Decaphonic piano Its mathematics, physics and sound

Aleksander Bogucki

Instytut Fizyki Doswiadczalnej UW
Pawel Nurowski
Centrum Fizyki Teoretyczne PAN \& Guangdong Technion - Israel Intitute of Technology

GRIEG meets Chopin
Warszawa, July 11, 2023

Motivation

- I am a mathematician from the Center for Theoretical Physics of PAS, and a coordinator of the grant SCREAM (Symetry, Curvature Reductions, and EquivAlence Methods) from the National Science Center of Poland, in the GRIEG grant scheme, founded from the Norwegian Financial Mechanism 2014-2021 (with project registration number 2019/34/H/ST1/00636.)
- Related to this grant, there is a conference GRIEG meets Chopin being held now in Warsaw, and I tried to make a concert for the conference participants. I had an idea of employing a pianist, who has both Chopin and Grieg in her repertoir to play the concert, but I failed.
- I am a mathematician from the Center for Theoretical Physics of PAS, and a coordinator of the grant SCREAM (Symetry, Curvature Reductions, and EquivAlence Methods) from the National Science Center of Poland, in the GRIEG grant scheme, founded from the Norwegian Financial Mechanism 2014-2021 (with project registration number 2019/34/H/ST1/00636.)

- I am a mathematician from the Center for Theoretical Physics of PAS, and a coordinator of the grant SCREAM (Symetry, Curvature Reductions, and EquivAlence Methods) from the National Science Center of Poland, in the GRIEG grant scheme, founded from the Norwegian Financial Mechanism 2014-2021 (with project registration number 2019/34/H/ST1/00636.)
- Related to this grant, there is a conference GRIEG meets Chopin being held now in Warsaw, concert for the conference participants. I had an idea of employing a pianist, who has both Chopin and Grieg in her repertoir to play the concert, but I failed.
- I am a mathematician from the Center for Theoretical Physics of PAS, and a coordinator of the grant SCREAM (Symetry, Curvature Reductions, and EquivAlence Methods) from the National Science Center of Poland, in the GRIEG grant scheme, founded from the Norwegian Financial Mechanism 2014-2021 (with project registration number 2019/34/H/ST1/00636.)
- Related to this grant, there is a conference GRIEG meets Chopin being held now in Warsaw, and I tried to make a concert for the conference participants.
employing a pianist, who has both Chopin and Grieg in
her repertoir to play the concert, but I failed.
- I am a mathematician from the Center for Theoretical Physics of PAS, and a coordinator of the grant SCREAM (Symetry, Curvature Reductions, and EquivAlence Methods) from the National Science Center of Poland, in the GRIEG grant scheme, founded from the Norwegian Financial Mechanism 2014-2021 (with project registration number 2019/34/H/ST1/00636.)
- Related to this grant, there is a conference GRIEG meets Chopin being held now in Warsaw, and I tried to make a concert for the conference participants. I had an idea of employing a pianist, who has both Chopin and Grieg in her repertoir to play the concert, but I failed.

