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Abstract9

We construct polynomial conformal invariants, the vanishing of which is necessary and sufficient10

for ann-dimensional suitably generic (pseudo-)Riemannian manifold to be conformal to an Einstein11

manifold. We also construct invariants which give necessary and sufficient conditions for a metric12

to be conformally related to a metric with vanishing Cotton tensor. One set of invariants we derive13

generalises the set of invariants in dimension 4 obtained by Kozameh, Newman and Tod. For the14

conformally Einstein problem, another set of invariants we construct gives necessary and sufficient15

conditions for a wider class of metrics than covered by the invariants recently presented by Listing.16

We also show that there is an alternative characterisation of conformally Einstein metrics based on17

the tractor connection associated with the normal conformal Cartan bundle. This plays a key role in18

constructing some of the invariants. Also using this we can interpret the previously known invariants19

geometrically in the tractor setting and relate some of them to the curvature of the Fefferman–Graham20

ambient metric.21
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1. Introduction26

The central focus of this article is the problem of finding necessary and sufficient con-27

ditions for a Riemannian or pseudo-Riemannian manifold, of any signature and dimension28

n ≥ 3, to be locally conformally related to an Einstein metric. In particular we seek invari-29

ants, polynomial in the Riemannian curvature and its covariant derivatives, that give a sharp30

obstruction to conformally Einstein metrics in the sense that they vanish if and only if the31

metric concerned is conformally related to an Einstein metric. For example in dimension 332

it is well known that this problem is solved by the Cotton tensor, which is a certain tensor33

part of the first covariant derivative of the Ricci tensor. So 3-manifolds are conformally34

Einstein if and only if they are conformally flat. The situation is significantly more com-35

plicated in higher dimensions. Our main result is that we are able to solve this problem36

in all dimensions and for metrics of any signature, except that the metrics are required to37

be non-degenerate in the sense that they are, what we term, weakly generic. This means38

that, viewed as a bundle mapTM → ⊗3TM, the Weyl curvature is injective. The results39

are most striking for Riemanniann-manifolds where we obtain a single trace-free rank40

two tensor-valued conformal invariant that gives a sharp obstruction. Setting this invariant41

to zero gives a quasi-linear equation on the metric. Returning to the setting of arbitrary42

signature, we also show that a manifold is conformally Einstein if and only if a certain vec-43

tor bundle, the so-called standard tractor bundle, admits a parallel section. This powerful44

characterisation of conformally Einstein metrics is used to obtain the sharp obstructions45

for conformally Einstein metrics in the general weakly generic pseudo-Riemannian and46

Riemannian setting. It also yields a simple geometric derivation, and unifying framework,47

for all the main theorems in the paper.48

The study of conditions for a metric to be conformally Einstein has a long history that49

dates back to the work of Brinkman[4,5] and Schouten[29]. Substantial progress was50

made by Szekeres in 1963[30]. He solved the problem on 4-manifolds, of signature−2, by51

explicitly describing invariants that provide a sharp obstruction. However his approach is52

based on a spinor formalism and is difficult to analyse when translated into the equivalent53

tensorial picture. In the 1980s Kozameh, Newman and Tod (KNT)[19] found a simpler set54

of conditions. While their construction was based on Lorentzian 4-manifolds the invariants55

obtained provide obstructions in any signature. However these invariants only give a sharp56

obstruction to conformally Einstein metrics if a special class of metrics is excluded (see57

also[20] for the reformulation of the KNT result in terms of the Cartan normal conformal58

connection). Baston and Mason[3] proposed another pair of conformally invariant obstruc-59

tion invariants for 4-manifolds. However these give a sharp obstruction for a smaller class60

of metrics than the KNT system (see[1]).61

One of the invariants in the KNT system is the conformally invariant Bach tensor. In62

higher even dimensions there is an interesting higher order analogue of this trace-free sym-63

metric 2-tensor due to Fefferman and Graham and this is also an obstruction to conformally64

Einstein metrics[11,17,18]. This tensor arises as an obstruction to their ambient metric65

construction. It has a close relationship to some of the constructions in this article, but this66

is described in[17]. Here we focus on invariants which exist in all dimensions. Recently67

Listing [21] made a substantial advance. He described a trace-free 2-tensor that gives, in68

dimensionsn ≥ 4, a sharp obstruction for conformally Einstein metrics, subject to the re-69
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striction that the metrics are what he terms “non-degenerate”. This means that the Weyl70

curvature is maximal rank as a map�2TM → �2TM. In this paper metrics satisfying this71

non-degeneracy condition are instead termed�2-generic.72

Following some general background, we show in Sections2.3 and 2.4that it is possible73

to generalise to arbitrary dimensionn ≥ 4 the development of KNT. This culminates in the74

construction of a pair of (pseudo-)Riemannian invariantsF1
abc andF2

ab whose vanishing is75

necessary and sufficient for the manifold to be conformally Einstein provided we exclude76

a small class of metrics (but the class is larger than the class failing to be�2-generic)77

(seeTheorem 2.3). These invariants arenatural in the sense that they are given by a metric78

partial contraction polynomial in the Riemannian curvature and its covariant derivatives.F1
79

is conformally covariant andF2 is conformally covariant on metrics for whichF2 vanishes.80

Thus together they form a conformally covariant system.81

In Section2.5we show that very simple ideas reveal new conformal invariants that are82

more effective than the systemF1 andF2 in the sense that they give sharp obstructions83

to conformal Einstein metrics on a wider class of metrics. Here the broad treatment is84

based on the assumption that the metrics are weakly generic as defined earlier. This is a85

strictly weaker restriction than requiring metrics to be�2-generic; any�2-generic metric86

is weakly generic but in general the converse fails to be true. One of the main results of the87

paper isTheorem 2.8which gives a natural conformally invariant trace-free 2-tensor which88

gives a sharp obstruction for conformally Einstein metrics on weakly generic Riemannian89

manifolds. Thus in the Riemannian setting this improves Listing’s results. In Riemannian90

dimension 4 there is an even simpler obstruction, seeTheorem 2.9, but an equivalent result91

is in [21]. In Theorem 2.10we also recover Listing’s main results for�2-generic metrics92

as special case of the general setup. In all cases the invariants give quasi-linear equations.93

The results mentioned are derived from the general result inProposition 2.7. We should94

point out that while this proposition does not in general lead to natural obstructions, in95

many practical situations, for example if a metric is given explicitly in terms of a basis field,96

this would still provide an effective route to testing whether or not a metric is conformally97

Einstein, since a choice of tensorD̃ can easily be described. (See the final remark at the end98

of Section2.5.)99

In Section2.5 we also pause, inProposition 2.5and Theorem 2.6, to observe some100

sharp obstructions to metrics being conformal to a metric with vanishing Cotton tensor. We101

believe these should be of independent interest. Since the vanishing of the Cotton tensor102

is necessary but not sufficient for a metric to be Einstein, it seems that the Cotton tensor103

could play a role in setting up problems where one seeks metrics suitably “close” to being104

Einstein or conformally Einstein.105

In Section3, following some background on tractor calculus, we give the characterisation106

of conformally Einstein metrics as exactly those for which the standard tractor bundle107

admits a (suitably generic) parallel section. The standard (conformal) tractor bundle is an108

associated structure to the normal Cartan conformal connection. The derivations in Section109

2 are quite simple and use just elementary tensor analysis and Riemannian differential110

geometry. However they also appear ad hoc. We show in Section3 that the constructions111

and invariants of Section2 have a natural and unifying geometric interpretation in the112

tractor/Cartan framework. This easily adapts to yield new characterisations of conformally113

Einstein metrics, seeTheorem 3.4. From this we obtain, inCorollary 3.5, obstructions for114
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conformally Einstein metrics that are sharp for weakly generic metrics of any signature.115

Thus these also improve on the results in[21].116

We believe the development in Section3 should have an important role in suggesting117

how an analogous programme could be carried out for related conformal problems as well118

as analogues on, for example, CR structures where the structure and tractor calculus is119

very similar. We also use this machinery to show that the systemF1, F2 has a simple120

interpretation in terms of the curvature of the Fefferman–Graham ambient metric.121

Finally in Section4we discuss explicit metrics to shed light on the invariants constructed122

and their applicability. This includes examples of classes metrics which are weakly generic123

but not�2-generic. Also here, as an example use of the machinery on explicit metrics,124

we identify the conformally Einstein metrics among a special class of Robinson–Trautman125

metrics.126

The authors wish to thank Ruibin Zhang, Paul-Andi Nagy and Michael Eastwood for127

very helpful discussions. Finally the authors are grateful to the referee for several helpful128

suggestions.129

2. Conformal characterisations via tensors130

In this section we use standard tensor analysis on (pseudo-)Riemannian manifolds to131

derive sharp obstructions to conformally Einstein metrics.132

2.1. Basic (pseudo-)Riemannian objects133

Let M be a smooth manifold, of dimensionn ≥ 3, equipped with a Riemannian or134

pseudo-Riemannian metricgab. We employ Penrose’s abstract index notation[27] and135

indices should be assumed abstract unless otherwise indicated. We writeEa to denote the136

space of smooth sections of the tangent bundle onM, andEa for the space of smooth sections137

of the cotangent bundle. (In fact we will often use the same symbols for the corresponding138

bundles, and also in other situations we will often use the same symbol for a given bundle139

and its space of smooth sections, since the meaning will be clear by context.) We writeE for140

the space of smooth functions and all tensors considered will be assumed smooth without141

further comment. An index which appears twice, once raised and once lowered, indicates142

a contraction. The metricgab and its inversegab enable the identification ofEa andEa and143

we indicate this by raising and lowering indices in the usual way.144

The metricgab defines the Levi–Civita connection∇a with the curvature tensorRabcd145

given by146

(∇a∇b − ∇b∇a)Vc = RcabdV
d, whereVc ∈ Ec.147

This can be decomposed into the totally trace-freeWeyl curvatureCabcd and the symmetric148

Schouten tensorPab according to149

Rabcd = Cabcd + 2gc[aPb]d + 2gd[bPa]c.150
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ThusPab is a trace modification of the Ricci tensorRab = Rca
c
b:151

Rab = (n− 2)Pab + Jgab, J := Paa.152

Note that the Weyl tensor has the symmetries153

Cabcd = C[ab][cd] = Ccdab, C[abc]d = 0,154

where we have used the square brackets to denote the antisymmetrisation of the indices.155

We recall that the metricgab is an Einstein metric if the trace-free part of the Ricci tensor156

vanishes. This condition, when written in terms of the Schouten tensor, is given by157

