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Abstract
We explore and show a natural relationship between all third-order ordinary
differential equations that possess a vanishing Wunschmann invariant, with
conformal metrics on 3-manifolds and Cartan’s normal O(3, 2) conformal
connections. The generalization to pairs of second-order PDEs and their
relationship to Cartan’s normal O(4, 2) conformal connections on four-
dimensional manifolds is discussed.

PACS numbers: 0240, 0230H

1. Introduction

The purpose of this work is to show the rich geometric structure that is buried in a large class
of differential equations. Some of this structure was known for a long time which will be
reviewed here; the other parts of the structure are new. Here we will concentrate on third-order
ODEs, first discussing all third-order ODEs and then, via the emerging structure, narrowing
the discussion down to a large special subclass. We, however, stress that the discussion could
be extended to large classes of PDEs and to lower- and higher-order ODEs.

A generic ordinary differential equation of third order has the form

u′′′ = F(u, u′, u′′, s), (1)

where u is a real function of s and a prime denotes the ordinary derivative with respect
to s. The right-hand side is specified by the arbitrary C∞ function F of four arguments.
The equivalence problem, which consists of classifying the functions F which are equivalent
under a variety of different transformations (contact, point and fibre preserving) has been
extensively studied, most notably by Cartan [1–3] and Chern [4]. It has been revisited more
recently by many authors including Tod [5], Frittelli, Kamran, Kozameh and Newman [6, 7]
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and Nurowski and Godlinski [12]. One remarkable result that follows from the equivalence
problem is that the equivalence classes of third-order ODEs split into two major classes;
those with a vanishing Wunschmann invariant [8] and those with a non-vanishing invariant.
The Wunschmann invariant, I [F ], a differential expression involving F and its derivatives
in all four variables, was discovered by early workers in the theory of differential equations,
extensively used by Chern [4]. An analogue of the Wunschmann invariant in a more general
setting (pairs of second-order PDEs as well as single third-order ODEs) was discovered in
the context of general relativity [9–11] and is known as the ‘metricity condition’, a necessary
condition for the reformulation of the Einstein equations in terms of null surfaces. (It will be
referred to as the generalized Wunschmann invariant.) More specifically, when a third-order
ODE satisfies I [F ] = 0, one can show that the solution space, i.e., the three-dimensional
space of constants of integration, {xa}, possesses, directly from the differential equation (1), a
conformal Lorentzian metric with the level surfaces of the solutions themselves, u = z(xa, s),

forming a one-parameter family of null surfaces. All members of the equivalence class, under
contact transformations, yield the same conformal metric. The converse statement is also
true; namely, given a three-dimensional conformal Lorentzian spacetime, from any complete
solution (u = U(xa, s)) of the eikonal equation, gab∂aU∂bU = 0, one can obtain a third-order
ODE (by differentiating with respect to s three times and eliminating xa) all belonging to the
same equivalence class [6]. This result generalizes to pairs of second-order PDEs that possess
a vanishing generalized Wunschmann invariant; the solution space is four dimensional with
a conformal Lorentzian 4-metric. All members of the same equivalence class yield the same
metric [6].

The purpose of this work is to study further geometric structures arising from third-
order ODEs with vanishing Wunschmann invariant and, in particular, to show how a Cartan
normal conformal connection arises in this context. Though these structures are invariant
under general contact transformations, the discussion of this issue will be presented elsewhere
[4, 12].

In section 2, we describe in a very general context (with no apparent relationship to
our third-order ODE) certain geometric structures and curvature decompositions associated
with an arbitrary Weyl geometry on an n-dimensional spacetime. This will be essentially
pedagogical and presented without the proofs, which are simple. This general discussion is
associated with the remainder of the paper in the following manner. In the special case of
three dimensions, these results describe a simple cross-section of a bundle constructed in the
latter sections from the differential equation.