Motivation

- Then I thought that in jazz, one can superpose several compositions in one piece. Through my friends I got a contact to a jazz pianist I admire, namely Leszek Mozdzer, and to my surprise he agreed to give a concert for our conference, provided that I will help him to built a piano he always dreamed about. Actually he needed a mathematical help for this built, and has chosen the first mathematician who ever contacted him.
- It turned out that the mathematics he needed, was not demanding at all, but then I realised that an actual implementation of the frequencies which Leszek needs in his piano suffers from lack of solutions to a number of physical and technological problems.
- Then I thought that in jazz, one can superpose several compositions in one piece.
contact to a jazz pianist I admire, namely Leszek Mozdzer, and to my surprise he agreed to give a concert for our conference, provided that I will help him to built a piano he always dreamed about. Actually he needed a mathematical help for this built, and has chosen the first mathematician who ever contacted him.
- It turned out that the mathematics he needed, was not demanding at all, but then I realised that an actual implementation of the frequencies which Leszek needs in his piano suffers from lack of solutions to a number of physical and technological problems.
- Then I thought that in jazz, one can superpose several compositions in one piece. Through my friends I got a contact to a jazz pianist I admire,
Mozdzer, and to my surprise he agreed to give a concert for our conference, provided that I will help him to built a piano he always dreamed about. Actually he needed a mathematical help for this built, and has chosen the first
mathematician who ever contacted him.
- It turned out that the mathematics he needed was not demanding at all, but then I realised that an actual implementation of the frequencies which Leszek needs in his piano suffers from lack of solutions to a number of physical and technological problems.
- Then I thought that in jazz, one can superpose several compositions in one piece. Through my friends I got a contact to a jazz pianist I admire, namely Leszek Mozdzer,
for our conference, provided that I will help him to built a piano he always dreamed about. Actually he needed a mathematical help for this built, and has chosen the first
mathematician who ever contacted him.
- It turned out that the mathematics he needed, was not demanding at all, but then I realised that an actual implementation of the frequencies which Leszek needs in his piano suffers from lack of solutions to a number of physical and technological problems.
- Then I thought that in jazz, one can superpose several compositions in one piece. Through my friends I got a contact to a jazz pianist I admire, namely Leszek Mozdzer, and to my surprise he agreed to give a concert for our conference,
piano he always dreamed about. Actually he needed a mathematical help for this built, and has chosen the first mathematician who ever contacted him.
- It turned out that the mathematics he needed, was not demanding at all, but then I realised that an actual implementation of the frequencies which Leszek needs in his piano suffers from lack of solutions to a number of physical and technological problems.
- Then I thought that in jazz, one can superpose several compositions in one piece. Through my friends I got a contact to a jazz pianist I admire, namely Leszek Mozdzer, and to my surprise he agreed to give a concert for our conference, provided that I will help him to built a piano he always dreamed about.
mathematical help for this built, and has chosen the first
mathematician who ever contacted him.
It turned out that the mathematics he needed was not
demanding at all, but then I realised that an actual
implementation of the frequencies which Leszek needs in
his piano suffers from lack of solutions to a number of
physical and technological problems.
- Then I thought that in jazz, one can superpose several compositions in one piece. Through my friends I got a contact to a jazz pianist I admire, namely Leszek Mozdzer, and to my surprise he agreed to give a concert for our conference, provided that I will help him to built a piano he always dreamed about. Actually he needed a mathematical help for this built,
mathematician who ever contacted him.
It turned out that the mathematics he needed, was not
demanding at all, but then I realised that an actual
implementation of the frequencies which Leszek needs in
his piano suffers from lack of solutions to a number of
physical and technological problems.
- Then I thought that in jazz, one can superpose several compositions in one piece. Through my friends I got a contact to a jazz pianist I admire, namely Leszek Mozdzer, and to my surprise he agreed to give a concert for our conference, provided that I will help him to built a piano he always dreamed about. Actually he needed a mathematical help for this built, and has chosen the first mathematician who ever contacted him.
\square
- Then I thought that in jazz, one can superpose several compositions in one piece. Through my friends I got a contact to a jazz pianist I admire, namely Leszek Mozdzer, and to my surprise he agreed to give a concert for our conference, provided that I will help him to built a piano he always dreamed about. Actually he needed a mathematical help for this built, and has chosen the first mathematician who ever contacted him.
- It turned out that the mathematics he needed, was not demanding at all, but then I realised that an actual
implementation of the frequencies which Leszek needs in
his piano suffers from lack of solutions to a number of
physical and technological problems.
- Then I thought that in jazz, one can superpose several compositions in one piece. Through my friends I got a contact to a jazz pianist I admire, namely Leszek Mozdzer, and to my surprise he agreed to give a concert for our conference, provided that I will help him to built a piano he always dreamed about. Actually he needed a mathematical help for this built, and has chosen the first mathematician who ever contacted him.
- It turned out that the mathematics he needed, was not demanding at all, but then I realised that an actual implementation of the frequencies which Leszek needs in his piano
physical and technological problems.
- Then I thought that in jazz, one can superpose several compositions in one piece. Through my friends I got a contact to a jazz pianist I admire, namely Leszek Mozdzer, and to my surprise he agreed to give a concert for our conference, provided that I will help him to built a piano he always dreamed about. Actually he needed a mathematical help for this built, and has chosen the first mathematician who ever contacted him.
- It turned out that the mathematics he needed, was not demanding at all, but then I realised that an actual implementation of the frequencies which Leszek needs in his piano suffers from lack of solutions to a number of physical and technological problems.

Motivation

- So I went to my Alma Mater, the Physics Department of University of Warsaw, and asked for a PhD student who is very talented in both experimental physics and piano music.
- It is how I encountered Aleksander Bogucki without whom this project would never even had been started.
- Aleksander introduced me to Andrzej Włodarczyk, a world expert in the historic piano restoration - privately Aleksander's longterm piano tuner. Mr Włodarczyk joined our team with enthusiasm. He revealed many of his piano building secrets for us. This elevated our project to the professional level. Again, without Andzrej Włodarczyk's contribution to the project, we would not be here today.
- So I went to my Alma Mater, the Physics Department of University of Warsaw, and asked for a PhD student who is very talented in both experimental physics and piano music.
- It is how I encountered Aleksander Bogucki without whom this project would never even had been started.
Aleksander introduced me to Andrzej Włodarczyk, a world expert in the historic piano restoration - privately Aleksander's longterm piano tuner. Mr Włodarczyk joined
our team with enthusiasm. He revealed many of his piano building secrets for us. This elevated our project to the professional level. Again, without Andzrej Włodarczyk’s contribution to the project, we would not be here today.
- So I went to my Alma Mater, the Physics Department of University of Warsaw, and asked for a PhD student who is very talented in both experimental physics and piano music.
- It is how I encountered Aleksander Bogucki without whom this project would never even had been started.
Aleksander introduced me to Andrzej Włodarczyk, a world expert in the historic piano restoration - privately Aleksander’s longterm piano tuner. Mr Włodarczyk joined
our team with enthusiasm. He revealed many of his piano building secrets for us. This elevated our project to the professional level. Again, without Andzrej Włodarczyk’s contribution to the project, we would not be here today.
- So I went to my Alma Mater, the Physics Department of University of Warsaw, and asked for a PhD student who is very talented in both experimental physics and piano music.
- It is how I encountered Aleksander Bogucki without whom this project would never even had been started.
- Aleksander introduced me to Andrzej Włodarczyk, a world expert in the historic piano restoration
Aleksander's longterm piano tuner. Mr Włodarczyk joined
our team with enthusiasm. He revealed many of his
piano building secrets for us. This elevated our proiec to
the professional level. Again, without Andzrej Włodarczyk’s
contribution to the project, we would not be here today.
- So I went to my Alma Mater, the Physics Department of University of Warsaw, and asked for a PhD student who is very talented in both experimental physics and piano music.
- It is how I encountered Aleksander Bogucki without whom this project would never even had been started.
- Aleksander introduced me to Andrzej Włodarczyk, a world expert in the historic piano restoration - privately Aleksander's longterm piano tuner.
> our team with enthusiasm. He revealed many of his
> piano building secrets for us. This elevated our project to
> the professional level. Again, without Andzrej Włodarczyk’s contribution to the project, we would not be here today.
- So I went to my Alma Mater, the Physics Department of University of Warsaw, and asked for a PhD student who is very talented in both experimental physics and piano music.
- It is how I encountered Aleksander Bogucki without whom this project would never even had been started.
- Aleksander introduced me to Andrzej Włodarczyk, a world expert in the historic piano restoration - privately Aleksander's longterm piano tuner. Mr Włodarczyk joined our team with enthusiasm.
piano building secrets for us. This elevated our project to
the professional level. Again, without Andzrej Włodarczyk’s contribution to the project, we would not be here today.
- So I went to my Alma Mater, the Physics Department of University of Warsaw, and asked for a PhD student who is very talented in both experimental physics and piano music.
- It is how I encountered Aleksander Bogucki without whom this project would never even had been started.
- Aleksander introduced me to Andrzej Włodarczyk, a world expert in the historic piano restoration - privately Aleksander's longterm piano tuner. Mr Włodarczyk joined our team with enthusiasm. He revealed many of his piano building secrets for us. This elevated our project to
the professional level. Again, without Andzrej Włodarczyk’s contribution to the project, we would not be here today.
- So I went to my Alma Mater, the Physics Department of University of Warsaw, and asked for a PhD student who is very talented in both experimental physics and piano music.
- It is how I encountered Aleksander Bogucki without whom this project would never even had been started.
- Aleksander introduced me to Andrzej Włodarczyk, a world expert in the historic piano restoration - privately Aleksander’s longterm piano tuner. Mr Włodarczyk joined our team with enthusiasm. He revealed many of his piano building secrets for us. This elevated our project to the professional level.
contribution to the project, we would not be here today.
- So I went to my Alma Mater, the Physics Department of University of Warsaw, and asked for a PhD student who is very talented in both experimental physics and piano music.
- It is how I encountered Aleksander Bogucki without whom this project would never even had been started.
- Aleksander introduced me to Andrzej Włodarczyk, a world expert in the historic piano restoration - privately Aleksander’s longterm piano tuner. Mr Włodarczyk joined our team with enthusiasm. He revealed many of his piano building secrets for us. This elevated our project to the professional level. Again, without Andzrej Włodarczyk’s contribution to the project, we would not be here today.

