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Realisation of G2 by Cartan and Engel

In 1893 two papers appear in C. R. Acad. Sc. Paris:
Sur la structure des groupes simples finis et continus, C.
R.Acad. Sc. 116 (1893), 784-786, by Elie Cartan
Sur un groupe simple a quatorze parametres, C. R. Acad.
Sc. 116 (1893), 786-788 by Friederich Engel.

Both papers give a geometric realisation of the group G2 as a
transformation group of a certain structure on a 5 manifold. The
essence of this realisation is as follows:
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Realisation of G2 by Cartan and Engel (continued)

Consider an open set U of R5 with coordinates
(x , y ,p,q, z) and a rank 2-distribution Dq2 = Span(X1,X2)
spanned by two vector fields

X1 = ∂x + p∂y + q∂p + 1
2q2∂z , X2 = ∂q.

The commutator [X1,X2] = −∂p − q∂z = X3.

Then we have [X1,X3] = ∂y = X4 and [X2,X3] = −∂z = X5.
Modulo antisymmetry all the other commutators vanish.
Note that X1 ∧ X2 ∧ X3 ∧ X4 ∧ X5 6= 0 at each point of U .
The distribution Dq2 is maximally nonintegrable. It is a
(2,3,5) distribution - the numbers reflect the growth of the
dimension when we take successive commutators.
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Realisation of G2 by Cartan and Engel (continued)

Two distributions D and D′ are (locally) equivalent on U iff
there exists a (local) diffeomorphism φ : U → U such that
φ∗D = D′. Selfequivalences for D are called symmetries of
D.
Locally symmetries are determined by vector fields X on U
such that

LXD ⊂ D,

called infinitesimal symmetries.
Infinitesimal symmetries form a Lie algebra of symmetries
of D.
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Realisation of G2 by Cartan and Engel (continued)

What is the Lie algebra of symmetries of the Cartan-Engel
distribution Dq2?
Answer (Cartan and Engel):
The Lie algebra g of symmetries of Dq2 is a 14-dimensional
simple real Lie algebra with not-definite Killing form.
It is isomorphic to the split real form of the exceptional Lie
algebra g2.
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Cartan’s invariants of (2,3,5) distribution

It turns out that generically two (2,3,5) distributions D and
D′ on U ⊂ R5 are not locally equivalent.
For example, taking a smooth function f = f (q) it is easy to
show that the distribution D2f = Span(X1,X2) with

X1 = ∂x + p∂y + q∂p + f (q)∂z , X2 = ∂q

is (2,3,5) for all fs such that f ′′ 6= 0. But only very few
functions f define D2f locally equivalent to the
Cartan-Engel Dq2 .
In 1910 Cartan gave the full set of local differential
invariants which can be used to determine if two (2,3,5)
distributions are locally equivalent or not.
In particular he found neccessary and sufficient conditions
for a (2,3,5) distribution D to be locally equivalent to the
Cartan-Engel distribution Dq2 .
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Cartan’s quartic

For this, a certain 4th-rank symmetric tensor C = C(D),
built up in terms of quite high derivatives of the functions
defining D, must vanish. The tensor C is called Cartan’s
quartic for D, and there is and explicit formula for
calculating it, given D.
For example the Cartan quartic vanishes for D2f if and only
if f satisfies an ODE:

10f (6)f ′′3 − 80f ′′2f (3)f (5)−51f ′′2f (4)
2
+

336f ′′f (3)
2
f (4) − 224f (3)

4
= 0.
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Real totally null planes

What is the fundamental difference between R4 with a
Riemannian metric x2

1 + x2
2 + x2

3 + x2
4 and R4 with a

Lorentzian metric x2
1 + x2

2 + x2
3 − x2

4 ? ... in Lorentzian case
we have null vectors, e.g. n = (0,1,0,1).
What is the fundamental difference between R4 with a
Lorentzian metric x2

1 + x2
2 + x2

3 − x2
4 and R4 with a split

signature metric x2
1 + x2

2 − x2
3 − x2

4 ? Well... in the split case
we have totally null planes, e.g. N0 = Span(n1,n2) with
n1 = (1,0,1,0) and n2 = (0,1,0,1).
A totally null plane is a 2-dimensional vector subspace N of
R4 whose all vectors have vanishing length and are
orthogonal to each other. In other words, the metric g is
zero on N.

