Twistor space for rolling bodies

Paweł Nurowski (joint work with Daniel An)

Centrum Fizyki Teoretycznej Polska Akademia Nauk

Relativity Seminar, University of Vienna, 8.05.2014

Plan

Bundles of totally null planes for (2,2) signature metrics

8 Rigid bodies rolling without slipping or twisting

Plan

2 Bundles of totally null planes for (2,2) signature metrics

8 Rigid bodies rolling without slipping or twisting

Plan

2 Bundles of totally null planes for (2,2) signature metrics

8 Rigid bodies rolling without slipping or twisting

Realisation of G₂ by Cartan and Engel

In 1893 two papers appear in C. R. Acad. Sc. Paris:

- Sur la structure des groupes simples finis et continus, C. R.Acad. Sc. 116 (1893), 784-786, by Elie Cartan
- Sur un groupe simple a quatorze parametres, C. R. Acad. Sc. 116 (1893), 786-788 by Friederich Engel.

Realisation of G₂ by Cartan and Engel

In 1893 two papers appear in C. R. Acad. Sc. Paris:

- Sur la structure des groupes simples finis et continus, C. R.Acad. Sc. 116 (1893), 784-786, by Elie Cartan
- Sur un groupe simple a quatorze parametres, C. R. Acad. Sc. 116 (1893), 786-788 by Friederich Engel.

Realisation of G₂ by Cartan and Engel

In 1893 two papers appear in C. R. Acad. Sc. Paris:

- Sur la structure des groupes simples finis et continus, C. R.Acad. Sc. 116 (1893), 784-786, by Elie Cartan
- Sur un groupe simple a quatorze parametres, C. R. Acad. Sc. 116 (1893), 786-788 by Friederich Engel.

Realisation of G₂ by Cartan and Engel

In 1893 two papers appear in C. R. Acad. Sc. Paris:

- Sur la structure des groupes simples finis et continus, C. R.Acad. Sc. 116 (1893), 784-786, by Elie Cartan
- Sur un groupe simple a quatorze parametres, C. R. Acad. Sc. 116 (1893), 786-788 by Friederich Engel.

Realisation of G₂ by Cartan and Engel

In 1893 two papers appear in C. R. Acad. Sc. Paris:

- Sur la structure des groupes simples finis et continus, C. R.Acad. Sc. 116 (1893), 784-786, by Elie Cartan
- Sur un groupe simple a quatorze parametres, C. R. Acad. Sc. 116 (1893), 786-788 by Friederich Engel.

Realisation of G₂ by Cartan and Engel (continued)

Consider an open set U of R⁵ with coordinates (x, y, p, q, z) and a rank 2-distribution D_{q²} = Span(X₁, X₂) spanned by two vector fields

$$X_1 = \partial_x + p \partial_y + q \partial_p + \frac{1}{2} q^2 \partial_z, \qquad X_2 = \partial_q.$$

- The commutator $[X_1, X_2] = -\partial_{\rho} q\partial_z = X_3$.
- Then we have $[X_1, X_3] = \partial_y = X_4$ and $[X_2, X_3] = -\partial_z = X_5$. Modulo antisymmetry all the other commutators vanish.
- Note that X₁ ∧ X₂ ∧ X₃ ∧ X₄ ∧ X₅ ≠ 0 at each point of U. The distribution D_{q²} is maximally nonintegrable. It is a (2,3,5) distribution - the numbers reflect the growth of the dimension when we take successive commutators.

<ロト < 同ト < 回ト < 回ト = 三日 :

Realisation of G₂ by Cartan and Engel (continued)

Consider an open set U of R⁵ with coordinates (x, y, p, q, z) and a rank 2-distribution D_{q²} = Span(X₁, X₂) spanned by two vector fields

$$X_1 = \partial_x + p\partial_y + q\partial_p + \frac{1}{2}q^2\partial_z, \qquad X_2 = \partial_q.$$

- The commutator $[X_1, X_2] = -\partial_p q\partial_z = X_3$.
- Then we have $[X_1, X_3] = \partial_y = X_4$ and $[X_2, X_3] = -\partial_z = X_5$. Modulo antisymmetry all the other commutators vanish.
- Note that X₁ ∧ X₂ ∧ X₃ ∧ X₄ ∧ X₅ ≠ 0 at each point of U. The distribution D_{q²} is maximally nonintegrable. It is a (2,3,5) distribution - the numbers reflect the growth of the dimension when we take successive commutators.

Realisation of G₂ by Cartan and Engel (continued)

Consider an open set U of R⁵ with coordinates (x, y, p, q, z) and a rank 2-distribution D_{q²} = Span(X₁, X₂) spanned by two vector fields

$$X_1 = \partial_x + p \partial_y + q \partial_p + \frac{1}{2} q^2 \partial_z, \qquad X_2 = \partial_q.$$

- The commutator $[X_1, X_2] = -\partial_p q\partial_z = X_3$.
- Then we have $[X_1, X_3] = \partial_y = X_4$ and $[X_2, X_3] = -\partial_z = X_5$. Modulo antisymmetry all the other commutators vanish.
- Note that X₁ ∧ X₂ ∧ X₃ ∧ X₄ ∧ X₅ ≠ 0 at each point of U. The distribution D_{q²} is maximally nonintegrable. It is a (2,3,5) distribution - the numbers reflect the growth of the dimension when we take successive commutators.

Realisation of G₂ by Cartan and Engel (continued)

Consider an open set U of R⁵ with coordinates (x, y, p, q, z) and a rank 2-distribution D_{q²} = Span(X₁, X₂) spanned by two vector fields

$$X_1 = \partial_x + p \partial_y + q \partial_p + \frac{1}{2} q^2 \partial_z, \qquad X_2 = \partial_q.$$

- The commutator $[X_1, X_2] = -\partial_p q\partial_z = X_3$.
- Then we have $[X_1, X_3] = \partial_y = X_4$ and $[X_2, X_3] = -\partial_z = X_5$. Modulo antisymmetry all the other commutators vanish.
- Note that X₁ ∧ X₂ ∧ X₃ ∧ X₄ ∧ X₅ ≠ 0 at each point of U. The distribution D_{q²} is maximally nonintegrable. It is a (2,3,5) distribution - the numbers reflect the growth of the dimension when we take successive commutators.

Realisation of G₂ by Cartan and Engel (continued)

• Consider an open set \mathcal{U} of \mathbb{R}^5 with coordinates (x, y, p, q, z) and a rank 2-distribution $\mathcal{D}_{q^2} = \operatorname{Span}(X_1, X_2)$ spanned by two vector fields

$$X_1 = \partial_x + p \partial_y + q \partial_p + \frac{1}{2} q^2 \partial_z, \qquad X_2 = \partial_q.$$

- The commutator $[X_1, X_2] = -\partial_p q\partial_z = X_3$.
- Then we have $[X_1, X_3] = \partial_y = X_4$ and $[X_2, X_3] = -\partial_z = X_5$. Modulo antisymmetry all the other commutators vanish.
- Note that X₁ ∧ X₂ ∧ X₃ ∧ X₄ ∧ X₅ ≠ 0 at each point of U. The distribution D_{q²} is maximally nonintegrable. It is a (2,3,5) distribution - the numbers reflect the growth of the dimension when we take successive commutators.

Realisation of G₂ by Cartan and Engel (continued)

• Consider an open set \mathcal{U} of \mathbb{R}^5 with coordinates (x, y, p, q, z) and a rank 2-distribution $\mathcal{D}_{q^2} = \operatorname{Span}(X_1, X_2)$ spanned by two vector fields

$$X_1 = \partial_x + p \partial_y + q \partial_p + \frac{1}{2} q^2 \partial_z, \qquad X_2 = \partial_q.$$

- The commutator $[X_1, X_2] = -\partial_p q\partial_z = X_3$.
- Then we have $[X_1, X_3] = \partial_y = X_4$ and $[X_2, X_3] = -\partial_z = X_5$. Modulo antisymmetry all the other commutators vanish.
- Note that X₁ ∧ X₂ ∧ X₃ ∧ X₄ ∧ X₅ ≠ 0 at each point of U. The distribution D_{q²} is maximally nonintegrable. It is a (2,3,5) distribution - the numbers reflect the growth of the dimension when we take successive commutators.

Realisation of G₂ by Cartan and Engel (continued)

• Consider an open set \mathcal{U} of \mathbb{R}^5 with coordinates (x, y, p, q, z) and a rank 2-distribution $\mathcal{D}_{q^2} = \operatorname{Span}(X_1, X_2)$ spanned by two vector fields

$$X_1 = \partial_x + p \partial_y + q \partial_p + \frac{1}{2} q^2 \partial_z, \qquad X_2 = \partial_q.$$

- The commutator $[X_1, X_2] = -\partial_p q\partial_z = X_3$.
- Then we have $[X_1, X_3] = \partial_y = X_4$ and $[X_2, X_3] = -\partial_z = X_5$. Modulo antisymmetry all the other commutators vanish.
- Note that X₁ ∧ X₂ ∧ X₃ ∧ X₄ ∧ X₅ ≠ 0 at each point of U. The distribution D_{q²} is maximally nonintegrable. It is a
 (2,3,5) distribution - the numbers reflect the growth of the dimension when we take successive commutators.

Realisation of G₂ by Cartan and Engel (continued)

• Consider an open set \mathcal{U} of \mathbb{R}^5 with coordinates (x, y, p, q, z) and a rank 2-distribution $\mathcal{D}_{q^2} = \operatorname{Span}(X_1, X_2)$ spanned by two vector fields

$$X_1 = \partial_x + p \partial_y + q \partial_p + \frac{1}{2} q^2 \partial_z, \qquad X_2 = \partial_q.$$

- The commutator $[X_1, X_2] = -\partial_p q\partial_z = X_3$.
- Then we have $[X_1, X_3] = \partial_y = X_4$ and $[X_2, X_3] = -\partial_z = X_5$. Modulo antisymmetry all the other commutators vanish.
- Note that X₁ ∧ X₂ ∧ X₃ ∧ X₄ ∧ X₅ ≠ 0 at each point of U. The distribution D_{q²} is maximally nonintegrable. It is a (2,3,5) distribution - the numbers reflect the growth of the dimension when we take successive commutators.

Realisation of G₂ by Cartan and Engel (continued)

- Two distributions \mathcal{D} and \mathcal{D}' are (locally) equivalent on \mathcal{U} iff there exists a (local) diffeomorphism $\phi : \mathcal{U} \to \mathcal{U}$ such that $\phi_*\mathcal{D} = \mathcal{D}'$. Selfequivalences for \mathcal{D} are called symmetries of \mathcal{D} .
- Locally symmetries are determined by vector fields X on U such that

 $\mathcal{L}_{\mathcal{X}}\mathcal{D}\subset\mathcal{D},$

called infinitesimal symmetries.

 Infinitesimal symmetries form a Lie algebra of symmetries of D.

Realisation of G₂ by Cartan and Engel (continued)

- Two distributions \mathcal{D} and \mathcal{D}' are (locally) equivalent on \mathcal{U} iff there exists a (local) diffeomorphism $\phi : \mathcal{U} \to \mathcal{U}$ such that $\phi_*\mathcal{D} = \mathcal{D}'$. Selfequivalences for \mathcal{D} are called symmetries of \mathcal{D} .
- Locally symmetries are determined by vector fields X on U such that

 $\mathcal{L}_{\mathcal{X}}\mathcal{D}\subset\mathcal{D},$

called infinitesimal symmetries.

• Infinitesimal symmetries form a Lie algebra of symmetries of \mathcal{D} .

Realisation of G₂ by Cartan and Engel (continued)

- Two distributions \mathcal{D} and \mathcal{D}' are (locally) equivalent on \mathcal{U} iff there exists a (local) diffeomorphism $\phi : \mathcal{U} \to \mathcal{U}$ such that $\phi_*\mathcal{D} = \mathcal{D}'$. Selfequivalences for \mathcal{D} are called symmetries of \mathcal{D} .
- Locally symmetries are determined by vector fields X on U such that

 $\mathcal{L}_{X}\mathcal{D}\subset\mathcal{D},$

called infinitesimal symmetries.

 Infinitesimal symmetries form a Lie algebra of symmetries of D.

Realisation of G₂ by Cartan and Engel (continued)

- Two distributions \mathcal{D} and \mathcal{D}' are (locally) equivalent on \mathcal{U} iff there exists a (local) diffeomorphism $\phi : \mathcal{U} \to \mathcal{U}$ such that $\phi_*\mathcal{D} = \mathcal{D}'$. Selfequivalences for \mathcal{D} are called symmetries of \mathcal{D} .
- Locally symmetries are determined by vector fields X on U such that

 $\mathcal{L}_{X}\mathcal{D}\subset\mathcal{D},$

called infinitesimal symmetries.

 Infinitesimal symmetries form a Lie algebra of symmetries of *D*.

- What is the Lie algebra of symmetries of the Cartan-Engel distribution D_{q²}?
- Answer (Cartan and Engel): The Lie algebra g of symmetries of D_{q²} is a 14-dimensiona simple real Lie algebra with not-definite Killing form.
- It is isomorphic to the split real form of the exceptional Lie algebra g₂.

- What is the Lie algebra of symmetries of the Cartan-Engel distribution D_{q²}?
- Answer (Cartan and Engel):
 - The Lie algebra \mathfrak{g} of symmetries of \mathcal{D}_{q^2} is a 14-dimensional **simple** real Lie algebra with not-definite Killing form.
- It is isomorphic to the split real form of the exceptional Lie algebra g₂.

- What is the Lie algebra of symmetries of the Cartan-Engel distribution D_{q²}?
- Answer (Cartan and Engel): The Lie algebra g of symmetries of D_{q²} is a 14-dimensional simple real Lie algebra with not-definite Killing form.
- It is isomorphic to the split real form of the exceptional Lie algebra g₂.