Pab − 1

n
Jgab = 0.158

In the following we will also need the Cotton tensorAabc and the Bach tensorBab. These159

are defined by160

Aabc := 2∇[bPc]a (2.1)161

and162

Bab := ∇cAacb + PdcCdacb. (2.2)163

It is straightforward to verify that the Bach tensor is symmetric. From the contracted Bianchi164

identity∇aPab = ∇bJ it follows that the Cotton tensor is totally trace-free. Using this, and165

that the Weyl tensor is trace-free, it follows that the Bach tensor is also trace-free.166

Let us adopt the convention that sequentially labelled indices are implicitly skewed over.167

For example with this notation the Bianchi symmetry is simplyRa1a2a3b = 0. Using this168

symmetry and the definition(2.1)of Aba1a2 we obtain a useful identity169

∇a1Aba2a3 = Pca1
Ca2a3bc. (2.3)170

Further important identities arise from the Bianchi identity∇a1Ra2a3de = 0:171

∇a1Ca2a3cd = gca1Ada2a3 − gda1Aca2a3, (2.4)172

(n− 3)Aabc = ∇dCdabc, (2.5)173

∇aPab = ∇bJ, (2.6)174

∇aAabc = 0. (2.7)175

2.2. Conformal properties and naturality176

Metricsgab andĝab are said to be conformally related if177

ĝab = e2ϒgab, ϒ ∈ E, (2.8)178
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and the replacement ofgab with ĝab is termed aconformal rescaling. Conformal rescaling179

in this way results in a conformal transformation of the Levi–Civita connection. This is180

given by181

∇̂aub = ∇aub − ϒaub − ϒbua + gabϒ
cuc (2.9)182

for a 1-formub. The conformal transformation of the Levi–Civita connection on other183

tensors is determined by this, the duality between 1-forms and tangent fields, and the Leibniz184

rule.185

A tensorT (with any number of covariant and contravariant indices) is said to becon-186

formally covariant(of weightw) if, under a conformal rescaling(2.8) of the metric, it187

transforms according to188

T 
→ T̂ = ewϒT,189

for somew ∈ R. We will sayT is conformally invariant if w = 0. We are particularly190

interested in natural tensors with this property. A tensorT isnatural if there is an expression191

for Twhich is a metric partial contraction, polynomial in the metric, the inverse metric, the192

Riemannian curvature and its covariant derivatives.193

The weight of a conformally covariant depends on the placement of indices. It is well194

known that the Cotton tensor in dimensionn = 3 and the Weyl tensor in dimensionn ≥ 3195

are conformally invariant with their natural placement of indices, i.e.Âabc = Aabc and196

Ĉab
c
d = Cab

c
d . In dimensionn ≥ 4, vanishing of the Weyl tensor is equivalent to the197

existence of a scaleϒ such that the transformed metric ˆgab = e2ϒgab is flat (and so if the198

Weyl tensor vanishes we say the metric isconformally flat). In dimensionn = 3 the Weyl199

tensor vanishes identically. In this dimensiongab is conformally flat if and only if the Cotton200

tensor vanishes.201

An example of tensor which fails to be conformally covariant is the Schouten tensor. We202

have203

Pab → P̂ab = Pab − ∇aϒb + ϒaϒb − 1
2ϒcϒ

cgab, (2.10)204

where205

ϒa = ∇aϒ.206

Thus the property of the metric being Einstein is not conformally invariant. A metricgab is207

said to beconformally Einsteinif there exists a conformal scaleϒ such that ˆgab = e2ϒgab208

is Einstein.209

For natural tensors the property of being conformally covariant or invariant may depend210

on dimension. For example it is well known that the Bach tensor is conformally covariant211

in dimension 4. In other dimensions the Bach tensor fails to be conformally covariant.212

2.3. Necessary conditions for conformally Einstein metrics213

Suppose thatgab is conformally Einstein. As mentioned above this means that there exists214

a scaleϒ such that the Ricci tensor, or equivalently the Schouten tensor for ˆgab := e2ϒgab,215
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is pure trace. That is216

P̂ab − 1

n
Ĵĝab = 0.217

This equation, when written in terms of Levi–Civita connection∇ and Schouten tensorPab218

associated withgab reads,219

Pab − ∇aϒb + ϒaϒb − 1

n
Tgab = 0, (2.11)220

where221

T = J − ∇aϒa + ϒaϒa.222

Conversely if there is a gradientϒa = ∇aϒ satisfying(2.11) then ĝab := e2ϒgab is an223

Einstein metric. Thus, with the understanding thatϒa = ∇aϒ, (2.11)will be termed the224

conformal Einstein equations. There exists a smooth functionϒ solving these if and only225

if the metricg is conformally Einstein.226

To find consequences of these equations we apply∇c to both sides of(2.11)and then227

antisymmetrise the result over the{ca} index pair. Using that the both the Weyl tensor and228

the Cotton tensor are completely trace-free this leads to the first integrability condition229

which is230

Aabc + ϒdCdabc = 0.231

Now taking∇c of this equation, using the definition of the Bach tensor(2.2), the identity232

(2.5), and again this last displayed equation, we get233

Bab + PdcCdabc − (∇cϒd − (n− 3)ϒdϒc)Cdabc = 0.234

Eliminating∇cϒd by means of the Einstein condition(2.11)yields a second integrability235

condition:236

Bab + (n− 4)ϒdϒcCdabc = 0.237

Summarising we have the following proposition.238

Proposition 2.1. If gab is a conformally Einstein metric then the corresponding Cotton239

tensorAabc and the Bach tensorBab satisfy the following conditions240

Aabc + ϒdCdabc = 0, (2.12)241

and242

Bab + (n− 4)ϒdϒcCdabc = 0. (2.13)243
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for some gradient244

ϒd = ∇dϒ.245

Hereϒ is a function which conformally rescales the metricgab to an Einstein metric246

ĝab = e2ϒgab.247

Remarks:248

• Note that in dimensionn = 3 the first integrability condition(2.12)reduces toAabc = 0249

and the Weyl curvature vanishes. Thus, in dimensionn = 3, if (2.12)holds then(2.13)is250

automatically satisfied and the conformally Einstein metrics are exactly the conformally251

flat metrics. The vanishing of the Cotton tensor is the necessary and sufficient condition252

for a metric to satisfy these equivalent conditions. This well known fact solves the problem253

in dimensionn = 3. Therefore, for the remainder of Section2we will assume thatn ≥ 4.254

• In dimensionn = 4 the second integrability condition reduces to the conformally invari-255

ant Bach equation:256

Bab = 0. (2.14)257

2.4. Generalising the KNT characterisation258

Here we generalise to dimensionn ≥ 4 the characterisation of conformally Einstein259

metrics given by Kozameh et al.[19]. Our considerations are local and so we assume,260

without loss of generality, thatM is oriented and writeε for the volume form. Given the261

Weyl tensorCabcd of the metricgab, we writeC∗
b1···bn−2cd

:= εb1···bn−2
a1a2Ca1a2cd . Note that262

this is completely trace-free due to the Weyl Bianchi symmetryCa1a2a3b = 0. Consider the263

equations264

CabcdF
ab = 0, (2.15)265

CabcdH
bd = 0, (2.16)266

and267

C∗
b1···bn−2cd

Hb1d = 0, (2.17)268

for a skew symmetric tensorFab and a symmetric trace-free tensorHab. We say that the269

metricgab isgenericif and only if the only solutions to Eqs.(2.15)–(2.17)areFab = 0 and270

Hab = 0. Occasionally we will be interested in the superclass of metrics for which(2.15)271

has only trivial solutions but for which we make no assumptions about(2.16) and (2.17);272

we will call these�2-genericmetrics. That is, a metric is�2-generic if and only if the Weyl273

curvature is injective (equivalently, maximal rank) as a bundle map�2TM → �2TM. Let274

‖C‖ be the natural conformal invariant which is the pointwise determinant of the map275

C : �2T ∗M → �2T ∗M, (2.18)276

given byWab 
→ CcdabWcd and writeC̃abcd for the tensor field which is the pointwise adjugate277

(i.e. “matrix of cofactors”) of the Weyl curvature tensor, viewed as an endomorphism in278
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this way. Then279

C̃abef C
cd
ab = ‖C‖δ[c[eδd]

f ]280

and ifg is a�2-generic metric then‖C‖ is non-vanishing and we have281

‖C‖−1C̃abef C
cd
ab = δ

[c
[eδ

d]
f ] . (2.19)282

For later use note that it is easily verified thatC̃abcd is natural (in fact simply polynomial in283

the Weyl curvature) and conformally covariant.284

For the remainder of this subsection we consider only generic metrics, except where285

otherwise indicated. In this setting, we will prove that the following two conditions are286

equivalent:287

(i) The metricgab is conformally Einstein.288

(ii) There exists a vector fieldKa onM such that the following conditions [C] and [B] are289

satisfied:290

[C] Aabc +KdCdabc = 0, [B] Bab + (n− 4)KdKcCdabc = 0.291

Adapting a tradition from the General Relativity literature (originating in[30]), we call a292

manifold for which the metricgab admitsKa such that condition [C] is satisfied aconformal293

C-space. Note that such a metric isnot necessarily conformal to a metric with vanishing294

Cotton tensor since in [C] we are not requiringKa to be a gradient. (Thus some care is295

necessary when comparing with[30,19] for example where a space with vanishing Cotton296

tensor is termed a C-space.) However, in the case of agenericmetric satisfying condition297

[C] the fieldKd must be a gradient. To see this take∇a of equation [C]. This gives298

∇aAabc + Cdabc∇aKd + (n− 3)KaKdCadbc = 0,299

where, in the last term, we have used identity(2.5) and eliminatedAdbc via [C]. The last300

term in this expression obviously vanishes identically. On the other hand the first term301

also vanishes, because of identity(2.7). Thus a simple consequence of equation [C] is302