9/37
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Real totally null planes (continued)

Given a totally null plane N+
0 = Span(n1,n2) with

n1 = (1,0,1,0) and n2 = (0,1,0,1), we can act on it with
the elements a of the orthogonal group SO0(2,2), via:(

a, Span(n1,n2)
)
7→ Span(a · n1,a · n2).

Since the orthogonal group preserves nullity the resulting
space N+

a = Span(a · n1,a · n2) is also totally null.
It follows that the orbit of N+

0 w.r.t. this SO0(2,2) action
forms a cricle

S1
+ = { N+

φ = Span
(
n1(φ),n2(φ)

)
| φ ∈ [0,2π] }

with

n1(φ) = (1,0, cosφ, sinφ), n2 = (0,1,− sinφ, cosφ).
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Real totally null planes (continued)

Any totally null 2-plane N = Span(n1,n2) in
(R4, x2

1 + x2
2 − x2

3 − x2
4 ) defines a line of a bivector

l(N) = Rn1 ∧ n2.
It follows that the bivectors l(N) are either selfdual:
∗l(N) = l(N), or antiselfdual ∗l(N) = −l(N).
We say that a totally null plane N is selfdual or antislefdual
if its corresponding line l(N) is selfdual or antislefdual,
respectively.
For example planes N+

φ from the SO0(2,2) orbit of N+
0 are

all selfdual.
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Real totally null planes (continued)

The plane N−0 = Span(n1,n3) with n1 = (1,0,1,0) and
n3 = (0,1,0,−1) is antiselfdual.
The entire SO0(2,2) orbit of N−0 , which is a cricle

S1
− = { N−φ = Span

(
n1(φ),n3(φ)

)
| φ ∈ [0,2π] }

with n1(φ) = (1,0, cosφ, sinφ),
n3(φ) = (0,1, sinφ,− cosφ), consists of antiselfdual
planes.
It follows that every totally null plane N in
(R4, x2

1 + x2
2 − x2

3 − x2
4 ) belongs to either S1

+ or S1
−.

The space Z(N) of all totally null planes in R4 equipped
with the (2,2) signature metric, is a disjoint union of S1

+

and S1
−, Z(N) = S1

+ ∪ S1
−.
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3 − x2
4 ) belongs to either S1

+ or S1
−.

The space Z(N) of all totally null planes in R4 equipped
with the (2,2) signature metric, is a disjoint union of S1

+

and S1
−, Z(N) = S1

+ ∪ S1
−.
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Circle twistor bundle

Let (M,g) be a 4-dimensional manifold M equipped with a
(2,2) signature metric g. Assume that M is orientable and
oriented.
Then, at every point y ∈ M we have a circle S1

+(y) of totally
null selfdual planes N+

φ (y) contained in the tangent space
TyM.
This defines a circle bundle T+(M) = ∪y∈MS1

+(y) with a
projection: π : N+

φ (y) 7→ π(N+
φ (y)) = y .