In section 3, we review, and partially relate to the previous section, the basic structures
associated with our third-order ODE, a set of three (Pfaffian) 1-forms on a 4-manifold from
which one finds an associated torsion-free (partial) connection. It is here that the condition
for the vanishing Wunschmann invariant arises; the set of all third-order ODEs splits into
two classes. In section 4, the existence and construction of a three-dimensional Lorentzian
conformal metric on the solution space is described and some properties of the derivatives
arising from the connection are discussed, while in section 5 a few special cases of three
arbitrary functions (a Weyl 1-form) arising in the connection are briefly mentioned. In
section 6, the curvature 2-forms are first introduced. We show that the ordinary curvature
of the Weyl geometry decomposes in a non-standard manner; the Ricci part into a unique
1-form and a new curvature (the first Cartan curvature), which in general is trace-free but in
this three-dimensional case vanishes. This leads, in section 7, to the introduction of a further
(a second Cartan) curvature 2-form and the realization that we are dealing with a Cartan normal
O(3, 2) conformal connection. In other words, third-order ODEs, satisfying the Wunschmann
condition, encode an entire O(3, 2) conformal connection on the solution space. Finally in
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section 9, we discuss how this extends to pairs of second-order PDEs and an O(4, 2) conformal
connection on the four-dimensional solution space and its relationship to twistor theory.

2. Weyl geometry

We begin, in a completely conventional manner, with an n-dimensional manifold and n
arbitrary independent 1-forms θ i which determine a metric g by

g = ηij θ
iθ j , (2)

with ηij a constant flat metric (signature (1, n − 1))5, which is used to raise and lower indices
and a connection 1-form ωi

j (defining covariant differentiation) that is uniquely determined
by

ωij = ω[ij ] + ηijA, (3)

(with A a given but arbitrary (Weyl) 1-form) and the torsion-free structure equation acting as
an algebraic equation for ω[ij ],

dθ i + ωi
j ∧ θj = 0. (4)

The curvature 2-form �i
j is then defined by

�i
j = dωi

j + ωi
k ∧ ωk

j . (5)

At this point we break with the conventional treatment and define a new curvature 2-form
�i

j (referred to as the first Cartan curvature) by

�i
j = �i

j + θ i ∧ �j + ηil�l ∧ θmηjm − δi
j�k ∧ θk (6)

with �j determined uniquely by the following condition. Expanding both �i
j and �i

j as

�i
j = 1

2�i
jlmθ l ∧ θm �i

j = 1
2�i

jlmθ l ∧ θm (7)

and requiring that

	ij ≡ �l
ilj = 0, (8)

one finds that �j is given uniquely in terms of the ‘Ricci tensor’ of �i
jlm, i.e., in terms of

Rij ≡ �l
ilj . Explicitly, we find that

�j = Kjmθm, Kjm = − 1

n
R[jm] − 1

n − 2
RT F

(jm) − 1

2n(n − 1)
Rηjm, (9)

with RT F
(jm) the trace-free part of R(ij) and R = ηijRij .

We have shifted the curvature information from �i
j to the traceless �i

j and the 1-form
�i which contains all the ‘Ricci tensor’ information.

Continuing, we define a second Cartan curvature 2-form by

�i = d�i + �j ∧ ωj
i ≡ ∇ ∧ �i. (10)

All the quantities, the 1-forms ωi
j and �i, and the 2-forms �i

j and �j are unique
functions of the given forms θ i and A. �i

j is independent of A and is the Weyl tensor. In
three dimensions �i

j = 0. When A = 0, we have that ωi
j is the ordinary metric connection.

When n = 3 and A = 0, �i ≡ Cijkθ
j ∧ θk is the Cotton–York tensor. For dimensions n > 3,

�i is determined by first derivatives of the Weyl tensor and A. All curvature statements can
be made in terms of �i

j , �i and �j. As an example, the Bach tensor can be given in terms of
a derivative of �i.

5 This is easily generalized to arbitrary signature, (p, q).
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Most of the above statements can be checked by direct calculation. However, the
construction of the Bach tensor from �i is apparently of considerable difficulty [13].

In this section, we have constructed a trivial local cross-section of a principal H-bundle
P, with a Cartan normal conformal connection [14].

To explain this, we begin with the conformal group G = Conformal(1, n− 1), composed
of the conformal rotations (dilatation and rotations), i.e., CO(1, n− 1), the n translations, Tn,

and the n special conformal translations, T ∗
n . The principal bundle P is constructed from the

group H which is a subgroup of the conformal group G consisting of CO(1, n − 1) and the n
special conformal translations, T ∗. (The translation part of G have been omitted.) The Cartan
conformal connection takes values in the Lie algebra of G, i.e., G′. Since Conformal(1, n− 1)

is isomorphic to O(2, n), we can represent the Lie algebra G′ by (n + 2) × (n + 2) matrices
[14].