Part I: MATHEMATICS

What is sound?

- Sound is a vibration of air preasure that we sense with our ears ${ }^{1}$.
- The rate at which these vibration heat our eardrums is called the frequency of the sound. This is measured in Hertzs, which is the number of vibrations per second.

[^0]
What is sound?

- Sound is a vibration of air preasure that we sense with our ears ${ }^{1}$.

- The rate at which these vibration heat our eardrums is called the frequency of the sound. This is measured in Hertzs, which is the number of vibrations per second.

[^1]
What is sound?

- Sound is a vibration of air preasure that we sense with our ears ${ }^{1}$.
- The rate at which these vibration heat our eardrums is called the frequency of the sound. This is measured in Hertzs, which is the number of vibrations per second.

[^2]
What is sound?

- Sound is a vibration of air preasure that we sense with our ears ${ }^{1}$.
- The rate at which these vibration heat our eardrums is called the frequency of the sound. This is measured in Hertzs, which is the number of vibrations per second.

[^3]
Frequency range

- The frequency of musical tones is in the range of, say 50 Hertz, to few thousends Hertz.

Frequency range

Sound: perception

- Typical human hears from
- 20 Hz
- $20 \mathrm{kHz}=20000 \mathrm{~Hz}$

- The frequency of musical tones is in the range of, say 50 Hertz, to few thousends Hertz.

High frequency \Longleftrightarrow high pitch

Our brain percives higher frequencies detected by our ears
as higher pitch as higher pitch

- Link

\square THink)
-

High frequency \Longleftrightarrow high pitch

- Our brain percives higher frequencies detected by our ears as higher pitch

High frequency \Longleftrightarrow high pitch

- Our brain percives higher frequencies detected by our ears as higher pitch
- Link

Pure tones

Abstract

- All sounds are made, in a specific way, by building blocks, namely by the pure tones. We model a pure tone with sound frequency f, by a function sinus, which changes with time t as $\sin (2 \pi f t)$. namely by the pure tones. We model a pure tone with sound frequency f, by a function sinus, which changes with time t as $\sin (2 \pi f t)$. namely by the pure tones. We model a pure tone with sound frequency f, by a function sinus, which changes with time t as $\sin (2 \pi f t)$.

路 .
 -

-

Pure tones

- All sounds are made, in a specific way, by building blocks, namely by the pure tones.
- We model a pure tone with sound frequency f, by a function sinus, which changes with time t as $\sin (2 \pi f t)$.

Pure tones

- All sounds are made, in a specific way, by building blocks, namely by the pure tones.
We model a pure tone with sound frequency f, by a function sinus, which changes with time t as

Pure tones

- All sounds are made, in a specific way, by building blocks, namely by the pure tones.
- We model a pure tone with sound frequency f, by a
function sinus, which changes with time t as

Pure tones

- All sounds are made, in a specific way, by building blocks, namely by the pure tones.
- We model a pure tone with sound frequency f, by a function sinus,

Pure tones

- All sounds are made, in a specific way, by building blocks, namely by the pure tones.
- We model a pure tone with sound frequency f, by a function sinus, which changes with time t as $\sin (2 \pi f t)$.

Pure tones

- All sounds are made, in a specific way, by building blocks, namely by the pure tones.
- We model a pure tone with sound frequency f, by a function sinus, which changes with time t as $\sin (2 \pi f t)$.