The circle bundle T+(M) of selfdual totally null planes over
(M,g) is called a circle twistor bundle of a split-signature
4-manifold (M,g).
Note that the existence of this bundle is a specific feature
of signature (2,2). In the other two signatures similar
construction (due to Roger Penrose) leads to sphere
bundles.
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Geometric structure on the circle twistor bundle

The bundle T(M) is very reach in geometric structures, which
are induced on T(M) by the geometry of (M,g). In particular:

Vector fields tangent to the fibers of π : T(M)→ M form the
vertical space V on T(M).
Once a point N+

φ (y) in T(M) is chosen a unique horizontal
lift of any tangent vector Xy from y ∈ M to N+

φ (y) is given
by means of the Levi-Civita connection ∇g of the metric g.
This in particular defines a horizontal space H on T(M).
Since every point N+

φ (y) of T(M) is a totally null plane
N+
φ (y) at y , we can lift the plane N+

φ (y) from y ∈ M
horizontally to the point N+

φ (y) in T(M). In this way to
every point of T(M) we attach a 2-plane Dφ,y , which is
horizontal. This defines a rank 2 distribution D on T(M).
... One can continue the list of geometric objects on T(M)...
Here we focus only on the distribution D.
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Twistor distribution D on T(M)

The horizontal rank 2 distribution D on T(M) as defined on
the previous slide is called twistor distribution on T(M).
Note that we found a natural rank 2 distribution D on
T(M), which is five dimensional.
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Questions about the twistor distribution

Immediately many questions arise:
What shall we assume about (M,g) for the twistor
distribution D to be

integrable?
(2,3,5)?
if (2,3,5), then: when it is equivalent to the
Cartan-Engel distribution Dq2?
if (2,3,5), then, is it true that any (2,3,5) distribution is
locally euivalent to one of the twistor distributions?
etc, etc,...
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Twistor distribution D on T(M)

Theorem
Twistor distribution D on T(M) is integrable if and only if the
split signature metric g on M has anti-selfdual Weyl tensor.
Moreover, if the selfdual Weyl tensor of g is nonvanishing in
U ⊂ M, then in π−1(U) there are open sets where the
corresponding twistor distribution D is (2,3,5).

Let us assume that the selfdual Weyl tensor of g is not
antiselfdual everywhere in M. Then, the key question is:
which such metrics have twistor distributions locally equivalent
to the Cartan-Engel distribution Dq2? (the one with split G2
symmetry).
This is a difficult question...But...
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Results for a product of surfaces

Theorem
Let (Σ1,g1) be a Riemann surface with Gaussian curvature κ,
which has a Killing vector, and let (Σ2,g2) be a Riemann
surface of constant Gaussian curvature λ. Consider a
4-manifold M = Σ1 × Σ2 with a product metric g = g1 ⊕ (−g2).
Then in order for the twistor distribution D on T(M) to have
local symmetry G2, the curvatures must satisfy:

(9κ− λ)(κ− 9λ)λ = 0.

Obviously these equations can be satisfied only in two cases:
the ratios of the curvatures are 1:9 or 9:1, in which case
both surfaces has constant curvatures,
or one of the surfaces is flat.
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Results for a product of surfaces

Theorem
If both surfaces (Σ1,g1) and (Σ2,g2) have constant Gaussian
curvatures, respectively, κ, λ, then the Cartan quartic C(D) of
the twistor distribution D on T(M) associated with
(M = Σ1 × Σ2,g = g1 ⊕ (−g2)) is

C(D) = (9κ− λ)(κ− 9λ)h(φ),

where h(φ) is a nowhere vanishing function along the fibers of
T(M)

Thus the cases when the ratio of constant curvatures is equal
1:9 or 9:1 correspond to twistor distributions with G2 symmetry.
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Results for a product of surfaces

Corollary
The twistor distributions D associated with the 4-manifold being
a product of two spheres S2, whose radii are in the ratio 1:3 or
3:1 have G2 symmetry.
The same is true for the product of two hyperboloids.

I will comment on the remaining case λ = 0 and (Σ1,g1) with
Gaussian curvature κ and Killing symmetry later.
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Configuration space

We want to describe the space of possible positions for two
(smooth) rigid bodies B1 and B2 that roll on each other in the
3-space R3.