- What is the Lie algebra of symmetries of the Cartan-Engel distribution D_{q²}?
- Answer (Cartan and Engel): The Lie algebra g of symmetries of D_{q²} is a 14-dimensional simple real Lie algebra with not-definite Killing form.
- It is isomorphic to the split real form of the exceptional Lie algebra g₂.

Cartan's invariants of (2,3,5) distribution

- It turns out that generically two (2,3,5) distributions \mathcal{D} and \mathcal{D}' on $\mathcal{U} \subset \mathbb{R}^5$ are not locally equivalent.
- For example, taking a smooth function f = f(q) it is easy to show that the distribution D_{2f} = Span(X₁, X₂) with

 $X_1 = \partial_x + p \partial_y + q \partial_p + f(q) \partial_z, \qquad X_2 = \partial_q$

- In **1910** Cartan gave the full set of local differential invariants which can be used to determine if two (2, 3, 5) distributions are locally equivalent or not.
- In particular he found neccessary and sufficient conditions for a (2,3,5) distribution D to be locally equivalent to the Cartan-Engel distribution D_{q²}.

Cartan's invariants of (2,3,5) distribution

- It turns out that generically two (2,3,5) distributions \mathcal{D} and \mathcal{D}' on $\mathcal{U} \subset \mathbb{R}^5$ are not locally equivalent.
- For example, taking a smooth function f = f(q) it is easy to show that the distribution $\mathcal{D}_{2f} = \text{Span}(X_1, X_2)$ with

$$X_1 = \partial_x + p \partial_y + q \partial_p + f(q) \partial_z, \qquad X_2 = \partial_q$$

- is (2,3,5) for all *f*s such that $f'' \neq 0$. But only very few functions *f* define \mathcal{D}_{2f} locally equivalent to the Cartan-Engel \mathcal{D}_{q^2} .
- In **1910** Cartan gave the full set of local differential invariants which can be used to determine if two (2,3,5) distributions are locally equivalent or not.
- In particular he found neccessary and sufficient conditions for a (2,3,5) distribution D to be locally equivalent to the Cartan-Engel distribution D_{q²}.

Cartan's invariants of (2,3,5) distribution

- It turns out that generically two (2,3,5) distributions \mathcal{D} and \mathcal{D}' on $\mathcal{U} \subset \mathbb{R}^5$ are not locally equivalent.
- For example, taking a smooth function f = f(q) it is easy to show that the distribution $\mathcal{D}_{2f} = \text{Span}(X_1, X_2)$ with

 $X_1 = \partial_x + p\partial_y + q\partial_p + f(q)\partial_z, \qquad X_2 = \partial_q$

- In **1910** Cartan gave the full set of local differential invariants which can be used to determine if two (2, 3, 5) distributions are locally equivalent or not.
- In particular he found neccessary and sufficient conditions for a (2,3,5) distribution D to be locally equivalent to the Cartan-Engel distribution D_{q²}.

Cartan's invariants of (2,3,5) distribution

- It turns out that generically two (2,3,5) distributions \mathcal{D} and \mathcal{D}' on $\mathcal{U} \subset \mathbb{R}^5$ are not locally equivalent.
- For example, taking a smooth function f = f(q) it is easy to show that the distribution $\mathcal{D}_{2f} = \text{Span}(X_1, X_2)$ with

 $X_1 = \partial_x + p\partial_y + q\partial_p + f(q)\partial_z, \qquad X_2 = \partial_q$

- In 1910 Cartan gave the full set of local differential invariants which can be used to determine if two (2, 3, 5) distributions are locally equivalent or not.
- In particular he found neccessary and sufficient conditions for a (2,3,5) distribution D to be locally equivalent to the Cartan-Engel distribution D_{q²}.

Cartan's invariants of (2,3,5) distribution

- It turns out that generically two (2,3,5) distributions \mathcal{D} and \mathcal{D}' on $\mathcal{U} \subset \mathbb{R}^5$ are not locally equivalent.
- For example, taking a smooth function f = f(q) it is easy to show that the distribution $\mathcal{D}_{2f} = \text{Span}(X_1, X_2)$ with

 $X_1 = \partial_x + p\partial_y + q\partial_p + f(q)\partial_z, \qquad X_2 = \partial_q$

- In 1910 Cartan gave the full set of local differential invariants which can be used to determine if two (2, 3, 5) distributions are locally equivalent or not.
- In particular he found neccessary and sufficient conditions for a (2,3,5) distribution D to be locally equivalent to the Cartan-Engel distribution D_{q²}.

Cartan's invariants of (2,3,5) distribution

- It turns out that generically two (2,3,5) distributions \mathcal{D} and \mathcal{D}' on $\mathcal{U} \subset \mathbb{R}^5$ are not locally equivalent.
- For example, taking a smooth function f = f(q) it is easy to show that the distribution $\mathcal{D}_{2f} = \text{Span}(X_1, X_2)$ with

 $X_1 = \partial_x + p\partial_y + q\partial_p + f(q)\partial_z, \qquad X_2 = \partial_q$

- In 1910 Cartan gave the full set of local differential invariants which can be used to determine if two (2, 3, 5) distributions are locally equivalent or not.
- In particular he found neccessary and sufficient conditions for a (2,3,5) distribution D to be locally equivalent to the Cartan-Engel distribution D_{q²}.

Cartan's quartic

- For this, a certain 4th-rank symmetric tensor C = C(D), built up in terms of quite high derivatives of the functions defining D, must vanish. The tensor C is called Cartan's quartic for D, and there is and explicit formula for calculating it, given D.
- For example the Cartan quartic vanishes for D_{2f} if and only if *f* satisfies an ODE:

 $10f^{(6)}f''^{3} - 80f''^{2}f^{(3)}f^{(5)} - 51f''^{2}f^{(4)}^{2} +$ $336f''f^{(3)}f^{(4)} - 224f^{(3)}f^{4} = 0$

Cartan's quartic

- For this, a certain 4th-rank symmetric tensor C = C(D), built up in terms of quite high derivatives of the functions defining D, must vanish. The tensor C is called Cartan's quartic for D, and there is and explicit formula for calculating it, given D.
- For example the Cartan quartic vanishes for \mathcal{D}_{2f} if and only if *f* satisfies an ODE:

 $10f^{(6)}f''^{3} - 80f''^{2}f^{(3)}f^{(5)} - 51f''^{2}f^{(4)}^{2} +$ $336f''f^{(3)}f^{(4)} - 224f^{(3)}^{4} =$

Cartan's quartic

- For this, a certain 4th-rank symmetric tensor C = C(D), built up in terms of quite high derivatives of the functions defining D, must vanish. The tensor C is called Cartan's quartic for D, and there is and explicit formula for calculating it, given D.
- For example the Cartan quartic vanishes for D_{2f} if and only if f satisfies an ODE:

 $10f^{(6)}f''^{3} - 80f''^{2}f^{(3)}f^{(5)} - 51f''^{2}f^{(4)} +$

 $336f''f^{(3)^2}f^{(4)} - 224f^{(3)^4} = 0.$

Cartan's quartic

- For this, a certain 4th-rank symmetric tensor C = C(D), built up in terms of quite high derivatives of the functions defining D, must vanish. The tensor C is called Cartan's quartic for D, and there is and explicit formula for calculating it, given D.
- For example the Cartan quartic vanishes for \mathcal{D}_{2f} if and only if *f* satisfies an ODE:

 $10f^{(6)}f''^{3} - 80f''^{2}f^{(3)}f^{(5)} - 51f''^{2}f^{(4)}^{2} +$ $336f''f^{(3)}f^{(4)} - 224f^{(3)}f^{4} = 0.$

Real totally null planes

- What is the fundamental difference between \mathbb{R}^4 with a Riemannian metric $x_1^2 + x_2^2 + x_3^2 + x_4^2$ and \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$? ... in Lorentzian case we have **null vectors**, e.g. n = (0, 1, 0, 1).
- What is the fundamental difference between \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$ and \mathbb{R}^4 with a split signature metric $x_1^2 + x_2^2 x_3^2 x_4^2$? Well... in the split case we have totally **null planes**, e.g. $N_0 = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$.
- A totally null plane is a 2-dimensional vector subspace N of \mathbb{R}^4 whose all vectors have vanishing length and are orthogonal to each other. In other words, the metric g is **zero** on N.

- What is the fundamental difference between \mathbb{R}^4 with a Riemannian metric $x_1^2 + x_2^2 + x_3^2 + x_4^2$ and \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$? ... in Lorentzian case we have **null vectors**, e.g. n = (0, 1, 0, 1).
- What is the fundamental difference between \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$ and \mathbb{R}^4 with a split signature metric $x_1^2 + x_2^2 x_3^2 x_4^2$? Well... in the split case we have totally **null planes**, e.g. $N_0 = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$.
- A totally null plane is a 2-dimensional vector subspace N of \mathbb{R}^4 whose all vectors have vanishing length and are orthogonal to each other. In other words, the metric g is **zero** on N.

- What is the fundamental difference between \mathbb{R}^4 with a Riemannian metric $x_1^2 + x_2^2 + x_3^2 + x_4^2$ and \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$? ... in Lorentzian case we have **null vectors**, e.g. n = (0, 1, 0, 1).
- What is the fundamental difference between \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$ and \mathbb{R}^4 with a split signature metric $x_1^2 + x_2^2 x_3^2 x_4^2$? Well... in the split case we have totally **null planes**, e.g. $N_0 = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$.
- A totally null plane is a 2-dimensional vector subspace N of \mathbb{R}^4 whose all vectors have vanishing length and are orthogonal to each other. In other words, the metric g is **zero** on N.

- What is the fundamental difference between \mathbb{R}^4 with a Riemannian metric $x_1^2 + x_2^2 + x_3^2 + x_4^2$ and \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$? ... in Lorentzian case we have **null vectors**, e.g. n = (0, 1, 0, 1).
- What is the fundamental difference between \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$ and \mathbb{R}^4 with a split signature metric $x_1^2 + x_2^2 x_3^2 x_4^2$? Well... in the split case we have totally **null planes**, e.g. $N_0 = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$.
- A totally null plane is a 2-dimensional vector subspace N of \mathbb{R}^4 whose all vectors have vanishing length and are orthogonal to each other. In other words, the metric g is **zero** on N.

- What is the fundamental difference between \mathbb{R}^4 with a Riemannian metric $x_1^2 + x_2^2 + x_3^2 + x_4^2$ and \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$? ... in Lorentzian case we have **null vectors**, e.g. n = (0, 1, 0, 1).
- What is the fundamental difference between \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$ and \mathbb{R}^4 with a split signature metric $x_1^2 + x_2^2 x_3^2 x_4^2$? Well... in the split case we have totally **null planes**, e.g. $N_0 = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$.
- A totally null plane is a 2-dimensional vector subspace N of \mathbb{R}^4 whose all vectors have vanishing length and are orthogonal to each other. In other words, the metric g is **zero** on N.

- What is the fundamental difference between \mathbb{R}^4 with a Riemannian metric $x_1^2 + x_2^2 + x_3^2 + x_4^2$ and \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$? ... in Lorentzian case we have **null vectors**, e.g. n = (0, 1, 0, 1).
- What is the fundamental difference between \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$ and \mathbb{R}^4 with a split signature metric $x_1^2 + x_2^2 x_3^2 x_4^2$? Well... in the split case we have totally **null planes**, e.g. $N_0 = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$.
- A totally null plane is a 2-dimensional vector subspace N of \mathbb{R}^4 whose all vectors have vanishing length and are orthogonal to each other. In other words, the metric g is **zero** on N.

- What is the fundamental difference between \mathbb{R}^4 with a Riemannian metric $x_1^2 + x_2^2 + x_3^2 + x_4^2$ and \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$? ... in Lorentzian case we have **null vectors**, e.g. n = (0, 1, 0, 1).
- What is the fundamental difference between \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$ and \mathbb{R}^4 with a split signature metric $x_1^2 + x_2^2 x_3^2 x_4^2$? Well... in the split case we have totally **null planes**, e.g. $N_0 = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$.
- A totally null plane is a 2-dimensional vector subspace N of \mathbb{R}^4 whose all vectors have vanishing length and are orthogonal to each other. In other words, the metric g is **zero** on N.

- What is the fundamental difference between \mathbb{R}^4 with a Riemannian metric $x_1^2 + x_2^2 + x_3^2 + x_4^2$ and \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$? ... in Lorentzian case we have **null vectors**, e.g. n = (0, 1, 0, 1).
- What is the fundamental difference between \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$ and \mathbb{R}^4 with a split signature metric $x_1^2 + x_2^2 x_3^2 x_4^2$? Well... in the split case we have totally **null planes**, e.g. $N_0 = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$.
- A totally null plane is a 2-dimensional vector subspace N of \mathbb{R}^4 whose all vectors have vanishing length and are orthogonal to each other. In other words, the metric g is **zero** on N.

- What is the fundamental difference between \mathbb{R}^4 with a Riemannian metric $x_1^2 + x_2^2 + x_3^2 + x_4^2$ and \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$? ... in Lorentzian case we have **null vectors**, e.g. n = (0, 1, 0, 1).
- What is the fundamental difference between \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$ and \mathbb{R}^4 with a split signature metric $x_1^2 + x_2^2 x_3^2 x_4^2$? Well... in the split case we have totally **null planes**, e.g. $N_0 = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$.
- A totally null plane is a 2-dimensional vector subspace N of \mathbb{R}^4 whose all vectors have vanishing length and are orthogonal to each other. In other words, the metric g is **zero** on N.