Sines of pure tones with various frequencies

- Relation between ω and f is

Sines of pure tones with various frequencies

- Relation between ω and f is

Sines of pure tones with various frequencies

- Relation between ω and f is $\omega=2 \pi f$.
> - When we force a musical instrument to play a pure tone with frequency f, an (actual infinite) number of other pure tones, with frequencies $2 f, 3 f, 4 f$, etc, called overtones, is created.
- When we force a musical instrument to play a pure tone with frequency f, an (actual infinite) number of other pure tones, with frequencies $2 f, 3 f, 4 f$, etc, called overtones, is created.
- When we force a musical instrument to play a pure tone with frequency f, an (actual infinite) number of other pure tones, with frequencies $2 f, 3 f, 4 f$, etc, called overtones, is created.

Tones and overtones for a piano

Tones and overtones for a piano

Tones and overtones for a piano

What is a melody?

- For a melody, we need more than one tone.

Melody I

frequency (Hertz)

Two, or one melody?

\rightarrow Link

- What makes these into melodies? Answer: the change in pitch.
- Are these melodies the same? Strictly speaking NO, since none of the notes of the first melody is the same as a note of the second melody.
- But we strongly feel that these melodies are the same.

Two, or one melody?

- Link
- What makes these into melodies? Answer: the change in pitch.
- Are these melodies the same? Strictly speaking NO, since none of the notes of the first melody is the same as a note of the second melody.
- But we strongly feel that these melodies are the same.

Two, or one melody?

- Link
- What makes these into melodies? Answer: the change in pitch.
- Are these melodies the same? Strictly speaking NO, since none of the notes of the first melody is the same as a note of the second melody.
- But we strongly feel that these melodies are the same.

Two, or one melody?

\rightarrow Link

- What makes these into melodies? Answer: the change in pitch.
- Are these melodies the same? Strictly speaking NO, since none of the notes of the first melody is the same as a note of the second melody.
- But we stronaly feel that these melodies are the same.

Two, or one melody?

\rightarrow Link

- What makes these into melodies? Answer: the change in pitch.
- Are these melodies the same? Strictly speaking NO, none of the notes of the first melody is the same as a note of the second melody.
- But we strongly feel that these melodies are the same.

Two, or one melody?

\rightarrow Link

- What makes these into melodies? Answer: the change in pitch.
- Are these melodies the same? Strictly speaking NO, since none of the notes of the first melody is the same as a note of the second melody.
- But we strongly feel that these melodies are the same.

Two, or one melody?

\rightarrow Link

- What makes these into melodies? Answer: the change in pitch.
- Are these melodies the same? Strictly speaking NO, since none of the notes of the first melody is the same as a note of the second melody.
- But we strongly feel that these melodies are the same.

What is a melody?

What is a melody?

- Different frequencies, but melodies are the same!

What is a melody?

- Different frequencies, but melodies are the same! Why?

What is a melody?

- Different frequencies, but melodies are the same! Why?

What is a melody?

\[

\]

What is a melody?

$$
\begin{array}{cccc}
\text { Melody I } & \frac{660}{440}=\frac{3}{2} \quad \frac{733.3}{440}=\frac{5}{3} & \begin{array}{c}
\text { frequency } \\
\text { (Hertz) }
\end{array} \\
\hline 440 & 660 & 733.3
\end{array}
$$

Melody II

What is a melody?

Melody I $\quad \frac{660}{440}=\frac{3}{2} \quad \frac{733.3}{440}=\frac{5}{3}$

frequency
(Hertz)
Melody II $\quad \frac{825}{550}=\frac{3}{2}$

What is a melody?

$$
\begin{array}{llll}
\text { Melody I } & \frac{660}{440}=\frac{3}{2} & \frac{733.3}{440}=\frac{5}{3} & \begin{array}{c}
660 \\
\text { frequency } \\
\text { (Hertz) }
\end{array} \\
\hline \text { Melody II } & \frac{825}{550}=\frac{3}{2} & \frac{916.6}{550}=\frac{5}{3} & 825 \\
\hline 550 & 916.6 & \begin{array}{c}
\text { frequency } \\
\text { (Hertz) }
\end{array}
\end{array}
$$

What is a melody?

What is a melody?

$$
\left.\begin{array}{llll}
\text { Melody I } & \frac{660}{440}=\frac{3}{2} & \frac{733.3}{440}=\boxed{5} \\
\frac{5}{3}
\end{array} \quad \begin{array}{c}
660 \\
440 \\
\text { Melody II } \\
\text { frequency } \\
\text { (Hertz) }
\end{array}\right] \frac{825}{550}=\frac{3}{2} \quad \frac{916.6}{550}=\frac{5}{3} .
$$

Same frequency \Leftrightarrow same melody!

- These are the ratios of neighbouring frequences which are the same!
- Conclusion:
the same melodies \Longleftrightarrow same ratios between the keys
- These are the ratios of neighbouring frequences which are the same!
- Conclusion:
the same melodies \Longleftrightarrow same ratios between the keys

Same frequency \Leftrightarrow same melody!

- These are the ratios of neighbouring frequences which are the same!
- Conclusion:
the same melodies \Longleftrightarrow same ratios between the keys

Transposition

Melody I

The act of changing of all the frequencies of a given melody by the same factor - so that the ratios between the frequencies stay the same - is called transposition.

Transposition

Melody I

The act of changing of all the frequencies of a given melody by the same factor - so that the ratios between the frequencies stay the same - is called transposition.