We idealize the surface of body B1 by a Riemann surface
(Σ1,g1) and the surface of body B2 by a Riemann surface
(Σ2,g2).
To specify a position of the system, we chose a point x on
Σ1 and a point x̂ on Σ2. These are the points in which the
two surfaces kiss each other.
To fully determine the possition of the system at a given
time, we still need to fix the relative angle φ ∈ [0,2π]
between the tangent spaces Tx Σ1 and Tx̂ Σ2. This is
equivalent to specify a rotation A(φ) which is an orthogonal
transformation A(φ) : Tx Σ1 → Tx̂ Σ2 identifying the tangent
spaces.

21/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Configuration space

We want to describe the space of possible positions for two
(smooth) rigid bodies B1 and B2 that roll on each other in the
3-space R3.

We idealize the surface of body B1 by a Riemann surface
(Σ1,g1) and the surface of body B2 by a Riemann surface
(Σ2,g2).
To specify a position of the system, we chose a point x on
Σ1 and a point x̂ on Σ2. These are the points in which the
two surfaces kiss each other.
To fully determine the possition of the system at a given
time, we still need to fix the relative angle φ ∈ [0,2π]
between the tangent spaces Tx Σ1 and Tx̂ Σ2. This is
equivalent to specify a rotation A(φ) which is an orthogonal
transformation A(φ) : Tx Σ1 → Tx̂ Σ2 identifying the tangent
spaces.

21/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Configuration space

We want to describe the space of possible positions for two
(smooth) rigid bodies B1 and B2 that roll on each other in the
3-space R3.

We idealize the surface of body B1 by a Riemann surface
(Σ1,g1) and the surface of body B2 by a Riemann surface
(Σ2,g2).
To specify a position of the system, we chose a point x on
Σ1 and a point x̂ on Σ2. These are the points in which the
two surfaces kiss each other.
To fully determine the possition of the system at a given
time, we still need to fix the relative angle φ ∈ [0,2π]
between the tangent spaces Tx Σ1 and Tx̂ Σ2. This is
equivalent to specify a rotation A(φ) which is an orthogonal
transformation A(φ) : Tx Σ1 → Tx̂ Σ2 identifying the tangent
spaces.

21/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Configuration space

We want to describe the space of possible positions for two
(smooth) rigid bodies B1 and B2 that roll on each other in the
3-space R3.

We idealize the surface of body B1 by a Riemann surface
(Σ1,g1) and the surface of body B2 by a Riemann surface
(Σ2,g2).
To specify a position of the system, we chose a point x on
Σ1 and a point x̂ on Σ2. These are the points in which the
two surfaces kiss each other.
To fully determine the possition of the system at a given
time, we still need to fix the relative angle φ ∈ [0,2π]
between the tangent spaces Tx Σ1 and Tx̂ Σ2. This is
equivalent to specify a rotation A(φ) which is an orthogonal
transformation A(φ) : Tx Σ1 → Tx̂ Σ2 identifying the tangent
spaces.

21/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Configuration space

We want to describe the space of possible positions for two
(smooth) rigid bodies B1 and B2 that roll on each other in the
3-space R3.

We idealize the surface of body B1 by a Riemann surface
(Σ1,g1) and the surface of body B2 by a Riemann surface
(Σ2,g2).
To specify a position of the system, we chose a point x on
Σ1 and a point x̂ on Σ2. These are the points in which the
two surfaces kiss each other.
To fully determine the possition of the system at a given
time, we still need to fix the relative angle φ ∈ [0,2π]
between the tangent spaces Tx Σ1 and Tx̂ Σ2. This is
equivalent to specify a rotation A(φ) which is an orthogonal
transformation A(φ) : Tx Σ1 → Tx̂ Σ2 identifying the tangent
spaces.

21/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Configuration space

We want to describe the space of possible positions for two
(smooth) rigid bodies B1 and B2 that roll on each other in the
3-space R3.

