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Abstract
We find two different families of ��(4,ℝ) symmetric G2 structures in seven dimensions. 
These are G2 structures with G2 being the split real form of the simple exceptional com-
plex Lie group G2 . The first family has �2 ≡ 0 , while the second family has �1 ≡ �2 ≡ 0 , 
where �1 , �2 are the celebrated G2-invariant parts of the intrinsic torsion of the G2 struc-
ture. The families are different in the sense that the first one lives on a homogeneous space 
��(4,ℝ)∕��(2,ℝ)

l
 , and the second one lives on a homogeneous space ��(4,ℝ)∕��(2,ℝ)

s
 . 

Here ��(2,ℝ)
l
 is an ��(2,ℝ) corresponding to the ��(2,ℝ) related to the long roots in the 

root diagram of ��(4,ℝ) , and ��(2,ℝ)
s
 is an ��(2,ℝ) corresponding to the ��(2,ℝ) related 

to the short roots in the root diagram of ��(4,ℝ).

Keywords  Homogeneous G2 structures · Skew symmetric torsion · Split signature metric

1 � Introduction: a question of Maciej Dunajski

Recently, together with Hill [5], we uncovered an ��(4,ℝ) symmetry of the nonholonomic 
kinematics of a car. I talked about this at the Abel Symposium in Ålesund, Norway, in 
June 2019. After my talk Maciej Dunajski, intrigued by the root diagram of ��(4,ℝ) which 
appeared in the talk, asked me if using it I can see a G2 structure on a 7-dimensional homo-
geneous space M = ��(4,ℝ)∕��(2,ℝ) . 
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My immediate answer was: ‘I can think about it, but I have to know which of the 
��(2,ℝ) subgroups of ��(4,ℝ) I shall use to built M.’ The reason for the ‘but’ word in 
my answer was that there are at least two ��(2,ℝ) subgroups of ��(4,ℝ) , which lie quite 
differently in there. One can see them in the root diagram above: the first ��(2,ℝ) corre-
sponds to the long roots, as, for example, E1 and E10 , whereas the second one corresponds 
to the short roots, as, for example, E2 and E9 . Since Maciej never told me which ��(2,ℝ) 
he wants, I decided to consider both of them and to determine what kind of G2 structures 
one can associate with the respective choice of a subgroup.

I emphasize that in the below considerations I will use the split real form of the simple 
exceptional Lie group G2 . Therefore, the corresponding G2 structure metrics will not be 
Riemannian.1 They will have signature (3, 4).

2 � The Lie algebra ��(4,ℝ)

The Lie algebra ��(4,ℝ) is given by the 4 × 4 matrices

where the coefficients aI , I = 1, 2,… 10 , are real constants. The Lie bracket in ��(4,ℝ) is 
the usual commutator [E,E�] = E ⋅ E� − E�

⋅ E of two matrices E and E′ . We start with the 
following basis (EI),

in ��(4,ℝ).
In this basis, modulo the antisymmetry, we have the following nonvanishing commu-

tators: [E1,E5] = 2E1 , [E1,E7] = −2E2 , [E1,E9] = −2E4 , [E1,E10] = 4E5 , [E2,E4] = E1 , 
[E2,E5] = E2 , [E2,E6] = E2 , [E2,E7] = 2E3 , [E2,E8] = E4 , [E2,E9] = −E5 − E6 , 
[E2,E10] = −2E7 , [E3,E4] = −E2 , [E3,E6] = 2E3 , [E3,E8] = −E6 , [E3,E9] = −E7 , 

E = (E�

�
) =

⎛
⎜⎜⎜⎝

a5 a7 a9 2a10
−a4 a6 a8 a9
a2 a3 −a6 −a7

−2a1 a2 a4 −a5

⎞
⎟⎟⎟⎠
,

EI =
�E

�aI
, I = 1, 2,… 10,

1  For some of the Riemannian counterparts of the structures considered here, see for example, [6].
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[E4,E5] = E4 , [E4,E6] = −E4 , [E4,E7] = E5 − E6 , [E4,E9] = −2E8 , [E4,E10] = −2E9 , 
[E5,E7] = E7 , [E5,E9] = E9 , [E5,E10] = 2E10 , [E6,E7] = −E7 , [E6,E8] = 2E8 , [E6,E9] = E9 , 
[E7,E8] = E9 , [E7,E9] = E10.