- What is the fundamental difference between \mathbb{R}^4 with a Riemannian metric $x_1^2 + x_2^2 + x_3^2 + x_4^2$ and \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$? ... in Lorentzian case we have **null vectors**, e.g. n = (0, 1, 0, 1).
- What is the fundamental difference between \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$ and \mathbb{R}^4 with a split signature metric $x_1^2 + x_2^2 x_3^2 x_4^2$? Well... in the split case we have totally **null planes**, e.g. $N_0 = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$.
- A totally null plane is a 2-dimensional vector subspace N of \mathbb{R}^4 whose all vectors have vanishing length and are orthogonal to each other. In other words, the metric g is **zero** on N.

- What is the fundamental difference between \mathbb{R}^4 with a Riemannian metric $x_1^2 + x_2^2 + x_3^2 + x_4^2$ and \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$? ... in Lorentzian case we have **null vectors**, e.g. n = (0, 1, 0, 1).
- What is the fundamental difference between \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$ and \mathbb{R}^4 with a split signature metric $x_1^2 + x_2^2 x_3^2 x_4^2$? Well... in the split case we have totally **null planes**, e.g. $N_0 = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$.
- A totally null plane is a 2-dimensional vector subspace N of \mathbb{R}^4 whose all vectors have vanishing length and are orthogonal to each other. In other words, the metric g is **zero** on N.

- What is the fundamental difference between \mathbb{R}^4 with a Riemannian metric $x_1^2 + x_2^2 + x_3^2 + x_4^2$ and \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$? ... in Lorentzian case we have **null vectors**, e.g. n = (0, 1, 0, 1).
- What is the fundamental difference between \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$ and \mathbb{R}^4 with a split signature metric $x_1^2 + x_2^2 x_3^2 x_4^2$? Well... in the split case we have totally **null planes**, e.g. $N_0 = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$.
- A totally null plane is a 2-dimensional vector subspace N of \mathbb{R}^4 whose all vectors have vanishing length and are orthogonal to each other. In other words, the metric g is zero on N.

- What is the fundamental difference between \mathbb{R}^4 with a Riemannian metric $x_1^2 + x_2^2 + x_3^2 + x_4^2$ and \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$? ... in Lorentzian case we have **null vectors**, e.g. n = (0, 1, 0, 1).
- What is the fundamental difference between \mathbb{R}^4 with a Lorentzian metric $x_1^2 + x_2^2 + x_3^2 x_4^2$ and \mathbb{R}^4 with a split signature metric $x_1^2 + x_2^2 x_3^2 x_4^2$? Well... in the split case we have totally **null planes**, e.g. $N_0 = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$.
- A totally null plane is a 2-dimensional vector subspace N of \mathbb{R}^4 whose all vectors have vanishing length and are orthogonal to each other. In other words, the metric g is **zero** on N.

Real totally null planes (continued)

- Given a totally null plane $N_0^+ = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$, we can act on it with the elements *a* of the orthogonal group $SO_0(2, 2)$, via: (*a*, $\text{Span}(n_1, n_2)$) \mapsto $\text{Span}(a \cdot n_1, a \cdot n_2)$.
- Since the orthogonal group preserves nullity the resulting space $N_a^+ = \text{Span}(a \cdot n_1, a \cdot n_2)$ is also totally null.
- It follows that the orbit of N₀⁺ w.r.t. this SO₀(2,2) action forms a cricle

$$\mathbb{S}^{1}_{+} = \{ N^{+}_{\phi} = \operatorname{Span}(n_{1}(\phi), n_{2}(\phi)) \mid \phi \in [0, 2\pi] \}$$

with

Real totally null planes (continued)

• Given a totally null plane $N_0^+ = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$, we can act on it with the elements *a* of the orthogonal group $SO_0(2, 2)$, via:

 $(a, \operatorname{Span}(n_1, n_2)) \mapsto \operatorname{Span}(a \cdot n_1, a \cdot n_2).$

- Since the orthogonal group preserves nullity the resulting space N⁺_a = Span(a · n₁, a · n₂) is also totally null.
- It follows that the orbit of N₀⁺ w.r.t. this SO₀(2,2) action forms a cricle

$$\mathbb{S}^{1}_{+} = \{ N^{+}_{\phi} = \operatorname{Span}(n_{1}(\phi), n_{2}(\phi)) \mid \phi \in [0, 2\pi] \}$$

with

Real totally null planes (continued)

• Given a totally null plane $N_0^+ = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$, we can act on it with the elements *a* of the orthogonal group $SO_0(2, 2)$, via:

 $(a, \operatorname{Span}(n_1, n_2)) \mapsto \operatorname{Span}(a \cdot n_1, a \cdot n_2).$

- Since the orthogonal group preserves nullity the resulting space $N_a^+ = \text{Span}(a \cdot n_1, a \cdot n_2)$ is also totally null.
- It follows that the orbit of N₀⁺ w.r.t. this SO₀(2,2) action forms a cricle

$$\mathbb{S}^{1}_{+} = \{ N^{+}_{\phi} = \operatorname{Span}(n_{1}(\phi), n_{2}(\phi)) \mid \phi \in [0, 2\pi] \}$$

with

Real totally null planes (continued)

- Given a totally null plane $N_0^+ = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$, we can act on it with the elements *a* of the orthogonal group $SO_0(2, 2)$, via: $(a, \text{Span}(n_1, n_2)) \mapsto \text{Span}(a \cdot n_1, a \cdot n_2).$
- Since the orthogonal group preserves nullity the resulting space $N_a^+ = \text{Span}(a \cdot n_1, a \cdot n_2)$ is also totally null.
- It follows that the orbit of N₀⁺ w.r.t. this SO₀(2,2) action forms a cricle

$$\mathbb{S}^{1}_{+} = \{ N^{+}_{\phi} = \operatorname{Span}(n_{1}(\phi), n_{2}(\phi)) \mid \phi \in [0, 2\pi] \}$$

with

Real totally null planes (continued)

• Given a totally null plane $N_0^+ = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$, we can act on it with the elements *a* of the orthogonal group $SO_0(2, 2)$, via:

 $(a, \operatorname{Span}(n_1, n_2)) \mapsto \operatorname{Span}(a \cdot n_1, a \cdot n_2).$

- Since the orthogonal group preserves nullity the resulting space $N_a^+ = \text{Span}(a \cdot n_1, a \cdot n_2)$ is also totally null.
- It follows that the orbit of N₀⁺ w.r.t. this SO₀(2, 2) action forms a cricle

 $\mathbb{S}^{1}_{+} = \{ N^{+}_{\phi} = \operatorname{Span}(n_{1}(\phi), n_{2}(\phi)) \mid \phi \in [0, 2\pi] \}$

Real totally null planes (continued)

• Given a totally null plane $N_0^+ = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$, we can act on it with the elements *a* of the orthogonal group $SO_0(2, 2)$, via:

 $(a, \operatorname{Span}(n_1, n_2)) \mapsto \operatorname{Span}(a \cdot n_1, a \cdot n_2).$

- Since the orthogonal group preserves nullity the resulting space $N_a^+ = \text{Span}(a \cdot n_1, a \cdot n_2)$ is also totally null.
- It follows that the orbit of N₀⁺ w.r.t. this SO₀(2,2) action forms a cricle

$$\mathbb{S}^{1}_{+} = \{ N^{+}_{\phi} = \operatorname{Span}(n_{1}(\phi), n_{2}(\phi)) \mid \phi \in [0, 2\pi] \}$$

with

Real totally null planes (continued)

• Given a totally null plane $N_0^+ = \text{Span}(n_1, n_2)$ with $n_1 = (1, 0, 1, 0)$ and $n_2 = (0, 1, 0, 1)$, we can act on it with the elements *a* of the orthogonal group $SO_0(2, 2)$, via:

 $(a, \operatorname{Span}(n_1, n_2)) \mapsto \operatorname{Span}(a \cdot n_1, a \cdot n_2).$

- Since the orthogonal group preserves nullity the resulting space $N_a^+ = \text{Span}(a \cdot n_1, a \cdot n_2)$ is also totally null.
- It follows that the orbit of N₀⁺ w.r.t. this SO₀(2, 2) action forms a cricle

$$\mathbb{S}^{1}_{+} = \{ N^{+}_{\phi} = \operatorname{Span}(n_{1}(\phi), n_{2}(\phi)) \mid \phi \in [0, 2\pi] \}$$

with

- Any totally null 2-plane $N = \text{Span}(n_1, n_2)$ in $(\mathbb{R}^4, x_1^2 + x_2^2 - x_3^2 - x_4^2)$ defines a line of a bivector $I(N) = \mathbb{R}n_1 \wedge n_2$.
- It follows that the bivectors l(N) are either selfdual: *l(N) = l(N), or antiselfdual *l(N) = -l(N).
- We say that a totally null plane N is selfdual or antislefdual if its corresponding line I(N) is selfdual or antislefdual, respectively.
- For example planes N⁺_{\phi} from the SO₀(2, 2) orbit of N⁺₀ are all selfdual.

- Any totally null 2-plane $N = \text{Span}(n_1, n_2)$ in $(\mathbb{R}^4, x_1^2 + x_2^2 - x_3^2 - x_4^2)$ defines a line of a bivector $I(N) = \mathbb{R}n_1 \wedge n_2$.
- It follows that the bivectors I(N) are either selfdual: *I(N) = I(N), or antiselfdual *I(N) = -I(N).
- We say that a totally null plane N is selfdual or antislefdual if its corresponding line I(N) is selfdual or antislefdual, respectively.
- For example planes N⁺_{\phi} from the SO₀(2, 2) orbit of N⁺₀ are all selfdual.

- Any totally null 2-plane $N = \text{Span}(n_1, n_2)$ in $(\mathbb{R}^4, x_1^2 + x_2^2 x_3^2 x_4^2)$ defines a line of a bivector $I(N) = \mathbb{R}n_1 \wedge n_2$.
- It follows that the bivectors I(N) are either selfdual: *I(N) = I(N), or antiselfdual *I(N) = -I(N).
- We say that a totally null plane N is selfdual or antislefdual if its corresponding line I(N) is selfdual or antislefdual, respectively.
- For example planes N⁺_{\phi} from the SO₀(2, 2) orbit of N⁺₀ are all selfdual.

- Any totally null 2-plane $N = \text{Span}(n_1, n_2)$ in $(\mathbb{R}^4, x_1^2 + x_2^2 - x_3^2 - x_4^2)$ defines a line of a bivector $I(N) = \mathbb{R}n_1 \wedge n_2$.
- It follows that the bivectors I(N) are either selfdual: *I(N) = I(N), or antiselfdual *I(N) = -I(N).
- We say that a totally null plane N is selfdual or antislefdual if its corresponding line I(N) is selfdual or antislefdual, respectively.
- For example planes N⁺_φ from the SO₀(2, 2) orbit of N⁺₀ are all selfdual.

Real totally null planes (continued)

- The plane $N_0^- = \text{Span}(n_1, n_3)$ with $n_1 = (1, 0, 1, 0)$ and $n_3 = (0, 1, 0, -1)$ is antiselfdual.
- The entire $SO_0(2,2)$ orbit of N_0^- , which is a cricle

 $\mathbb{S}^{1}_{-} = \{ N_{\phi}^{-} = \operatorname{Span}(n_{1}(\phi), n_{3}(\phi)) \mid \phi \in [0, 2\pi] \}$

- It follows that every totally null plane N in $(\mathbb{R}^4, x_1^2 + x_2^2 x_3^2 x_4^2)$ belongs to either \mathbb{S}^1_+ or \mathbb{S}^1_- .
- The space Z(N) of all totally null planes in ℝ⁴ equipped with the (2,2) signature metric, is a disjoint union of S¹₊ and S¹₋, Z(N) = S¹₊ ∪ S¹₋.

Real totally null planes (continued)

- The plane $N_0^- = \text{Span}(n_1, n_3)$ with $n_1 = (1, 0, 1, 0)$ and $n_3 = (0, 1, 0, -1)$ is antiselfdual.
- The entire $SO_0(2,2)$ orbit of N_0^- , which is a cricle

$\mathbb{S}^{1}_{-} = \{ N_{\phi}^{-} = \operatorname{Span}(n_{1}(\phi), n_{3}(\phi)) \mid \phi \in [0, 2\pi] \}$

- It follows that every totally null plane *N* in $(\mathbb{R}^4, x_1^2 + x_2^2 x_3^2 x_4^2)$ belongs to either \mathbb{S}^1_+ or \mathbb{S}^1_-
- The space Z(N) of all totally null planes in ℝ⁴ equipped with the (2,2) signature metric, is a disjoint union of S¹₊ and S¹₋, Z(N) = S¹₊ ∪ S¹₋.

Real totally null planes (continued)

- The plane $N_0^- = \text{Span}(n_1, n_3)$ with $n_1 = (1, 0, 1, 0)$ and $n_3 = (0, 1, 0, -1)$ is antiselfdual.
- The entire $SO_0(2,2)$ orbit of N_0^- , which is a cricle

 $\mathbb{S}_{-}^{1} = \{ N_{\phi}^{-} = \operatorname{Span}(n_{1}(\phi), n_{3}(\phi)) \mid \phi \in [0, 2\pi] \}$

- It follows that every totally null plane N in
 (ℝ⁴, x₁² + x₂² x₃² x₄²) belongs to either S¹₊ or S¹_−.
- The space Z(N) of all totally null planes in ℝ⁴ equipped with the (2,2) signature metric, is a disjoint union of S¹₊ and S¹₋, Z(N) = S¹₊ ∪ S¹₋.