We idealize the surface of body B1 by a Riemann surface
(Σ1,g1) and the surface of body B2 by a Riemann surface
(Σ2,g2).
To specify a position of the system, we chose a point x on
Σ1 and a point x̂ on Σ2. These are the points in which the
two surfaces kiss each other.
To fully determine the possition of the system at a given
time, we still need to fix the relative angle φ ∈ [0,2π]
between the tangent spaces Tx Σ1 and Tx̂ Σ2. This is
equivalent to specify a rotation A(φ) which is an orthogonal
transformation A(φ) : Tx Σ1 → Tx̂ Σ2 identifying the tangent
spaces.

21/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Configuration space

We want to describe the space of possible positions for two
(smooth) rigid bodies B1 and B2 that roll on each other in the
3-space R3.

We idealize the surface of body B1 by a Riemann surface
(Σ1,g1) and the surface of body B2 by a Riemann surface
(Σ2,g2).
To specify a position of the system, we chose a point x on
Σ1 and a point x̂ on Σ2. These are the points in which the
two surfaces kiss each other.
To fully determine the possition of the system at a given
time, we still need to fix the relative angle φ ∈ [0,2π]
between the tangent spaces Tx Σ1 and Tx̂ Σ2. This is
equivalent to specify a rotation A(φ) which is an orthogonal
transformation A(φ) : Tx Σ1 → Tx̂ Σ2 identifying the tangent
spaces.

21/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Configuration space

We want to describe the space of possible positions for two
(smooth) rigid bodies B1 and B2 that roll on each other in the
3-space R3.

We idealize the surface of body B1 by a Riemann surface
(Σ1,g1) and the surface of body B2 by a Riemann surface
(Σ2,g2).
To specify a position of the system, we chose a point x on
Σ1 and a point x̂ on Σ2. These are the points in which the
two surfaces kiss each other.
To fully determine the possition of the system at a given
time, we still need to fix the relative angle φ ∈ [0,2π]
between the tangent spaces Tx Σ1 and Tx̂ Σ2. This is
equivalent to specify a rotation A(φ) which is an orthogonal
transformation A(φ) : Tx Σ1 → Tx̂ Σ2 identifying the tangent
spaces.

21/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Configuration space

Thus, to specify the position of the system of rolling bodies
at a given time, we need five real numbers (x , x̂ , φ) such
that:

x ∈ Σ1,
x̂ ∈ Σ2,
A(φ) ∈ { orthogonal transformations from the tangent
space at x to Σ1 to the tangent space at x̂ to Σ2 }.

More formally the configuration space of the system is

T (Σ1,Σ2) = { A(φ) : Tx Σ1 → Tx̂ Σ2 },

clearly a circle bundle over the Cartesian product
M = Σ1 × Σ2, with fibers being circles S1 of orthogonal

transformations A(φ) =

(
cosφ − sinφ
sinφ cosφ

)
.

22/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Configuration space

Thus, to specify the position of the system of rolling bodies
at a given time, we need five real numbers (x , x̂ , φ) such
that:

x ∈ Σ1,
x̂ ∈ Σ2,
A(φ) ∈ { orthogonal transformations from the tangent
space at x to Σ1 to the tangent space at x̂ to Σ2 }.

More formally the configuration space of the system is

T (Σ1,Σ2) = { A(φ) : Tx Σ1 → Tx̂ Σ2 },

clearly a circle bundle over the Cartesian product
M = Σ1 × Σ2, with fibers being circles S1 of orthogonal

transformations A(φ) =

(
cosφ − sinφ
sinφ cosφ

)
.

22/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Configuration space

Thus, to specify the position of the system of rolling bodies
at a given time, we need five real numbers (x , x̂ , φ) such
that:

x ∈ Σ1,
x̂ ∈ Σ2,
A(φ) ∈ { orthogonal transformations from the tangent
space at x to Σ1 to the tangent space at x̂ to Σ2 }.