Cdabc∇aKd = 0. Thus, since the metric is generic (in fact for this result we only need that303

it is �2-generic), we can conclude that304

∇ [aKd] = 0.305

Therefore, at least locally, there exists a functionϒ such that306

Kd = ∇dϒ. (2.20)307

Thus, we have shown that our conditions [C] and [B] are equivalent to the necessary con-308

ditions(2.12) and (2.13)for a metric to be conformally Einstein.309



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

GEOPHY 1097 1–35

10 A.R. Gover, P. Nurowski / Journal of Geometry and Physics xxx (2005) xxx–xxx

To prove the sufficiency we first take∇c of [C]. This, after using the identity(2.5)and310

the definition of the Bach tensor(2.2), takes the form311

Bab + PdcCdabc − Cdabc∇cKd + (n− 3)KdKcCdabc = 0.312

Now, subtracting from this equation our second condition [B] we get313

Cdabc(Pdc − ∇cKd +KdKc) = 0. (2.21)314

Next we differentiate equation [C] and skew to obtain315

∇a1Aca2a3 − Ca2a3cd∇a1K
d −Kd∇a1Ca2a3cd = 0.316

Then using(2.3), the Weyl Bianchi identity(2.4), and [C] once more we obtain317

Ca2a3cd(P
d
a1

− ∇a1K
d +Ka1K

d) = 0318

or equivalently319

C∗
b1···bn−2cd

(Pb1 d − ∇b1Kd +Kb1Kd) = 0. (2.22)320

But this condition and(2.21)together imply thatPdc − ∇cKd +KdKc must be a pure trace,321

due to(2.16) and (2.17). Thus,322

Pdc − ∇cKd +KdKc = 1

n
Tgcd.323

This, when compared with our previous result(2.20)onKa, and with the conformal Einstein324

equations(2.11), shows that our metric can be scaled to the Einstein metric with the function325

ϒ defined by(2.20). This proves the following theorem.326

Theorem 2.2. A generic metricgab on an n-manifold M is conformally Einstein if and only327

if its Cotton tensorAabc and its Bach tensorBab satisfy328

[C] Aabc +KdCdabc = 0, [B] Bab + (n− 4)KdKcCdabc = 0329

for some vector fieldKa on M.330

We will show below, and in the next section that [C] is conformally invariant and that,331

while [B] is not conformally invariant, the system [C], [B] is. In particular [B] is conformally332

invariant for metrics satisfying [C], the conformal C-space metrics. Next note that, although333

we settled dimension 3 earlier, the above theorem also holds in that case since the Weyl334

tensor vanishes identically and the Bach tensor is just a divergence of the Cotton tensor.335

In other dimensions we can easily eliminate theundeterminedvector fieldKd from this336

theorem. Indeed, using the tensor‖C‖−1C̃bced of (2.19)and applying it on the condition [C]337

we obtain338

‖C‖−1C̃bcedAabc + 1
2(Kegda −Kdgea) = 0.339
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By contracting over the indices{ea}, this gives340

Kd = 2

1 − n
‖C‖−1C̃dabcAabc. (2.23)341

Inserting(2.23)into the equations [C] and [B] ofTheorem 2.2, we may reformulate the342

theorem as the observation that a generic metricgab on ann-manifoldM (wheren ≥ 4) is343

conformally Einstein if and only if its Cotton tensorAabc and its Bach tensorBab satisfy344

[C′] (1 − n)Aabc + 2‖C‖−1CdabcC̃
defgAefg = 0345

and346

[B′] (n− 1)2Bab + 4(n− 4)‖C‖−2C̃defgCdabcC̃
chklAefgAhkl = 0.347

These are equivalent to conditions polynomial in the curvature. Multiplying the left-hand348

sides of [C′] and [B′] by, respectively,‖C‖and‖C‖2 we obtain natural (pseudo-)Riemannian349

invariants which are obstructions to a metric being conformally Einstein,350

F1
abc := (1 − n)‖C‖Aabc + 2CdabcC̃

defgAefg351

and352

F2
ab = (n− 1)2‖C‖2Bab + 4(n− 4)C̃defgCdabcC̃

chklAefgAhkl.353

By construction the first of these is conformally covariant (see below), the second tensor is354

conformally covariant for metrics such thatF1
abc = 0, and we have the following theorem.355

Theorem 2.3. A generic metricgab on an n-manifold M(wheren ≥ 4) is conformally356

Einstein if and only if the natural invariantsF1
abc andF

2
ab both vanish.357

Remarks:358

• In dimensionn = 4 there exist examples of metrics satisfying the Bach equations [B] and359

not being conformally Einstein (see e.g.[24]). In higher dimensions it is straightforward360

to write down generic Riemannian metrics which, at least at a formal level, have vanishing361

Bach tensor but for which the Cotton tensor is non-vanishing. Thus the integrability362

condition [B] does not suffice to guarantee the conformally Einstein property of the363

metric. In Section4we discuss an example of special Robinson–Trautman metrics, which364

satisfy the condition [C] and do not satisfy [B]. (These are generic.) Thus condition [C]365

alone is not sufficient to guarantee the conformal Einstein property.366

• The development above parallels and generalises the tensor treatment in[19] which is367

based in dimension 4. It should be pointed out however that there are some simplifica-368

tions in dimension 4. FirstlyF2
ab simplifies to 9‖C‖2Bab. It is thus sensible to use the369

conformally invariant Bach tensorBab as a replacement forF2 in dimension 4. Also370

note, from the development in[19], that the conditions that a metricgab be generic may371
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be characterised in a particularly simple way in Lorentzian dimension 4. In this case they372

are equivalent to the non-vanishing of at least one of the following two quantities:373

C3 := CabcdC
cd
ef C

efab or ∗ C3 := ∗Cabcd ∗ Ccdef ∗ Cefab,374

where∗Cabcd = C∗
abcd = εabefC

ef

cd .375

2.5. Conformal invariants giving a sharp obstruction376

We will show in the next section that the systems [C] and [B] have a natural and valuable377

geometric interpretation. However its value, or the equivalent obstructionsF1 andF2, as a378

test for conformally Einstein metrics is limited by the requirement that the metric is generic.379

Many metrics fail to be generic. For example in the setting of dimension 4 Riemannian380

structures any selfdual metric fails to be generic (and even fails to be�2-generic), since381

any anti-selfdual two form is a solution of(2.15); at each point the solution space of(2.15)382

is at least three-dimensional (see Section4.3for an explicit Ricci-flat example of this type).383

In the remainder of this section we show that there are natural conformal invariants that are384

more effective, for detecting conformally Einstein metrics, than the pairF1 andF2.385

Let us say that a (pseudo-)Riemannian manifold isweakly genericif, at each pointx ∈ M,386

the only solutionVd ∈ TxM to387

CabcdV
d = 0 atx ∈ M (2.24)388

is Vd = 0. From(2.19)it is immediate that all�2-generic spaces are weakly generic and389

hence all generic spaces are weakly generic. Via elementary arguments we will observe that390

on weakly generic manifolds there is a (smooth) tensor fieldD̃abc
d with the property that391

D̃acd
eCbc

d
e = −δab.392

Of courseD̃abcd is not uniquely determined by this property. However in many settings there393

is a canonical choice. For example in the case of Riemannian signatureg is weakly generic394

if and only ifLab := CacdeCbcde is invertible. Let us writẽLab for the tensor field which is the395

pointwise adjugate ofLab. L̃
a
b is given by a formula which is a partial contraction polynomial396

(and homogeneous of degree 2n− 2) in the Weyl curvature and for any structure we have397

L̃abL
b
c = ‖L‖δac,398

where‖L‖ denotes the determinant ofLab. Let us define399

Dacde := −L̃abCbcde.400

ThenDacde is a natural conformal covariant defined on all structures. On weakly generic Rie-401

mannian structures, or pseudo-Riemannian structures where we have‖L‖ non-vanishing,402
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there is a canonical choice forD̃, viz.403

D̃acde := ‖L‖−1Dacde = −‖L‖−1L̃abC
bcde. (2.25)404

In other signatures we may obtain a smoothD̃acde by a similar argument but the405

construction is no longer canonical. On a manifoldM with a metricg of indefinite sig-406

nature this goes as follows. Instead of definingL as above let̄Lab := C̄acdeCbcde where407

C̄acde := ḡaf ḡchḡdiḡejCfhij with ḡaf the inverse of any fixedchoiceof smooth positive408

definite metric ¯g onM. (HereCfhij is the Weyl curvature for the original metricg.) Then as409

above we have that the metricg is weakly generic if and only if̄Lab is invertible. Thus, with̃̄L
a

b410

and‖L̄‖ denoting, respectively, the pointwise adjugate and the determinant ofL̄ab, it is clear411

that by constructioñDacde := −‖L̄‖−1 ˜̄L
a

bC̄
bcde is smooth and gives̃DacdeCbcde = −δab.412

The last construction argument proves the existence of a smoothD̃ on indefinite weakly413

generic manifolds but the construction is not canonical since it depends on the artificial414

choice of the auxiliary metric ¯g. The main interest is in canonical constructions. Another415

such construction arises if (in any signature)g is�2-generic. Then we may take416

D̃acde := 2

1 − n
‖C‖−1C̃acde (2.26)417

as was done implicitly in the previous section. RecallC̃acd
e is conformally invariant and418

natural. The examples(2.25) and (2.26)are particularly important since they are easily419

described and apply to any dimension (greater than 3). However in a given dimension there420

are many other possibilities which lead to formulae of lower polynomial order if we know,421

or are prepared to insist that, certain invariants are non-vanishing (see[10] for a discussion422

in the context of�2-generic structures). For example in the setting of dimension 4 and423

Lorentzian signature,�2-generic impliesC3 = CcdabC
ef

cdC
ab
ef is non-vanishing and one may424

takeD̃acde = CdefgC
fgca/C3 cf. [19]. In any case let us fix some choice forD̃. Note that since425

the Weyl curvatureCbcde for a metricg is the same as the Weyl tensor for a conformally426

related metric ˆg, it follows that we can (and will) use the same tensor fieldD̃abc
d for all427

metrics in the conformal class.428

For weakly generic manifolds it is straightforward to give a conformally invariant tensor429

that vanishes if and only if the manifold is conformally Einstein. For the remainder of this430

section we assume the manifold is weakly generic.431

We have observed already that the conformally Einstein manifolds are a subclass of432

conformal C-spaces. Recall that a conformal C-space is a (pseudo-)Riemannian manifold433

which admits a 1-form fieldKa which solves the equation [C]:434

Aabc +KdCdabc = 0.435

If Kd1 andKd2 are both solutions to [C] then, evidently, (Kd1 −Kd2)Cdabc = 0. Thus, if the436

manifold is weakly generic,Kd1 = Kd2. In fact ifKd is a solution to [C] then clearly437

Kd = D̃abcd Aabc, (2.27)438
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which also shows that at most one vector fieldKd solves [C] on weakly generic manifolds.439