Real totally null planes (continued)

- The plane $N_0^- = \text{Span}(n_1, n_3)$ with $n_1 = (1, 0, 1, 0)$ and $n_3 = (0, 1, 0, -1)$ is antiselfdual.
- The entire $SO_0(2,2)$ orbit of N_0^- , which is a cricle

 $\mathbb{S}_{-}^{1} = \{ N_{\phi}^{-} = \operatorname{Span}(n_{1}(\phi), n_{3}(\phi)) \mid \phi \in [0, 2\pi] \}$

with $n_1(\phi) = (1, 0, \cos \phi, \sin \phi)$, $n_3(\phi) = (0, 1, \sin \phi, -\cos \phi)$, consists of antiselfdual planes.

• It follows that every totally null plane *N* in $(\mathbb{R}^4, x_1^2 + x_2^2 - x_3^2 - x_4^2)$ belongs to either \mathbb{S}^1_+ or \mathbb{S}^1_- .

The space Z(N) of all totally null planes in ℝ⁴ equipped with the (2,2) signature metric, is a disjoint union of S¹₊ and S¹₋, Z(N) = S¹₊ ∪ S¹₋.

Real totally null planes (continued)

- The plane $N_0^- = \text{Span}(n_1, n_3)$ with $n_1 = (1, 0, 1, 0)$ and $n_3 = (0, 1, 0, -1)$ is antiselfdual.
- The entire $SO_0(2,2)$ orbit of N_0^- , which is a cricle

$$\mathbb{S}_{-}^{1} = \{ N_{\phi}^{-} = \operatorname{Span}(n_{1}(\phi), n_{3}(\phi)) \mid \phi \in [0, 2\pi] \}$$

- It follows that every totally null plane N in $(\mathbb{R}^4, x_1^2 + x_2^2 x_3^2 x_4^2)$ belongs to either \mathbb{S}^1_+ or \mathbb{S}^1_- .
- The space Z(N) of all totally null planes in ℝ⁴ equipped with the (2,2) signature metric, is a disjoint union of S¹₊ and S¹₋, Z(N) = S¹₊ ∪ S¹₋.

Real totally null planes (continued)

- The plane $N_0^- = \text{Span}(n_1, n_3)$ with $n_1 = (1, 0, 1, 0)$ and $n_3 = (0, 1, 0, -1)$ is antiselfdual.
- The entire $SO_0(2,2)$ orbit of N_0^- , which is a cricle

$$\mathbb{S}^{1}_{-} = \{ N^{-}_{\phi} = \operatorname{Span}(n_{1}(\phi), n_{3}(\phi)) \mid \phi \in [0, 2\pi] \}$$

- It follows that every totally null plane *N* in $(\mathbb{R}^4, x_1^2 + x_2^2 x_3^2 x_4^2)$ belongs to either \mathbb{S}^1_+ or \mathbb{S}^1_- .
- The space Z(N) of all totally null planes in ℝ⁴ equipped with the (2,2) signature metric, is a disjoint union of S¹₊ and S¹₋, Z(N) = S¹₊ ∪ S¹₋.

- Let (*M*, *g*) be a 4-dimensional manifold *M* equipped with a (2, 2) signature metric *g*. Assume that *M* is orientable and oriented.
- Then, at every point *y* ∈ *M* we have a circle S¹₊(*y*) of totally null selfdual planes N⁺_φ(*y*) contained in the tangent space T_yM.
- This defines a circle bundle T₊(M) = ∪_{y∈M}S¹₊(y) with a projection: π : N⁺_φ(y) → π(N⁺_φ(y)) = y.
- The circle bundle $\mathbb{T}_+(M)$ of selfdual totally null planes over (M, g) is called a **circle twistor bundle** of a split-signature 4-manifold (M, g).
- Note that the existence of this bundle is a specific feature of signature (2,2). In the other two signatures similar construction (due to Roger Penrose) leads to **sphere** bundles.

- Let (M, g) be a 4-dimensional manifold M equipped with a (2,2) signature metric g. Assume that M is orientable and oriented.
- Then, at every point *y* ∈ *M* we have a circle S¹₊(*y*) of totally null selfdual planes N⁺_φ(*y*) contained in the tangent space T_yM.
- This defines a circle bundle T₊(M) = ∪_{y∈M}S¹₊(y) with a projection: π : N⁺_φ(y) → π(N⁺_φ(y)) = y.
- The circle bundle $\mathbb{T}_+(M)$ of selfdual totally null planes over (M, g) is called a **circle twistor bundle** of a split-signature 4-manifold (M, g).
- Note that the existence of this bundle is a specific feature of signature (2,2). In the other two signatures similar construction (due to Roger Penrose) leads to **sphere** bundles.

- Let (M, g) be a 4-dimensional manifold M equipped with a (2,2) signature metric g. Assume that M is orientable and oriented.
- Then, at every point *y* ∈ *M* we have a circle S¹₊(*y*) of totally null selfdual planes N⁺_φ(*y*) contained in the tangent space T_yM.
- This defines a circle bundle T₊(M) = ∪_{y∈M}S¹₊(y) with a projection: π : N⁺_φ(y) → π(N⁺_φ(y)) = y.
- The circle bundle $\mathbb{T}_+(M)$ of selfdual totally null planes over (M, g) is called a **circle twistor bundle** of a split-signature 4-manifold (M, g).
- Note that the existence of this bundle is a specific feature of signature (2,2). In the other two signatures similar construction (due to Roger Penrose) leads to **sphere** bundles.

- Let (M, g) be a 4-dimensional manifold M equipped with a (2,2) signature metric g. Assume that M is orientable and oriented.
- Then, at every point *y* ∈ *M* we have a circle S¹₊(*y*) of totally null selfdual planes N⁺_φ(*y*) contained in the tangent space T_y*M*.
- This defines a circle bundle T₊(M) = ∪_{y∈M}S¹₊(y) with a projection: π : N⁺_φ(y) → π(N⁺_φ(y)) = y.
- The circle bundle $\mathbb{T}_+(M)$ of selfdual totally null planes over (M, g) is called a **circle twistor bundle** of a split-signature 4-manifold (M, g).
- Note that the existence of this bundle is a specific feature of signature (2,2). In the other two signatures similar construction (due to Roger Penrose) leads to **sphere** bundles.

- Let (M, g) be a 4-dimensional manifold M equipped with a (2,2) signature metric g. Assume that M is orientable and oriented.
- Then, at every point *y* ∈ *M* we have a circle S¹₊(*y*) of totally null selfdual planes N⁺_φ(*y*) contained in the tangent space T_y*M*.
- This defines a circle bundle T₊(M) = ∪_{y∈M}S¹₊(y) with a projection: π : N⁺_φ(y) ↦ π(N⁺_φ(y)) = y.
- The circle bundle $\mathbb{T}_+(M)$ of selfdual totally null planes over (M, g) is called a **circle twistor bundle** of a split-signature 4-manifold (M, g).
- Note that the existence of this bundle is a specific feature of signature (2,2). In the other two signatures similar construction (due to Roger Penrose) leads to **sphere** bundles.

- Let (M, g) be a 4-dimensional manifold M equipped with a (2,2) signature metric g. Assume that M is orientable and oriented.
- Then, at every point *y* ∈ *M* we have a circle S¹₊(*y*) of totally null selfdual planes N⁺_φ(*y*) contained in the tangent space T_y*M*.
- This defines a circle bundle T₊(M) = ∪_{y∈M}S¹₊(y) with a projection: π : N⁺_φ(y) → π(N⁺_φ(y)) = y.
- The circle bundle $\mathbb{T}_+(M)$ of selfdual totally null planes over (M, g) is called a **circle twistor bundle** of a split-signature 4-manifold (M, g).
- Note that the existence of this bundle is a specific feature of signature (2,2). In the other two signatures similar construction (due to Roger Penrose) leads to **sphere** bundles.

- Let (M, g) be a 4-dimensional manifold M equipped with a (2,2) signature metric g. Assume that M is orientable and oriented.
- Then, at every point *y* ∈ *M* we have a circle S¹₊(*y*) of totally null selfdual planes N⁺_φ(*y*) contained in the tangent space T_y*M*.
- This defines a circle bundle T₊(M) = ∪_{y∈M}S¹₊(y) with a projection: π : N⁺_φ(y) ↦ π(N⁺_φ(y)) = y.
- The circle bundle $\mathbb{T}_+(M)$ of selfdual totally null planes over (M, g) is called a **circle twistor bundle** of a split-signature 4-manifold (M, g).
- Note that the existence of this bundle is a specific feature of signature (2,2). In the other two signatures similar construction (due to Roger Penrose) leads to **sphere** bundles.

Geometric structure on the circle twistor bundle

- Vector fields tangent to the fibers of π : T(M) → M form the vertical space V on T(M).
- Once a point N⁺_φ(y) in T(M) is chosen a unique horizontal lift of any tangent vector X_y from y ∈ M to N⁺_φ(y) is given by means of the Levi-Civita connection ∇^g of the metric g.
- This in particular defines a **horizontal space** \mathcal{H} on $\mathbb{T}(M)$
- Since every point N⁺_φ(y) of T(M) is a totally null plane N⁺_φ(y) at y, we can lift the plane N⁺_φ(y) from y ∈ M
 horizontally to the point N⁺_φ(y) in T(M). In this way to every point of T(M) we attach a 2-plane D_{φ,y}, which is horizontal. This defines a rank 2 distribution D on T(M).

Geometric structure on the circle twistor bundle

- Vector fields tangent to the fibers of π : T(M) → M form the vertical space V on T(M).
- Once a point N⁺_φ(y) in T(M) is chosen a unique horizontal lift of any tangent vector X_y from y ∈ M to N⁺_φ(y) is given by means of the Levi-Civita connection ∇^g of the metric g.
- This in particular defines a **horizontal space** \mathcal{H} on $\mathbb{T}(M)$
- Since every point N⁺_φ(y) of T(M) is a totally null plane N⁺_φ(y) at y, we can lift the plane N⁺_φ(y) from y ∈ M
 horizontally to the point N⁺_φ(y) in T(M). In this way to every point of T(M) we attach a 2-plane D_{φ,y}, which is horizontal. This defines a rank 2 distribution D on T(M).
- Here we focus only on the distribution $\mathcal{D}_{\mathbb{R}}$, $\mathcal{B}_{\mathbb{R}}$, $\mathcal{B}_{\mathbb{R}}$

Geometric structure on the circle twistor bundle

- Vector fields tangent to the fibers of π : T(M) → M form the vertical space V on T(M).
- Once a point $N_{\phi}^+(y)$ in $\mathbb{T}(M)$ is chosen a unique **horizontal lift** of any tangent vector X_y from $y \in M$ to $N_{\phi}^+(y)$ is given by means of the Levi-Civita connection ∇^g of the metric g.
- This in particular defines a **horizontal space** \mathcal{H} on $\mathbb{T}(M)$
- Since every point N⁺_φ(y) of T(M) is a totally null plane N⁺_φ(y) at y, we can lift the plane N⁺_φ(y) from y ∈ M
 horizontally to the point N⁺_φ(y) in T(M). In this way to every point of T(M) we attach a 2-plane D_{φ,y}, which is horizontal. This defines a rank 2 distribution D on T(M).
- ... One can continue the list of geometric objects on $\mathbb{T}(M)$... • Here we focus only on the distribution $\mathcal{D}_{\mathbb{D}}$, $\mathcal{B}_{\mathbb{D}}$, $\mathcal{B}_{\mathbb{D}}$, $\mathcal{B}_{\mathbb{D}}$, $\mathcal{B}_{\mathbb{D}}$, $\mathcal{B}_{\mathbb{D}}$

Geometric structure on the circle twistor bundle

- Vector fields tangent to the fibers of π : T(M) → M form the vertical space V on T(M).
- Once a point $N_{\phi}^+(y)$ in $\mathbb{T}(M)$ is chosen a unique **horizontal lift** of any tangent vector X_y from $y \in M$ to $N_{\phi}^+(y)$ is given by means of the Levi-Civita connection ∇^g of the metric g.
- This in particular defines a **horizontal space** \mathcal{H} on $\mathbb{T}(M)$
- Since every point $N_{\phi}^+(y)$ of $\mathbb{T}(M)$ is a totally null plane $N_{\phi}^+(y)$ at y, we can **lift** the plane $N_{\phi}^+(y)$ from $y \in M$ **horizontally** to the point $N_{\phi}^+(y)$ in $\mathbb{T}(M)$. In this way to every point of $\mathbb{T}(M)$ we attach a **2-plane** $\mathcal{D}_{\phi,y}$, which is horizontal. This defines a **rank 2 distribution** \mathcal{D} on $\mathbb{T}(M)$.

Geometric structure on the circle twistor bundle

- Vector fields tangent to the fibers of π : T(M) → M form the vertical space V on T(M).
- Once a point $N_{\phi}^+(y)$ in $\mathbb{T}(M)$ is chosen a unique **horizontal lift** of any tangent vector X_y from $y \in M$ to $N_{\phi}^+(y)$ is given by means of the Levi-Civita connection ∇^g of the metric g.
- This in particular defines a **horizontal space** \mathcal{H} on $\mathbb{T}(M)$.
- Since every point N⁺_φ(y) of T(M) is a totally null plane N⁺_φ(y) at y, we can lift the plane N⁺_φ(y) from y ∈ M horizontally to the point N⁺_φ(y) in T(M). In this way to every point of T(M) we attach a 2-plane D_{φ,y}, which is horizontal. This defines a rank 2 distribution D on T(M).
 ... One can continue the list of geometric objects on T(M)...
 Here we focus only on the distribution D

Geometric structure on the circle twistor bundle

- Vector fields tangent to the fibers of π : T(M) → M form the vertical space V on T(M).
- Once a point $N_{\phi}^+(y)$ in $\mathbb{T}(M)$ is chosen a unique **horizontal lift** of any tangent vector X_y from $y \in M$ to $N_{\phi}^+(y)$ is given by means of the Levi-Civita connection ∇^g of the metric g.
- This in particular defines a **horizontal space** \mathcal{H} on $\mathbb{T}(M)$.

