non-vanishing, it follows from

an elementary polynomial continuation argument that it is conformally covariant on any
structure. Notd| L || is a conformal covariant of weight4n. Thus we have the following
theorem on manifolds of dimensian> 4.

Theorem 2.8. The natural invariantG,;, is a conformal covariant of weight-8n. A
manifold with a weakly generic Riemannian metric g is conformally Einstein if and only

if G, vanishes. The same is true on pseudo-Riemannian manifolds where the conformal
invariant || L|| is non-vanishing.
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Recall that in dimension 4 we have the iden{2y29) Thus||L|| is non-vanishing if and
only if |C|? is non-vanishing and we obtain a considerable simplification. In particular the
invariantG,; has an overall factor of |)° that we may divide out and still have a natu-
ral conformal invariant. This corresponds to taking|€)2E., with Dcd = — _4_ cabed

. - . ICI?
Hence we have a simplified obstruction as follows.

Theorem 2.9. The natural invariant
Trace-fred(|C1%)?Pap + 4CI°Va(Cpede A°¥) — ACpeae AUV o|CI?
+ 16CaijkAijkacdeACde]

is conformally covariant of weight8.
A 4-manifold with|C|? nowhere vanishing is conformally Einstein if and only if this
invariant vanishes.

In the case of Riemannian 4-manifolds, requirii@? non-vanishing is the same as
requiring the manifold to be weakly generic. In this setting this is a very mild assumption;
notethatC|? = Oatp € M ifand only if C..q = O atp (and so the manifold is conformally
flat atp).

Note also that if we denote kfy,;, the natural invariantin the theorem then on Riemannian
4 manifolds the (conformally covariant) scalar functiély, F*° is an equivalent sharp
obstruction to the manifold being conformally Einstein.

Now suppose we are in the setting/of-generic structures (of any fixed signature). Then
E is well defined and conformally invariant with,.; given by(2.26) Thus again by
polynomial continuation we can conclude that the natural invariant obtained by expanding
ICIIEap, viz.

Gap := Trace-free[(1— n)?||C||?Pay — 2(1 — n)[|Cl| Va(Chrede A“)
+2(1— n)(Vall ClI)(Cede A%) + ACuijx AV Cpege A

is conformally covariant on any structure (i.e. not necessarfiygeneric). Thus we have
the following theorem on manifolds of dimensiaers 4.

Theorem 2.10. The natural invarianiG,; is a conformal covariant of weigl#n (1 — n).
A manifold with aA2-generic metric g is conformally Einstein if and onlydf,, vanishes.

We should point out that there is further scope, in each specific dimension, to obtain

simplifications and improvementsheorems 2.8 and 2. Edong the lines oTheorem 2.9
For example in dimension 4 the complete contractién= C;ZCS,{,C?”, mentioned earlier,
is a conformal covariant which is independent|6f? (see e.g[26]). Thus on pseudo-
Riemannian structures this may be non-vanishing wiggh= 0. There is the identity

acsCiiCly = SCacicey

and this may be used to construct a formulafotand thenk; via (2.23) alternative to
(2.25) and (2.26)(Se€[19] for this and some other examples.)
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Finally note that although generally we need to make some restriction on the class of
metrics to obtain a canonical formula f,.4. in terms of the curvature, in other circum-
stances it is generally easy to make a choice and give a descriptio®oFar example
in a non-Riemannian setting one can calculate in a fixed local basis field and artificially
nominate a Riemannian signature metric. Using this to contract indices of the Weyl cur-
vature (given in the set basis field) one can then use the formuladad therD. In this
way Proposition 2.14s an effective and practical means of testing for conformally Einstein
metrics, among the class weakly generic metrics, even when it does not lead to a natural
invariant.

3. A geometric derivation and new obstructions

The derivation of the system @heorem 2.2ppears ad hoc. We will show that in fact [C]
and [B] are two parts (or components) of a single conformal equation that has a simple and
clear geometric interpretation. This construction then easily yields new obstructions. This is
based on the observation that conformally Einstein manifolds may be characterised as those
admitting a parallel section of a certain vector bundle. The vector bundle concerned is the
(standard) conformal tractor bundle. This bundle and its canonical conformally invariant
connection are associated structures for the normal conformal Cartan conned®n of
The initial development of the calculus associated to this bundle dates back to the work
of Thomas[31] and was reformulated and further developed in a modern settifi).in
For a comprehensive treatment exposing the connection to the Cartan bundle and relating
the conformal case to the wider setting of parabolic structurefrsgle The calculational
techniques, conventions and notation used here fqi@l5].

3.1. Conformal geometry and tractor calculus

We firstintroduce some of the basic objects of conformal tractor calculus. Itis useful here
to make a slight change of point of view. Rather than take as our basic geometric structure
a Riemannian or pseudo-Riemannian structure we will take as our basic geometry only a
conformal structure. This simplifies the formulae involved and their conformal transforma-
tions. It is also a conceptually sound move since conformally invariant operators, tensors
and functions are exactly the (pseudo-)Riemannian objects that descend to be well defined
objects on a conformal manifold. A signatuge ) conformal structurgg] on a manifold
M, of dimensionn > 3, is an equivalence class of metrics where % if ¥ = e?Tg for
someY e . A conformal structure is equivalent to a ray subbur@lef S27*M; points
of Q are pairs §,, x) wherex € M andg, is a metric ak, each section of gives a metric
g on M and the metrics from different sections agree up to multiplication by a positive
function. The bundl& is a principal bundle with grouf®,, and we denote b§[w] the
vector bundle induced from the representatio®RgfonR given byr — r~*/2, Sections of
&[w] are called aconformal densities of weight and may be identified with functions on
Q that are homogeneous of degieg.e., f(s%gy. x) = s* f(gx, x) for anys € R,.. We will
often use the same notatiéfw] for the space of sections of the bundle. Note that for each
choice of a metrig (i.e., section o2, which we term ahoice of conformal scajewe may
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identify a sectionf e £[w] with a function f, onM by f,(x) = f(gx, x). This function is
conformally covariant of weigh in the sense of Sectia® since ifg = €?* g, for some
T € &, then f3(x) = f(¥T* gy, x) = € Tx f(gx, x) = €T+ £,(x). Conversely conformally
covariant functions determine homogeneous sectior@ ahd so densities. In particular,
£[0] is canonically identified witf.