From either result, combined with the observations that the Cotton tensor is preserved by440

constant conformal metric rescalings and that constant conformal rescalings take Einstein441

metrics to Einstein metrics, gives the following results.442

Proposition 2.4. On a manifold with a weakly generic metric g, the equation [C] has at443

most one solution for the vector fieldKd .444

Either there are no metrics, conformally related to g, that have vanishing Cotton tensor445

or the space of such metrics is one-dimensional. Either there are no Einstein metrics,446

conformally related to g, or the space of such metrics is one-dimensional.447

If g is a metric with vanishing Cotton tensor we will say this is aC-space scale.448

Now, for an alternative view of conformal C-spaces, we may take(2.27)as thedefinition449

ofKd . Note then that from(2.10), a routine calculation shows thatÂabc = Aabc + ϒkCkabc,450

and so (using the conformal invariance ofD̃abcd ) Kd = D̃abcd Aabc has the conformal trans-451

formation452

K̂d = Kd − ϒd,453

whereÂabc andK̂d are calculated in terms of the metric ˆg = e2ϒg andϒa = ∇aϒ. Thus454

Aabc +KdCdabc is conformally invariant. FromProposition 2.4and(2.27)this tensor is a455

sharp obstructionto conformal C-spaces in the following sense.456

Proposition 2.5. A weakly generic manifold is a conformal C-space if and only if the457

conformal invariant458

Aabc + D̃dijkAijkCdabc459

vanishes.460

In any case wherẽDdijk is given by a Riemannian invariant formulae rational in the461

curvature and its covariant derivatives (e.g.g is of Riemannian signature, or thatg is�2-462

generic) we can multiply the invariant here by an appropriate polynomial invariant to obtain463

a natural conformal invariant. Indeed, in the setting of�2-generic metrics, the invariantF1
abc464

(from Section2.4) is an example. Since, on�2-generic manifolds, the vanishing ofF1
abc465

implies that(2.23)is locally a gradient, we have the following theorem.466

Theorem2.6. For a�2-genericRiemannianor pseudo-Riemannianmetric g the conformal467

covariantF1
abc,468

(1 − n)‖C‖Aabc + 2CdabcC̃
defgAefg469

vanishes if and only if g is conformally related to a Cotton metric(i.e. a metricĝ such that470

its Cotton tensor vanishes, Âabc = 0).471

In the case of Riemannian signature�2-generic metrics we may replace the conformal472

invariantF1
abc in the theorem with the conformal invariant,473

‖L‖Aabc − CefghAfghL̃
d
eCdabc, n ≥ 4. (2.28)474
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In dimension 4 there is an even simpler invariant. Note that in dimension 4 we have475

4CabcdCabce = |C|2δde , (2.29)476

where|C|2 := CabcdCabcd and soL is a multiple of the identity. Eliminating, from(2.28),477

the factor of (|C|2)3 and a numerical scale we obtain the conformal invariant478

|C|2Aabc − 4CdefgAefgCdabc, n = 4,479

which again can be used to replaceF1
abc in the theorem for dimension 4�2-generic metrics.480

We can also characterise conformally Einstein spaces.481

Proposition 2.7. A weakly generic metric g is conformally Einstein if and only if the482

conformally invariant tensor483

Eab := Trace-free[Pab − ∇a(D̃bcdeAcde) + D̃aijkA
ijkD̃bcdeA

cde]484

vanishes.485

Proof. The proof thatEab is conformally invariant is a simple calculation using(2.10)and486

the transformation formula forKd = D̃abcd Aabc.487

If g is conformally Einstein then there is a gradientϒa such that488

Trace-free[Pab − ∇aϒb + ϒaϒb] = 0.489

From Section2.3this impliesϒa solves the C-space equation (see(2.12)) and hence, from490

(2.27), ϒa = D̃aijkA
ijk, and soEab = 0.491

Conversely suppose thatEab = 0. Then the skew part ofEab vanishes and sincePab and492

D̃aijkA
ijkD̃bcdeA

cde are symmetric we conclude thatD̃bcdeAcde is closed and hence, locally493

at least, is a gradient.�494

Now suppose‖L‖ is non-vanishing and takẽDabcd to be given as in(2.25). Note that
sinceEab is conformally invariant it follows that‖L‖2Eab is conformally invariant. This
expands to

Gab := Trace-free[‖L‖2Pab − ‖L‖∇a(DbcdeAcde) + (∇a||L||)(DbcdeAcde)
+DaijkA

ijkDbcdeA
cde].

This is natural by construction. Since it is given by a universal polynomial formula which495

is conformally covariant on structures for which‖L‖ is non-vanishing, it follows from496

an elementary polynomial continuation argument that it is conformally covariant on any497

structure. Note‖L‖ is a conformal covariant of weight−4n. Thus we have the following498

theorem on manifolds of dimensionn ≥ 4.499

Theorem 2.8. The natural invariantGab is a conformal covariant of weight−8n. A500

manifold with a weakly generic Riemannian metric g is conformally Einstein if and only501

if Gab vanishes. The same is true on pseudo-Riemannian manifolds where the conformal502

invariant‖L‖ is non-vanishing.503
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Recall that in dimension 4 we have the identity(2.29). Thus‖L‖ is non-vanishing if and504

only if |C|2 is non-vanishing and we obtain a considerable simplification. In particular the505

invariantGab has an overall factor of (|C|2)6 that we may divide out and still have a natu-506

ral conformal invariant. This corresponds to taking (|C|2)2Eab with D̃abcd = − 4
|C|2C

abcd .507

Hence we have a simplified obstruction as follows.508

Theorem 2.9. The natural invariant

Trace-free[(|C|2)2Pab + 4|C|2∇a(CbcdeAcde) − 4CbcdeA
cde∇a|C|2

+ 16CaijkA
ijkCbcdeA

cde]

is conformally covariant of weight−8.509

A 4-manifold with|C|2 nowhere vanishing is conformally Einstein if and only if this510

invariant vanishes.511

In the case of Riemannian 4-manifolds, requiring|C|2 non-vanishing is the same as512

requiring the manifold to be weakly generic. In this setting this is a very mild assumption;513

note that|C|2 = 0 atp ∈ M if and only ifCabcd = 0 atp (and so the manifold is conformally514

flat atp).515

Note also that if we denote byFab the natural invariant in the theorem then on Riemannian516

4 manifolds the (conformally covariant) scalar functionFabFab is an equivalent sharp517

obstruction to the manifold being conformally Einstein.518

Now suppose we are in the setting of�2-generic structures (of any fixed signature). Then
Eab is well defined and conformally invariant with̃Dabcd given by(2.26). Thus again by
polynomial continuation we can conclude that the natural invariant obtained by expanding
‖C‖2Eab, viz.

Ḡab := Trace-free[(1− n)2‖C‖2Pab − 2(1− n)‖C‖∇a(C̃bcdeAcde)
+ 2(1− n)(∇a‖C‖)(C̃bcdeA

cde) + 4C̃aijkA
ijkC̃bcdeA

cde]

is conformally covariant on any structure (i.e. not necessarily�2-generic). Thus we have519

the following theorem on manifolds of dimensionn ≥ 4.520

Theorem 2.10. The natural invariantḠab is a conformal covariant of weight2n(1 − n).521

A manifold with a�2-generic metric g is conformally Einstein if and only ifḠab vanishes.522

We should point out that there is further scope, in each specific dimension, to obtain523

simplifications and improvements toTheorems 2.8 and 2.10along the lines ofTheorem 2.9.524

For example in dimension 4 the complete contractionC3 = CcdabC
ef

cdC
ab
ef , mentioned earlier,525

is a conformal covariant which is independent of|C|2 (see e.g.[26]). Thus on pseudo-526

Riemannian structures this may be non-vanishing when|C|2 = 0. There is the identity527

4CcdjbC
ef

cdC
ib
ef = δijC

cd
abC

ef

cdC
ab
ef528

and this may be used to construct a formula forD̃ (and thenKd via (2.23)) alternative to529

(2.25) and (2.26). (See[19] for this and some other examples.)530
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Finally note that although generally we need to make some restriction on the class of531

metrics to obtain a canonical formula forD̃bcde in terms of the curvature, in other circum-532

stances it is generally easy to make a choice and give a description of aD̃. For example533

in a non-Riemannian setting one can calculate in a fixed local basis field and artificially534

nominate a Riemannian signature metric. Using this to contract indices of the Weyl cur-535

vature (given in the set basis field) one can then use the formula forL and thenD. In this536

wayProposition 2.7is an effective and practical means of testing for conformally Einstein537

metrics, among the class weakly generic metrics, even when it does not lead to a natural538

invariant.539

3. A geometric derivation and new obstructions540

The derivation of the system ofTheorem 2.2appears ad hoc. We will show that in fact [C]541

and [B] are two parts (or components) of a single conformal equation that has a simple and542

clear geometric interpretation. This construction then easily yields new obstructions. This is543

based on the observation that conformally Einstein manifolds may be characterised as those544

admitting a parallel section of a certain vector bundle. The vector bundle concerned is the545

(standard) conformal tractor bundle. This bundle and its canonical conformally invariant546

connection are associated structures for the normal conformal Cartan connection of[9].547

The initial development of the calculus associated to this bundle dates back to the work548

of Thomas[31] and was reformulated and further developed in a modern setting in[2].549

For a comprehensive treatment exposing the connection to the Cartan bundle and relating550

the conformal case to the wider setting of parabolic structures see[7,6]. The calculational551

techniques, conventions and notation used here follow[16,15].552

3.1. Conformal geometry and tractor calculus553

We first introduce some of the basic objects of conformal tractor calculus. It is useful here554

to make a slight change of point of view. Rather than take as our basic geometric structure555

a Riemannian or pseudo-Riemannian structure we will take as our basic geometry only a556

conformal structure. This simplifies the formulae involved and their conformal transforma-557

tions. It is also a conceptually sound move since conformally invariant operators, tensors558

and functions are exactly the (pseudo-)Riemannian objects that descend to be well defined559

objects on a conformal manifold. A signature (p, q) conformal structure[g] on a manifold560

M, of dimensionn ≥ 3, is an equivalence class of metrics where ˆg ∼ g if ĝ = e2ϒg for561

someϒ ∈ E. A conformal structure is equivalent to a ray subbundleQ of S2T ∗M; points562

ofQ are pairs (gx, x) wherex ∈ M andgx is a metric atx, each section ofQ gives a metric563

g onM and the metrics from different sections agree up to multiplication by a positive564

function. The bundleQ is a principal bundle with groupR+, and we denote byE[w] the565

vector bundle induced from the representation ofR+ onR given byt 
→ t−w/2. Sections of566