Geometric structure on the circle twistor bundle

- Vector fields tangent to the fibers of π : T(M) → M form the vertical space V on T(M).
- Once a point $N_{\phi}^+(y)$ in $\mathbb{T}(M)$ is chosen a unique **horizontal lift** of any tangent vector X_y from $y \in M$ to $N_{\phi}^+(y)$ is given by means of the Levi-Civita connection ∇^g of the metric g.
- This in particular defines a horizontal space \mathcal{H} on $\mathbb{T}(M)$.
- Since every point N⁺_φ(y) of T(M) is a totally null plane N⁺_φ(y) at y, we can lift the plane N⁺_φ(y) from y ∈ M horizontally to the point N⁺_φ(y) in T(M). In this way to every point of T(M) we attach a 2-plane D_{φ,y}, which is horizontal. This defines a rank 2 distribution D on T(M).
- Here we focus only on the distribution \mathcal{D}_{a} , \mathcal{D}_{a} ,

Geometric structure on the circle twistor bundle

- Vector fields tangent to the fibers of π : T(M) → M form the vertical space V on T(M).
- Once a point $N_{\phi}^+(y)$ in $\mathbb{T}(M)$ is chosen a unique **horizontal lift** of any tangent vector X_y from $y \in M$ to $N_{\phi}^+(y)$ is given by means of the Levi-Civita connection ∇^g of the metric g.
- This in particular defines a **horizontal space** \mathcal{H} on $\mathbb{T}(M)$.
- Since every point N⁺_φ(y) of T(M) is a totally null plane N⁺_φ(y) at y, we can lift the plane N⁺_φ(y) from y ∈ M horizontally to the point N⁺_φ(y) in T(M). In this way to every point of T(M) we attach a 2-plane D⁺_{φ,y}, which is horizontal. This defines a rank 2 distribution D on T(M).

Geometric structure on the circle twistor bundle

- Vector fields tangent to the fibers of π : T(M) → M form the vertical space V on T(M).
- Once a point N⁺_φ(y) in T(M) is chosen a unique horizontal lift of any tangent vector X_y from y ∈ M to N⁺_φ(y) is given by means of the Levi-Civita connection ∇^g of the metric g.
- This in particular defines a **horizontal space** \mathcal{H} on $\mathbb{T}(M)$.
- Since every point $N_{\phi}^+(y)$ of $\mathbb{T}(M)$ is a totally null plane $N_{\phi}^+(y)$ at y, we can **lift** the plane $N_{\phi}^+(y)$ from $y \in M$ **horizontally** to the point $N_{\phi}^+(y)$ in $\mathbb{T}(M)$. In this way to every point of $\mathbb{T}(M)$ we attach a **2-plane** $\mathcal{D}_{\phi,y}$, which is horizontal. This defines a **rank 2 distribution** \mathcal{D} on $\mathbb{T}(M)$.
- ... One can continue the list of geometric objects on T(M)...
 Here we focus only on the distribution D_n, and the maximum set of the maximum set o

Geometric structure on the circle twistor bundle

- Vector fields tangent to the fibers of π : T(M) → M form the vertical space V on T(M).
- Once a point N⁺_φ(y) in T(M) is chosen a unique horizontal lift of any tangent vector X_y from y ∈ M to N⁺_φ(y) is given by means of the Levi-Civita connection ∇^g of the metric g.
- This in particular defines a **horizontal space** \mathcal{H} on $\mathbb{T}(M)$.
- Since every point $N_{\phi}^+(y)$ of $\mathbb{T}(M)$ is a totally null plane $N_{\phi}^+(y)$ at y, we can **lift** the plane $N_{\phi}^+(y)$ from $y \in M$ **horizontally** to the point $N_{\phi}^+(y)$ in $\mathbb{T}(M)$. In this way to every point of $\mathbb{T}(M)$ we attach a **2-plane** $\mathcal{D}_{\phi,y}$, which is horizontal. This defines a **rank 2 distribution** \mathcal{D} on $\mathbb{T}(M)$.
- ... One can continue the list of geometric objects on $\mathbb{T}(M)$...
- Here we focus only on the distribution \mathcal{D}_{\bullet} , \mathcal{A}_{\bullet} , \mathcal

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$

- The horizontal rank 2 distribution \mathcal{D} on $\mathbb{T}(M)$ as defined on the previous slide is called **twistor distribution** on $\mathbb{T}(M)$.
- Note that we found a natural **rank 2** distribution \mathcal{D} on $\mathbb{T}(M)$, which is **five** dimensional.

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$

- The horizontal rank 2 distribution \mathcal{D} on $\mathbb{T}(M)$ as defined on the previous slide is called **twistor distribution** on $\mathbb{T}(M)$.
- Note that we found a natural **rank 2** distribution \mathcal{D} on $\mathbb{T}(M)$, which is **five** dimensional.

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$

- The horizontal rank 2 distribution \mathcal{D} on $\mathbb{T}(M)$ as defined on the previous slide is called **twistor distribution** on $\mathbb{T}(M)$.
- Note that we found a natural **rank 2** distribution \mathcal{D} on $\mathbb{T}(M)$, which is **five** dimensional.

Questions about the twistor distribution

Immediately many questions arise:

What shall we assume about (M, g) for the twistor distribution \mathcal{D} to be

- integrable?
- (2,3,5)?
- if (2,3,5), then: when it is equivalent to the Cartan-Engel distribution \mathcal{D}_{a^2} ?
- if (2,3,5), then, is it true that any (2,3,5) distribution is locally euvalent to one of the twistor distributions?
- etc, etc,...

Questions about the twistor distribution

- integrable?
- (2,3,5)?
- if (2,3,5), then: when it is equivalent to the Cartan-Engel distribution \mathcal{D}_{q^2} ?
- if (2,3,5), then, is it true that any (2,3,5) distribution is locally euvalent to one of the twistor distributions?
- etc, etc,...

Questions about the twistor distribution

- integrable?
- (2,3,5)?
- if (2,3,5), then: when it is equivalent to the Cartan-Engel distribution D_{q^2} ?
- if (2,3,5), then, is it true that any (2,3,5) distribution is locally euvalent to one of the twistor distributions?
- etc, etc,...

Questions about the twistor distribution

- integrable?
- (2,3,5)**?**
- if (2,3,5), then: when it is equivalent to the Cartan-Engel distribution \mathcal{D}_{q^2} ?
- if (2,3,5), then, is it true that any (2,3,5) distribution is locally euvalent to one of the twistor distributions?
- etc, etc,...

Questions about the twistor distribution

- integrable?
- (2,3,5)?
- if (2,3,5), then: when it is equivalent to the Cartan-Engel distribution D_{a²}?
- if (2,3,5), then, is it true that any (2,3,5) distribution is locally euvalent to one of the twistor distributions?
- etc, etc,...

Questions about the twistor distribution

- Immediately many questions arise:
 What shall we assume about (*M*, *g*) for the twistor distribution *D* to be
 - integrable?
 - (2,3,5)?
 - if (2,3,5), then: when it is equivalent to the Cartan-Engel distribution \mathcal{D}_{q^2} ?
 - if (2,3,5), then, is it true that any (2,3,5) distribution is locally euvalent to one of the twistor distributions?

• etc, etc,...

Questions about the twistor distribution

- Immediately many questions arise:
 What shall we assume about (*M*, *g*) for the twistor distribution *D* to be
 - integrable?
 - (2,3,5)**?**
 - if (2,3,5), then: when it is equivalent to the Cartan-Engel distribution \mathcal{D}_{q^2} ?
 - if (2,3,5), then, is it true that any (2,3,5) distribution is locally euvalent to one of the twistor distributions?
 - etc, etc,...

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$

Theorem

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$ is integrable if and only if the split signature metric g on M has anti-selfdual Weyl tensor. Moreover, if the selfdual Weyl tensor of g is nonvanishing in $\mathcal{U} \subset M$, then in $\pi^{-1}(\mathcal{U})$ there are open sets where the corresponding twistor distribution \mathcal{D} is (2.3,5).

Let us assume that the selfdual Weyl tensor of g is not antiselfdual everywhere in M. Then, the key question is: which such metrics have twistor distributions locally equivalent to the Cartan-Engel distribution \mathcal{D}_{q^2} ? (the one with split G_2 symmetry). This is a difficult question...But...

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$

Theorem

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$ is integrable if and only if the split signature metric g on M has anti-selfdual Weyl tensor. Moreover, if the selfdual Weyl tensor of g is nonvanishing in $\mathcal{U} \subset M$, then in $\pi^{-1}(\mathcal{U})$ there are open sets where the corresponding twistor distribution \mathcal{D} is (2,3,5).

Let us assume that the selfdual Weyl tensor of g is not antiselfdual everywhere in M. Then, the key question is: which such metrics have twistor distributions locally equivalent to the Cartan-Engel distribution \mathcal{D}_{q^2} ? (the one with split G_2 symmetry). This is a difficult question...But...

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$

Theorem

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$ is integrable if and only if the split signature metric g on M has anti-selfdual Weyl tensor. Moreover, if the selfdual Weyl tensor of g is nonvanishing in $\mathcal{U} \subset M$, then in $\pi^{-1}(\mathcal{U})$ there are open sets where the corresponding twistor distribution \mathcal{D} is (2,3,5).

Let us assume that the selfdual Weyl tensor of *g* is not antiselfdual everywhere in *M*. Then, the key question is: which such metrics have twistor distributions locally equivalent to the Cartan-Engel distribution D_{q^2} ? (the one with split G_2 symmetry). This is a difficult question...But...

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$

Theorem

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$ is integrable if and only if the split signature metric g on M has anti-selfdual Weyl tensor. Moreover, if the selfdual Weyl tensor of g is nonvanishing in $\mathcal{U} \subset M$, then in $\pi^{-1}(\mathcal{U})$ there are open sets where the corresponding twistor distribution \mathcal{D} is (2,3,5).

Let us assume that the selfdual Weyl tensor of *g* is not antiselfdual everywhere in *M*. Then, the key question is: which such metrics have twistor distributions locally equivalent to the Cartan-Engel distribution \mathcal{D}_{q^2} ? (the one with split G_2 symmetry). This is a difficult question...But...

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$

Theorem

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$ is integrable if and only if the split signature metric g on M has anti-selfdual Weyl tensor. Moreover, if the selfdual Weyl tensor of g is nonvanishing in $\mathcal{U} \subset M$, then in $\pi^{-1}(\mathcal{U})$ there are open sets where the corresponding twistor distribution \mathcal{D} is (2,3,5).

Let us assume that the selfdual Weyl tensor of *g* is not antiselfdual everywhere in *M*. Then, the key question is: which such metrics have twistor distributions locally equivalent to the Cartan-Engel distribution \mathcal{D}_{q^2} ? (the one with split G_2 symmetry).

This is a difficult question...But...

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$

Theorem

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$ is integrable if and only if the split signature metric g on M has anti-selfdual Weyl tensor. Moreover, if the selfdual Weyl tensor of g is nonvanishing in $\mathcal{U} \subset M$, then in $\pi^{-1}(\mathcal{U})$ there are open sets where the corresponding twistor distribution \mathcal{D} is (2,3,5).

Let us assume that the selfdual Weyl tensor of *g* is not antiselfdual everywhere in *M*. Then, the key question is: which such metrics have twistor distributions locally equivalent to the Cartan-Engel distribution \mathcal{D}_{q^2} ? (the one with split G_2 symmetry). This is a difficult question...But...

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$

Theorem

Twistor distribution \mathcal{D} on $\mathbb{T}(M)$ is integrable if and only if the split signature metric g on M has anti-selfdual Weyl tensor. Moreover, if the selfdual Weyl tensor of g is nonvanishing in $\mathcal{U} \subset M$, then in $\pi^{-1}(\mathcal{U})$ there are open sets where the corresponding twistor distribution \mathcal{D} is (2,3,5).

Let us assume that the selfdual Weyl tensor of *g* is not antiselfdual everywhere in *M*. Then, the key question is: which such metrics have twistor distributions locally equivalent to the Cartan-Engel distribution \mathcal{D}_{q^2} ? (the one with split G_2 symmetry). This is a difficult question...But...

Results for a product of surfaces

Theorem

Let (Σ_1, g_1) be a Riemann surface with Gaussian curvature κ , which has a Killing vector, and let (Σ_2, g_2) be a Riemann surface of constant Gaussian curvature λ . Consider a 4-manifold $M = \Sigma_1 \times \Sigma_2$ with a product metric $g = g_1 \oplus (-g_2)$. Then in order for the twistor distribution \mathcal{D} on $\mathbb{T}(M)$ to have local symmetry G_2 , the curvatures must satisfy:

 $(9\kappa-\lambda)(\kappa-9\lambda)\lambda=0$.

Obviously these equations can be satisfied only in two cases:

• the ratios of the curvatures are 1:9 or 9:1, in which case both surfaces has constant curvatures,

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

• or one of the surfaces is flat.

Results for a product of surfaces

Theorem

Let (Σ_1, g_1) be a Riemann surface with Gaussian curvature κ , which has a Killing vector, and let (Σ_2, g_2) be a Riemann surface of constant Gaussian curvature λ . Consider a 4-manifold $M = \Sigma_1 \times \Sigma_2$ with a product metric $g = g_1 \oplus (-g_2)$. Then in order for the twistor distribution \mathcal{D} on $\mathbb{T}(M)$ to have local symmetry G_2 , the curvatures must satisfy:

 $(9\kappa - \lambda)(\kappa - 9\lambda)\lambda = 0.$

Obviously these equations can be satisfied only in two cases:

• the ratios of the curvatures are 1:9 or 9:1, in which case both surfaces has constant curvatures,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

or one of the surfaces is flat.