Note that there is a tautological functigron Q taking values ir§27* M. Itis the function
which assigns to the poing{, x) € Q the metricg, atx. This is homogeneous of degree 2
sinceg(s?g,, x) = s°g,. If £ is any positive function o® homogeneous of degree? then
&gisindependent of the action Bf, on the fibres 0B, and sa& g descends to give a metric
from the conformal class. Thuyg determines and is equivalent to a canonical section of
Eap[2] (called the conformal metric) that we also dengtér g, ). This in turn determines
a canonical sectiog® (or g 1) of £&%°[—2] with the property thag,,,g" = 8¢ (wheres¢
is kronecker delta, i.e., the section&jfcorresponding to the identity endomorphism of the
tangent bundle). In this section the conformal metric (and its invgf¥ewill be used to
raise and lower indices. This enables us to work with density valued objects. Conformally
covariant tensors as in Secti@correspond one-one with conformally invariant density
valued tensors. Each non-vanishing secionf £[1] determines a metrig® from the
conformal class by

¢ =0 g (3.1)

Conversely ifg € [¢] then there is an up-to-sign uniqaec £[1] which solvesg = 0~?g,
and soo is termed a choice of conformal scale. Given a choice of conformal scale, we
write V, for the corresponding Levi—Civita connection. For each choice of metric there is
also a canonical connection 8fw] determined by the identification é{w] with &, as de-
scribed above, and the exterior derivative on functions. We will also call this the Levi—-Civita
connection and thus for tensors with weight, e\ge £,[w], there is a connection given
by the Leibniz rule. With these conventions the Laplackais given byA = gV, Vv, =
VbV,

We next define the standard tractor bundle owr [(g]). It is a vector bundle of rank
n + 2 defined, for each € [g], by [E4], = &£[1] @ &,[1] @ £[-1]. If g = €7 g, we identify
(o, g, 7) € [SA]g with (&, fi4, T) € [SA]Q by the transformation

& 1 0 O o
o | = Y. 8L 0w . (3.2)
? —drre-vt1) \ ¢

It is straightforward to verify that these identifications are consistent upon changing to
a third metric from the conformal class, and so taking the quotient by this equivalence
relation defines thetandard tractor bundl€* over the conformal manifold. (Alternatively

the standard tractor bundle may be constructed as a canonical quotient of a certain 2-jet
bundle or as an associated bundle to the normal conformal Cartan éhjiiehe bundle

&4 admits an invariant metrik 4 3 of signature p + 1, ¢ + 1) and an invariant connection,
which we shall also denote b,, preserving: 4 5. In a conformal scalg, these are given
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by
001 o Vo — g
hap=|0g,;0 and Vg | up | = | Vatts + gupt + Pap
100 T VT — Papu?

Itis readily verified that both of these are conformally well defined, i.e., independent of the
choice of a metrig¢ € [g]. Note thath 4 p defines a section &4 = £4 ® Ep, Wherel, is

the dual bundle of. Hence we may usk, z and its inversé&? to raise or lower indices

of £4, &4 and their tensor products.

In computations, itis often useful to introduce the ‘projectors’ fihto the components
&[1], &,[1] and&E[—1] which are determined by a choice of scale. They are respectively de-
noted byX 4 € E4[1], Zaq € Eaall] andYy € E4[—1], whereE g, [w] = €4 ® £, ® E[w],
etc. Using the metricg 45 and g, to raise indices, we defing4, z4¢, Y4, Then we
immediately see that

YaX4 =1, ZanZ2 = g,

and that all other quadratic combinations that contract the tractor index vanish. This is
summarised ifFig. 1

Itis clear from(3.2)that the first componentis independent of the choice of a represen-
tativeg and hence&’* is conformally invariant. Fog4¢ andy4, we have the transformation
laws:

7Aa — zAa | yayA ¥4 =y -1,z - $v, o x A (3.3)

Given a choice of conformal scale we have the corresponding Levi—Civita connection
on tensor and density bundles. In this setting we can use the coupled Levi-Civita tractor
connection to act on sections of the tensor product of a tensor bundle with a tractor bundle.
This is defined by the Leibniz rule in the usual way. For exampl@ #¢a € £ ® £ ®
Elw] =: &€ [w] thenV,u’VCa = (Vub)VCea + ub(V,VO)a + u?VEV,a. HerevV means
the Levi—Civita connection om’ € £” anda € g w], while it denotes the tractor connection
on V€ e £°. In particular with this convention we have

VaXa = Zaag, VaZap = —PapXa — Ya8ap Va¥a = P75, (3.4)

Note that ifV is a section 0€y4,...4,[w], then the coupled Levi—Civita tractor connec-
tion onV is not conformally invariant but transforms just as the Levi—Civita connection
transforms on densities of the same weighty = V,V + wY,V.