E[w] are called aconformal densities of weightw and may be identified with functions on567

Q that are homogeneous of degreew, i.e.,f (s2gx, x) = swf (gx, x) for anys ∈ R+. We will568

often use the same notationE[w] for the space of sections of the bundle. Note that for each569

choice of a metricg (i.e., section ofQ, which we term achoice of conformal scale), we may570
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identify a sectionf ∈ E[w] with a functionfg onM by fg(x) = f (gx, x). This function is571

conformally covariant of weightw in the sense of Section2, since if ĝ = e2ϒg, for some572

ϒ ∈ E, thenfĝ(x) = f (e2ϒxgx, x) = ewϒxf (gx, x) = ewϒxfg(x). Conversely conformally573

covariant functions determine homogeneous sections ofQ and so densities. In particular,574

E[0] is canonically identified withE.575

Note that there is a tautological functiong onQ taking values inS2T ∗M. It is the function576

which assigns to the point (gx, x) ∈ Q the metricgx atx. This is homogeneous of degree 2577

sinceg(s2gx, x) = s2gx. If ξ is any positive function onQ homogeneous of degree−2 then578

ξg is independent of the action ofR+ on the fibres ofQ, and soξg descends to give a metric579

from the conformal class. Thusg determines and is equivalent to a canonical section of580

Eab[2] (called the conformal metric) that we also denoteg (or gab). This in turn determines581

a canonical sectiongab (or g−1) of Eab[−2] with the property thatgabg
bc = δca (whereδca582

is kronecker delta, i.e., the section ofEca corresponding to the identity endomorphism of the583

tangent bundle). In this section the conformal metric (and its inversegab) will be used to584

raise and lower indices. This enables us to work with density valued objects. Conformally585

covariant tensors as in Section2 correspond one-one with conformally invariant density586

valued tensors. Each non-vanishing sectionσ of E[1] determines a metricgσ from the587

conformal class by588

gσ := σ−2g. (3.1)589

Conversely ifg ∈ [g] then there is an up-to-sign uniqueσ ∈ E[1] which solvesg = σ−2g,590

and soσ is termed a choice of conformal scale. Given a choice of conformal scale, we591

write ∇a for the corresponding Levi–Civita connection. For each choice of metric there is592

also a canonical connection onE[w] determined by the identification ofE[w] with E, as de-593

scribed above, and the exterior derivative on functions. We will also call this the Levi–Civita594

connection and thus for tensors with weight, e.g.va ∈ Ea[w], there is a connection given595

by the Leibniz rule. With these conventions the Laplacian. is given by. = gab∇a∇b =596

∇b∇b.597

We next define the standard tractor bundle over (M, [g]). It is a vector bundle of rank598

n+ 2 defined, for eachg ∈ [g], by [EA]g = E[1] ⊕ Ea[1] ⊕ E[−1]. If ĝ = e2ϒg, we identify599

(α,µa, τ) ∈ [EA]g with (α̂, µ̂a, τ̂) ∈ [EA]ĝ by the transformation600



α̂

µ̂a

τ̂


 =




1 0 0

ϒa δa
b 0

−1
2ϒcϒ

c −ϒb 1






α

µb

τ


 . (3.2)601

It is straightforward to verify that these identifications are consistent upon changing to602

a third metric from the conformal class, and so taking the quotient by this equivalence603

relation defines thestandard tractor bundleEA over the conformal manifold. (Alternatively604

the standard tractor bundle may be constructed as a canonical quotient of a certain 2-jet605

bundle or as an associated bundle to the normal conformal Cartan bundle[6].) The bundle606

EA admits an invariant metrichAB of signature (p+ 1, q+ 1) and an invariant connection,607

which we shall also denote by∇a, preservinghAB. In a conformal scaleg, these are given608
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by609

hAB =




0 0 1

0 gab 0

1 0 0


 and ∇a



α

µb

τ


 =




∇aα− µa

∇aµb + gabτ + Pabα

∇aτ − Pabµb


 .610

It is readily verified that both of these are conformally well defined, i.e., independent of the611

choice of a metricg ∈ [g]. Note thathAB defines a section ofEAB = EA ⊗ EB, whereEA is612

the dual bundle ofEA. Hence we may usehAB and its inversehAB to raise or lower indices613

of EA, EA and their tensor products.614

In computations, it is often useful to introduce the ‘projectors’ fromEA to the components615

E[1], Ea[1] andE[−1] which are determined by a choice of scale. They are respectively de-616

noted byXA ∈ EA[1], ZAa ∈ EAa[1] andYA ∈ EA[−1], whereEAa[w] = EA ⊗ Ea ⊗ E[w],617

etc. Using the metricshAB and gab to raise indices, we defineXA,ZAa, YA. Then we618

immediately see that619

YAX
A = 1, ZAbZ

A
c = gbc620

and that all other quadratic combinations that contract the tractor index vanish. This is621

summarised inFig. 1.622

It is clear from(3.2)that the first componentα is independent of the choice of a represen-623

tativegand henceXA is conformally invariant. ForZAa andYA, we have the transformation624

laws:625

ẐAa = ZAa + ϒaXA, ŶA = YA − ϒaZ
Aa − 1

2ϒaϒ
aXA. (3.3)626

Given a choice of conformal scale we have the corresponding Levi–Civita connection627

on tensor and density bundles. In this setting we can use the coupled Levi–Civita tractor628

connection to act on sections of the tensor product of a tensor bundle with a tractor bundle.629

This is defined by the Leibniz rule in the usual way. For example ifubVCα ∈ Eb ⊗ EC ⊗630

E[w] =: EbC[w] then∇aubVCα = (∇aub)VCα+ ub(∇aVC)α+ ubVC∇aα. Here∇ means631

the Levi–Civita connection onub ∈ Eb andα ∈ E[w], while it denotes the tractor connection632

onVC ∈ EC. In particular with this convention we have633

∇aXA = ZAa, ∇aZAb = −PabXA − YAgab, ∇aYA = PabZbA. (3.4)634

Note that ifV is a section ofEA1···A5 [w], then the coupled Levi–Civita tractor connec-635

tion onV is not conformally invariant but transforms just as the Levi–Civita connection636

transforms on densities of the same weight:∇̂aV = ∇aV + wϒaV .637

Fig. 1. Tractor inner product.
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Given a choice of conformal scale, thetractor-D operator638

DA : EB···E[w] → EAB···E[w− 1]639

is defined by640

DAV := (n+ 2w− 2)wYAV + (n+ 2w− 2)ZAa∇aV −XA�V, (3.5)641

where�V := .V + wPbbV . This also turns out to be conformally invariant as can be642

checked directly using the formulae above (or alternatively there are conformally invariant643

constructions ofD, see e.g.[14]).644

The curvature6 of the tractor connection is defined by645

[∇a,∇b]VC = 6ab
C
EV

E (3.6)646

for VC ∈ EC. Using (3.4) and the usual formulae for the curvature of the Levi–Civita647

connection we calculate (cf.[2])648

6abCE = ZcCZ
e
ECabce − 2X[CZ

e
E]Aeab. (3.7)649

From the tractor curvature we obtain a related higher order conformally invariant curva-650

ture quantity by the formula (cf.[14,15])651

WBC
E
F := 3

n− 2
DAX[A6BC]

E
F .652

It is straightforward to verify that this can be re-expressed as follows:653

WABCE = (n− 4)ZaAZ
b
B6abCE − 2X[AZB]

b∇p6pbCE. (3.8)654

This tractor field has an important relationship to the ambient metric of Fefferman and Gra-655

ham. For a conformal manifold of signature (p, q) the ambient manifold[11] is a signature656

(p+ 1, q+ 1) pseudo-Riemannian manifold withQ as an embedded submanifold. Suit-657

ably homogeneous tensor fields on the ambient manifold upon restriction toQ determine658

tractor fields on the underlying conformal manifold[8]. In particular, in dimensions other659

than 4,WABCD is the tractor field equivalent to (n− 4)R|Q whereR is the curvature of the660

Fefferman–Graham ambient metric.661

3.2. Conformally Einstein manifolds662

Recall that we say a Riemannian or pseudo-Riemannian metricg is conformally Einstein663

if there is a scaleϒ such that the Ricci tensor, or equivalently the Schouten tensor, is pure664

trace. Thus we say that a conformal structure [g] is conformally Einstein if there is a metric665

ĝ in the conformal class (i.e. ˆg ∈ [g]) such that the Schouten tensor for ˆg is pure trace.666

We show here that a conformal manifold (M, [g]) is conformally Einstein if and only if it667

admits a parallel standard tractorIA which also satisfies the condition thatXAIA is nowhere668

vanishing. Note that in a sense the “main condition” is thatI is parallel since the requirement669

thatXAIA is non-vanishing is an open condition. In more detail we have the following result.670
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Theorem 3.1. On a conformal manifold(M, [g]) there is a 1–1 correspondence between671

conformal scalesσ ∈ E[1], such thatgσ = σ−2g is Einstein, and parallel standard tractors672

I with the property thatXAIA is nowhere vanishing. The mapping from Einstein scales to673

parallel tractors is given byσ 
→ 1
n
DAσ while the inverse isIA 
→ XAIA.674

Proof. Suppose that (M, [g]) admits a parallel standard tractorIA such thatσ := XAIA is675

nowhere vanishing. Sinceσ ∈ E[1] and is non-vanishing it is a conformal scale. Letg be676

the metric from the conformal class determined byσ, that isg = gσ = σ−2g as in(3.1). In677

terms of the tractor bundle splitting determined by this metricIA is given by some triple with678

σ as the leading entry, [IA]g = (σ,µa, τ). From the formula for the invariant connection we679

have680

0 = [∇aIB]g =




∇aσ − µa

∇aµb + gabτ + Pabσ

∇aτ − Pabµb


 . (3.9)681

Thusµa = ∇aσ, but∇aσ = 0 by the definition of∇ in the scaleσ. Thusµa vanishes,682

and the second tensor equation from(3.9)simplifies to683

Pabσ = −gabτ,684

showing that the metricg is Einstein. Note that tracing the display givesτ = − 1
n
Jσ.685

To prove the converse let us now suppose thatσ is a conformal scale so thatg = σ−2g686

is an Einstein metric. That is, for this metricg, Pab is pure trace. Let us work in this687

conformal scale. Then we havePab = 1
n
gabJ. Thus∇aPab = (1/n)∇bJ. On the other hand688

comparing this to the contracted Bianchi identity∇aPab = ∇bJ we have that∇aJ = 0.689