Transposition

The act of changing of all the frequencies of a given melody by the same factor - so that the ratios between the frequencies stay the same

Transposition

```
Melody I
\begin{tabular}{cccc} 
& \(\mid\) & \(\dagger\) & \begin{tabular}{c} 
frequency \\
(Hertz)
\end{tabular}
\end{tabular}
```

The act of changing of all the frequencies of a given melody by the same factor - so that the ratios between the frequencies stay the same - is called transposition.

Transposition

The act of changing of all the frequencies of a given melody by the same factor - so that the ratios between the frequencies stay the same - is called transposition.

Transposition

The act of changing of all the frequencies of a given melody by the same factor - so that the ratios between the frequencies stay the same - is called transposition.

Transposition

The act of changing of all the frequencies of a given melody by the same factor - so that the ratios between the frequencies stay the same - is called transposition.

Musical intervals

Musical intervals

- Between any two tones there is a musical interval

Musical intervals

Musical intervals

- musical interval = musical distance between two tones

Musical intervals

Musical intervals

- musical interval = musical distance between two tones

Musical intervals

Musical intervals

frequency
(Hertz)

- musical interval = musical distance between two tones

Musical intervals

Musical intervals

frequency
(Hertz)

- musical interval = musical distance between two tones

Musical intervals

$$
\begin{gathered}
\begin{array}{c}
\text { Musical } \\
\text { interval } \\
\text { between two tones }
\end{array}=\begin{array}{c}
\text { frequency } \\
\text { ratio }
\end{array} \\
\frac{550}{440}
\end{gathered}
$$

Musical intervals

- We now introduce two mportant intervals.

The octave

- The octave = musical interval with ratio 2:1

The octave

- The octave = musical interval with ratio 2:1

The octave

- The octave is very pleasent to the ear.
- Two tones, an octave apart, played together sound very harmonious

The octave

- The octave is very pleasent to the ear.

- Two tones, an octave apart, played together sound very harmonious

The octave

- The octave is very pleasent to the ear.
- Two tones, an octave apart, played together sound very harmonious

The octave equivalence
Octave

- They are highly similar; they are so similar that musicians denote them by the same letter, and musicologists say that they belong to the same pitch class.
- They are considered to be musically equivalent.
- We say about the octave equivalence.

The octave equivalence

- They are highly similar; they are so similar that musicians denote them by the same letter, and musicologists say that they belong to the same pitch class.
- They are considered to be musically equivalent.
- We say about the octave equivalence.

The octave equivalence

- They are highly similar; they are so similar that musicians denote them by the same letter, and musicologists say that they belong to the same pitch class.
- They are considered to be musically equivalent.
- We say about the octave equivalence.

- They are highly similar; they are so similar that musicians denote them by the same letter, and musicologists say that they belong to the same pitch class.
- They are considered to be musically equivalent.
- We say about the octave equivalence.

- They are highly similar; they are so similar that musicians denote them by the same letter, and musicologists say that they belong to the same pitch class.
- They are considered to be musically equivalent.
- We say about the octave equivalence.

The fifth

- Another important musical interval is given by the ratio 3:2.
- It is called the fifth.

The fifth

- Another important musical interval is given by the ratio 3:2.
- It is called the fifth.

The fifth

- Another important musical interval is given by the ratio 3:2.
- It is called the fifth.

The fifth

- Another important musical interval is given by the ratio 3:2.
- It is called the fifth. It is also very pleasent to the ear.

Recall the harmonics

- Due to the octave equivalence, the higher harmonics

$$
2 i, 3 i, 4 i, 5 i, 6 i, 7 i, 8 i, 9 i, 10 i, 11 i, 12 i, 13 i
$$

can be placed between f and $2 f$.

- Since for melodies only the ratios between the tones are important, so $f, 2 f, 4 f, \ldots, 2^{k} f$ are octave equivalent, as well as $\frac{1}{2} f, \frac{1}{4} f, \ldots \frac{1}{2^{k}} f$, for every integer k.
- For example the next musical interval betwen the harmonics after f and $2 f$ is f and $3 f$. But this, due to the octave equivalence is the same, as an interval between f and $\frac{3}{2} f$, which explains pleasance of the fifth. It is the next harmonious musical interval to consider, after the octave.
- Due to the octave equivalence, the higher harmonics

can be placed between f and $2 f$.

- Since for melodies only the ratios between the tones are important, so $f, 2 f, 4 f, \ldots, 2^{k} f$ are octave equivalent, as well as $\frac{1}{2} f, \frac{1}{4} f, \ldots \frac{1}{2 k} f$, for every integer k.
- For example the next musical interval betwen the harmonics after f and $2 f$ is f and $3 f$. But this, due to the octave equivalence is the same, as an interval between f and $\frac{3}{2} f$, which explains pleasance of the fifth. It is the next harmonious musical interval to consider, after the octave.
- Due to the octave equivalence, the higher harmonics

$$
2 f, 3 f, 4 f, 5 f, 6 f, 7 f, 8 f, 9 f, 10 f, 11 f, 12 f, 13 f, \ldots,
$$

can be placed between f and $2 f$.

- Since for melodies only the ratios between the tones are important, so $f, 2 f, 4 f, \ldots, 2^{k} f$ are octave equivalent, as well as $\frac{1}{2} f, \frac{1}{4} f, \ldots \frac{1}{2 k} f$, for every integer k.
- For example the next musical interval betwen the harmonics after f and $2 f$ is f and $3 f$. But this, due to the octave equivalence is the same, as an interval between f and $\frac{3}{2} f$, which explains pleasance of the fifth. It is the next harmonious musical interval to consider, after the octave.
- Due to the octave equivalence, the higher harmonics

$$
2 f, 3 f, 4 f, 5 f, 6 f, 7 f, 8 f, 9 f, 10 f, 11 f, 12 f, 13 f, \ldots,
$$

can be placed between f and $2 f$.