Results for a product of surfaces

Theorem

Let (Σ_1, g_1) be a Riemann surface with Gaussian curvature κ , which has a Killing vector, and let (Σ_2, g_2) be a Riemann surface of constant Gaussian curvature λ . Consider a 4-manifold $M = \Sigma_1 \times \Sigma_2$ with a product metric $g = g_1 \oplus (-g_2)$. Then in order for the twistor distribution \mathcal{D} on $\mathbb{T}(M)$ to have local symmetry G_2 , the curvatures must satisfy:

 $(9\kappa - \lambda)(\kappa - 9\lambda)\lambda = 0.$

Obviously these equations can be satisfied only in two cases:

• the ratios of the curvatures are 1:9 or 9:1, in which case both surfaces has constant curvatures,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• or one of the surfaces is flat.

Results for a product of surfaces

Theorem

Let (Σ_1, g_1) be a Riemann surface with Gaussian curvature κ , which has a Killing vector, and let (Σ_2, g_2) be a Riemann surface of constant Gaussian curvature λ . Consider a 4-manifold $M = \Sigma_1 \times \Sigma_2$ with a product metric $g = g_1 \oplus (-g_2)$. Then in order for the twistor distribution \mathcal{D} on $\mathbb{T}(M)$ to have local symmetry G_2 , the curvatures must satisfy:

 $(9\kappa - \lambda)(\kappa - 9\lambda)\lambda = 0.$

Obviously these equations can be satisfied only in two cases:

• the ratios of the curvatures are 1:9 or 9:1, in which case both surfaces has constant curvatures,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• or one of the surfaces is flat

Results for a product of surfaces

Theorem

Let (Σ_1, g_1) be a Riemann surface with Gaussian curvature κ , which has a Killing vector, and let (Σ_2, g_2) be a Riemann surface of constant Gaussian curvature λ . Consider a 4-manifold $M = \Sigma_1 \times \Sigma_2$ with a product metric $g = g_1 \oplus (-g_2)$. Then in order for the twistor distribution \mathcal{D} on $\mathbb{T}(M)$ to have local symmetry G_2 , the curvatures must satisfy:

 $(9\kappa - \lambda)(\kappa - 9\lambda)\lambda = 0.$

Obviously these equations can be satisfied only in two cases:

• the ratios of the curvatures are 1:9 or 9:1, in which case both surfaces has constant curvatures,

<ロ> <日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0

• or one of the surfaces is flat.

Results for a product of surfaces

Theorem

If both surfaces (Σ_1, g_1) and (Σ_2, g_2) have constant Gaussian curvatures, respectively, κ , λ , then the Cartan quartic $C(\mathcal{D})$ of the twistor distribution \mathcal{D} on $\mathbb{T}(M)$ associated with $(M = \Sigma_1 \times \Sigma_2, g = g_1 \oplus (-g_2))$ is

$$\mathcal{C}(\mathcal{D}) = (9\kappa - \lambda)(\kappa - 9\lambda)h(\phi),$$

where $h(\phi)$ is a nowhere vanishing function along the fibers of $\mathbb{T}(M)$

Thus the cases when the ratio of constant curvatures is equal 1:9 or 9:1 correspond to twistor distributions with G_2 symmetry.

Results for a product of surfaces

Theorem

If both surfaces (Σ_1, g_1) and (Σ_2, g_2) have constant Gaussian curvatures, respectively, κ , λ , then the Cartan quartic $C(\mathcal{D})$ of the twistor distribution \mathcal{D} on $\mathbb{T}(M)$ associated with $(M = \Sigma_1 \times \Sigma_2, g = g_1 \oplus (-g_2))$ is

$$\mathcal{C}(\mathcal{D}) = (\mathbf{9}\kappa - \lambda)(\kappa - \mathbf{9}\lambda)h(\phi),$$

where $h(\phi)$ is a nowhere vanishing function along the fibers of $\mathbb{T}(M)$

Thus the cases when the ratio of constant curvatures is equal 1:9 or 9:1 correspond to twistor distributions with G_2 symmetry.

Results for a product of surfaces

Theorem

If both surfaces (Σ_1, g_1) and (Σ_2, g_2) have constant Gaussian curvatures, respectively, κ , λ , then the Cartan quartic $C(\mathcal{D})$ of the twistor distribution \mathcal{D} on $\mathbb{T}(M)$ associated with $(M = \Sigma_1 \times \Sigma_2, g = g_1 \oplus (-g_2))$ is

$$\mathcal{C}(\mathcal{D}) = (\mathbf{9}\kappa - \lambda)(\kappa - \mathbf{9}\lambda)h(\phi),$$

where $h(\phi)$ is a nowhere vanishing function along the fibers of $\mathbb{T}(M)$

Thus the cases when the ratio of constant curvatures is equal 1:9 or 9:1 correspond to twistor distributions with G_2 symmetry.

Results for a product of surfaces

Corollary

The twistor distributions \mathcal{D} associated with the 4-manifold being a product of two spheres \mathbb{S}^2 , whose radii are in the ratio 1:3 or 3:1 have G_2 symmetry.

The same is true for the product of two hyperboloids.

I will comment on the remaining case $\lambda = 0$ and (Σ_1, g_1) with Gaussian curvature κ and Killing symmetry later.

Results for a product of surfaces

Corollary

The twistor distributions \mathcal{D} associated with the 4-manifold being a product of two spheres \mathbb{S}^2 , whose radii are in the ratio 1:3 or 3:1 have G_2 symmetry. The same is true for the product of two hyperboloids.

I will comment on the remaining case $\lambda = 0$ and (Σ_1, g_1) with Gaussian curvature κ and Killing symmetry later.

Results for a product of surfaces

Corollary

The twistor distributions \mathcal{D} associated with the 4-manifold being a product of two spheres \mathbb{S}^2 , whose radii are in the ratio 1:3 or 3:1 have G_2 symmetry. The same is true for the product of two hyperboloids.

I will comment on the remaining case $\lambda = 0$ and (Σ_1, g_1) with Gaussian curvature κ and Killing symmetry later.

Configuration space

- We idealize the surface of body B_1 by a Riemann surface (Σ_1, g_1) and the surface of body B_2 by a Riemann surface (Σ_2, g_2) .
- To specify a position of the system, we chose a point *x* on Σ₁ and a point *x̂* on Σ₂. These are the points in which the two surfaces kiss each other.
- To fully determine the possition of the system at a given time, we still need to fix the relative angle φ ∈ [0, 2π] between the tangent spaces T_xΣ₁ and T_xΣ₂. This is equivalent to specify a rotation A(φ) which is an orthogonal transformation A(φ) : T_xΣ₁ → T_xΣ₂ identifying the tangent spaces.

Configuration space

- We idealize the surface of body B_1 by a Riemann surface (Σ_1, g_1) and the surface of body B_2 by a Riemann surface (Σ_2, g_2) .
- To specify a position of the system, we chose a point *x* on Σ₁ and a point *x̂* on Σ₂. These are the points in which the two surfaces kiss each other.
- To fully determine the possition of the system at a given time, we still need to fix the relative angle φ ∈ [0, 2π] between the tangent spaces T_xΣ₁ and T_xΣ₂. This is equivalent to specify a rotation A(φ) which is an orthogonal transformation A(φ) : T_xΣ₁ → T_xΣ₂ identifying the tangent spaces.

Configuration space

- We idealize the surface of body B_1 by a Riemann surface (Σ_1, g_1) and the surface of body B_2 by a Riemann surface (Σ_2, g_2) .
- To specify a position of the system, we chose a point *x* on Σ₁ and a point *x̂* on Σ₂. These are the points in which the two surfaces kiss each other.
- To fully determine the possition of the system at a given time, we still need to fix the relative angle φ ∈ [0, 2π] between the tangent spaces T_xΣ₁ and T_xΣ₂. This is equivalent to specify a rotation A(φ) which is an orthogonal transformation A(φ) : T_xΣ₁ → T_xΣ₂ identifying the tangent spaces.

Configuration space

- We idealize the surface of body B_1 by a Riemann surface (Σ_1, g_1) and the surface of body B_2 by a Riemann surface (Σ_2, g_2) .
- To specify a position of the system, we chose a point x on Σ₁ and a point x̂ on Σ₂. These are the points in which the two surfaces kiss each other.
- To fully determine the possition of the system at a given time, we still need to fix the relative angle φ ∈ [0, 2π] between the tangent spaces T_xΣ₁ and T_xΣ₂. This is equivalent to specify a rotation A(φ) which is an orthogonal transformation A(φ) : T_xΣ₁ → T_xΣ₂ identifying the tangent spaces.

Configuration space

- We idealize the surface of body B_1 by a Riemann surface (Σ_1, g_1) and the surface of body B_2 by a Riemann surface (Σ_2, g_2) .
- To specify a position of the system, we chose a point *x* on Σ₁ and a point *x̂* on Σ₂. These are the points in which the two surfaces kiss each other.
- To fully determine the possition of the system at a given time, we still need to fix the relative angle φ ∈ [0, 2π] between the tangent spaces T_xΣ₁ and T_xΣ₂. This is equivalent to specify a rotation A(φ) which is an orthogonal transformation A(φ) : T_xΣ₁ → T_xΣ₂ identifying the tangent spaces.

Configuration space

- We idealize the surface of body B_1 by a Riemann surface (Σ_1, g_1) and the surface of body B_2 by a Riemann surface (Σ_2, g_2) .
- To specify a position of the system, we chose a point *x* on Σ₁ and a point *x̂* on Σ₂. These are the points in which the two surfaces kiss each other.
- To fully determine the possition of the system at a given time, we still need to fix the relative angle φ ∈ [0, 2π] between the tangent spaces T_xΣ₁ and T_xΣ₂. This is equivalent to specify a rotation A(φ) which is an orthogonal transformation A(φ) : T_xΣ₁ → T_xΣ₂ identifying the tangent spaces.

Configuration space

- We idealize the surface of body B_1 by a Riemann surface (Σ_1, g_1) and the surface of body B_2 by a Riemann surface (Σ_2, g_2) .
- To specify a position of the system, we chose a point *x* on Σ₁ and a point *x̂* on Σ₂. These are the points in which the two surfaces kiss each other.
- To fully determine the possition of the system at a given time, we still need to fix the relative angle φ ∈ [0, 2π] between the tangent spaces T_xΣ₁ and T_xΣ₂. This is equivalent to specify a rotation A(φ) which is an orthogonal transformation A(φ) : T_xΣ₁ → T_xΣ₂ identifying the tangent spaces.

Configuration space

- We idealize the surface of body B_1 by a Riemann surface (Σ_1, g_1) and the surface of body B_2 by a Riemann surface (Σ_2, g_2) .
- To specify a position of the system, we chose a point *x* on Σ₁ and a point *x̂* on Σ₂. These are the points in which the two surfaces kiss each other.
- To fully determine the possition of the system at a given time, we still need to fix the relative angle φ ∈ [0, 2π] between the tangent spaces T_xΣ₁ and T_xΣ₂. This is equivalent to specify a rotation A(φ) which is an orthogonal transformation A(φ) : T_xΣ₁ → T_xΣ₂ identifying the tangent spaces.

Configuration space

- Thus, to specify the position of the system of rolling bodies at a given time, we need **five** real numbers (x, x̂, φ) such that:
 - $x \in \Sigma_1$,
 - $\hat{x} \in \Sigma_2$,
 - A(φ) ∈ { orthogonal transformations from the tangent space at x to Σ₁ to the tangent space at x̂ to Σ₂ }.
- More formally the configuration space of the system is

 $\mathcal{T}(\Sigma_1, \Sigma_2) = \{ A(\phi) : T_X \Sigma_1 \to T_{\hat{X}} \Sigma_2 \},\$

メロト 不得 トイヨト イヨト ヨー ろくぐ

Configuration space

- Thus, to specify the position of the system of rolling bodies at a given time, we need **five** real numbers (x, x̂, φ) such that:
 - $x \in \Sigma_1$,
 - $\hat{x} \in \Sigma_2$
 - A(φ) ∈ { orthogonal transformations from the tangent space at x to Σ₁ to the tangent space at x̂ to Σ₂ }.
- More formally the configuration space of the system is

 $\mathcal{T}(\Sigma_1, \Sigma_2) = \{ A(\phi) : T_X \Sigma_1 \to T_{\hat{X}} \Sigma_2 \},\$

メロト 不得 トイヨト イヨト ヨー ろくぐ

Configuration space

- Thus, to specify the position of the system of rolling bodies at a given time, we need **five** real numbers (x, x̂, φ) such that:
 - $x \in \Sigma_1$,
 - $\hat{x} \in \Sigma_2$,
 - A(φ) ∈ { orthogonal transformations from the tangent space at x to Σ₁ to the tangent space at x̂ to Σ₂ }.
- More formally the configuration space of the system is

 $\mathcal{T}(\Sigma_1, \Sigma_2) = \{ A(\phi) : T_X \Sigma_1 \to T_{\hat{X}} \Sigma_2 \},\$

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 のへの

Configuration space

- Thus, to specify the position of the system of rolling bodies at a given time, we need **five** real numbers (x, x̂, φ) such that:
 - $x \in \Sigma_1$,
 - $\hat{x} \in \Sigma_2$,
 - A(φ) ∈ { orthogonal transformations from the tangent space at x to Σ₁ to the tangent space at x̂ to Σ₂ }.