Now, we define a tractor fieldIA by IA := 1
n
DAσ. Then [I]gσ :=

(
σ,0,− 1

n
Jσ

)
. Consider690

the tractor connection on this. We have691

[∇aIB]g =




∇aσ
− 1
n
gabJσ + Pabσ

− 1
n
(σ∇aJ + J∇aσ)


 .692

Once again, by the definition of the Levi–Civita connection∇ as determined by the scaleσ,693

we have∇σ = 0. SincePab = 1
n
gabJ the second entry also vanishes. The last component694

also vanishes from∇J = 0 and∇σ = 0. SoI is a parallel standard tractor satisfying that695

XAIA = σ is non-vanishing. �696

Remarks:697

• Note thath(I, I) is a conformal invariant of density weight 0. In fact from the formulae698

above, in the Einstein scale,h(I, I) = − 2
n
σ2J. Recall that in this sectionJ = gabPab and699

so has density weight−2 and700

σ2J = σ2gabPab = gabPab.701
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That is−n
2h(I, I) is the trace of Schouten tensor using the metric determined byσ. Since702

∇ preserves the tractor metric andI is parallel we recover the (well known) result that703

Pab (and its trace) is constant for Einstein metrics.704

• Suppose we drop the condition thatσ := XAIa is nowhere vanishing. IfIA is parallel705

then from(3.9) it follows thatµa = ∇aσ. Furthermore tracing the middle entry on the706

right-hand side of(3.9)implies thatτ = − 1
n
�σ. Thus if∇aIB = 0 atp ∈ M then atpwe707

haveIB = 1
n
DBσ. Now clearly1

n
XBDBσ = σ vanishes on a neighbourhood if and only708

if 1
n
DBσ vanishes on the same neighbourhood. So for parallelIA,XAIA is non-vanishing709

on an open dense subset ofM. The points whereσ vanishes are scale singularities for710

the metricg = σ−2g.711

• The relationship between parallel tractors and conformally Einstein metrics, while im-712

plicit in [2], was probably first observed and treated in some detail by Gauduchon in713

[13] (and we thank Claude LeBrun for drawing our attention to Gauduchon’s results in714

this area). On dimension 4 spin manifolds it is straightforward to show that the standard715

tractor bundle is isomorphic to the second exterior power of Penrose’s[27] local twistor716

bundle. Under this isomorphismI may be identified with theinfinity twistor(defined for717

spacetimes). The relationship to conformal Einstein manifolds is well known[22,12] in718

that setting.719

• We should also point out that the theorem above can alternatively be deduced, via some720

elementary arguments but without any calculation, from the construction of the tractor721

connection as in[2].722

Next we make some elementary observations concerning parallel tractors.723

Lemma 3.2. On a conformal manifold let N be a parallel section of the standard tractor724

bundleT. Then:725

6bc
D
EN

E = 0 and WBCDEN
E = 0.726

Proof. By assumption we have∇aND = 0. Thus6bcDENE = [∇b,∇c]ND = 0 and the727

first result is established.728

Next WA1A2
D
EN

E = 3
n−2(DA0XA0ZA1

bZA2
c6bc

D
E)NE, where, as usual, sequen-

tially labelled indices e.g.A0, A1, A2 are implicitly skewed over. Now the quantity
XA0ZA1

bZA2
c6bc

D
E has (density) weight−1, so from the formula(3.5) for D, we have

(DA0XA0ZA1
bZA2

c6bc
D
E)NE = (4 − n)YA0XA0ZA1

bZA2
c6bc

D
EN

E

+ (n− 4)(ZA0a∇aXA0ZA1
bZA2

c6bc
D
E)NE

− (XA0.XA0ZA1
bZA2

c6bc
D
E)NE

+ JXA0XA0ZA1
bZA2

c6bc
D
EN

E,

where∇ and. act on everything to their right within the parentheses. The first and last729

terms on the right-hand side vanish from the previous result. (In fact for last term we could730
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also use thatXA0XA0ZA1
bZA2

c = 0.) Next observe that, since∇N = 0, we have731

(ZA0a∇aXA0ZA1
bZA2

c6bc
D
E)NE = ZA0a∇a(XA0ZA1

bZA2
c6bc

D
EN

E) = 0,732

where we have again used the earlier result,6bc
D
EN

E = 0. Similarly733

(XA0.XA0ZA1
bZA2

c6bc
D
E)NE = XA0.(XA0ZA1

bZA2
c6bc

D
EN

E) = 0. �734

From the lemma it follows immediately that on conformally Einstein manifolds the735

parallel tractorI, of Theorem 3.1, satisfies6bcDEIE = 0 andWBCDEIE = 0. In general the736

converse is also true. More accurately we have the result given in the following theorem.737

Before we state that, note that since the Weyl curvature is conformally invariant it follows738

that Eqs.(2.15)–(2.17)are conformally invariant. Thus if any metric from a conformal class739

is generic then all metrics from the class are generic and we will describe the conformal740

class as generic.741

Theorem 3.3. A generic conformal manifold of dimensionn �= 4 is conformally Einstein742

if and only if there exists a tractor fieldIA ∈ EA such thatXAIA is non-vanishing and743

WBCDEIE = 0.744

A generic conformal manifold of dimensionn = 4 is conformally Einstein if and only if745

there exists a tractor fieldIA ∈ EA such thatXAIA is non-vanishing,746

6bc
D
EIE = 0 and WBCDEIE = 0.747

Proof. We have shown that on a conformally Einstein manifold there is a (parallel) standard748

tractor field satisfying749

(i) XAIA nowhere vanishing,750

(ii) 6bc
D
EIE = 0,751

(iii) WBCDEIE = 0.752

It remains to prove the relevant converse statements. First we observe that given (i), (ii)753

is exactly the conformal C-space equation. From above we have that754

6abCE = ZcCZ
e
ECabce −XCZ

e
EAeab +XEZ

e
CAeab.755

A general tractorIA ∈ EA may be expanded to756

IE = YEσ + ZEdµd +XEτ,757

whereσ = XAIA and we assume this is non-vanishing. Hence758

6abCEIE = σZcCAcab + ZcCµ
dCabcd −XCµ

dAdab. (3.10)759
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Setting this to zero, as required by (ii), implies that the coefficient ofZcC must vanish, i.e.,760

σAcab + µdCabcd = 0, or761

Acab +KdCdcab = 0, Kd := −σ−1µd, (3.11)762

which is exactly the conformal C-space equation [C] as inTheorem 2.2. Contracting this763

with µc (orKc) annihilates the second term and so764

µdAdab = 0,765

whence the coefficient ofXC in (3.10)vanishes as a consequence of the earlier equation766

and it is shown that (with (i))6abCEIE = 0 is exactly the conformal C-space equation.767

Now recall768

WBCDE = (n− 4)ZbBZ
c
C6bcDE − 2X[BZ

c
C]∇a6acDE,769

and so, in dimensions other 4,WBCDEIE = 0 implies6bcDEIE = 0 (and hence the con-770

formal C-space equation). From the display we see thatWBCDEIE = 0 also implies that771

IE∇a6acDE = 0 or equivalentlyσ−1IE∇a6acDE = 0. Once again using the formulae for772

the tractor connection we obtain773

∇a6acDE = (n− 4)ZdDZ
e
EAcde −XDZ

e
EBec +XEZ

e
DBec, (3.12)774

whereBec is the Bach tensor. Henceσ−1IE∇a6acDE = 0 expands to775

−(n− 4)ZdDK
eAcde +XDK

eBec + ZdDBdc = 0.776

From the coefficient ofZdD we have777

Bdc − (n− 4)KeAcde = 0778

which, with the conformal C-space equation (and sinceB is symmetric), gives779

Bcd + (n− 4)KeKaCacde = 0 (3.13)780

which is exactly the second equation [B] ofTheorem 2.2. If this holds then it follows at781

once thatKcBcb = 0 and so in the expansion ofσ−1IE∇a6acDE = 0 the coefficient ofXD782

vanishes without further restriction. Thus we have shown that in dimensions other than 4783

the single conformally invariant tractor equationWBCDEIE = 0 is equivalent to the two784

equations [C] and [B]. In dimension 4 it is clear from(3.8)thatWBCDEIE = 0 is equivalent785

to IE∇a6acDE = 0 and this withIE6acDE = 0 gives the pair of equations [B] and [C]. In786

either case then the theorem here now follows immediately fromTheorem 2.2. �787

Remarks:788

• Note that conditions (i), (ii) and (iii), as in the theorem, do not imply thatI is parallel.789

On the other hand the theorem shows that if there exists a standard tractorI satisfying790

these conditions then (on generic manifolds) also there exists a parallel standard tractorI′791
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satisfying these conditions. Calculating in an Einstein scale, it follows from the conformal792

C-space equation that one hasZaAIA = ZaAIA = 0. Hence thatI′ = f I + ρX for some793

sectionρ of E[−1] and non-vanishing functionf.794

• Recall that in Section3.1we pointed out that in dimensions other than 4,WABCD is the795

tractor field equivalent[8] to (n− 4)R|Q whereR is the curvature of the Fefferman–796

Graham ambient metric. Thus, in these dimensions, the conditionWABCDID = 0 is797

equivalent to the existence of a suitably homogeneous and generic ambient tangent798

vector field alongQ in the ambient manifold which annihilates the ambient curvature.799

• We had already observed in Section2.5 thatAabc +KdCdabc is conformally invariant800

if we assume thatKd has the conformal transformation laŵKa = Ka − ϒa (where801

ĝ = e2ϒg). From the proof above we see this transformation formula fits naturally into802

the tractor picture and arises from(3.2) sinceKa is a density multiple of the middle803

component of a tractor field according to(3.11).804

3.3. Sharp obstructions via tractors805

Theorem 3.3gives a simple interpretation ofTheorem 2.2in terms of tractor bundles.806

In the proof of this above, this connection was made by recovering the familiar tensor807

equations from Section2. Here we first observe that entire derivation ofTheorem 2.2and808

its proof reduces to a few key lines if we work in the tractor picture. This then leads to a809

stronger theorem as below.810

We summarise the background first. FromTheorem 3.1we know that the existence of a811

conformal Einstein structure is equivalent to the existence of a parallel tractorI (at points812

whereXAIA �= 0). This immediately implies that the tractor curvature6abCD satisfies813