More formally the configuration space of the system is

T (Σ1,Σ2) = { A(φ) : Tx Σ1 → Tx̂ Σ2 },

clearly a circle bundle over the Cartesian product
M = Σ1 × Σ2, with fibers being circles S1 of orthogonal

transformations A(φ) =

(
cosφ − sinφ
sinφ cosφ

)
.

22/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Configuration space

Thus, to specify the position of the system of rolling bodies
at a given time, we need five real numbers (x , x̂ , φ) such
that:

x ∈ Σ1,
x̂ ∈ Σ2,
A(φ) ∈ { orthogonal transformations from the tangent
space at x to Σ1 to the tangent space at x̂ to Σ2 }.

More formally the configuration space of the system is

T (Σ1,Σ2) = { A(φ) : Tx Σ1 → Tx̂ Σ2 },

clearly a circle bundle over the Cartesian product
M = Σ1 × Σ2, with fibers being circles S1 of orthogonal

transformations A(φ) =

(
cosφ − sinφ
sinφ cosφ

)
.

22/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Configuration space

Thus, to specify the position of the system of rolling bodies
at a given time, we need five real numbers (x , x̂ , φ) such
that:

x ∈ Σ1,
x̂ ∈ Σ2,
A(φ) ∈ { orthogonal transformations from the tangent
space at x to Σ1 to the tangent space at x̂ to Σ2 }.

More formally the configuration space of the system is

T (Σ1,Σ2) = { A(φ) : Tx Σ1 → Tx̂ Σ2 },

clearly a circle bundle over the Cartesian product
M = Σ1 × Σ2, with fibers being circles S1 of orthogonal

transformations A(φ) =

(
cosφ − sinφ
sinφ cosφ

)
.

22/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Configuration space

Thus, to specify the position of the system of rolling bodies
at a given time, we need five real numbers (x , x̂ , φ) such
that:

x ∈ Σ1,
x̂ ∈ Σ2,
A(φ) ∈ { orthogonal transformations from the tangent
space at x to Σ1 to the tangent space at x̂ to Σ2 }.

More formally the configuration space of the system is

T (Σ1,Σ2) = { A(φ) : Tx Σ1 → Tx̂ Σ2 },

clearly a circle bundle over the Cartesian product
M = Σ1 × Σ2, with fibers being circles S1 of orthogonal

transformations A(φ) =

(
cosφ − sinφ
sinφ cosφ

)
.

22/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Identifying configuration space with twistor space

There is a simple bundle isomorphism between the
configuration space T (Σ1,Σ2) and the twistor circle bundle
T(Σ1 × Σ2).
For this we need to show how a point
(x , x̂ ,A(φ)) ∈ T (Σ1,Σ2) defines a point
N+
φ (y) ∈ T(Σ1 × Σ2).

Of course y = (x , x̂). The only problem is how to define
N+
φ .
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Identifying configuration space with twistor space

A moment of reflexion yields

A(φ) =

(
cosφ − sinφ
sinφ cosφ

)
7→

graph(A(φ)) = (a,b,a cosφ− b sinφ,a sinφ+ b cosφ)

= a(1,0, cosφ, sinφ) + b(0,1,− sinφ, cosφ)
)

= Span
(
n1(φ),n2(φ)

)
= N+

φ ⊂ R4.

This identifies bundles T (Σ1,Σ2) and T(Σ1,Σ2). This is to
say that the positions of the system of rolling bodies are
totally null selfdual planes in the semi-Riemanian manifold
M = Σ1 × Σ2, g = g1 ⊕ (−g2).
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Rolling without slipping or twisting

We want to impose nonholonomic constraint of ‘rolling without
slipping or twisting’ on the system of two bodies B1 and B2. For
this we consider a curve γ(t) = (x(t), x̂(t),A(φ(t))) in the
configuration space T (Σ1,Σ2). It draws two curves: x = x(t) on
Σ1, and x̂ = x̂(t) on Σ2. These curves are just trajectories of
the points of contacts.