More formally the configuration space of the system is

 $\mathcal{T}(\Sigma_1, \Sigma_2) = \{ A(\phi) : \mathrm{T}_{x}\Sigma_1 \to \mathrm{T}_{\hat{x}}\Sigma_2 \},\$

メロト 不得 トイヨト イヨト ヨー ろくぐ

 $\begin{array}{c} (2,3,5) \text{ distributions and } G_2\\ \text{Bundles of totally null planes for (2,2) signature metrics}\\ \text{Rigid bodies rolling without slipping or twisting} \end{array}$

Configuration space

- Thus, to specify the position of the system of rolling bodies at a given time, we need **five** real numbers (x, x̂, φ) such that:
 - $x \in \Sigma_1$,
 - $\hat{x} \in \Sigma_2$,
 - A(φ) ∈ { orthogonal transformations from the tangent space at x to Σ₁ to the tangent space at x̂ to Σ₂ }.
- More formally the configuration space of the system is

 $\mathcal{T}(\Sigma_1, \Sigma_2) = \{ A(\phi) : T_X \Sigma_1 \to T_{\hat{X}} \Sigma_2 \},\$

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 のへの

 $\begin{array}{c} (2,3,5) \text{ distributions and } G_2\\ \text{Bundles of totally null planes for (2,2) signature metrics}\\ \text{Rigid bodies rolling without slipping or twisting} \end{array}$

Configuration space

- Thus, to specify the position of the system of rolling bodies at a given time, we need **five** real numbers (x, x̂, φ) such that:
 - $x \in \Sigma_1$,
 - $\hat{x} \in \Sigma_2$,
 - A(φ) ∈ { orthogonal transformations from the tangent space at x to Σ₁ to the tangent space at x̂ to Σ₂ }.
- More formally the configuration space of the system is

 $\mathcal{T}(\Sigma_1, \Sigma_2) = \{ A(\phi) : T_X \Sigma_1 \to T_{\hat{X}} \Sigma_2 \},\$

- There is a simple bundle isomorphism between the configuration space $\mathcal{T}(\Sigma_1, \Sigma_2)$ and the twistor circle bundle $\mathbb{T}(\Sigma_1 \times \Sigma_2)$.
- For this we need to show how a point $(x, \hat{x}, \mathcal{A}(\phi)) \in \mathcal{T}(\Sigma_1, \Sigma_2)$ defines a point $N_{\phi}^+(y) \in \mathbb{T}(\Sigma_1 \times \Sigma_2).$
- Of course $y = (x, \hat{x})$. The only problem is how to define N_{ϕ}^+ .

- There is a simple bundle isomorphism between the configuration space $\mathcal{T}(\Sigma_1, \Sigma_2)$ and the twistor circle bundle $\mathbb{T}(\Sigma_1 \times \Sigma_2)$.
- For this we need to show how a point $(x, \hat{x}, A(\phi)) \in \mathcal{T}(\Sigma_1, \Sigma_2)$ defines a point $N_{\phi}^+(y) \in \mathbb{T}(\Sigma_1 \times \Sigma_2).$
- Of course $y = (x, \hat{x})$. The only problem is how to define N_{ϕ}^+ .

- There is a simple bundle isomorphism between the configuration space $\mathcal{T}(\Sigma_1, \Sigma_2)$ and the twistor circle bundle $\mathbb{T}(\Sigma_1 \times \Sigma_2)$.
- For this we need to show how a point $(x, \hat{x}, A(\phi)) \in \mathcal{T}(\Sigma_1, \Sigma_2)$ defines a point $N_{\phi}^+(y) \in \mathbb{T}(\Sigma_1 \times \Sigma_2).$
- Of course $y = (x, \hat{x})$. The only problem is how to define N_{ϕ}^+ .

- There is a simple bundle isomorphism between the configuration space $\mathcal{T}(\Sigma_1, \Sigma_2)$ and the twistor circle bundle $\mathbb{T}(\Sigma_1 \times \Sigma_2)$.
- For this we need to show how a point $(x, \hat{x}, A(\phi)) \in \mathcal{T}(\Sigma_1, \Sigma_2)$ defines a point $N_{\phi}^+(y) \in \mathbb{T}(\Sigma_1 \times \Sigma_2).$
- Of course $y = (x, \hat{x})$. The only problem is how to define N_{ϕ}^+ .

- There is a simple bundle isomorphism between the configuration space $\mathcal{T}(\Sigma_1, \Sigma_2)$ and the twistor circle bundle $\mathbb{T}(\Sigma_1 \times \Sigma_2)$.
- For this we need to show how a point $(x, \hat{x}, A(\phi)) \in \mathcal{T}(\Sigma_1, \Sigma_2)$ defines a point $N_{\phi}^+(y) \in \mathbb{T}(\Sigma_1 \times \Sigma_2).$
- Of course $y = (x, \hat{x})$. The only problem is how to define N_{ϕ}^+ .

Identifying configuration space with twistor space

A moment of reflexion yields

 $A(\phi) = \begin{pmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{pmatrix} \mapsto$ graph(A(\phi)) = (a, b, a \cos\phi - b \sin\phi, a \sin\phi + b \cos\phi) = a(1, 0, cos ϕ , sin ϕ) + b(0, 1, - sin ϕ , cos ϕ)) = Span(n₁(ϕ), n₂(ϕ)) = N_{\phi}^+ \subset \mathbb{R}^4.

This identifies bundles *T*(Σ₁, Σ₂) and T(Σ₁, Σ₂). This is to say that the positions of the system of rolling bodies are totally null selfdual planes in the semi-Riemanian manifold *M* = Σ₁ × Σ₂, *g* = *g*₁ ⊕ (-*g*₂).

Identifying configuration space with twistor space

A moment of reflexion yields

 $A(\phi) = \begin{pmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{pmatrix} \mapsto$ graph(A(\phi)) = (a, b, a \cos\phi - b \sin\phi, a \sin\phi + b \cos\phi) = a(1, 0, \cos\phi, \sin\phi) + b(0, 1, -\sin\phi, \cos\phi)) = Span(n_1(\phi), n_2(\phi)) = N_{\phi}^+ \subset \mathbb{R}^4.

This identifies bundles *T*(Σ₁, Σ₂) and T(Σ₁, Σ₂). This is to say that the positions of the system of rolling bodies are totally null selfdual planes in the semi-Riemanian manifold *M* = Σ₁ × Σ₂, *g* = *g*₁ ⊕ (-*g*₂).

 $\begin{array}{c} (2,3,5) \text{ distributions and } G_2\\ \text{Bundles of totally null planes for (2,2) signature metrics}\\ \text{Rigid bodies rolling without slipping or twisting} \end{array}$

Identifying configuration space with twistor space

A moment of reflexion yields

 $\begin{aligned} \mathcal{A}(\phi) &= \begin{pmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{pmatrix} \mapsto \\ &\text{graph}(\mathcal{A}(\phi)) = (a, b, a\cos\phi - b\sin\phi, a\sin\phi + b\cos\phi) \\ &= a(1, 0, \cos\phi, \sin\phi) + b(0, 1, -\sin\phi, \cos\phi)) \\ &= \text{Span}(n_1(\phi), n_2(\phi)) = N_{\phi}^+ \subset \mathbb{R}^4. \end{aligned}$

This identifies bundles *T*(Σ₁, Σ₂) and T(Σ₁, Σ₂). This is to say that the positions of the system of rolling bodies are totally null selfdual planes in the semi-Riemanian manifold *M* = Σ₁ × Σ₂, *g* = *g*₁ ⊕ (−*g*₂).

Identifying configuration space with twistor space

A moment of reflexion yields

 $A(\phi) = \begin{pmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{pmatrix} \mapsto$ graph(A(\phi)) = (a, b, a \cos\phi - b \sin\phi, a \sin\phi + b \cos\phi) = a(1, 0, \cos\phi, \sin\phi) + b(0, 1, -\sin\phi, \cos\phi)) = Span(n_1(\phi), n_2(\phi)) = N_{\phi}^+ \subset \mathbb{R}^4.

This identifies bundles *T*(Σ₁, Σ₂) and T(Σ₁, Σ₂). This is to say that the positions of the system of rolling bodies are totally null selfdual planes in the semi-Riemanian manifold *M* = Σ₁ × Σ₂, *g* = *g*₁ ⊕ (−*g*₂).

 $\begin{array}{c} (2,3,5) \text{ distributions and } G_2\\ \text{Bundles of totally null planes for (2,2) signature metrics}\\ \text{Rigid bodies rolling without slipping or twisting} \end{array}$

Identifying configuration space with twistor space

A moment of reflexion yields

 $\begin{aligned} \mathcal{A}(\phi) &= \begin{pmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{pmatrix} \mapsto \\ &\text{graph}(\mathcal{A}(\phi)) = (a, b, a\cos\phi - b\sin\phi, a\sin\phi + b\cos\phi) \\ &= a(1, 0, \cos\phi, \sin\phi) + b(0, 1, -\sin\phi, \cos\phi)) \\ &= \text{Span}(n_1(\phi), n_2(\phi)) = N_{\phi}^+ \subset \mathbb{R}^4. \end{aligned}$

This identifies bundles *T*(Σ₁, Σ₂) and T(Σ₁, Σ₂). This is to say that the positions of the system of rolling bodies are totally null selfdual planes in the semi-Riemanian manifold *M* = Σ₁ × Σ₂, *g* = *g*₁ ⊕ (-*g*₂).

Rolling without slipping or twisting

- $\gamma(t)$ corresponds to the **movement without slipping** iff $A(\phi(t))\dot{x} = \dot{x}$,
- γ(t) corresponds to the movement without twisting iff for every vector field v(t) which is parallel along x(t), the corresponding A(φ(t)) transformed vector field A(φ(t))v(t) is parallel along x̂(t).

Rolling without slipping or twisting

- $\gamma(t)$ corresponds to the **movement without slipping** iff $A(\phi(t))\dot{x} = \dot{x}$,
- γ(t) corresponds to the movement without twisting iff for every vector field v(t) which is parallel along x(t), the corresponding A(φ(t)) transformed vector field A(φ(t))v(t) is parallel along x̂(t).

Rolling without slipping or twisting

- $\gamma(t)$ corresponds to the **movement without slipping** iff $A(\phi(t))\dot{x} = \dot{\hat{x}},$
- γ(t) corresponds to the movement without twisting iff for every vector field v(t) which is parallel along x(t), the corresponding A(φ(t)) transformed vector field A(φ(t))v(t) is parallel along x̂(t).

Rolling without slipping or twisting

- $\gamma(t)$ corresponds to the **movement without slipping** iff $A(\phi(t))\dot{x} = \dot{\hat{x}},$
- γ(t) corresponds to the movement without twisting iff for every vector field v(t) which is parallel along x(t), the corresponding A(φ(t)) transformed vector field A(φ(t))v(t) is parallel along x̂(t).

Rolling without slipping or twisting

- $\gamma(t)$ corresponds to the **movement without slipping** iff $A(\phi(t))\dot{x} = \dot{\hat{x}},$
- γ(t) corresponds to the movement without twisting iff for every vector field v(t) which is parallel along x(t), the corresponding A(φ(t)) transformed vector field A(φ(t))v(t) is parallel along x̂(t).

 $\begin{array}{c} (2,3,5) \text{ distributions and } G_2\\ \text{Bundles of totally null planes for (2,2) signature metrics}\\ \text{Rigid bodies rolling without slipping or twisting} \end{array}$

Rolling without slipping or twisting

- $\gamma(t)$ corresponds to the **movement without slipping** iff $A(\phi(t))\dot{x} = \dot{\hat{x}},$
- γ(t) corresponds to the movement without twisting iff for every vector field v(t) which is parallel along x(t), the corresponding A(φ(t)) transformed vector field A(φ(t))v(t) is parallel along x̂(t).

Rolling without slipping or twisting

The nonslipping condition imposes **two** linear constraints at the 5-dimensional space of velocities of the system at each point,

Rolling without slipping or twisting

The nonslipping condition imposes **two** linear constraints at the 5-dimensional space of velocities of the system at each point, and the nontwisting condition adds one more linear constraint.

Rolling without slipping or twisting

The nonslipping condition imposes **two** linear constraints at the 5-dimensional space of velocities of the system at each point, and the nontwisting condition adds one more linear constraint. Thus the 'nonslipping-nontwisting condition' reduces the velocity space at each point (x, \hat{x}, ϕ) from the 5-dimensional tangent space $T\mathcal{T}(\Sigma_1, \Sigma_2)_{(\chi, \hat{\chi}, \phi)}$ to its certain 2-dimensional vector space, say $\mathcal{D}_{(x,\hat{x},\phi)}$.

Rolling without slipping or twisting

The nonslipping condition imposes **two** linear constraints at the 5-dimensional space of velocities of the system at each point, and the nontwisting condition adds one more linear constraint. Thus the 'nonslipping-nontwisting condition' reduces the velocity space at each point (x, \hat{x}, ϕ) from the 5-dimensional tangent space $T\mathcal{T}(\Sigma_1, \Sigma_2)_{(\chi, \hat{\chi}, \phi)}$ to its certain 2-dimensional vector space, say $\mathcal{D}_{(x,\hat{x},\phi)}$. In this way the 'nonslipping-nontwisting condition' defines, point by point, a 2-distribution \mathcal{D} on $\mathcal{T}(\Sigma_1, \Sigma_2)$.

 $\mathbb{T}(\Sigma_1 \times \Sigma_2)$ and $\mathcal{T}(\Sigma_1, \Sigma_2)$ are identified.