The Cartan connection, ω, and curvature, R, which are given respectively by

ω = (
θ i, ωj

i ,�j

)
(11)

R = (
T j = 0,�i

j ,�i

)
(12)

can be represented by the (n + 2, n + 2) matrices of 1 and 2-forms by

ωA
B =


−A �i 0

θ i ηikω[kj ] ηij�j

0 ηij θ
j A


 (13)

RA
B =


0 �i − Aj�

j
i 0

0 �i
j ηij�j

0 0 0


 (14)

with the relationship

RA
B = dωA

B + ωA
C ∧ ωC

B .

In this representation of G′, the generic element of H is represented by the matrix

b =

e−φ e−φξj

e−φ

2 ξiξj η
ij

0 �i
j �i

jη
jkξk

0 0 eφ


 (15)

with

�i
l�

j
mηjm = ηij .

Lifting the forms (13) and (14), via equation (15), to P, by

ω̂A
B = (b−1)ACωC

D(b)DB + (b−1)AC(db)CB

R̂A
B = (b−1)ACRC

D(b)DB
(16)

yields the full Cartan conformal connection and curvature on the principal H -bundle.
In the following sections, we will see how this type of structure, with n = 3, arises from

the third-order ODE. In this case G = Conformal (1, 2) ≈ O(2, 3) is a ten-parameter group
while the subgroup H = CO(1, 2) ⊗s T ∗

3 has seven parameters. Adding in the n = 3 for
the base space, the bundle P is ten-dimensional. We will obtain directly only a one-parameter
subgroup of H (so that the bundle obtained, P̃ , is only four dimensional) and not the full
seven-parameter group H. Nevertheless, it is easily seen how the other six parameters can
be inserted (via a version of equation (16)) and furthermore one clearly sees their geometric
meaning.
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3. Basic relations

We begin by reviewing some properties of the general third-order ODE,

u′′′ = F(u, u′, u′′, s) (17)

or equivalently the Pfaffian system;

β1 = du − u′ ds, β2 = du′ − u′′ ds, β3 = du′′ − F(u, u′, u′′, s) ds (18)

on the second jet bundle J 2 with local bundle coordinates xα = (u, u′, u′′, s). On this space
we introduce our basis 1-forms (θA) = (θ0, θ i) with

θ0 = ds, θ1 = β1, θ2 = β2, θ3 = β3 + aβ1 + bβ2. (19)

with (a, b), at the moment, two arbitrary functions of xα which will, shortly, be determined.
The dual vector bases, eA =(e0, ei) are

e0 = D ≡ d

ds
= ∂s + u′∂u + u′′∂u′ + F∂u′′ ,

(20)
e1 = ∂u − a∂u′′ e2 = ∂u′ − b∂u′′ e3 = ∂u′′ .

This jet bundle possesses an alternative bundle structure (which will be referred to as
P̃ ) [6]. If solutions of the third-order ODE are given by u = z(xa, s), with xa being three
constants of integration (the solution space), then the integral curves of e0 are the fibres over
the solution space. These base space coordinates can be taken to be the initial values of
(u, u′, u′′), i.e., (u(0), u′(0), u′′(0)) = (u0, u

′
0, u

′′
0). Though we do not explicitly use these

base space coordinates, the point of view associated with this alternative bundle is basic for
what follows.

On this four-dimensional space, P̃ , we define a three-dimensional distribution by the
three vectors ei, a subspace of the tangent space. This distribution is tangent to the surfaces
of fixed value of s with arbitrary values of (u, u′, u′′). We construct a ‘partial’ connection that
is associated with this subspace of the tangent bundle over P̃ in the following manner.

On P̃ we introduce the tensor field (a degenerate quadratic form) by

g = ηij θ
i ⊗ θj (21)

with ηij being the flat Minkowski 3-metric (in null-null coordinates) given by

ηij ≡

0 0 1

0 −1 0
1 0 0


 (22)

as well as a covariant derivative operator ∇B such that

∇BgCD = 2ABgCD (23)

with A = Aiθ
i + A0θ

0, an arbitrary 1-form on P̃ that we will refer to as a Weyl 1-form.
The ‘partial’ connection, compatible with equation (23) is

ωi
j = ωi

j (A)θ
A = ωi

j (k)θ
k + ωi

j (0)θ
0, ωij = ηikω

k
j = ω[ij ] + Aηij ,

which are a set of four 1-forms obtained as the algebraic solution of the (torsion free) structure
equation.