‘ YA ZAc XA

Yy, | 0o o 1
Zw | 0 08 0
X, | 1 0 o

Fig. 1. Tractor inner product.
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Given a choice of conformal scale, thractor-D operator
Dy . SB...E[U)] — EAB...E[LU — 1]

is defined by
DoV = (n+2w—2QwYsV + (n+ 2w — 2)Z 4, V4V — X400V, (3.5)

where 0V := AV + wP}V. This also turns out to be conformally invariant as can be
checked directly using the formulae above (or alternatively there are conformally invariant
constructions oD, see e.g[14]).

The curvature? of the tractor connection is defined by

[Va, Vo] VE = QoS g VE (3.6)

for V€ e £°. Using (3.4) and the usual formulae for the curvature of the Levi-Civita
connection we calculate (d2])

Qabce = Z¢ZECabee — 2X[c ZE) Acab- (3.7)

From the tractor curvature we obtain a related higher order conformally invariant curva-
ture quantity by the formula (cf14,15)

3
Wackr = n__ZDAX[AQBC]EF~

It is straightforward to verify that this can be re-expressed as follows:
Wapce = (n — 8)Z4 Z%QupcE — 2X[4Z5)" VP picE- (3.8)

This tractor field has an important relationship to the ambient metric of Fefferman and Gra-
ham. For a conformal manifold of signhaturg ¢) the ambient manifolfiL1] is a signature

(p + 1, ¢ + 1) pseudo-Riemannian manifold wif® as an embedded submanifold. Suit-
ably homogeneous tensor fields on the ambient manifold upon restrict@rd&termine
tractor fields on the underlying conformal manif¢8). In particular, in dimensions other
than 4,W4pcp is the tractor field equivalent ta (— 4)R|o whereR is the curvature of the
Fefferman—Graham ambient metric.

3.2. Conformally Einstein manifolds

Recall that we say a Riemannian or pseudo-Riemannian ngésrimonformally Einstein
if there is a scal& such that the Ricci tensor, or equivalently the Schouten tensor, is pure
trace. Thus we say that a conformal structidgg conformally Einstein if there is a metric
g in the conformal class (i.ez € [¢]) such that the Schouten tensor fg@iis pure trace.
We show here that a conformal manifoltf([¢]) is conformally Einstein if and only if it
admits a parallel standard tracidrwhich also satisfies the condition thé I# is nowhere
vanishing. Note that in a sense the “main condition” is thaparallel since the requirement
thatX 414 is non-vanishing is an open condition. In more detail we have the following result.
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Theorem 3.1. On a conformal manifoldM, [g]) there is a 1-1 correspondence between
conformal scales € £[1], such thalg® = o~2g is Einstein, and parallel standard tractors

I with the property that 4,14 is nowhere vanishing. The mapping from Einstein scales to
parallel tractors is given by - 1 Do while the inverse i - X 4I4.

Proof. Suppose that), [g]) admits a parallel standard tractt such that := X 414 is
nowhere vanishing. Since € £[1] and is non-vanishing it is a conformal scale. lgdbe
the metric from the conformal class determinedbyhat isg = g° = o—2g asin(3.1). In
terms of the tractor bundle splitting determined by this méttiis given by some triple with
o as the leading entryl{], = (o, i4, 7). From the formula for the invariant connection we
have
Va0 — la
0= [VaHB]g = | Vatp + 8upT + Paro | . (3.9)
VaT — Pabﬂb

Thusu, = V,0, butV,o = 0 by the definition ofV in the scales. Thusu, vanishes,

and the second tensor equation fr(8r0) simplifies to

Paba = _gabtv

showing that the metrig is Einstein. Note that tracing the display gives- —%Ja.

To prove the converse let us now suppose thista conformal scale so that= o —2g
is an Einstein metric. That is, for this metnig; P, is pure trace. Let us work in this
conformal scale. Then we haig, = %gab\]. ThusV“4P,;, = (1/n)V,J. On the other hand
comparing this to the contracted Bianchi identi#yP,, = V,J we have thatv,J = 0.

Now, we define a tractor fielt!* by I := 1 D45 Then [[] = (o, 0, —,—l,Ja). Consider
the tractor connection on this. We have

V.o
[Va]IB]g = —zlgab\]a + Puyo
—%(GVGJ + JIV,0)
Once again, by the definition of the Levi—Civita connecfioas determined by the scate
we haveVo = 0. SinceP,, = %gab.] the second entry also vanishes. The last component

also vanishes fronvJ = 0 andVo = 0. Sol is a parallel standard tractor satisfying that
X 4I4 = o is non-vanishing. O

Remarks

e Note thatk(I, I) is a conformal invariant of density weight 0. In fact from the formulae
above, in the Einstein scale(l, I) = —%oZJ. Recall that in this sectioh= g*’P,;, and
so has density weight2 and

O'ZJ — O,Zgabpab Y 4 gabpab.
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Thatis—5A(I, T) is the trace of Schouten tensor using the metric determined $ince
V preserves the tractor metric aids parallel we recover the (well known) result that
P.» (and its trace) is constant for Einstein metrics.

e Suppose we drop the condition that= X4I“ is nowhere vanishing. [f4 is parallel
then from(3.9)it follows that 1, = V,o. Furthermore tracing the middle entry on the
right-hand side of3.9)implies thatr = —%Da. Thusifv,lp = Oatp € M thenapwe
havelp = %DBO'. Now cIearIy%XBDBa = ¢ vanishes on a neighbourhood if and only
if 2 Do vanishes on the same neighbourhood. So for pataijet 414 is non-vanishing
on an open dense subsetMf The points where vanishes are scale singularities for
the metricg = o~ 2g.