We see that there are at least two ��(2,ℝ) Lie algebras here. The first one is

and the second is

The reason for distinguishing these two is as follows:
The eight 1-dimensional vector subspaces �I = Span(EI) , I = 1, 2, 3, 4, 7, 8, 9, 10 , of 

��(4,ℝ) are the root spaces of this Lie algebra. They correspond to the Cartan subalgebra 
of ��(4,ℝ) given by � = Span(E5,E6) . It follows that the pairs (EI ,EJ) of the root vectors, 
such that I + J = 11 , I, J ≠ 5, 6 , correspond to the opposite roots of ��(2,ℝ) . Knowing the 
Killing form for ��(2,ℝ) , which in the basis (EI) , and its dual basis (EI) , , is

one can see that the roots corresponding to the root vectors (E1,E10) and (E3,E8) are long, 
and the roots corresponding to the root vectors (E2,E9) and (E4,E7) are short; compare the 
Euclidian lengths of these roots as drawn on the G2 root diagram presented at the beginning 
of this article.2 Thus, the Lie algebra ��(2,ℝ)l containing root vectors (E1,E10) correspond-
ing to the long roots lies quite different in ��(4,ℝ) than the Lie algebra ��(2,ℝ)s containing 
the root vectors (E2,E9) corresponding to the short roots.

3 � G2 structures on ��(4,ℝ)∕��(2,ℝ)l

3.1 � Compatible pairs (g,�) on Ml

To consider the homogeneous space Ml = ��(4,ℝ)∕��(2,ℝ)l , it is convenient to change 
the basis (EI) in ��(4,ℝ) to a new one, (eI) , in which the last three vectors span ��(2,ℝ)l . 
Thus, we take:

If now, one considers (eI) as the basis of the Lie algebra of left invariant vector fields on 
the Lie group ��(4,ℝ) then the dual basis (eI) , , of the left invariant forms on 
��(4,ℝ) satisfies:

��(2,ℝ)l = Span
ℝ
(E1,E5,E10),

��(2,ℝ)s = Span
ℝ
(E2,E5 + E6,E9).

K =
1

12
KIJE

I
⊙ EJ = −4E1

⊙ E10 + 2E2
⊙ E9 + E3

⊙ E8

− 2E4
⊙ E7 + E5

⊙ E5 + E6
⊙ E6,

e1 = E2, e2 = E3, e3 = E4, e4 = E6, e5 = E7, e6 = E8, e7 = E9, e8 = E1, e9 = E5, e10 = E10.

2  We hope that the reader noticed that we use the same symbol E
I
 for ‘root vectors’ spanning 1-dimensional 

‘root spaces’ of �2 , as well as for the ‘roots’ E
I
 of �2 depicted on the root diagram.
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Here we used the usual formula relating the structure constants cIJK , from [eJ , eK] = cIJKeI , 
to the differentials of the Maurer–Cartan forms (eI) , deI = −

1

2
cIJKe

J ∧ eK.
In this basis, the Killing form on ��(4,ℝ) is

Here, we have used the notation eI ⊙ eJ =
1

2
(eI ⊗ eJ + eJ ⊗ eI) , (eI)2 = eI ⊙ eI.

One can now use equations (3.1) to see that the homogeneous space 
Ml = ��(4,ℝ)∕��(2,ℝ)l is the leaf space of a certain integrable rank 3 distribution Dl 
on ��(4,ℝ) , establishing explicitly that ��(4,ℝ) has, in particular, the structure of the 
principal ��(2,ℝ) fiber bundle ��(2,ℝ)l → ��(4,ℝ) → Ml = ��(4,ℝ)∕��(2,ℝ)l.