Covariant derivatives are given by

∇Aei ≡ ejω
j
iA (24)

∇Aθi ≡ −ωi
jAθj . (25)



5240 S Frittelli et al

Because of the degeneracy of g, this result does not uniquely follow from equation (23). We
require that ωi

jA satisfy the analogue of the first structure equation

dθ i + ωi
j ∧ θj = 0. (26)

From the following relations, obtained directly from the exterior derivatives of θ i,

dθ1 = ds ∧ θ2,

dθ2 = ds ∧ (θ3 − aθ1 − bθ2),

dθ3 = (Fu − aFu′′ + Da − ab) ds ∧ θ1 + (Fu′ − bFu′′ + a + Db − b2) ds ∧ θ2

+ (Fu′′ + b) ds ∧ θ3+ (au′ − bau′′ − bu + abu′′)θ2 ∧ θ1 + au′′θ3 ∧ θ1 + bu′′θ3 ∧ θ2

(27)

and (using ω33 = ω11 = 0, ω22 = −A, ω12 = −ω21, ω23 = −ω32, ω13 = ω[13] + A,

ω31 = −ω[13] + A) equation (26) written as

dθ1 + (w[31] + A) ∧ θ1 + w[32] ∧ θ2 = 0,

dθ2 − w[21] ∧ θ1 + A ∧ θ2 − w[23] ∧ θ3 = 0,

dθ3 + w[12] ∧ θ2 + (w[13] + A) ∧ θ3 = 0,

(28)

we obtain the follwing three results.
1. The equations have solutions only if the function F(u, u′, u′′, s) is restricted by the

condition

I [F ] = Fu − aFu′′ + Da − ab = 0, (29)

a relation known as the Wunschmann condition or vanishing of the Wunschmann invariant.
Though a severe condition, it nevertheless allows a very large space of solutions; the space
of solutions can be put into a one-to-one correspondence with the space of all conformal
three-dimensional Lorentzian metrics. For the remainder of this work we will always assume
that equation (11) is satisfied. (Note, however, that a non-vanishing Wunschmann invariant
could be interpreted as the existence of a non-vanishing torsion tensor associated with the
connection.)

2. The two functions (a, b) that were arbitrary to start with are now uniquely determined
as

a = − 1
2Fu′ − 1

9 (Fu′′ )2 + 1
6 (DFu′′ ) b = − 1

3Fu′′ . (30)

3. The connection is determined by

ω[32] = (
A2 − 1

2bu′′
)
θ1 + A3θ

2 − θ0

ω[31] = (A1 − au′′)θ1 − 1
2bu′′θ2 − A3θ

3 − bθ0

ω[21] = −(au′ − bau′′ − bu + abu′′)θ1 − A1θ
2 +

(
1
2bu′′ − A2

)
θ3 − aθ0

ω22 = −A = −Aiθ
i − bθ0,

(31)

where only the three components of A, namely Ai = (A1, A2, A3), are completely arbitrary.
Note that the ‘partial’ connection is uniquely given in terms of F, up to the arbitrary

choice of the three coefficients Ai. Though we will see that there are several natural choices
of Ai, there is no unique determination of them. For the most part we leave them completely
arbitrary (see equation (3)).

Remark 1. We point out now, and return to it later, that there is a natural generalization of the
forms (19) to

θ̂ 0 = ds

θ̂ 1 = αβ1,

θ̂ 2 = �(β2 + τβ1),

θ̂ 3 = α−1�2(β3 + aβ1 + bβ2),

(32)
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where the parameters τ, α and � describe respectively, a null rotation around θ̂1, a boost
transformation in the (̂θ 1, θ̂ 3) plane and a conformal rescaling of the metric, g (equation
(21)). Up to scale, they preserve the degenerate metric g. Our manifold P̃ could be extended
from four to ten dimensions by adding in as new coordinates the three (τ, α,�) and the three
Ai. This enlarged space possesses a natural geometric structure of a Cartan normal conformal
connection. (See the discussion at the end of sections 2 and 8.)