[C̃] ID6abCD = 0, [B̃] ID∇a6abCD = 0.814

We have labelled these [C̃] and [B̃] since (as shown in the proof above) the first equation is815

equivalent to the earlier [C] and, given this, the second equation is equivalent to the earlier816

equation [B]. The conformal invariance of the systems [C] and [B] is now immediate in all817

dimensions from the observation that the conformal transformation of∇a6abCD is818

̂∇a6abCD = ∇a6abCD + (n− 4)ϒa6abCD, (3.14)819

and whence the conformal transformation of the left-hand side of equation [B̃] is820

̂ID∇a6abCD = ID∇a6abCD + (n− 4)ϒaID6abCD,821

whereĝ = e2ϒg; from this it is immediate that [̃B] is invariant on metrics that solve [C̃]. We822

should point out that in dimension 4 it follows immediately from(3.12)thatID∇a6abCD =823

0 ⇔ ∇a6abCD = 0 ⇔ Bab = 0.824

Now we are interested in the converse. We will show that if the displayed equations [C̃]825

and [B̃] hold for some tractorI, satisfying thatXAIA is non-vanishing, then the structure is826

conformally Einstein. Here is an alternative proof ofTheorem 3.3(and hence an alternative827

proof of Theorem 2.2). Equation [̃C] implies that∇a1(6a2a3CDID) = 0, where as usual828
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sequentially labelled indices are skewed over. From the Bianchi identity for the tractor829

curvature,∇a16a2a3CD = 0, it follows that830

6a2a3CD∇a1I
D = 0. (3.15)831

Now equation [̃C] implies [C], viz.Acab +KdCdcab = 0. As we saw earlier this (using that832

the metric is�2-generic) implies thatKa is a gradient and that there is a conformal scale833

such that the Cotton tensorAcab vanishes. In this special C-space scale (see Section2.5) it is834

clear thatKa is also zero and(3.15)simplifies (using(3.9) and (3.7)) toPa1
dCa2a3cdZ

c
C = 0835

or equivalently836

C∗
b1···bn−2cd

Pb1d = 0. (3.16)837

Note that ifC∗ is suitably generic this already implies that the metric that gives the special838

C-space scale is Einstein.839

Using only the weaker assumption that the manifold is generic in the sense of Section840

2.4 we must also use [B̃]. The argument is similar to the above. Equation [C̃] implies841

∇a(ID6abCD) = 0. Thus using [̃B] we have842

(∇aID)6abCD = 0.843

In the special C-space scale this expands toPadCabcdZcC = 0, which is equivalent to844

PadCabcd = 0. (3.17)845

Clearly Eqs.(3.17) and (3.16)imply thatP is pure trace on generic manifolds and so the846

theorem is proved. In fact these Eqs.(3.17) and (3.16)are respectively Eqs.(2.21) and (2.22)847

both written in the C-space scale.848

The construction of the systems [B̃] and [C̃] immediately suggests alternative systems.849

In particular we have the following results which only requires the manifold to be weakly850

generic.851

Theorem 3.4. A weakly generic conformal manifold is conformally Einstein if and only if852

there exists a non-vanishing tractor fieldIA ∈ EA such that853

[C̃] IE6bcDE = 0, [D̃] IE∇a6bcDE = 0.854

The systems[C̃] and[D̃] are conformally invariant.855

Proof. Note that from(2.9), and the invariance of the tractor connection, we have

̂IE∇a6bcDE = IE∇a6bcDE − 2ϒaI
E6bcDE − ϒbI

E6acDE − ϒcI
E6baDE

+ gabϒ
kIE6kcDE + gacϒ

kIE6bkDE,

whereĝ = e2ϒg, and so [̃D] is conformally invariant if the conformally invariant equation856

[C̃] is satisfied; the systems [C̃] and [D̃] are conformally invariant.857

If the manifold is conformally Einstein then there is a parallel tractorIE. We have858

observed earlier that this satisfies [C̃]. Differentiating [̃C] and then using once again thatIE859

is parallel shows that [̃D] is satisfied.860
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Now we assume that [C̃] and [D̃] hold. If IE = YEσ + ZEdµd +XEτ, then6abCEIE is861

given by(3.10). Suppose thatXAIA = σ vanishes at some pointx. Then from(3.10)we have862

µdCabcd = 0 atx (andµdAdab = 0 atx) and so, since the conformal class is weakly generic,863

µd(x) = 0. ThusIE = τXE, at x, and [D̃] givesXE∇a6bcDE = 0 atx. But, ∇aXE = ZEa864

and from(3.7)XE6bcDE = 0, and soZdDCbcda −XDAabc = ZEa 6bcDE = 0 atx. But this865

meansCbcda(x) = 0 which contradicts the assumption that the conformal class is weakly866

generic. SoXAIA is non-vanishing.867

Now, differentiating [̃C] and then using [̃D] we obtain868

6bcDE∇aIE = 0.869

But, since the manifold is weakly generic,6bcDE must have rank at leastn as a map870

6bcDE : EbcD → EE. Also, from(3.7)and [C̃], XE andIE are orthogonal to the range. So871

the display implies that872

∇aIE = αaI
E + βaX

E,873

for some 1-formsαa andβa. (An alternative explanation is to note, as earlier, that ifUE is874

not a multiple ofXE and6bcDEUE = 0 then from(3.7) it follows thatUE determines a875

non-trivial solution of the equation [C]. SinceIE also determines such a solution it follows876

at once fromProposition 2.4thatUE = αI + βXE.) Differentiating again and alternating877

we obtain878

6ba
E
DID = 2IE∇[bαa] + 2α[aαb]I

E + 2α[aβb]X
E + 2XE∇[bβa] + 2β[aZ

E
b] .879

The left-hand side vanishes by assumption and of courseα[aαb]I
E = 0. ContractingXE880

into the remaining terms brings us to881

0 = 2σ∇[aαb]882

and soα is closed. Locally thenαa = ∇af for some functionf and sõIE := e−f IE satisfies883

∇aĨE = β̃aX
E (3.18)884

for some 1-form̃βa. Expanding̃IE: ĨE = YEσ̃ + ZEdµ̃d +XEτ̃ we haveXE Ĩe = σ̃ (which885

is non-vanishing) and, from(3.18), the equations886

∇aσ̃ − µ̃a = 0, ∇aµ̃b + gabτ̃ + Pabσ̃ = 0887

cf. (3.9). So for the metricg := σ̃−2g we haveµ̃a = ∇aσ̃ = 0 andPab + gabτ̃/σ̃ = 0. That888

is the metricg is Einstein (and1
n
DAσ̃ is parallel). �889

We have the following consequence of the theorem above.890
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Corollary 3.5. A weakly generic pseudo-Riemannian or Riemannian metric g on an n-891

manifold is conformally Einstein if and only if the natural invariants892

6abKD1 · · ·6cdLDs∇e6fgPDs+1 · · · ∇h6k5QDn+2,893

for s = 0,1, . . . , n+ 1, all vanish. Here the sequentially labelled indicesD1, . . . , Dn+2894

are completely skewed over.895

Proof. The theorem can clearly be rephrased to state thatg is conformally Einstein if and896

only if the map897

(6bcDE,∇a6bcDE) : EbcD ⊕ EabcD → EE (3.19)898

given by899

(VbcD,WabcD) 
→ VbcD6bcDE +WabcD∇a6bcDE900

fails to have maximal rank at every point ofM. But by elementary linear algebra this901

happens if and only if the induced alternating multi-linear map to�n+2(EE) vanishes. This902

is equivalent to the claim in the Corollary, since for any metric the tractor curvature satisfies903

6bcDEX
E = 0. �904

If M is oriented (which locally we can assume with no loss of generality) then it is905

straightforward to show that there is a canonical skew (n+ 2)-tractor consistent with the906

tractor metric and the orientation. Let us denote this byεC1···Cn+2. Using this, we could907

equally rephrase the Corollary in terms of the invariants908

εD1D2···DsDs+1···Dn+1Dn+26abKD1 · · ·6cdLDs∇e6fgPDs+1 · · · ∇h6k5QDn+2,909

for s = 0,1, . . . , n+ 1. These all vanish if and only if the metric is conformally Einstein.910

The natural invariants in the lemma are given by mixed tensor-tractor fields, rather pure911

tensors. However by expanding6abCD and∇a6bcDE using(3.7) and (3.4)it is straight-912

forward to obtain an equivalent set of tensorial obstructions from these. The system of913

obstructions so obtained is rather unwieldy and could be awkward to apply in practise.914

Nevertheless this gives a system of invariants, which works equally for all signatures.915

As a final remark in this section we note that coming toProposition 2.7via the tractor916

picture is also very easy. If we want to test whether a scaleσ ∈ E[1] is an Einstein scale917

we defineIB := 1
n
DBσ as inTheorem 3.1and consider∇aIB. Calculating in terms of an918

arbitrary metricg from the conformal class we get∇aIB = ZbBσEab, modulo terms involving919

XB, whereEab = Trace-free(Pab − ∇aKb +KaKb) andKa := −σ−1∇aσ. Sinceσ can920

only be an Einstein scale if6bcDEIE = 0 we obtain the conformal C-space equation for921

Ka and we are led to the conclusion that the Riemannian invariant of the proposition is922

conformally invariant and also the conclusion that it must vanish on conformal Einstein923

manifolds.924
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4. Examples925

Here we shed light on the various notions of generic metrics, mainly by way of examples.926

First let us note that each of these is an open condition on the moduli space of possible927

curvatures. Thus in this sense “almost all” metrics are generic (and hence�2-generic and928

weakly generic). The many components of the Weyl curvatureCabcd arise from a�2-generic929

metric unless they lie on the closed variety determined by the one condition‖C‖ = 0 where,930

recall,‖C‖ is the determinant of the map(2.18). The metrics which fail to be weakly generic931

correspond to a closed subspace contained in the‖C‖ = 0 variety. In the Riemannian case932

this subvariety is given by‖L‖ = 0, where recall‖L‖ is the determinant ofCacdeCbcde and933

we show below that in dimension 4 the containment is proper.934

Another aim in this final section is to establish the independence of the conditions [C]935

and [B] from Section2.4. We assume thatn ≥ 4 throughout this section.936

4.1. Simple n-dimensional Robinson–Trautman metrics937

Let Q be an (n− 2)-dimensional space of constant curvatureκ and denote byxi,938

i = 1,2, . . . , n− 2, standard stereographic coordinates onQ. We takeM = R2 ×Q, with939

coordinates (r, u, xi), where (r, u) are coordinates along theR2, and equipMwith a subclass940

of Robinson–Trautman[28] metricsg by941

g = 2 du[dr + h(r) du] + r2
gij dxi dxj(

1 + κ
4gklx

kxl
)2
. (4.1)942

Heregij = diag(ε1, ε2, . . . , εn−2), εi = ±1,κ = 1,0,−1 andh = h(r) is an arbitrary, suffi-943

ciently smooth real function of variabler. In the following we describe conformal properties944

of the metrics(4.1).945

To calculate the Weyl tensor we introduce the null-orthonormal coframe (θa) =946

(θ+, θ−, θi) by947

θ+ = du, θ− = dr + hdu, θi = r
dxi

1 + κ
4gklx

kxl
. (4.2)948

In this coframe the metric takes the formg = gabθ
aθb where949

gab =




0 1

1 0

gij


 . (4.3)950

We lower and raise the indices by means of the matrixgab and its inversegab. The Levi–951