Indeed, the 3-dimensional distribution Dl , generated by the vector fields X 
on ��(4,ℝ) annihilating the span of the 1-forms (e1, e2,… , e7) , is integrable, 
de� ∧ e1 ∧ e2⋯ ∧ e7 ≡ 0 , � = 1, 2… , 7 , so that we have a well-defined 7-dimensional 
leaf space Ml of the corresponding foliation. Moreover, the Maurer–Cartan equations 
(3.1), restricted to a leaf defined by (e1, e2,… , e7) ≡ 0 , reduce to de8 = −2e8 ∧ e9 , 
de9 = −4e8 ∧ e10 , de10 = −2e9 ∧ e10 , showing that each leaf can be identified with the 
Lie group ��(2,ℝ)l . Thus, the projection ��(4,ℝ) → Ml from the Lie group ��(4,ℝ) to 
the leaf space Ml is the projection to the homogeneous space Ml = ��(4,ℝ)∕��(2,ℝ)l.

In this section, I will use from now on Greek indices �, � , etc., to run from 1 to 7. 
They number the first seven basis elements in the bases (eI) and (eI).

Now, I look for all bilinear symmetric forms g = g
𝜇𝜈
e𝜇 ⊙ e𝜈 on ��(4,ℝ) , with con-

stant coefficients g
��

= g
��

 , which are constant along the leaves of the foliation defined 
by Dl . Technically, I search for those g whose Lie derivative with respect to any vector 
field X from Dl vanishes,

I have the following proposition:

Proposition 3.1  The most general g = g
𝜇𝜈
e𝜇 ⊙ e𝜈 satisfying condition (3.2) is

(3.1)

de1 = −e1 ∧ (e4 + e9) + e2 ∧ e3 − 2e5 ∧ e8

de2 = −2e1 ∧ e5 − 2e2 ∧ e4

de3 = −e1 ∧ e6 + e3 ∧ (e4 − e9) − 2e7 ∧ e8

de4 = e1 ∧ e7 + e2 ∧ e6 + e3 ∧ e5

de5 = 2e1 ∧ e10 + e2 ∧ e7 + e5 ∧ (e9 − e4)

de6 = 2e3 ∧ e7 − 2e4 ∧ e6

de7 = 2e3 ∧ e10 − e5 ∧ e6 + e7 ∧ (e4 + e9)

de8 = −e1 ∧ e3 − 2e8 ∧ e9

de9 = e1 ∧ e7 − e3 ∧ e5 − 4e8 ∧ e10

de10 = −e5 ∧ e7 − 2e9 ∧ e10.

K =
1

12
cIJKc

K
LIe

J
⊙ eL = (e4)2 − 2e3 ⊙ e5 + e2 ⊙ e6 + 2e1 ⊙ e7 + (e9)2 − 4e8 ⊙ e10.

(3.2)LXg = 0 for all X in Dl.

g = g22(e
2)2 + 2g24e

2
⊙ e4 + g44(e

4)2 + 2g35(e
3
⊙ e5 − e1 ⊙ e7)

+ 2g26e
2
⊙ e6 + 2g46e

4
⊙ e6 + g66(e

6)2.



Annals of Global Analysis and Geometry	

1 3

Thus, I have a 7-parameter family of bilinear forms on ��(4,ℝ) that descend to well-
defined pseudo-Riemannian metrics on the leaf space Ml . Note that the restriction of the 
Killing form K to the space where (e8, e9, e10) ≡ 0 is in this family. This corresponds to 
g22 = g24 = g46 = 0 and g44 = 2g26 = −g35 = 1.

Since the aim of my note is not to be exhaustive, but rather to show how to produce 
G2 structures on ��(4,ℝ) homogeneous spaces, from now on I will restrict myself to 
only one ��(2,ℝ)l invariant bilinear form g on ��(4,ℝ) , namely to

coming from the restriction of the Killing form. It follows from Proposition 3.1 that this 
form is a well-defined (3, 4) signature metric on the quotient space Ml = ��(4,ℝ)∕��(2,ℝ)l
.