4. Construction of conformal metrics

In order to demonstrate the existence of a conformal metric on the solution space, we first note
that

£e0θ
1 = θ2, £e0θ

2 = θ3 − aθ1 − bθ2, £e0θ
3 = −aθ2 − 2bθ3 (33)

which follow from the definitions and the Wunschmann condition (equation (29)). From
equation (33), one easily sees that

£e0g = 2
3F,u′′g (34)

so that a conformal factor U can be found from

£e0U = e0(U) = − 1
3F,u′′ (35)

so that

£e0 g̃ = 0 (36)

with

g̃ ≡ e2Ug. (37)

The residual conformal freedom is given by U0 with £e0U0 = 0 or U0 = U0(x
i) with xi the

base space coordinates, i.e., an ordinary conformal rescaling of a metric on the solution space.
We have thus shown (again, but by a different argument) [6, 7], that a third-order

ODE satisfying the Wunschmann condition defines a Lorentzian three-dimensional conformal
metric. We point out that the converse is also true;any Lorentzian three-dimensional conformal
metric defines, via a complete solution of the eikonal equation, an equivalence class of third-
order ODEs that leads back to the metric by the process just explained.

For completeness, from equations (24) and (25), we display the covariant derivatives of
the ei and the θ i in the vertical directions via

e0∇ei = ejω
j
i(0), e0∇e1 = −ae2,

e0∇e2 = e1 − be2 − ae3, e0∇e3 = e2 − 2be3,

e0∇θ i = −ωi
j (0)θ

j , e0∇θ1 = −θ2,

e0∇θ2 = aθ1 + bθ2 − θ3, e0∇θ3 = aθ2 + 2bθ3.

5. Choices for A

Though we will not consider it as an important issue, we simply mention that there is a series
of different ‘natural choices’ for the first three components Ai of the Weyl 1-form A.

One can simply take them as zero or as a gradient field, i.e., Ai = ∇i�.

Alternatively, it can be considered as some additional covector field leading to a Weyl
geometry on the base space.
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Cartan [2], in order to give the curvature tensor certain simple properties, chose them as

A1 = 1
3 (Fu′′u′ − DFu′′u′′) A2 = 1

3Fu′′u′′ A3 = 0.

However, we simply leave them as three arbitrary functions, whose role in geometry will
be clarified later.

6. Curvature

In this section, we introduce two different, but closely related, curvature 2-forms, �ij and �ij

where the ‘ordinary’ curvature

�ij ≡ 1
2�ijlmθ l ∧ θm + �ijm0θ

m ∧ θ0 (38)

is defined by

�ij = dωij + ηklωik ∧ ωlj (39)

and the ‘first Cartan’ curvature by

�ij = �ij + ηilθ
l ∧ �j + �i ∧ θ lηjl − ηij�k ∧ θk, (40)

with the expansion

�ij = 1
2�ijlmθ l ∧ θm + �ijm0θ

m ∧ θ0. (41)

The 1-form �i, which can be written as

�i = wiθ
0 + Kijθ

j (42)

will be chosen so that

• the coefficient of θ0 vanishes, i.e., �ijm0 = 0,

• the trace on the first and third indices of �ijlm vanishes, i.e.,

ηil�ijlm = 0. (43)

Remark 2. As an aside we point out that with a three-dimensional base space, these two
conditions imply that �ij = 0. That, however, is true only in three dimensions.

We first show that wi can be chosen so that �ijm0 = 0.

By pointing out that �ij inherits from equation (39) the same symmetries as ωij and can
be written as

�ij = �[ij ] − ηij�22, (44)

we have

�13ij + �31ij = 2�(13)ij = −2�22ij . (45)

It follows that �ij has four 2-form components, �[12],�[13],�[23] and �22.

By taking the exterior derivative of equation (26) we obtain the first Bianchi identity

�ij ∧ θj = 0. (46)

Remembering, from equation (38), that �ij decomposes into two types of terms

�ijlm and �ijm0

the Bianchi identities yield the following relations

�2313 = −�3123 �2213 = �2312 − �1223 �1312 = �1213 (47)
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for the first set. From the second set, we obtain

�[13]l0θ
l ∧ θ0 = χ1θ

1 ∧ θ0 − χ3θ
3 ∧ θ0,

�[23]l0θ
l ∧ θ0 = χ2θ

1 ∧ θ0 + χ3θ
2 ∧ θ0, (48)

�[12]l0θ
l ∧ θ0 = −χ1θ

2 ∧ θ0 − χ2θ
3 ∧ θ0,

where, by definition, χi are given by

�22l0θ
l ∧ θ0 � χ1θ

1 ∧ θ0 + χ2θ
2 ∧ θ0 + χ3θ

3 ∧ θ0. (49)

Thus all the terms of �ijl0 are expressed in terms of χi.