e The relationship between parallel tractors and conformally Einstein metrics, while im-
plicit in [2], was probably first observed and treated in some detail by Gauduchon in
[13] (and we thank Claude LeBrun for drawing our attention to Gauduchon'’s results in
this area). On dimension 4 spin manifolds it is straightforward to show that the standard
tractor bundle is isomorphic to the second exterior power of Penrf#&sg'tocal twistor
bundle. Under this isomorphisirmay be identified with thefinity twistor(defined for
spacetimes). The relationship to conformal Einstein manifolds is well ki 2]in
that setting.

e \We should also point out that the theorem above can alternatively be deduced, via some
elementary arguments but without any calculation, from the construction of the tractor
connection as if2].

Next we make some elementary observations concerning parallel tractors.

Lemma 3.2. On a conformal manifold let N be a parallel section of the standard tractor
bundleT. Then:

QbCDENE =0 and WBCDENE =0.

Proof. By assumption we hav€,N? = 0. ThusQ,.Pg Nt =[V,, V.JNP = 0 and the
first result is established.

Next Wa,4,PeNE = n—fz(DAOXAOZAleAZCQ;,CDE)NE, where, as usual, sequen-
tially labelled indices e.gAg, A1, A2 are implicitly skewed over. Now the quantity
XAOZAl”ZAZCQbCDE has (density) weight-1, so from the formuld3.5)for D, we have

(DX a0 Za,"Za, P E)NT = (4= )Y OX 40 Zn," Z 4, Qe " ENF
+(n = DZAVaX 4gZa,"Za, Qe " E)NE
— (XAAX 0 Z A, Z 2, P E)NE
+IXAOX 20 Za," Zay e’ ENT,
whereV and A act on everything to their right within the parentheses. The first and last

terms on the right-hand side vanish from the previous result. (In fact for last term we could
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also use thak 40X 4, Z4,Z 4,° = 0.) Next observe that, sinééN = 0, we have

(Z2Y X 4o Z4,° Z 2, Qe PE)NE = Z29Y (X 4o Z 4, Z 4, e PENT) = 0,
where we have again used the earlier resejt,” e N = 0. Similarly

(XAOAX 4, Z A" Z 4, e PE)NE = XAOAN(X 4y Za, " Z 4, P eNE) =0. O

From the lemma it follows immediately that on conformally Einstein manifolds the

parallel tractoil, of Theorem 3.1satisfies2,.” eI = 0 andWpcprl? = 0. In general the
converse is also true. More accurately we have the result given in the following theorem.
Before we state that, note that since the Weyl curvature is conformally invariant it follows
that Eqs(2.15)—(2.17are conformally invariant. Thus if any metric from a conformal class

is generic then all metrics from the class are generic and we will describe the conformal
class as generic.

Theorem 3.3. A generic conformal manifold of dimensian# 4 is conformally Einstein
if and only if there exists a tractor fielt!! e £4 such thatX 414 is non-vanishing and

Wacpel® = 0.

A generic conformal manifold of dimensian= 4 is conformally Einstein if and only if
there exists a tractor fiel@* € £4 such thatX 414 is non-vanishing,

QbCDEHE =0 and WBCDE]IE =0.

Proof. We have shown that on a conformally Einstein manifold there is a (parallel) standard
tractor field satisfying

(i) X4I* nowhere vanishing,
(i) QucPElf =0,
(i) WBC]_)E]IE =0.

It remains to prove the relevant converse statements. First we observe that given (i), (i)
is exactly the conformal C-space equation. From above we have that

Quvce = Z¢Z3Capee — X ZpAeab + XEZGAcap-
A general tractoii4 € £4 may be expanded to
£ =vEs + ZEd/Ld + XEr,
wheres = X 414 and we assume this is non-vanishing. Hence

QabCE]IE = O'ZE‘ACab + Zz‘ﬂdcabc'd - XC/JLdAdabo (310)
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70 Setting this to zero, as required by (i), implies that the coefficiemust vanish, i.e.,
o1 OAcap + Mdcahcd =0, or
762 Acap + K¥Cqeap =0, K% := —o7 19, (3.11)
s Which is exactly the conformal C-space equation [C] a$heorem 2.2Contracting this
e With ¢ (or K€) annihilates the second term and so

765 1! Agap =0,

s Whence the coefficient of ¢ in (3.10)vanishes as a consequence of the earlier equation
7z and it is shown that (with (i)R2.,c£I¢ = 0 is exactly the conformal C-space equation.
768 Now recall

769 Wecpe = (n — 8 Z% ZEQpepE — 2X[BZ¢)V*QucDE,

70 and so, in dimensions other Wzcpelf = 0 impliesQp.pelf = 0 (and hence the con-
. formal C-space equation). From the display we see WigtpzIf = 0 also implies that
7 1EVQu.pr = 0 or equivalenty ¥ VeQ,.pr = 0. Once again using the formulae for
s the tractor connection we obtain

- VQuepe = (0 — 8 Z4 75 Acge — XDZ% Bee + XEZS Bee, (3.12)

75 whereB,, is the Bach tensor. Henee 11 V?Q,.pr = 0 expands to
—(n —A)ZLKAcge + XpKBee + Z%4 Bge = 0.