γ(t) corresponds to the movement without slipping iff
A(φ(t))ẋ = ˙̂x ,
γ(t) corresponds to the movement without twisting iff for
every vector field v(t) which is parallel along x(t), the
corresponding A(φ(t)) transformed vector field A(φ(t))v(t)
is parallel along x̂(t).
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A(φ(t))ẋ = ˙̂x ,
γ(t) corresponds to the movement without twisting iff for
every vector field v(t) which is parallel along x(t), the
corresponding A(φ(t)) transformed vector field A(φ(t))v(t)
is parallel along x̂(t).

25/37



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Rolling without slipping or twisting

We want to impose nonholonomic constraint of ‘rolling without
slipping or twisting’ on the system of two bodies B1 and B2. For
this we consider a curve γ(t) = (x(t), x̂(t),A(φ(t))) in the
configuration space T (Σ1,Σ2). It draws two curves: x = x(t) on
Σ1, and x̂ = x̂(t) on Σ2. These curves are just trajectories of
the points of contacts.

γ(t) corresponds to the movement without slipping iff
A(φ(t))ẋ = ˙̂x ,
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Rolling without slipping or twisting

The nonslipping condition imposes two linear constraints at the
5-dimensional space of velocities of the system at each point,
and the nontwisting condition adds one more linear constraint.
Thus the ‘nonslipping-nontwisting condition’ reduces the
velocity space at each point (x , x̂ , φ) from the 5-dimensional
tangent space TT (Σ1,Σ2)(x ,x̂ ,φ) to its certain 2-dimensional
vector space, say D(x ,x̂ ,φ).
In this way the ‘nonslipping-nontwisting condition’ defines, point
by point, a 2-distribution D on T (Σ1,Σ2).
The natural question is: how this distribution is related to the
twistor distribution on T(Σ1 × Σ2) when both spaces
T(Σ1 × Σ2) and T (Σ1,Σ2) are identified.
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No slipping no twisting means horizontality

Theorem
Under the identification T (Σ1,Σ2) ≡ T(Σ1 × Σ2) obtained via
(x , x̂ , φ) 7→ N+

φ

(
(x , x̂)

)
, the nonslipping-nontwisting rolling

distribution D on T (Σ1,Σ2) becomes the twistor distribution D
in T(Σ1 × Σ2).

In other words: the nonholonomic ‘nonslipping-nontwisting’
constraint on the velocity space of two rolling bodies, when
viewed on T(Σ1 × Σ2) is equivalent to the horizontality of the
twistor distribution.
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Reinterpretation of the results about M = Σ1 × Σ2

Circle twistor space for the manifold M = Σ1 × Σ2 with the
metric g = g1 ⊕ (−g2) is the configuration space of two
rolling bodies bounded by the Riemann surfaces (Σ1,g1)
and (Σ2,g2).
If the bodies roll on each other ‘without slipping or twisting’
their velocity space is restricted, in such a way that the
possible velocities can only be tangent to the twistor
distribution.
If the twistor distribution has G2 symmetry, then also the
restricted velocity space of the rolling system has G2
symmetry as a (2,3,5) distribution on the configuration
space.
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Rigid bodies rolling without slipping or twisting

Reinterpretation of the results about M = Σ1 × Σ2

In paricular two spheres of respective radii with ratio 1:3 or
3:1 when rolling on each other without slipping or twisting
have the restricted velocity space with G2 symmetry. But
also two hyperboloids of respective ‘hyperbolic radii’ with
ratio 1:3 or 3:1 have the nonslippng-nontwistuing velocity
space with G2 symmetry.
Are there other rigid bodies having this property?
Well...Let us examine the left case λ = 0, the other surface
having Killing symmetry.
Surprisingly calculation of the Cartan quartic in this case is
not only manegable, but also the system of ODE’s its
vanishing imposes on the metric functions of g1 can be
solved to the very end.
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Surfaces of revolution on the plane with G2 symmetry