- Since for melodies only the ratios between the tones are important, so $f, 2 f, 4 f, \ldots, 2^{k} f$ are octave equivalent, as well as for every integer k
- For example the next musical interval betwen the harmonics after f and $2 f$ is f and $3 f$. But this, due to the octave equivalence is the same, as an interval between and $\frac{3}{2} f$, which explains pleasance of the fifth. It is the next harmonious musical interval to consider, after the octave.
- Due to the octave equivalence, the higher harmonics

$$
2 f, 3 f, 4 f, 5 f, 6 f, 7 f, 8 f, 9 f, 10 f, 11 f, 12 f, 13 f, \ldots,
$$

can be placed between f and $2 f$.

- Since for melodies only the ratios between the tones are important,
are octave equivalent, as
well as
for every integer
- For example the next musical interval betwen the harmonics after f and $2 f$ is f and $3 f$. But this, due to the octave equivalence is the same, as an interval between and $\frac{3}{2} f$, which explains pleasance of the fifth. It is the next harmonious musical interval to consider, after the octave.
- Due to the octave equivalence, the higher harmonics

$$
2 f, 3 f, 4 f, 5 f, 6 f, 7 f, 8 f, 9 f, 10 f, 11 f, 12 f, 13 f, \ldots,
$$

can be placed between f and $2 f$.

- Since for melodies only the ratios between the tones are important, so $f, 2 f, 4 f, \ldots, 2^{k} f$ are octave equivalent, well as
for every integer
- For example the next musical interval betwen the harmonics after f and $2 f$ is f and $3 f$. But this, due to the octave equivalence is the same, as an interval between and $\frac{3}{2} f$, which explains pleasance of the fifth. It is the next harmonious musical interval to consider, after the octave.
- Due to the octave equivalence, the higher harmonics

$$
2 f, 3 f, 4 f, 5 f, 6 f, 7 f, 8 f, 9 f, 10 f, 11 f, 12 f, 13 f, \ldots,
$$

can be placed between f and $2 f$.

- Since for melodies only the ratios between the tones are important, so $f, 2 f, 4 f, \ldots, 2^{k} f$ are octave equivalent, as well as $\frac{1}{2} f, \frac{1}{4} f, \ldots \frac{1}{2^{k}} f$,
- For example the next musical interval betwen the harmonics after f and $2 f$ is f and $3 f$. But this, due to the octave equivalence is the same, as an interval between and $\frac{3}{2} f$, which explains pleasance of the fifth. It is the next harmonious musical interval to consider, after the octave.
- Due to the octave equivalence, the higher harmonics

$$
2 f, 3 f, 4 f, 5 f, 6 f, 7 f, 8 f, 9 f, 10 f, 11 f, 12 f, 13 f, \ldots,
$$

can be placed between f and $2 f$.

- Since for melodies only the ratios between the tones are important, so $f, 2 f, 4 f, \ldots, 2^{k} f$ are octave equivalent, as well as $\frac{1}{2} f, \frac{1}{4} f, \ldots \frac{1}{2^{k}} f$, for every integer k.
- For example the next musical interval betwen the harmonics after f and $2 f$ is f and $3 f$. But this, due to the octave equivalence is the same, as an interval between and $\frac{3}{2} f$, which explains pleasance of the fifth. It is the next harmonious musical interval to consider, after the octave.
- Due to the octave equivalence, the higher harmonics

$$
2 f, 3 f, 4 f, 5 f, 6 f, 7 f, 8 f, 9 f, 10 f, 11 f, 12 f, 13 f, \ldots,
$$

can be placed between f and $2 f$.

- Since for melodies only the ratios between the tones are important, so $f, 2 f, 4 f, \ldots, 2^{k} f$ are octave equivalent, as well as $\frac{1}{2} f, \frac{1}{4} f, \ldots \frac{1}{2^{k}} f$, for every integer k.
- For example the next musical interval betwen the harmonics after f and $2 f$ is f and $3 f$. But this, due to the
octave equivalence is the same, as an interval between
and $\frac{3}{2} f$, which explains pleasance of the fifth. It is the
next harmonious musical interval to consider, after the
octave.
- Due to the octave equivalence, the higher harmonics

$$
2 f, 3 f, 4 f, 5 f, 6 f, 7 f, 8 f, 9 f, 10 f, 11 f, 12 f, 13 f, \ldots,
$$

can be placed between f and $2 f$.

- Since for melodies only the ratios between the tones are important, so $f, 2 f, 4 f, \ldots, 2^{k} f$ are octave equivalent, as well as $\frac{1}{2} f, \frac{1}{4} f, \ldots \frac{1}{2^{k}} f$, for every integer k.
- For example the next musical interval betwen the harmonics after f and $2 f$ is f and $3 f$. But this, due to the octave equivalence is the same, as an interval between f and $\frac{3}{2} f$, which explains pleasance of the fifth.
next harmonious musical interval to consider, after the
octave.
- Due to the octave equivalence, the higher harmonics

$$
2 f, 3 f, 4 f, 5 f, 6 f, 7 f, 8 f, 9 f, 10 f, 11 f, 12 f, 13 f, \ldots,
$$

can be placed between f and $2 f$.

- Since for melodies only the ratios between the tones are important, so $f, 2 f, 4 f, \ldots, 2^{k} f$ are octave equivalent, as well as $\frac{1}{2} f, \frac{1}{4} f, \ldots \frac{1}{2^{k}} f$, for every integer k.
- For example the next musical interval betwen the harmonics after f and $2 f$ is f and $3 f$. But this, due to the octave equivalence is the same, as an interval between f and $\frac{3}{2} f$, which explains pleasance of the fifth. It is the next harmonious musical interval to consider, after the octave.