From the coefficient o4, we have

Bue — (n — 8)K® Agge = 0

7o Which, with the conformal C-space equation (and siBi¢&® symmetric), gives
780 Bed +(n — 4)K°KChege =0 (3.13)

= Which is exactly the second equation [B] Bfieorem 2.21f this holds then it follows at

22 once thatk® B, = 0 and so in the expansion of 11 v4Q,.pr = 0 the coefficient o p

7z vanishes without further restriction. Thus we have shown that in dimensions other than 4
2 the single conformally invariant tractor equatithpcpzI? = 0 is equivalent to the two

s equations [C] and [B]. In dimension 4 itis clear frd@18)that Wpcprlf = 0is equivalent

s 10 1EVeQu.pr = 0 and this withlfQ,.pr = 0 gives the pair of equations [B] and [C]. In

= either case then the theorem here now follows immediately ffbeorem 2.2 [

788 Remarks
7 Note that conditions (i), (i) and (iii), as in the theorem, do not imply tht parallel.

790 On the other hand the theorem shows that if there exists a standard fraat@sfying
791 these conditions then (on generic manifolds) also there exists a parallel standard'tractor
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satisfying these conditions. Calculating in an Einstein scale, it follows from the conformal
C-space equation that one ha4l* = z4I4 = 0. Hence thal’ = fI + pX for some
sectionp of £[—1] and non-vanishing functioh

e Recall that in Sectio8.1we pointed out that in dimensions other tha, ¢ p is the
tractor field equivalenf8] to (n — 4)R|o whereR is the curvature of the Fefferman—
Graham ambient metric. Thus, in these dimensions, the conditiggcpI® = 0 is
equivalent to the existence of a suitably homogeneous and generic ambient tangent
vector field along? in the ambient manifold which annihilates the ambient curvature.

e \We had already observed in Secti®ib that Agpe + K¢Caape is conformally invariant
if we assume thak; has the conformal transformation lak, = K, — Y, (where
g = €2Tg). From the proof above we see this transformation formula fits naturally into
the tractor picture and arises frof8.2) since K, is a density multiple of the middle
component of a tractor field according(®11)

3.3. Sharp obstructions via tractors

Theorem 3.3jives a simple interpretation dheorem 2.2n terms of tractor bundles.
In the proof of this above, this connection was made by recovering the familiar tensor
equations from SectioB. Here we first observe that entire derivationTdfeorem 2.2and
its proof reduces to a few key lines if we work in the tractor picture. This then leads to a
stronger theorem as below.

We summarise the background first. Frdimeorem 3.1ve know that the existence of a
conformal Einstein structure is equivalent to the existence of a parallel tiag@bpoints
whereX 414 = 0). This immediately implies that the tractor curvat§tg,cp satisfies

[C] 1°Qucp =0, [B] IPV*Qucp = 0.

We have labelled thesé] and [B] since (as shown in the proof above) the first equation is
equivalent to the earlier [C] and, given this, the second equation is equivalent to the earlier
equation [B]. The conformal invariance of the systems [C] and [B] is now immediate in all
dimensions from the observation that the conformal transformatiai &f,,cp is

VaQapcp = V'Qabep + (n — 4)Y'Qapcp. (3.14)

and whence the conformal transformation of the left-hand side of equ]as |
I V/“Q\abcz) =IPV*Qupcp + (n — 3)TT° Qupcp.

whereg = 2T g; from this it is immediate thaf] is invariant on metrics that solv€]. We
should point out that in dimension 4 it follows immediately fr¢dal2)thatl”’ V¢ Q ,cp =
04 VQuep =04 By, = 0.

Now we are interested in the converse. We will show that if the displayed equaflpns [
and [B] hold for some tractof, satisfying thatX 4I# is non-vanishing, then the structure is
conformally Einstein. Here is an alternative proofldtfeorem 3.3and hence an alternative
proof of Theorem 2.2 Equation £] implies thatV,, (Qu,qscpl?’) = 0, where as usual
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sequentially labelled indices are skewed over. From the Bianchi identity for the tractor
curvature Vq, Qa,q;cp = 0, it follows that

QayascpVa IP = 0. (3.15)

Now equation €] implies [C], Viz. Acup + K¢Caeap = 0. As we saw earlier this (using that
the metric isA2-generic) implies thak, is a gradient and that there is a conformal scale
such that the Cotton tensdg.,;, vanishes. In this special C-space scale (see Seztpit is
clear thatk, is also zero an(B.15)simplifies (using3.9) and (3.7)to Paldcaza3chCC =0

or equivalently

Chooy_eaP™ = 0. (3.16)

Note that ifC* is suitably generic this already implies that the metric that gives the special
C-space scale is Einstein.

Using only the weaker assumption that the manifold is generic in the sense of Section
2.4 we must also useB]. The argument is similar to the above. Equati@j [mplies
VY(IPQuep) = 0. Thus usingB] we have

n—2Ct

(VIP)Qubcp = 0.

In the special C-space scale this expandf?,“fffa;mlZfj = 0, which is equivalent to
P Capeq = 0. (3.17)

Clearly Egs.(3.17) and (3.16)mply thatP is pure trace on generic manifolds and so the
theorem is proved. In fact these E¢.17) and (3.164re respectively Eq§2.21) and (2.22)
both written in the C-space scale.

The construction of the systemi][and [C] immediately suggests alternative systems.
In particular we have the following results which only requires the manifold to be weakly
generic.

Theorem 3.4. A weakly generic conformal manifold is conformally Einstein if and only if
there exists a non-vanishing tractor figli € £4 such that

[é] HEQbCDE = O, [Ij] HEVachDE =0.