By simply taking

wi = χi, (50)

and a direct calculation, using equation (40) and the first term of equation (42), we immediately
have that �ijm0 = 0.

Since, in the transformation, equation (40) there is no interaction between the forms
θm ∧ θ0 and θ l ∧ θm, we can now concentrate just on the relationship between �ijlm and �ijlm

using

�i = χiθ
0 + Kijθ

j . (51)

Rewriting equation (40) as
1
2�ijlmθ l ∧ θm = (

1
2�ijlm + ηilKjm − Kimηjl − ηijKml

)
θ l ∧ θm (52a)

or

�ijlm = �ijlm + [ηilKjm − ηimKjl] − [Kimηjl − Kilηjm] − [ηijKml − ηijKlm] (53a)

and then multiplying by ηil and using equation (43), we obtain

0 = ηil�ijlm

= ηil�ijlm + 2Kjm − Kmj + Kηjm.

Simplifying, with ηil�ijlm ≡ Rjm,

0 = Rjm + 2Kjm − Kmj + Kηjm (54)

we have the algebraic equation to determine Kjm from Rjm. By taking the skew part we obtain

K[jm] = − 1
3R[jm]. (55)

From the symmetric part

R(jm) + K(jm) + Kηjm = 0

and its trace

R + 4K = 0

we find the symmetric part of Kjm

K(jm) = 1
4Rηjm − R(jm) (56)

so that

Kjm = K(jm) + K[jm] = − 1
12ηjmR − RT F

(jm) − 1
3R[jm]; (57)

the unique determination of Kjm to make the trace of �ijlm vanish. This is in agreement with
equation (9).

We thus have for the 1-form �i

�i = χiθ
0 + Kimθm, (58)

where all terms are unique functions of F(u, u′, u′′, s) and Ai.
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7. A new curvature

In this section, a new curvature 2-form, �i (the Cartan second curvature) is defined by the
third structure equation using �i from equation (58)

�i = d�i + ηlk�l ∧ ωki . (59)

Though �i can be decomposed into

�i = �ijkθ
j ∧ θk + �ij0θ

j ∧ θ0, (60)

in fact, it can be shown that

�ij0 = 0.

The proof is lengthy but straightforward. We first take the exterior derivative of equation (63),
which leads, after much cancellations, to the second set of Bianchi identities

�k ∧ θk = 0 ηjmθm ∧ �i − �j ∧ θmηmi = 0. (61)

(A third set, which we will not use, is obtained by the exterior derivative of equation (59).)
By substituting equation (60) into the Bianchi identities, one obtains an algebraic equation

for �ij0, whose only solution is �ij0 = 0.

At this point the general structure that we have been describing is complete; it is clear
that everything (θ i ,�i,�i, ωij ) can be expressed explicitly in terms of F(u, u′, u′′, s), the Ai

and their derivatives. For completeness they are given explicitly in the appendix.
Though it is clear that we are dealing with the differential geometry of a conformal

3-manifold, it is not yet a conventional treatment. We can ask where the curvature information
is. The Ricci tensor, Rij , of the ordinary curvature �ij has been put into the �i. The first
Cartan curvature �ij which is the Weyl tensor is known to vanish in three dimensions. In the
special case of vanishing Ai, the remaining curvature �i is the Cotton–York tensor and its
generalization when Ai �= 0.

8. Summary and unification

Many technical ideas have been introduced, some naturally appearing and other perhaps
appearing rather arbitrarily; however, we have followed closely, but from a different starting
point, the treatment by Kobayashi [14] of Cartan’s normal conformal connections via the three
structure equations (26), (39) and (59).

In this section, we will summarize what has been shown and then tie them together into
a unified geometric structure. We show that, essentially, we have recovered a Cartan normal
conformal, O(3, 2), connection on the principal H-bundle over the solution space, with H
being a seven-dimensional subgroup of O(3, 2) [14]. More precisely, we have recovered a
variety of cross-sections of this bundle.