Theorem
Modulo homotheties all metrics corresponding to surfaces with
a Killing vector, which when rolling on the plane R2 ‘without
slipping or twisting’, have the velocity distribution D with local
symmetry G2 are given by:

g1o =ρ4dρ2 + ρ2dϕ2,

g1+ =(ρ2 + 1)2dρ2 + ρ2dϕ2,

g1− =(ρ2 − 1)2dρ2 + ρ2dϕ2,
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Rigid bodies rolling without slipping or twisting

Theorem (continued)

Theorem
or, collectively as:

g1 = (ρ2 + ε)2dρ2 + ρ2dϕ2, where ε = 0,±1.

Their curvature is given by

κ =
2

(ρ2 + ε)3 .
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Surfaces of revolution on the plane with G2 symmetry

Theorem
Let U be a region of one of the Riemann surfaces (Σ1,g1) of
the previous Theorem, in which the curvature κ is nonnegative.
In the case ε = +1, such a region can be isometrically
embedded in flat R3 as a surface of revolution. The embedded
surface, when written in the Cartesian coordinates (X ,Y ,Z ) in
R3, is algebraic, with the embedding given by

(X 2 + Y 2 + 2)3 − 9Z 2 = 0, ε = +1.
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Rigid bodies rolling without slipping or twisting

Theorem (continued)

Theorem

In the case ε = −1, one can find an isometric embedding in R3

of a portion of U given by ϕ ∈ [0,2π[, ρ ≥
√

2. This embedding
gives another surface of revolution which is also algebraic, and
in the Cartesian coordinates (X ,Y ,Z ), given by

(X 2 + Y 2 − 2)3 − 9Z 2 = 0, ε = −1.

In the case ε = 0, one can embed a portion of U with ρ ≥ 1 in
R3 as a surface of revolution

Z = f (
√

X 2 + Y 2), with f (t) =

∫ t

ρ=1

√
ρ4 − 1 dρ.
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How do they look?

Rysunek : The Mathematica print of the three surfaces of revolution,
whose induced metric from R3 is given, from left to right, by
respective metrics g1−, g1+ and g1o. The middle figure embeds all
(Σ1,g1+). In the left figure only the portion of (Σ1,g1−) with positive
curvature is embedded, and in the right figure only points of (Σ1,g1o)
with ρ > 1 are embedded. It is why the left and right figures have
holes on the top. All three surface, when rolling on a plane ‘without
twisting or slipping’ have velocity space Dv with symmetry G2.
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An update from Robert Bryant

Dear Pawel,
I hope that this finds you well.
Igor Zelenko came to visit me this past week, and we talked a
little bit about your G2 rolling surface example in the context of
doing computations for Cartan-type 2-plane fields.
It reminded me of the left-over question of determining
whether there are any other examples besides the constant
curvature ones and your rotationally symmetric examples
rolling over the plane, so I took another look at the
calculations and at the formula that I worked out for Cartan’s
C-tensor in this case.
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An update from Robert Bryant

It took a little thinking, but, based on this, I now have a proof
(not too bad) that, if a pair of Riemannian surfaces has the
G2 rolling distribution, then at least one of the two surfaces
has to have constant Gauss curvature.
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An update from Robert Bryant

I still don’t know whether, if one fixes a constant Gauss
curvature of one surface, the other surface has to have a
rotational symmetry (which was your ansatz), but there is a
clear line of attack for that, and, when I next have some time to
look at this question, I’ll see whether or not I can resolve it.
What is clear is that, for each fixed constant Gauss
curvature of the one surface, there is at most a
finite-dimensional space of isometry classes of germs of
metrics that can roll over it with G2 rolling distribution, and
such a metric, if it exists, is completely determined by its
5-jet at one point.
Yours,
Robert
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