The systemiC] and[D] are conformally invariant.
Proof. Note that from(2.9), and the invariance of the tractor connection, we have
1EV,Qpene = 15VaQubene — 2Yal* Qe — VoI Qacpe — YeIF QapE
+ 8 T IEQuenE + 80 T IE Qi

whereg = €T g, and so P] is conformally invariant if the conformally invariant equation
[C] is satisfied; the system&] and D] are conformally invariant.

If the manifold is conformally Einstein then there is a parallel tradfor We have
observed earlier that this satisfi€ [ Differentiating [C] and then using once again tHit
is parallel shows thaf]] is satisfied.
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Now we assume tha€]] and P] hold. If I = Y£o + ZE4 1, + XE1, thenQupcpIE is
given by(3.10) Suppose that 4,14 = & vanishes at some poirtThen from(3.10)we have
w1 Cupeq = 0 atx (andu? Agw, = 0 atx) and so, since the conformal class is weakly generic,
pd(x) = 0. Thusl® = X%, atx, and D] gives XV, Q.pr = 0 atx. But, V,XF = ZE
and from(3.7) XEQpepr = 0, and saZ% Cheda — X pAave = ZEQpepr = 0 atx. But this
meansCpeq4,(x) = 0 which contradicts the assumption that the conformal class is weakly
generic. SaX 414 is non-vanishing.

Now, differentiating £] and then usingi}] we obtain

QbepeValE = 0.

But, since the manifold is weakly gene[i@,bcDE must have rank at least as a map
Qpenr : EP — Eg. Also, from(3.7)and [C], X£ andI® are orthogonal to the range. So
the display implies that

VaHE = aaHE + ﬂszE,

for some 1-formsy, andg,. (An alternative explanation is to note, as earlier, thétfis
not a multiple ofXZ andQ,.prU* = 0 then from(3.7) it follows that U* determines a
non-trivial solution of the equation [C]. Sindé also determines such a solution it follows
at once fromProposition 2.4hatU¥ = ol + gX~.) Differentiating again and alternating
we obtain

QbaED]ID = Z]IEV[baa] + 2a[uab]]IE + Za[a,Bb]XE + ZXEV[bﬂa] + Z,B[aZ;f].

The left-hand side vanishes by assumption and of CGM{I};E&,]HE = 0. ContractingX g
into the remaining terms brings us to

0 = 20V[qap]

and sax is closed. Locally then, = V, f for some functiorf and sdf := e /TF satisfies

V. IF = B, x* (3.18)
for some 1-formB,. Expanding®: 1€ = YE& + zE4 [, + XE% we haveX zI¢ = & (which
is non-vanishing) and, fror{8.18) the equations

Va6 — lla =0, va,a«b + gab% +Puo =0

cf. (3.9). So for the metrig := 6~2g we have;, = V,& = 0andP,, + g,,7/6 = 0. That
is the metricg is Einstein (ano& Dya is parallel). O

We have the following consequence of the theorem above.
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Corollary 3.5. A weakly generic pseudo-Riemannian or Riemannian metric g on an n-
manifold is conformally Einstein if and only if the natural invariants

Qupk Dy RedLD Ve foPDyy1 ** VSt D, 425

fors=0,1,...,n+ 1, all vanish. Here the sequentially labelled indicBsg, ..., D,+2
are completely skewed over.

Proof. The theorem can clearly be rephrased to stategimtonformally Einstein if and
only if the map

(QepEs VaSenE) : P @ 7P — & (3.19)

given by
(VPP WPy s VPP Qy pE + WPV Qe

fails to have maximal rank at every point . But by elementary linear algebra this
happens if and only if the induced alternating multi-linear map'td2(£-) vanishes. This

is equivalent to the claim in the Corollary, since for any metric the tractor curvature satisfies
QepeXE =0. O

If M is oriented (which locally we can assume with no loss of generality) then it is
straightforward to show that there is a canonical skew-@)-tractor consistent with the
tractor metric and the orientation. Let us denote thiseby ¢++2. Using this, we could
equally rephrase the Corollary in terms of the invariants

D1Dg---DyDys1-Dypy1D
€ 12 s Bl Bt 12 Q bk Dy - QedLDy Ve fgPDyrt ** VR QDyiz»

fors =0,1,...,n+ 1. These all vanish if and only if the metric is conformally Einstein.
The natural invariants in the lemma are given by mixed tensor-tractor fields, rather pure
tensors. However by expanditsel,,cp and V,Q,.pg USing(3.7) and (3.4)it is straight-
forward to obtain an equivalent set of tensorial obstructions from these. The system of
obstructions so obtained is rather unwieldy and could be awkward to apply in practise.
Nevertheless this gives a system of invariants, which works equally for all signatures.
As a final remark in this section we note that comindPtoposition 2.%ia the tractor
picture is also very easy. If we want to test whether a seadef[1] is an Einstein scale
we definelp := %DBU as inTheorem 3.Jand consideWV,Iz. Calculating in terms of an
arbitrary metrig from the conformal class we getlz = Z’goEab, modulo terms involving
X, where E,;, = Trace-freeP,, — V. K;, + K,K;) and K, := —o~1V,0. Sinces can
only be an Einstein scale {2,.” z1¥ = 0 we obtain the conformal C-space equation for
K, and we are led to the conclusion that the Riemannian invariant of the proposition is
conformally invariant and also the conclusion that it must vanish on conformal Einstein
manifolds.