We began with a third-order ODE satisfying the Wunschmann condition and a set of three
associated 1-forms, θ i, on the four-dimensional space P̃ . We then found a ‘partial’ connection

ωij = ω[ij ] + Aηij

satisfying the first (torsion-free) structure equation

dθ i + ωi
j ∧ θj = 0 (62a)

with three arbitrary functions Ai. A vanishing first-Cartan curvature 2-form was found via the
second structure equation

�ij = 0 = dωij + ηklωik ∧ ωlj + ηilθ
l ∧ �j + �i ∧ θ lηjl − ηij�k ∧ θk (63)
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with the proper choice of �i, equation (58). Finally, a last structure equation and second-Cartan
curvature 2-form was introduced by

�i = d�i + ηjk�j ∧ ωki ≡ D�i (64)

with the property that

�i = �ijkθ
j ∧ θk.

The issue is: what is the meaning of this resulting structure?
If we now try to consider the three sets of 1-forms, ten in number,

ω = (
θj , ωk

i ,�i

)
to be a connection on P̃ , taking values in the Lie algebra of a group, the group turns out to be
the ten-dimensional group G = O(3, 2). Its Lie algebra can be graded as

O(3, 2)′= g−1 + g0 + g1

with

θjεg−1 ωk
iεg0 �iεg1.

Unfortunately, this does not work immediately; we have ten ‘connection’ 1-forms on a four-
dimensional manifold there P̃ , where instead the manifold should be the ten-dimensional
bundle P. Aside from the shortage of dimensions, all the conditions for a Cartan normal,
O(3, 2), conformal connection are there [14]; we have the three structure equations (62a),
(63), (64), with, in addition, zero torsion, trace-free (even vanishing)�ij and �i = �ijkθ

j ∧θk.

It is clear that we are dealing with a four-dimensional cross-section of the full ten-
dimensional bundle. The question is where and what are the six missing coordinates?

They actually have been discussed earlier; first we have the three arbitrary Ai, three
components of the Weyl 1-form A. They can be simply added to P̃ making it immediately
a seven-dimensional manifold. The remaining three coordinates (α, τ,�), which were
introduced in equation (32), describe scale and triad freedom that preserved the conformal
metric, g. The three parameters (s, α, τ ) parametrize the Lorentz transformation given by
�i

j in equation (15), while � describes the conformal rescaling corresponding to eφ in
equation (15). The three arbitrary Ai can be created or destroyed by the use of the variable ξk

in (15).
In the subsequent discussion, (α, τ,�) were taken to have definite values, α = � = 1

and τ = 0, though all the calculations could have been done with these parameters as arbitrary
coordinates on the ten-dimensional manifold.

The picture that emerges is a ten-dimensional space with coordinates, (u, u′, u′′, s, Ai , α,

�, τ) (or (xa, s, Ai , α,�, τ) if we had introduced base space coordinates, xa, via (u =
u(xa, s), u′ = u′(xa, s), u′′ = u′′(xa, s)). Using the base space coordinates xa, we obtain
seven fibre coordinates (s,Ai, α,�, τ). Taking any or all of these as functions on the base
space is a choice of cross-section. In our construction, we have taken the cross-section given by
α = � = 1, τ = 0 and Ai as functions of (u, u′, u′′, s). Had the calculation been done without
this restriction, we would have obtained the full Cartan, O(3, 2), conformal connection over
the three-dimensional base space.

9. Generalization

There is an obvious generalization of the material presented here. Though the details are far
from complete—the calculations being quite large—the following seems to be clearly true.



5246 S Frittelli et al

If we begin with a pair of overdetermined PDEs in two independent variables and one
dependent variable [6, 7], satisfying a generalized Wunschmann condition (or metricity
condition) and some weak inequalities, there exists a rich associated geometric structure.
From these PDEs, a four-dimensional conformal Lorentzian solution space (a spacetime
manifold) can be defined. On that solution space (the base space), a Cartan normal conformal
connection with values in the 15-dimensional group G = O(4, 2) is naturally found. The
eleven-dimensional fibres of the subgroup H = CO(1, 3) ⊗s T ∗ can be coordinatized by the
six parameters of the Lorentz group, a conformal factor and the four components of a Weyl
1-form.

It appears almost certainly that local twistor theory [15] is contained in this structure
though how, in detail, is still not clear. Furthermore, since the structures can be associated
with all conformal Lorentzian 4-spaces, the conformal Einstein equations must be contained
as a restriction on the choice of the pair of PDEs. Work has begun on these problems.