I now look for the 3-forms � =
1

6
�
���

e� ∧ e� ∧ e� on ��(4,ℝ) that are constant along 
the leaves of the distribution Dl , i.e., such that

Then, I have the following proposition.

Proposition 3.2  There is a 10-parameter family of 3-forms � =
1

6
�
���

e� ∧ e� ∧ e� on 
��(4,ℝ) which satisfy condition (3.4). The general formula for them is:

Here e��� = e� ∧ e� ∧ e� , and a, b, f, h, p, q, r, s, t and u are real constants.

Thus there is a 10-parameter family of 3-forms � that descends from ��(4,ℝ) to the 
��(4,ℝ) homogeneous space Ml = ��(4,ℝ)∕��(2,ℝ)l.

Now, I introduce an important notion of compatibility of a pair (g,�) where g is a 
metric and � is a 3-form on a 7-dimensional oriented manifold M. The pair (g,�) on M 
is compatible if and only if 

Here vol(g) is a volume form on M related to the metric g.
Restricting, as I did, to the ��(4,ℝ) invariant metric gK on Ml as in (3.3), I now ask 

which of the 3-forms � from Proposition 3.2 are compatible with the metric (3.3). In 
other words, I now look for the constants a, b, f, h, p, q, r, s, t and u such that

for g = gK given in (3.3).
I have the following proposition.

Proposition 3.3  The general solution to the Eq. (3.5) is given by

(3.3)gK = (e4)2 − 2e3 ⊙ e5 + e2 ⊙ e6 + 2e1 ⊙ e7,

(3.4)LX� = 0 for all X in Dl.

� = fe125 + a(e235 − e127) + pe145 + q(e147 + e345)

+ se156 + t(e356 − e167) + he237 + be246 + re347 + ue367.

(3.5)
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This leads to the following corollary.

Corollary 3.4  The most general pair (gK ,�) on Ml compatible with the ��(4,ℝ) invariant 
metric

coming from the Killing form in ��(4,ℝ) , is a 3-parameter family with � given by:

Here a ≠ 0 , p ≠ 0 , q ≠ 1 are free parameters, and e��� = e� ∧ e� ∧ e� as before.

3.2 � G2 structures in general

Compatible pairs (g,�) on 7-dimensional manifolds are interesting since they give exam-
ples of G2 structures [2]. In general, a G2 structure consists of a compatible pair (g,�) of 
a metric g and a 3-form � on a 7-dimensional manifold M, and it is in addition assumed 
that the 3-form � is generic, meaning that at every point of M it lies in one of the two open 
orbits of the natural action of ��(7,ℝ) on 3-forms in ℝ7 . The simple exceptional Lie group 
G2 appears here as the common stabilizer in ��(7,ℝ) of both g and �.

It follows (from compatibility) that the G2 structures can have metrics g of only two sig-
natures: the Riemannian ones and (3, 4) signature ones. If the signature of g is Riemannian, 
the corresponding G2 structure is related to the compact real form of the simple exceptional 
complex Lie group G2 , and in the (3, 4) signature case the corresponding G2 structure is 
related to the noncompact (split) real form of the complex group G2 . In this sense, our Cor-
ollary 3.4 provides a 3-parameter family of split real form G2 structures on Ml.

G2 structures can be classified according to the properties of their intrinsic torsion [1, 
2]. Making a long story short, this torsion is totally determined by finding four p-forms 
�p on M, p = 0, 1, 2, 3 , each belonging to one of four different irreducible representations 
of G2 . Before telling on how to find these forms given a G2 structure (g,�) , we need some 
preparation.