The piano keyboard

- We are in a position to chose pleasent sounds for the piano keys.
- The piano keyboard has $2+12 \times 7+2=88$ keys.

- We are in a position to chose pleasent sounds for the piano keys.
- The piano keyboard has $2+12 \times 7+2=88$ keys.

- We are in a position to chose pleasent sounds for the piano keys.
- The piano keyboard has $2+12 \times 7+2=88$ keys.

The piano keyboard

- Look at the above above patern of twelve keys. In the keyboard, the pattern is repeated seven times, an octave apart from each other. This gives $12 \times 7=84$ keys. To these 84 keys, two additional keys are added on each of the lateral ends of the keyboard.

The piano keyboard

- Look at the above above patern of twelve keys. In the keyboard, the pattern is repeated seven times, an octave apart from each other. This gives $12 \times 7=84$ keys. To these 84 keys, two additional keys are added on each of the lateral ends of the keyboard.

The piano keyboard

- Look at the above above patern of twelve keys. In the keyboard, the pattern is repeated seven times, apart from each other. This gives $12 \times 7=84$ keys. To these 84 keys, two additional keys are added on each of the lateral ends of the keyboard.

The piano keyboard

- Look at the above above patern of twelve keys. In the keyboard, the pattern is repeated seven times, an octave apart from each other.
these 84 keys, two additional keys are added on each of the lateral ends of the keyboard.

- Look at the above above patern of twelve keys. In the keyboard, the pattern is repeated seven times, an octave apart from each other. This gives $12 \times 7=84$ keys.
these 84 keys, two additional keys are added on each of the lateral ends of the keyboard.

The piano keyboard

- Look at the above above patern of twelve keys. In the keyboard, the pattern is repeated seven times, an octave apart from each other. This gives $12 \times 7=84$ keys. To these 84 keys, two additional keys are added on each of the lateral ends of the keyboard.

Choice of frequencies

- Which tones are chosen for the twelve keys in an octave?

- We start with an octave, say $440 \mathrm{~Hz}-880 \mathrm{~Hz}$.
- We can restrict ourselves to chose frequencies in one octave only, because frequencies for the keys in other octaves will be obtained either

Choice of frequencies

- Which tones are chosen for the twelve keys in an octave?

- We start with an octave, say $440 \mathrm{~Hz}-880 \mathrm{~Hz}$.
- We can restrict ourselves to chose frequencies in one octave only, because frequencies for the keys in other octaves will be obtained either

Choice of frequencies

- Which tones are chosen for the twelve keys in an octave?

- We start with an octave, say $440 \mathrm{~Hz}-880 \mathrm{~Hz}$.
- We can restrict ourselves to chose frequencies in one octave only, because frequencies for the keys in other octaves will be obtained either

Choice of frequencies

- Which tones are chosen for the twelve keys in an octave?

- We start with an octave, say $440 \mathrm{~Hz}-880 \mathrm{~Hz}$.
- We can restrict ourselves to chose frequencies in one octave only, because frequencies for the keys in other octaves will be obtained either

Choice of frequencies

- by multiplying all the frequencies by 2 , or

Choice of frequencies

- by dividing frequencies by 2 .

Choice of frequencies

- For example, the next octave will have the frequency range: $880 \mathrm{~Hz}-1760 \mathrm{~Hz}$,

Choice of frequencies

- and the previous octave will have the frequency range: $220 \mathrm{~Hz}-440 \mathrm{~Hz}$.

Choice of frequencies

- We will now make frequency choices for the keys in our chosen octave $440 \mathrm{~Hz}-880 \mathrm{~Hz}$.

Choice of frequencies

- Of course we want to play octaves, so we have to have two frequencies octave apart in our frequency list.
- We also want to play fifths so the corresnonding frequency should also be in our list.

Choice of frequencies

- Of course we want to play octaves, so we have to have two frequencies octave apart in our frequency list.
- We also want to play fifths, so the corresponding frequency should also be in our list.

Choice of frequencies

- Of course we want to play octaves, so we have to have two frequencies octave apart in our frequency list.
- We also want to play fifths, so the corresponding frequency should also be in our list.

Here is as it goes:

- When does this stop?

When does it stop?

- Well... the best would be if we eventually arrived at 880 Hz .

When does it stop?

When does it stop?

When does it stop?

If get back to 440 -
$n=$ no. of times went up a fifth
$k=$ no. of times went down an octave

$$
440 \cdot\left(\frac{3}{2}\right)^{n} \cdot\left(\frac{1}{2}\right)^{k}=440
$$

If get back to 440 -
$n=$ no. of times went up a fifth
$k=$ no. of times went down an octave

$$
\begin{gathered}
4 / \mathbf{H} \cdot\left(\frac{3}{2}\right)^{n} \cdot\left(\frac{1}{2}\right)^{k}=4 \neq 0 \\
3^{n}=2^{n+k}
\end{gathered}
$$

If get back to 440 -
$n=$ no. of times went up a fifth
$k=$ no. of times went down an octave

$$
\begin{gathered}
\text { HK• }\left(\frac{3}{2}\right)^{n} \cdot\left(\frac{1}{2}\right)^{k}=4 \neq \\
\text { odd number }=3^{n}=2^{n+k}=\text { even number }
\end{gathered}
$$

Want to be able to -

- play octaves
- play fifths

Need a piano with infinitely many keys

Want to be able to -
 - play octaves
 - play fifths

\Rightarrow

Need a piano with infinitely many keys

A choice of note frequencies for an octave -
"tuning",
"intonation",
"temperament"

A choice of finite number of notes in an octave

A choice of note frequencies for an octave -
"tuning",
"intonation",
"temperament"

- There are numerous choices of tuning systems!