Appendix

For completeness, we give the expressions for the basic variables

{θ i, ω[ki],�i,�i}
directly in terms of F(u, u′, u′′, s) and Ai. All expressions are modulo the vanishing of the
Wunschmann invariant, i.e.,

I [F ] = Fu − aFu′′ + Da − ab = 0.

(a)

θ0 = ds

θ1 = du − u′ ds,

θ2 = du′ − u′′ ds,

θ3 = du′′ + b du′ + a du − [F(u, u′, u′′, s) + au′ + bu′′] ds,

(65)

with

a = − 1
2Fu′ − 1

9 (Fu′′ )2 + 1
6 (DFu′′ )

b = − 1
3Fu′′ .

(66)

(b)

ω[32] = (
A2 − 1

2bu′′
)
θ1 + A3θ

2 − θ0

ω[31] = (A1 − au′′)θ1 − 1
2bu′′θ2 − A3θ

3 − bθ0

ω[21] = Lθ1 − A1θ
2 +

(
1
2bu′′ − A2

)
θ3 − aθ0

ω22 = −A = −Aiθ
i − bθ0,

(67)

with

L = − 1
3 (Fuu′′ − aFu′′u′′ + 3au′ + Fu′′au′′). (68)

(c)

�1 = [DA1 − bu − aA2 + abu′′]θ0

+
[
A2L + 1

3Fu′′Lu′′ + Lu′ − A2
1 − A1u + au′′A1 − aA1u′′

]
θ1

+
[
A1u′ − bA1u′′ + 1

2abu′′u′′ + 1
2A1 bu′′ − A1A2 + Lu′′ − 1

2buu′′
]
θ2

+
[

1
2 bu′′A2 − 1

8 b2
u′′ + A1u′′ − 1

2A2
2 − 1

2 au′′u′′
]
θ3
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�2 = [DA2 − aA3 − bA2 + A1 − bu′ + bbu′′ ]θ0

+
[

1
2 abu′′u′′ − aA2u′′ + A2u − 1

2buu′′ + Lu′′ + LA3 − A1A2 + 1
2bu′′A1

]
θ1

+ 1
2

[
bbu′′u′′ − 2 bA2u′′ + 1

4b2
u′′ − 2A1A3 + 2A2u′ − A2

2 − au′′u′′ − bu′′u′
]
θ2

+
[
A2u′′ − 1

2bu′′u′′ + 1
2bu′′A3 − A2A3

]
θ3

�3 = [DA3 + A2 − 2 bA3 − bu′′]θ0

+
[

1
2bu′′A2 − au′′A3 − 1

8 b2
u′′ − aA3u′′ + A3u − 1

2A2
2 − 1

2au′′u′′
]
θ1

+
[
A3u′ − bA3u′′ − 1

2bu′′u′′ − A2A3 − bu′′A3
]
θ2 +

[
A3u′′ − A2

3

]
θ3.

(d)

�1 = 1
6Pθ1 ∧ θ2 + 1

2Nu′′θ1 ∧ θ3 − 1
2Lu′′u′′θ2 ∧ θ3

�2 = 1
2Nu′′θ1 ∧ θ2 − Lu′′u′′θ1 ∧ θ3 + 1

2au′′u′′u′′θ2 ∧ θ3,

�3 = − 1
2Lu′′u′′θ1 ∧ θ2 + 1

2au′′u′′u′′θ1 ∧ θ3 − 1
6Fu′′u′′u′′u′′θ2 ∧ θ3,

(69)

with

N = 1
3Fu′′u′′L − 2

3Fu′′Lu′′ − 2Lu′ + aau′′u′′ − auu′′ − 1
2 (au′′)2,

P = −3au′′u′′L + 3au′′Lu′′ − 3aLu′′u′′ + 3Luu′′ + 3Nu′ + Fu′′Nu′′ .

It is worth noting that

Fu′′u′′u′′u′′ = 0 (71)

which implies that

au′′u′′u′′ = Lu′′u′′ = Nu′′ = P = 0. (72)

Thus, the vanishing of Fu′′u′′u′′u′′ is necessary and sufficient for the vanishing of the
curvature of the Cartan normal conformal connection associated with the equations for which
the Wunschmann invariant is zero. All such equations are contact equivalent to

u′′′ = 0. (73)
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