We recall that the group G2 acts in ℝ7 , and this induces its action on spaces 
⋀p of 

p-forms in ℝ7 . Of course the 1-dimensional space 
⋀0 is G2 irreducible, as well as is the 

space of 1-forms 
⋀1

=
⋀1

7
 . The G2 irreducible decompositions of the spaces of 2- and 

3-forms look like 
⋀2

=
⋀2

7
⊕

⋀2

14
 and 

⋀3
=
⋀3

1
⊕

⋀3

7
⊕

⋀3

27
 . Here we use the convention 

that the lower index i in 
⋀p

i
 denotes the dimension of the corresponding representation. It is 

further convenient to introduce the Hodge dual, ∗ , which is defined on p-forms � by

b =
1

2
, f =

ap

1 − q
, h =

a(q − 1)

p
, r =

q2 − 1

p
, s =

p(1 − q)

4a
, t

=
1 − q2

4a
, u =

(q2 − 1)(q + 1)

4ap
.

gK = (e4)2 − 2e3 ⊙ e5 + e2 ⊙ e6 + 2e1 ⊙ e7,

� =
ap

1 − q
e125 + a(e235 − e127) + pe145 + q(e147 + e345) +

p(1 − q)

4a
e156

+
1 − q2

4a
(e356 − e167) +

a(q − 1)

p
e237 +

1

2
e246 +

q2 − 1

p
e347 +

(q2 − 1)(q + 1)

4ap
e367.
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By the Hodge duality, the decomposition of 
⋀4 into G2 irreducible compo-

nents is similar to this for 
⋀3 . We further mention that the 7-dimensional rep-

resentations 
⋀1

7
 , 
⋀2

7
 and 

⋀3

7
 are all G2 equivalent. Also, one can see that, e.g., ⋀3

27
= {� ∈

⋀3
s.t. � ∧ � = 0 & �∧ ∗ � = 0}.

The intrinsic torsion components �0 , �1 , �2 and �3 have values in the following G2 irreduc-
ible modules: the 3-form �3 has values in the 27-dimensional irreducible representation 

⋀3

27
 , 

the 2-form �2 has values in the 14-dimensional irreducible representation 
⋀2

14
 , the 1-form �1 

has values in the 7-dimensional irreducible representation 
⋀1

7
 , and the 0-form �0 has values in 

the trivial representation 
⋀0

1
.

The result of Bryant [1, 2] states that for every G2 structure (g,�) on M there exist unique 
forms �0 , �1 , �2 and �3 on M, with values in the above-mentioned representations, such that

Thus, Eq. (3.6) enable to determine all the intrinsic torsion components �0 , �1 , �2 and �3 of a 
given G2 structure (g,�) . They are called Bryant’s [1, 2] equations. It follows that vanishing 
or not of each of the forms �p is a G2 invariant property of a G2 structure.

3.3 � All ��(4,ℝ) symmetric G2 structures on Ml with the metric coming 
from the Killing form

The below theorem characterizes the G2 structures corresponding to compatible pairs (gK ,�) 
from Corollary 3.4; it summarizes the already obtained results and, in addition, provides for-
mulas for the intrinsic torsion which are needed for the characterization.

Theorem 3.5  Let gK be the (3, 4) signature metric on Ml = ��(4,ℝ)∕��(2,ℝ)l arising as 
the restriction of the Killing form K from ��(4,ℝ) to Ml,

Then the most general G2 structure associated with such gK is a 3-parameter family (gK ,�) 
with the 3-form

For this structure, the torsions �
�
 solving the Bryant’s equations (3.6) are:

(3.6)
d� = �0 ∗ � + 3�1 ∧ �+ ∗ �3

d ∗ � = 4�1∧ ∗ � + �2 ∧ �.

gK = (e4)2 − 2e3 ⊙ e5 + e2 ⊙ e6 + 2e1 ⊙ e7.

� =
ap

1 − q
e125 + a(e235 − e127) + pe145 + q(e147 + e345) +

p(1 − q)

4a
e156

+
1 − q2

4a
(e356 − e167) +

a(q − 1)

p
e237 +

1

2
e246 +

q2 − 1

p
e347 +

(q2 − 1)(q + 1)

4ap
e367.
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where as usual e�� = e� ∧ e� and e��� = e� ∧ e� ∧ e�.