Civita connection 1-forms952

Aab = Aabcθ
c

953

are uniquely determined by954

dθa + Aab ∧ θb = 0 and dgab − Aab − Aba = 0. (4.4)955
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Explicitly, we find that, the connection 1-forms are

Aij = κ

2r
(xiθj − xjθi), A−j = −1

r
θj, A+j = h

r
θj, A+− = h′θ+,

(4.5)

whereh′ = dh
dr . (Observe that, due to the constancy of the matrix elements ofgab, the matrix956

Aab is skew,Aab = −Aba.) The curvature 2-forms957

6ab = 1
2Rabcdθ

c ∧ θd = dAab + Aca ∧ Acb958

are

6ij = κ + 2h

r2
θi ∧ θj, 6−j = h′

r
θ+ ∧ θj, 6+j = h′

r
θ− ∧ θj,

6+− = h′′θ− ∧ θ+, (4.6)

with the remaining components determined by symmetry. The non-vanishing components959

of the Ricci tensor960

Rab = Rcacb961

and the Ricci scalar962

R = gabRab963

are

Rij =
[
(n− 3)

κ + 2h

r2
+ 2h′

r

]
gij, R+− = (n− 2)

h′

r
+ h′′,

R = (n− 2)

[
(n− 3)

κ + 2h

r2
+ 4h′

r

]
+ 2h′′. (4.7)

From this we conclude that metrics(4.1)are Einstein,964

Rab = �gab,965

if and only if966

h(r) = −κ
2

+ m

rn−3
+ �

2(n− 1)
r2, (4.8)967

where m and � are constants. These metrics form the well knownn-dimensional968

Schwarzschild-(anti-)de Sitter 2-parameter class in whichm is interpreted as the mass and969

� as the cosmological constant. (The space is termed de Sitter if� > 0 and anti-de Sitter970

is� < 0.) Thus, we have the following proposition.971
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Proposition 4.1. The only Einstein metrics among the Robinson–Trautman metrics972

g = 2 du[dr + h(r) du] + r2
gij dxi dxj(

1 + κ
4gklx

kxl
)2

973

are the Schwarzschild-(anti-)de Sitter metrics, for which974

h(r) = −κ
2

+ m

rn−3
+ �

2(n− 1)
r2.975

The Weyl tensor of metrics(4.1)has the following non-vanishing components:

Cijkl = 2E(gkigjl − gkjgil), C−i+k = (3 − n)Egik,

C+−+− = (3 − n)(n− 2)E, (4.9)

where976

E = 1

(n− 1)(n− 2)

[
κ + 2h

r2
− 2h′

r
+ h′′

]
,977

and the further non-vanishing components determined from these by the Weyl symmetries.978

Now, we consider the equation979

CabcdF
cd = 0 (4.10)980

for the antisymmetric tensorFab. We easily find that

CijabF
ab = 4EFij, Ci+abFab = (3 − n)EgikF

k−,

Ci−abFab = (3 − n)EgikF
k+, C+−abFab = 2(3− n)(n− 2)EF+−.

Thus, ifE �= 0, Eq.(4.10)has unique solutionFab = 0. We pass to the equation981

CabcdH
bd = 0 (4.11)982

for a symmetric and trace-free tensorHab. In the null-orthonormal coframe(4.2)the trace-983

free condition reads984

H + 2H+− = 0, whereH = gikHik. (4.12)985

Comparing this with

CibkdH
bd = 2E[gik(H + (3 − n)H−+) −Hik], Cib−dHbd = (n− 3)EgikH

+k,

Cib+dHbd = (n− 3)EgikH
−k, C−b−dHbd = (n− 2)(n− 3)EH++,

C+b+dHbd = (n− 2)(n− 3)EH−−

proves that the only solution of(4.11)isHab = 0. Thus we have the following proposition.986
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Proposition 4.2. If987

E = 1

(n− 1)(n− 2)

[
κ + 2h

r2
− 2h′

r
+ h′′

]
�= 0988

the Robinson–Trautman metrics989

g = 2 du[dr + h(r) du] + r2
gij dxi dxj(

1 + κ
4gklx

kxl
)2

990

are generic.991

By a straightforward calculation we obtain the following proposition.992

Proposition 4.3.EachRobinson–Trautmanmetric for whichE �= 0,satisfies the conformal993

C-space condition [C] with a vector fieldKa given by994

Ka = ∇a log[r(1−n)/(n−3)E1/(3−n)]. (4.13)995

From this andPropositions 2.4 and 4.2it follows that the Robinson–Trautman metrics996

for whichE �= 0 are conformal to Einstein metrics if and only if997

Pab − ∇aKb +KaKb − 1

n
(P − ∇cKc +KcKc)gab = 0998

with Ka given by(4.13). (Note that, by the uniqueness asserted inProposition 2.4, this is999

equivalent to requiringEab = 0 withEab as inProposition 2.7.) InsertingRab andKa into1000

this equation one finds that the metric(4.1) is conformal to an Einstein metric if and only1001

if the functionh = h(r) is given by1002

h(r) = −κ
2

+ m

rn−3
+ �

2(n− 1)
r2.1003

This means that among the considered Robinson–Trautman metrics the only metrics which1004

are conformal to Einstein metrics are those belonging to the 2-parameter Schwarzschild-de1005

Sitter family. So we have the following conclusions. The Robinson–Trautman metrics(4.1):1006

• are all generic,1007

• all satisfy conformal C-space condition, [C]1008

• in general do not satisfy the Bach condition, [B].1009

In fact from the conformal invariance of the systems [C] and [B] (see Section3.2) and the1010

condition of being generic, the same conclusions hold for all metrics conformally related1011

to Robinson–Trautman metrics.1012

This, when along with four-dimensional examples of metrics satisfying the Bach con-1013

ditions [B] and not being conformal to Einstein[1,24], proves independence of the two1014

conditions [C] and [B].1015
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4.2. n-Dimensional pp-waves1016

We noted in Section2.5that there are weakly generic metrics that fail to be�2-generic,1017

and hence fail to be generic. Metricsg with non-vanishing Weyl curvature, and such that1018

there are two distinct Einstein metrics in the conformal class ofg, fail to be weakly generic.1019

This observation, which dates back to Brinkman[5], follows easily from the C-space equa-1020

tion. Explicit examples of Brinkman’s metrics, thus the metrics with non-vanishing Weyl1021

curvature but not weakly generic, are pp-waves. They can be described as follows.1022

Consider then-dimensional metric (pp-wave)1023

g = 2 du[dr + h(xi, u) du] + gij dxi dxj,1024

wheregij are the components of a constant non-degenerate (n− 2) × (n− 2) matrix. This,1025

in the coframe1026

θ+ = du, θ− = dr + hdu, θi = dxi,1027

has curvature forms1028

6i+ = −h,ikθk ∧ θ+, 6ij = 6i− = 6+− = 0.1029

So the Ricci scalar vanishes,R = 0, and the only non-vanishing components of the Ricci1030

and the Weyl tensors are1031

R++ = −2gijh,ij, Ci+j+ = 2

n− 2
[gijg

klh,kl − (n− 2)h,ij],1032

apart from the components determined by these via symmetries. Thus, this metric is Einstein1033

if and only if the functionh = h(xi, u) is harmonic in thexi variables,1034

gijh,ij = 0,1035

in which case it is also Ricci flat. Whether this is satisfied or not it is clear that the vector1036

field1037

K = f∂r, (4.14)1038

wheref is any non-vanishing function, satisfies1039

CabcdK
d = 0. (4.15)1040

Thus, the pp-wave metric is not weakly generic. It is worth noting that if the trace-free part1041

of the matrixh,ij is invertible the vector(4.14)is the most general solution of Eq.(4.15).1042

However, if it is not invertible, there are more vectorsK which satisfy(4.15).1043
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4.3. Four-dimensional hyperK¨ahler metrics1044

Another interesting class of metrics that are weakly generic but not�2-generic or generic1045

can be found in the complex setting. Consider a four-dimensional non-flat hyperKähler1046

manifold. This admits three K̈ahler structuresI, J,K such that they satisfy quaternionic1047

identities, e.g.IJ + JI = 0, K = IJ and, as a consequence, is Ricci flat. We claim that1048

all such manifolds are weakly generic, but not�2-generic[23]. To see this, first consider1049

the Riemann tensor viewed as an endomorphismR(.) : �2T ∗M → �2T ∗M. Since the1050

fundamental formsωI, ωJ , ωK, associated withI, J,K, are each parallel we haveR(ωI ) =1051

R(ωJ ) = R(ωK) = 0. On the other hand from Ricci flatness we haveR(.) = C(.), where1052

C(.) is the Weyl tensor, also considered as and endomorphismC(.) : �2T ∗M → �2T ∗M.1053

Hence alsoC(ωI ) = C(ωJ ) = C(ωK) = 0, which means that the metric is not�2-generic.1054

On the other hand if there existed a vector fieldV such thatCabcdV d = 0 then, be-1055

cause of the invariance property ofCwith respect of the structuresI, J,K alsoCabcd(IV )d ,1056

Cabcd(JV )d andCabcd(KV )d would vanish. Since on a hyperKähler 4-manifold a quadruple1057

(V, IV, JV,KV ) associated with any non-vanishing vectorV constitutes a basis of vectors,1058

at every point, we conclude that in such a caseCabcd (and therefore the Riemann tensor)1059

vanishes. Thus, at any pointx where the Weyl curvature is not zero we can conclude that1060

V = 0 is the only solution toCabcdV d = 0.1061

Thus we have the following proposition.1062

Proposition 4.4.Every non-flat four-dimensional hyperK¨ahler manifold is weakly generic1063

but not�2-generic.1064

For a local explicit example of this type see e.g.[25].1065
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