GEOPHY 1097 1-35



925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

942

943

944

945

946

947

948

949

950

951

952

953

954

955

DTD 5

A.R. Gover, P. Nurowski / Journal of Geometry and Physics xxx (2005) XXx—XXX 29
4. Examples

Here we shed light on the various notions of generic metrics, mainly by way of examples.
First let us note that each of these is an open condition on the moduli space of possible
curvatures. Thus in this sense “almost all” metrics are generic (and kehgeneric and
weakly generic). The many components of the Weyl curvatysg; arise from aA2-generic
metric unless they lie on the closed variety determined by the one confiifipe= O where,
recall,||C| is the determinant of the m#p.18) The metrics which fail to be weakly generic
correspond to a closed subspace contained ifi@hie= 0 variety. In the Riemannian case
this subvariety is given b{L || = 0, where recal|| L is the determinant af““?¢Cy,,, and
we show below that in dimension 4 the containment is proper.

Another aim in this final section is to establish the independence of the conditions [C]
and [B] from Sectior2.4 We assume that > 4 throughout this section.

4.1. Simple n-dimensional Robinson—Trautman metrics

Let Q be an { — 2)-dimensional space of constant curvatur@nd denote by,
i =12 ...,n— 2, standard stereographic coordinatesofVe takeM = R? x Q, with
coordinatesi( u, x'), where ¢, ) are coordinates along ti?, and equipM with a subclass
of Robinson—Trautmaf28] metricsg by

.. L J
g = 2cu[dr + h(r) du] +r2dez. 4.1)
(14 §euxkal)

Hereg;; = diagfy, €2, ..., €,-2),¢; = 1,k = 1,0, =1 andr = h(r)is an arbitrary, suffi-
ciently smooth real function of variabteln the following we describe conformal properties
of the metricg4.1).

To calculate the Weyl tensor we introduce the null-orthonormal cofraffg={
6,07, 6 by

07 = du, 6~ =dr + hdu, e =rL. 4.2)
1+ ﬁg/dxkxl
In this coframe the metric takes the fogm= g.,0°6° where
01
gav=110 ) (4.3)
8ij

We lower and raise the indices by means of the magsixand its inversg“’. The Levi—
Civita connection 1-forms

1—‘ab = l—‘abcec
are uniquely determined by

40 +T¢A6” =0 and G — Cap — D = 0. (4.4)
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Explicitly, we find that, the connection 1-forms are

K 1 h .
Fij = o (0 —x;0),  Tj=——6j Cyj= 0, ry_=h'ot,

(4.5)

whereh’ = d—ﬁ. (Observe that, due to the constancy of the matrix elements pthe matrix
[y is skew,I'y, = —I'p,.) The curvature 2-forms

Qup = %Rabcdec A ed = dFab + FZ AT

are
K+ 2h n . no_
Ql‘jz rz 9,‘/\9]', Q_j=79 A@j, Q+j=79 /\9]',
Qi =h"6" AbT, (4.6)

with the remaining components determined by symmetry. The non-vanishing components

of the Ricci tensor

Rap = R;,

ach

and the Ricci scalar

R=g"Ra

are
Rij = |:(” -3)" tth + zTh/:| gij» R =@- 2)h7/ +n",
R=G-20-92 2 @)

From this we conclude that metri¢$.1) are Einstein,

Rap = Agab,
if and only if
K m A 2
h(ir)=—-4+ —+ —0——r", 4.8
N=—Z+=t -1 (4.8)

where m and A are constants. These metrics form the well knomadimensional
Schwarzschild-(anti-)de Sitter 2-parameter class in whiéb interpreted as the mass and
A as the cosmological constant. (The space is termed de Sitterif0 and anti-de Sitter
is A < 0.) Thus, we have the following proposition.
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Proposition 4.1. The only Einstein metrics among the Robinson—Trautman metrics

gij o' d/

g = 2au[dr + h(r) du] + r?
(1+ ﬁgkzxkxl)z

are the Schwarzschild-(anti-)de Sitter metrics, for which

K m A 5
h(r) = —= +
N=—Z+=tm -1

The Weyl tensor of metricgt.1) has the following non-vanishing components:

Cijit = 29(grigj1 — 8kjgil)- C—itk = (3—n)Vgi,
Cir— =(@B—n)(n—2)V¥, (4.9)
where
1 k+2h 2K
P = _ = 4w,
(n—l)(n—2)|: r2 r+ ]

and the further non-vanishing components determined from these by the Weyl symmetries.
Now, we consider the equation

CapeaF4 =0 (4.10)
for the antisymmetric tensdf,;,. We easily find that
CijanF®* = 4WFyj,  CipapF = (3— n)WeuF*~,
Ci_apF™* = (38— n)Wgi F*, Co_apF® =2(B—n)(n — 2)WF*.
Thus, if ¥ #£ 0, Eq.(4.10)has unique solutiott,, = 0. We pass to the equation
CapeaH =0 (4.11)

for a symmetric and trace-free tengddy;. In the null-orthonormal cofram@l.2)the trace-
free condition reads

H+2H,_ =0, whereH = g*Hy. (4.12)
Comparing this with

Ciska H" = 2W[git(H + (3 = n)H_y) — Hy]. Cip—aH" = (n — 3)Wgy H™,

CivraHY = (n — 3)Wgi H*, C_pqH" = (n —2)(n —3)WH*,

CipraH" = (n — 2)(n — 3)WH "~

proves that the only solution ¢4.11)is H,;, = 0. Thus we have the following proposition.
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Proposition 4.2. If

1 |:/<+2h 2n’

M) w|ro

r2 r
the Robinson—Trautman metrics

ot dxd
g = 20u[dr + h(r) du] —}—rz—glj 5
(1 + ﬁgklxkxl)

are generic.
By a straightforward calculation we obtain the following proposition.