Thus, the 3-parameter family of G2 structures on Ml described in this theorem have the 
entire 14-dimensional torsion �2 = 0 . This means that all these G2 structures are integrable 
in the terminology of [3, 4], or what is the same, this means that they all have the totally 
skew symmetric torsion.

4 � G2 structures on ��(4,ℝ)∕��(2,ℝ)s

Now we consider the homogeneous space Ms = ��(4,ℝ)∕��(2,ℝ)s . Since ��(2,ℝ) is 
spanned by E2,E5 + E6,E9 , it is convenient to put these vectors at the end of the new basis 
of the Lie algebra ��(4,ℝ) . We choose this new basis (fI) in ��(4,ℝ) as:

�0 =
6

7

(2a − p)2q − (2a + p)2

ap
,

�1 =
1

4
(2a − p)

(
− e2 +

1

2

(2a + p)(q − 1)

ap
e4 +

1

2

q2 − 1

ap
e6

)
,

�2 = 0,

�3 =
(

3

28
(2a − p)2 +

8ap

7(q − 1)

)
e125 +

11p2 + 16ap − 12a2 + 3q(2a − p)2

28p
e127

−
44a2 + 16ap − 3p2 + 3q(2a − p)2

28a
e145

+
(7 − 4q)(2a + p)2 − 3q2(2a − p)2

28ap
e147

+
3p2(q − 1)2 − 12ap(q2 − 1) + 4a2(31 + 22q + 3q2)

112a2
e156

−
(q2 − 1)(44a2 + 16ap − 3p2 + 3q(2a − p)2)

112a2p
e167

+
12a2 − 16ap − 11p2 − 3q(2a − p)2

28p
e235

−
12a2(q − 1)2 − 12ap(q2 − 1) + p2(31 + 22q + 3q2)

28p2
e237

+
4ap(6 − q) + (4a2 + p2)(q − 1)

14ap
e246

+
(7 − 4q)(2a + p)2 − 3q2(2a − p)2

28ap
e345

+
(q2 − 1)(12a2 − 16ap − 11p2 − 3q(2a − p)2)

28ap2
e347

+
(q2 − 1)(44a2 + 16ap − 3p2 + 3q(2a − p)2)

112a2p
e356

+
(q2 − 1)(q + 1)(12a2 − 44ap + 3p2 − 3q(2a − p)2)

112a2p2
e367,
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If now, one considers (fI) as the basis of the Lie algebra of invariant vector fields on the Lie 
group ��(4,ℝ) , then the dual basis (f I) , , of the left invariant forms on ��(4,ℝ) , 
satisfies:

In this basis, the Killing form on ��(4,ℝ) is

where as usual the structure constants cIJK are defined by [fI , fJ] = cKIJfK.
Using the same arguments, as in the case of Ml , we again see 

that ��(4,ℝ) has the structure of the principal ��(2,ℝ) fiber bundle 
��(2,ℝ)s → ��(4,ℝ) → Ms = ��(4,ℝ)∕��(2,ℝ)s over the homogeneous space 
Ms = ��(4,ℝ)∕��(2,ℝ)s . In particular, we have a foliation of ��(4,ℝ) by integral leaves 
of an integrable distribution Ds spanned by the annihilator of the forms (f 1, f 2,… , f 7) . 
As before, also in this section, we will use Greek indices �, � , etc., to run from 1 to 7. 
They now number the first seven basis elements in the bases (fI) and (f I).

Repeating the procedure from the previous sections, I now search for all bilinear 
symmetric forms g = g

𝜇𝜈
f 𝜇 ⊙ f 𝜈 on ��(4,ℝ) , with constant coefficients g

��
= g

��
 , whose 

Lie derivative with respect to any vector field X from Dl vanishes,

I have the following proposition.