Rolling without slipping or twisting

The nonslipping condition imposes two linear constraints at the 5-dimensional space of velocities of the system at each point, and the nontwisting condition adds one more linear constraint. Thus the 'nonslipping-nontwisting condition' reduces the velocity space at each point (x, \hat{x}, ϕ) from the 5-dimensional tangent space $T\mathcal{T}(\Sigma_1, \Sigma_2)_{(\chi, \hat{\chi}, \phi)}$ to its certain 2-dimensional vector space, say $\mathcal{D}_{(x,\hat{x},\phi)}$. In this way the 'nonslipping-nontwisting condition' defines, point by point, a 2-distribution \mathcal{D} on $\mathcal{T}(\Sigma_1, \Sigma_2)$. The natural question is: how this distribution is related to the twistor distribution on $\mathbb{T}(\Sigma_1 \times \Sigma_2)$ when both spaces $\mathbb{T}(\Sigma_1 \times \Sigma_2)$ and $\mathcal{T}(\Sigma_1, \Sigma_2)$ are identified.

Rolling without slipping or twisting

The nonslipping condition imposes two linear constraints at the 5-dimensional space of velocities of the system at each point, and the nontwisting condition adds one more linear constraint. Thus the 'nonslipping-nontwisting condition' reduces the velocity space at each point (x, \hat{x}, ϕ) from the 5-dimensional tangent space $T\mathcal{T}(\Sigma_1, \Sigma_2)_{(\chi, \hat{\chi}, \phi)}$ to its certain 2-dimensional vector space, say $\mathcal{D}_{(x,\hat{x},\phi)}$. In this way the 'nonslipping-nontwisting condition' defines, point by point, a 2-distribution \mathcal{D} on $\mathcal{T}(\Sigma_1, \Sigma_2)$. The natural question is: how this distribution is related to the twistor distribution on $\mathbb{T}(\Sigma_1 \times \Sigma_2)$ when both spaces $\mathbb{T}(\Sigma_1 \times \Sigma_2)$ and $\mathcal{T}(\Sigma_1, \Sigma_2)$ are identified.

No slipping no twisting means horizontality

Theorem

Under the identification $\mathcal{T}(\Sigma_1, \Sigma_2) \equiv \mathbb{T}(\Sigma_1 \times \Sigma_2)$ obtained via $(x, \hat{x}, \phi) \mapsto N_{\phi}^+((x, \hat{x}))$, the nonslipping-nontwisting rolling distribution \mathcal{D} on $\mathcal{T}(\Sigma_1, \Sigma_2)$ becomes the twistor distribution \mathcal{D} in $\mathbb{T}(\Sigma_1 \times \Sigma_2)$.

In other words: the nonholonomic 'nonslipping-nontwisting' constraint on the velocity space of two rolling bodies, when viewed on $\mathbb{T}(\Sigma_1 \times \Sigma_2)$ is equivalent to the horizontality of the twistor distribution.

No slipping no twisting means horizontality

Theorem

Under the identification $\mathcal{T}(\Sigma_1, \Sigma_2) \equiv \mathbb{T}(\Sigma_1 \times \Sigma_2)$ obtained via $(x, \hat{x}, \phi) \mapsto N_{\phi}^+((x, \hat{x}))$, the nonslipping-nontwisting rolling distribution \mathcal{D} on $\mathcal{T}(\Sigma_1, \Sigma_2)$ becomes the twistor distribution \mathcal{D} in $\mathbb{T}(\Sigma_1 \times \Sigma_2)$.

In other words: the nonholonomic 'nonslipping-nontwisting' constraint on the velocity space of two rolling bodies, when viewed on $\mathbb{T}(\Sigma_1 \times \Sigma_2)$ is equivalent to the horizontality of the twistor distribution.

No slipping no twisting means horizontality

Theorem

Under the identification $\mathcal{T}(\Sigma_1, \Sigma_2) \equiv \mathbb{T}(\Sigma_1 \times \Sigma_2)$ obtained via $(x, \hat{x}, \phi) \mapsto N_{\phi}^+((x, \hat{x}))$, the nonslipping-nontwisting rolling distribution \mathcal{D} on $\mathcal{T}(\Sigma_1, \Sigma_2)$ becomes the twistor distribution \mathcal{D} in $\mathbb{T}(\Sigma_1 \times \Sigma_2)$.

In other words: the nonholonomic 'nonslipping-nontwisting' constraint on the velocity space of two rolling bodies, when viewed on $\mathbb{T}(\Sigma_1 \times \Sigma_2)$ is equivalent to the horizontality of the twistor distribution.

- Circle twistor space for the manifold M = Σ₁ × Σ₂ with the metric g = g₁ ⊕ (-g₂) is the configuration space of two rolling bodies bounded by the Riemann surfaces (Σ₁, g₁) and (Σ₂, g₂).
- If the bodies roll on each other 'without slipping or twisting' their velocity space is restricted, in such a way that the possible velocities can only be tangent to the twistor distribution.
- If the twistor distribution has *G*₂ symmetry, then also the restricted velocity space of the rolling system has *G*₂ symmetry as a (2, 3, 5) distribution on the configuration space.

- Circle twistor space for the manifold M = Σ₁ × Σ₂ with the metric g = g₁ ⊕ (-g₂) is the configuration space of two rolling bodies bounded by the Riemann surfaces (Σ₁, g₁) and (Σ₂, g₂).
- If the bodies roll on each other 'without slipping or twisting' their velocity space is restricted, in such a way that the possible velocities can only be tangent to the twistor distribution.
- If the twistor distribution has G₂ symmetry, then also the restricted velocity space of the rolling system has G₂ symmetry as a (2, 3, 5) distribution on the configuration space.

- Circle twistor space for the manifold M = Σ₁ × Σ₂ with the metric g = g₁ ⊕ (-g₂) is the configuration space of two rolling bodies bounded by the Riemann surfaces (Σ₁, g₁) and (Σ₂, g₂).
- If the bodies roll on each other 'without slipping or twisting' their velocity space is restricted, in such a way that the possible velocities can only be tangent to the twistor distribution.
- If the twistor distribution has G₂ symmetry, then also the restricted velocity space of the rolling system has G₂ symmetry as a (2, 3, 5) distribution on the configuration space.

- In paricular two spheres of respective radii with ratio 1:3 or 3:1 when rolling on each other without slipping or twisting have the restricted velocity space with G_2 symmetry. But also two hyperboloids of respective 'hyperbolic radii' with ratio 1:3 or 3:1 have the nonslipping-nontwistuing velocity space with G_2 symmetry.
- Are there other rigid bodies having this property?
- Well...Let us examine the left case $\lambda = 0$, the other surface having Killing symmetry.
- Surprisingly calculation of the Cartan quartic in this case is not only manegable, but also the system of ODE's its vanishing imposes on the metric functions of g₁ can be solved to the very end.

- In paricular two spheres of respective radii with ratio 1:3 or 3:1 when rolling on each other without slipping or twisting have the restricted velocity space with G_2 symmetry. But also two hyperboloids of respective 'hyperbolic radii' with ratio 1:3 or 3:1 have the nonslippng-nontwistuing velocity space with G_2 symmetry.
- Are there other rigid bodies having this property?
- Well...Let us examine the left case $\lambda = 0$, the other surface having Killing symmetry.
- Surprisingly calculation of the Cartan quartic in this case is not only manegable, but also the system of ODE's its vanishing imposes on the metric functions of g_1 can be solved to the very end.

- In paricular two spheres of respective radii with ratio 1:3 or 3:1 when rolling on each other without slipping or twisting have the restricted velocity space with G_2 symmetry. But also two hyperboloids of respective 'hyperbolic radii' with ratio 1:3 or 3:1 have the nonslippng-nontwistuing velocity space with G_2 symmetry.
- Are there other rigid bodies having this property?
- Well...Let us examine the left case $\lambda = 0$, the other surface having Killing symmetry.
- Surprisingly calculation of the Cartan quartic in this case is not only manegable, but also the system of ODE's its vanishing imposes on the metric functions of g₁ can be solved to the very end.

- In paricular two spheres of respective radii with ratio 1:3 or 3:1 when rolling on each other without slipping or twisting have the restricted velocity space with G_2 symmetry. But also two hyperboloids of respective 'hyperbolic radii' with ratio 1:3 or 3:1 have the nonslippng-nontwistuing velocity space with G_2 symmetry.
- Are there other rigid bodies having this property?
- Well...Let us examine the left case $\lambda = 0$, the other surface having Killing symmetry.
- Surprisingly calculation of the Cartan quartic in this case is not only manegable, but also the system of ODE's its vanishing imposes on the metric functions of g₁ can be solved to the very end.

- In paricular two spheres of respective radii with ratio 1:3 or 3:1 when rolling on each other without slipping or twisting have the restricted velocity space with G_2 symmetry. But also two hyperboloids of respective 'hyperbolic radii' with ratio 1:3 or 3:1 have the nonslippng-nontwistuing velocity space with G_2 symmetry.
- Are there other rigid bodies having this property?
- Well...Let us examine the left case $\lambda = 0$, the other surface having Killing symmetry.
- Surprisingly calculation of the Cartan quartic in this case is not only manegable, but also the system of ODE's its vanishing imposes on the metric functions of g₁ can be solved to the very end.

- In paricular two spheres of respective radii with ratio 1:3 or 3:1 when rolling on each other without slipping or twisting have the restricted velocity space with G_2 symmetry. But also two hyperboloids of respective 'hyperbolic radii' with ratio 1:3 or 3:1 have the nonslippng-nontwistuing velocity space with G_2 symmetry.
- Are there other rigid bodies having this property?
- Well...Let us examine the left case $\lambda = 0$, the other surface having Killing symmetry.
- Surprisingly calculation of the Cartan quartic in this case is not only manegable, but also the system of ODE's its vanishing imposes on the metric functions of g₁ can be solved to the very end.

Surfaces of revolution on the plane with G₂ symmetry

Theorem

Modulo homotheties all metrics corresponding to surfaces with a Killing vector, which when rolling on the **plane** \mathbb{R}^2 'without slipping or twisting', have the velocity distribution \mathcal{D} with local symmetry G_2 are given by:

$$\begin{split} g_{1o} = &\rho^4 d\rho^2 + \rho^2 d\varphi^2, \\ g_{1+} = &(\rho^2 + 1)^2 d\rho^2 + \rho^2 d\varphi^2, \\ g_{1-} = &(\rho^2 - 1)^2 d\rho^2 + \rho^2 d\varphi^2, \end{split}$$

・ロト・西ト・西ト・西・ うらの

Theorem (continued)

Theorem

or, collectively as:

$$g_1 = (\rho^2 + \epsilon)^2 d\rho^2 + \rho^2 d\varphi^2$$
, where $\epsilon = 0, \pm 1$.

Their curvature is given by

$$\kappa = \frac{2}{(\rho^2 + \epsilon)^3}.$$

Surfaces of revolution on the plane with G₂ symmetry

Theorem

Let \mathcal{U} be a region of one of the Riemann surfaces (Σ_1, g_1) of the previous Theorem, in which the curvature κ is nonnegative. In the case $\epsilon = +1$, such a region can be isometrically embedded in flat \mathbb{R}^3 as a surface of revolution. The embedded surface, when written in the Cartesian coordinates (X, Y, Z) in \mathbb{R}^3 , is algebraic, with the embedding given by

$$(X^2 + Y^2 + 2)^3 - 9Z^2 = 0, \qquad \epsilon = +1.$$

Theorem (continued)

Theorem

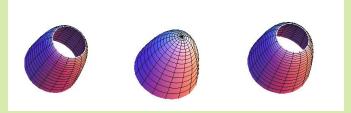
In the case $\epsilon = -1$, one can find an isometric embedding in \mathbb{R}^3 of a portion of \mathcal{U} given by $\varphi \in [0, 2\pi[, \rho \ge \sqrt{2}]$. This embedding gives another surface of revolution which is also algebraic, and in the Cartesian coordinates (X, Y, Z), given by

$$(X^2 + Y^2 - 2)^3 - 9Z^2 = 0, \qquad \epsilon = -1.$$

In the case $\epsilon = 0$, one can embed a portion of \mathcal{U} with $\rho \ge 1$ in \mathbb{R}^3 as a surface of revolution

$$Z = f(\sqrt{X^2 + Y^2})$$
, with $f(t) = \int_{\rho=1}^t \sqrt{\rho^4 - 1} \, \mathrm{d}\rho$.

How do they look?



Rysunek : The Mathematica print of the three surfaces of revolution, whose induced metric from \mathbb{R}^3 is given, from left to right, by respective metrics g_{1-} , g_{1+} and g_{1o} . The middle figure embeds all (Σ_1, g_{1+}) . In the left figure only the portion of (Σ_1, g_{1-}) with *positive* curvature is embedded, and in the right figure only points of (Σ_1, g_{1o}) with $\rho > 1$ are embedded. It is why the left and right figures have holes on the top. All three surface, when rolling on a plane 'without twisting or slipping' have velocity space \mathcal{D}_{v} with symmetry G_2 .

An update from Robert Bryant

Dear Pawel,

I hope that this finds you well.

Igor Zelenko came to visit me this past week, and we talked a little bit about your G_2 rolling surface example in the context of doing computations for Cartan-type 2-plane fields.

It reminded me of the left-over question of determining whether there are any other examples besides the constant curvature ones and your rotationally symmetric examples rolling over the plane, so I took another look at the calculations and at the formula that I worked out for Cartan's C-tensor in this case.

An update from Robert Bryant

It took a little thinking, but, based on this, I now have a proof (not too bad) that, if a pair of Riemannian surfaces has the G_2 rolling distribution, then at least one of the two surfaces has to have constant Gauss curvature.

An update from Robert Bryant

I still don't know whether, if one fixes a constant Gauss curvature of one surface, the other surface has to have a rotational symmetry (which was your ansatz), but there is a clear line of attack for that, and, when I next have some time to look at this question, I'll see whether or not I can resolve it. What is clear is that, for each fixed constant Gauss curvature of the one surface, there is at most a finite-dimensional space of isometry classes of germs of metrics that can roll over it with G_2 rolling distribution, and such a metric, if it exists, is completely determined by its 5-jet at one point.

Yours, Robert