Proposition 4.3. Each Robinson—Trautman metric for whigh 0, satisfies the conformal
C-space condition [C] with a vector fielld, given by

K,=V, |Og[r(lfn)/(n73)qjl/(37n)]. (413)

From this andPropositions 2.4 and 4iRfollows that the Robinson-Trautman metrics
for which W #£ 0 are conformal to Einstein metrics if and only if

1
Pup — VaKp + KgKp — ;(P — VK. + K°K:)gar =0

with K, given by(4.13) (Note that, by the uniqueness asserte®rioposition 2.4this is
equivalent to requirindgz,;, = 0 with E,;, as inProposition 2.7 InsertingR,, andK, into
this equation one finds that the metfit1)is conformal to an Einstein metric if and only
if the functionk = h(r) is given by

h(r) K n m n A 2
r)y=——+——=+-/7——72r".

2 M3 2m-—-1)
This means that among the considered Robinson—Trautman metrics the only metrics which
are conformal to Einstein metrics are those belonging to the 2-parameter Schwarzschild-de
Sitter family. So we have the following conclusions. The Robinson—Trautman mgtrigs

e are all generic,
e all satisfy conformal C-space condition, [C]
¢ in general do not satisfy the Bach condition, [B].

In fact from the conformal invariance of the systems [C] and [B] (see Se8t®rand the
condition of being generic, the same conclusions hold for all metrics conformally related
to Robinson—Trautman metrics.

This, when along with four-dimensional examples of metrics satisfying the Bach con-
ditions [B] and not being conformal to Einstejih,24], proves independence of the two
conditions [C] and [B].
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e 4.2. N-Dimensional pp-waves

1017 We noted in Sectiof.5that there are weakly generic metrics that fail tafegeneric,

s and hence fail to be generic. Metrigsvith non-vanishing Weyl curvature, and such that
1019 there are two distinct Einstein metrics in the conformal clags fa#il to be weakly generic.

1020 This observation, which dates back to Brinknjah follows easily from the C-space equa-
w0z tion. Explicit examples of Brinkman'’s metrics, thus the metrics with non-vanishing Weyl
w22 cuUrvature but not weakly generic, are pp-waves. They can be described as follows.

1023 Consider the-dimensional metric (pp-wave)

1024 g = 20u[dr + h(x', u) du] + g;; dx’ dx/,

025 Whereg;; are the components of a constant non-degenerate) x (n — 2) matrix. This,
w26 in the coframe

1027 ot = du, 6~ =dr + hdu, 9i = dxi,
128 has curvature forms
1029 QH_ = —h,,'kek AN 9+, Q,‘j =Qi_ = Q_;,__ =0.

100 SO the Ricci scalar vanisheR,= 0, and the only non-vanishing components of the Ricci
wn  and the Weyl tensors are

. 2
1032 Riy =-2¢"hij,  Ciyjr = m[gijgklh,kl —(n—2h ],

wss  apart from the components determined by these via symmetries. Thus, this metric is Einstein
s if and only if the functionh = h(x', u) is harmonic in the! variables,

1035 g'h;; =0,

w3 IN Which case it is also Ricci flat. Whether this is satisfied or not it is clear that the vector
w0y field

10368 K = f3,, (4.14)

10s  Wheref is any non-vanishing function, satisfies

1040 Capcak? = 0. (4.15)

wa  Thus, the pp-wave metric is not weakly generic. It is worth noting that if the trace-free part
w2 Of the matrixh ;; is invertible the vecto(4.14)is the most general solution of E@t.15)
w0z HoOwever, if it is not invertible, there are more vectérsvhich satisfy(4.15)
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wa 4.3, Four-dimensional hypewdiler metrics

1045 Another interesting class of metrics that are weakly generic but Aateneric or generic
s Can be found in the complex setting. Consider a four-dimensional non-flat hitplkerk
1wz Manifold. This admits three &hler structured, J, K such that they satisfy quaternionic
s  identities, e.glJ + JI =0, K = IJ and, as a consequence, is Ricci flat. We claim that
s all such manifolds are weakly generic, but mot-generic[23]. To see this, first consider
wso the Riemann tensor viewed as an endomorphiR) : A2T*M — A2T*M. Since the

w051 fundamental forms;, wy, wg, associated witll, J, K, are each parallel we havw;) =

w2 R(wj) = R(wg) = 0. On the other hand from Ricci flathess we h&( = C(.), where

wss  C(.) is the Weyl tensor, also considered as and endomorpfisn A2T*M — A?T*M.

wss  Hence als@(w;) = C(wy) = C(wk) = 0, which means that the metric is nég-generic.

1055 On the other hand if there existed a vector fislduch thatC,,.qV<¢ = 0 then, be-

wss  cause of the invariance property®fwith respect of the structurdsJ, K alsoCpeq(IV)?,

w057 Capea(JV)? andCapeq (K V)¢ would vanish. Since on a hypedkiler 4-manifold a quadruple
wss  (V, IV, JV, KV) associated with any non-vanishing vectbconstitutes a basis of vectors,
wso at every point, we conclude that in such a césg., (and therefore the Riemann tensor)
we0  Vanishes. Thus, at any poirtwhere the Weyl curvature is not zero we can conclude that
we1 V= 0is the only solution tcfabcdvd =0.

1062 Thus we have the following proposition.

ws3  Proposition 4.4. Every non-flat four-dimensional hypeaiier manifold is weakly generic
wes  but notA2-generic.

1065 For a local explicit example of this type see €2p].
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