Proposition 4.1  The most general g = g
𝜇𝜈
f 𝜇 ⊙ f 𝜈 satisfying condition (4.2) is

Thus, this time, I only have a 4-parameter family of bilinear forms on ��(4,ℝ) that 
descend to well-defined pseudo-Riemannian metrics on the leaf space Ms . Note that the 

f1 = E1, f2 = E3, f3 = E4, f4 = E6 − E5, f5 = E7, f6 = E8,

f7 = E10, f8 = E2, f9 = E5 + E6, f10 = E9.

(4.1)

df 1 = 2f 1 ∧ (f 4 − f 9) + f 3 ∧ f 8

df 2 = −2f 2 ∧ (f 4 + f 9) + 2f 5 ∧ f 8

df 3 = 2f 1 ∧ f 10 + 2f 3 ∧ f 4 + f 6 ∧ f 8

df 4 = 2f 1 ∧ f 7 +
1

2
f 2 ∧ f 6 + f 3 ∧ f 5

df 5 = f 2 ∧ f 10 + 2f 4 ∧ f 5 − 2f 7 ∧ f 8

df 6 = 2f 3 ∧ f 10 − 2(f 4 + f 9) ∧ f 6

df 7 = 2(f 4 − f 9) ∧ f 7 − f 5 ∧ f 10

df 8 = 2f 1 ∧ f 5 + f 2 ∧ f 3 − 2f 8 ∧ f 9

df 9 = −2f 1 ∧ f 7 +
1

2
f 2 ∧ f 6 + f 8 ∧ f 10

df 10 = 2f 3 ∧ f 7 − f 5 ∧ f 6 − 2f 9 ∧ f 10.

K =
1

12
cIJKc

K
LIf

J
⊙

f L = 2(f 4)2 − 2f 3 ⊙ f 5 + f 2 ⊙ f 6 − 4f 1 ⊙ f 7 + 2(f 9)2 + 2f 8 ⊙ f 10,

(4.2)LXg = 0 for all X in Ds.

g = g33
(
(f 3)2 − 2f 1 ⊙ f 6

)
+ g44(f

4)2 + g55
(
(f 5)2 + 2f 2 ⊙ f 7

)

+ 2g26
(
− 2f 3 ⊙ f 5 + f 2 ⊙ f 6 − 4f 1 ⊙ f 7

)
.
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restriction of the Killing form K to the space where (f 8, f 9, f 10) ≡ 0 is in this family. This 
corresponds to g33 = g55 = 0 and g44 = 2 , g26 = 1∕2.

Again for simplicity reasons, I will solve the problem of finding ��(4,ℝ) invariant G2 
structures on Ms restricting to only those pairs (g,�) for which g = gK , where

which again means that I only will consider one metric, the one coming from the restric-
tion of the Killing form of ��(4,ℝ) to Ms . It is a well-defined (3, 4) signature metric on the 
quotient space Ms = ��(4,ℝ)∕��(2,ℝ)s.

I now look for the 3-forms � =
1

6
�
���

f � ∧ f � ∧ f � on ��(4,ℝ) which are such that

I have the following proposition.

Proposition 4.2  There is precisely a 5-parameter family of 3-forms � =
1

6
�
���

f � ∧ f � ∧ f � 
on ��(4,ℝ) which satisfies condition (4.4). The general formula for � is:

Here f ��� = f � ∧ f � ∧ f � , and a, b, q, h and p are real constants.

Solving for all 3-forms � from this 5-parameter family that are compatible, as in (3.5), with 
the metric gK from (4.3), I arrive at the following proposition.

Proposition 4.3  The general solution to the equations (3.5) is given by

This leads to the following corollary.

Corollary 4.4  The most general pair (gK ,�) on Ms compatible with the ��(4,ℝ) invariant 
metric

coming from the Killing form in ��(4,ℝ) , is a 1-parameter family with � given by:

Here q ≠ 0 is a free parameter, and f ��� = f � ∧ f � ∧ f � as before.

(4.3)gK = 2(f 4)2 − 2f 3 ⊙ f 5 + f 2 ⊙ f 6 − 4f 1 ⊙ f 7,

(4.4)LX� = 0 for all X in Ds.

� = a(4f 147 + f 246 + 2f 345) + b(2f 156 + f 236 − 4f 137) + qf 136

+ h(f 256 − 4f 157 − 2f 237) + pf 257.

a =
1

2
, b = h = 0, p =

1

q
.

gK = 2(f 4)2 − 2f 3 ⊙ f 5 + f 2 ⊙ f 6 − 4f 1 ⊙ f 7,

� = 2f 147 +
1

2
f 246 + f 345 + qf 136 +

1

q
f 257.
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4.1 � All ��(4,ℝ) symmetric G2 structures on Ms with the metric coming 
from the Killing form

Similarly as in Sect. 3.3 we now summarize the already obtained results about the consid-
ered Sp(2,ℝ) symmetric G2 structures on Ms in a theorem; it is given below and has also a 
new part consisting of the formulas for the intrinsic torsion.

Theorem 4.5  Let gK be the (3, 4) signature metric on Ms = ��(4,ℝ)∕��(2,ℝ)s arising as 
the restriction of the Killing form K from ��(4,ℝ) to Ms,

Then, the most general G2 structure associated with such gK is a 1-parameter family (gK ,�) 
with the 3-form

For this structure

i.e., the torsions

The rest of the torsions solving Bryant’s equations (3.6) are:

where, as usual f ��� = f � ∧ f � ∧ f � ; q ≠ 0.

So on Ms = ��(4,ℝ)∕��(2,ℝ)s there exists a 1-parameter family of the above G2 struc-
tures which is coclosed. Therefore, in particular, it is integrable

I note that formally I can also obtain coclosed G2 structures on Ml , using Theorem 3.5. 
It is enough to take p = 2a in the solutions of this Theorem. The question if in the resulting 
2-parameter family of the coclosed G2 structures there is a 1-parameter subfamily equiva-
lent to the structures I have on Ms via Theorem 4.5 needs further investigation. However, I 
doubt that the answer to this question is positive, since it is visible from the root diagram 
for ��(4,ℝ) that the spaces Ml and Ms are geometrically quite different. Indeed, apart from 
the ��(4,ℝ) invariant G2 structures, which I have just introduced in this note, the spaces 
Ml and Ms have quite different additional ��(4,ℝ) invariant structures. A short look at the 
root diagram on page 1 of this note shows that Ml has two well-defined ��(4,ℝ) invariant 
rank 3-distributions, corresponding to the pushforwards from ��(4,ℝ) to Ml of the vector 
spaces Dl1 = Span

ℝ
(E2,E3,E7) and Dl2 = Span

ℝ
(E4,E8,E9) . Likewise Ms , in addition to 

the discussed G2 structures, has also a well defined pair of ��(4,ℝ) invariant rank 3-dis-
tributions, corresponding to the pushforwards from ��(4,ℝ) to Ms of the vector spaces 
Ds1 = Span

ℝ
(E1,E4,E8) and Ds2 = Span

ℝ
(E3,E7,E10) . The problem is that these two sets 

of pairs of ��(4,ℝ) invariant distributions are quite different. The distributions on Ml have 

gK = 2(f 4)2 − 2f 3 ⊙ f 5 + f 2 ⊙ f 6 − 4f 1 ⊙ f 7.

� = 2f 147 +
1

2
f 246 + f 345 + qf 136 +

1

q
f 257.

d ∗ � = 0,

�1 = �2 = 0.

�0 = −
18

7
,

�3 =
2

7

(
4f 147 + f 246 + 2f 345

)
−

3

7

(
q f 136 +

1

q
f 257

)
.
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constant growth vector (2,  3), while the distributions on Ms are integrable. These pairs 
of distributions constitute an immanent ingredient of the geometry on the corresponding 
spaces Ml and Ms and, since they are diffeomorphically nonequivalent and they make the 
G2 geometries there quite different. I believe that this fact makes the G2 structures obtained 
on Ml and Ms really nonequivalent.
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