Pythagorian tuning

Pythagorean Tuning

Based on octaves and fifths,
but just a few

Pythagorian tuning

Pythagorian tuning

1	$\frac{9}{8}$	$\frac{81}{64}$		$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2

Pythagorian tuning

- Uff!...we assigned frequencies for the seven keys.
- How do they sound?

Pythagorian tuning

- Uff!...we assigned frequencies for the seven keys.
- How do they sound?

Pythagorian tuning

- Uff!...we assigned frequencies for the seven keys. How do they sound?

Pythagorian tuning

- Uff!....we assigned frequencies for the seven keys.
- How do they sound?

Pythagorian tuning: sounds of the seven white keys

- Sounds familiar, ha?
- It is enough to plav a simple melody.

Pythagorian tuning: sounds of the seven white keys

- Sounds familiar, ha?
- It is enough to play a simple melody.

Pythagorian tuning: sounds of the seven white keys

- Sounds familiar, ha?
- It is enough to play a simple melody.

Pythagorian tuning: sounds of the seven white keys

- Link

- Sounds familiar, ha?
- It is enough to play a simple melody. 2
\qquad
都
(

Pes

 ? | |
| :---: |

 .

$$
1
$$

(

Pythagorian tuning: can we transpose?

> There is however, a problem with a transposition: We started our melody from the fifth, i.e. $\frac{3}{2}$ key. If we started from the next key, $\frac{27}{16}$, we would be missing one note, to play the same melody :((.

1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2

Pythagorian tuning: can we transpose?

- There is however, a problem with a transposition:
started our melody from the fifth, i.e. $\frac{3}{2}$ key. If we started from the next key, $\frac{27}{16}$, we would be missing one note, to play the same melody :((.

1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2

Pythagorian tuning: can we transpose?

- There is however, a problem with a transposition: We started our melody from the fifth, from the next key, $\frac{21}{16}$, we would be missing one note, to play the same melody :((.

1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2

Pythagorian tuning: can we transpose?

- There is however, a problem with a transposition: We started our melody from the fifth, i.e. $\frac{3}{2}$ key.
from the next key, $\frac{21}{16}$, we would be missing one note, to
play the same melody :((.

Pythagorian tuning: can we transpose?

- There is however, a problem with a transposition: We started our melody from the fifth, i.e. $\frac{3}{2}$ key. If we started from the next key, $\frac{27}{16}$,

Pythagorian tuning: can we transpose?

- There is however, a problem with a transposition: We started our melody from the fifth, i.e. $\frac{3}{2}$ key. If we started from the next key, $\frac{27}{16}$, we would be missing one note, to play the same melody :((.

- There is however, a problem with a transposition: We started our melody from the fifth, i.e. $\frac{3}{2}$ key. If we started from the next key, $\frac{27}{16}$, we would be missing one note, to play the same melody :((.

1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2

Pythagorian tuning: problems with transposition

Pythagorian tuning: problems with transposition

- We need to add only one key more, we again can play the same melody, now starting at $\frac{27}{16}$.

Pythagorian tuning: problems with transposition

- We need to add only one key more, we again can play the same melody, now starting at $\frac{27}{16}$.
- Link

Pythagorian tuning: creating the black keys

Pythagorian tuning: creating the black keys

256		$\frac{729}{512}$			$\frac{16}{9}$		
1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2

Pythagorian tuning: creating the black keys

Pythagorian tuning: creating the black keys

Pythagorian tuning: creating the black keys

- Uff... We have 12 keys! 7 whites, and 5 blacks!

Pythagorian tuning: creating the black keys

- Uff...We have 12 keys! 7 whites, and 5 blacks!

Pythagorian tuning: creating the black keys

- Uff...We have 12 keys! 7 whites, and 5 blacks!

Pythagorian tuning: full keyboard

- What we have now is pretty much as is the fundamental pattern of the twelve keys of the piano keyboard.
- The Pythagorian system, has more trouble issues than just having troubles with transposition. The just intonation -yet another tuning system - is introduced to cure one of them.

Pythagorian tuning: full keyboard

- What we have now is pretty much as is the fundamental pattern of the twelve keys of the piano keyboard.
- The Pythagorian system, has more trouble issues than just having troubles with transposition.
another tuning system - is introduced to cure one of them.

- What we have now is pretty much as is the fundamental pattern of the twelve keys of the piano keyboard.
- The Pythagorian system, has more trouble issues than just having troubles with transposition. The just intonation -yet another tuning system - is introduced to cure one of them.

Just intonation

- One problem of the Pythagorian tuning is caused by the beats.
- Some important chords - the multiple harmoneous tones played at once - sound better in just intonation.

- One problem of the Pythagorian tuning is caused by the beats.
- Some important chords - the multiple harmoneous tones played at once - sound better in just intonation.

1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2

- One problem of the Pythagorian tuning is caused by the beats.
- Some important chords - the multiple harmoneous tones played at once - sound better in just intonation.

- One problem of the Pythagorian tuning is caused by the beats.
- Some important chords - the multiple harmoneous tones played at once - sound better in just intonation.

1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2

- In particular, instantenous play of the 1st, 3rd and 5th note, in the white keys, is an important chord, called the major chord.

1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2

- In particular, instantenous play of the 1st, 3rd and 5th note, in the white keys, is an important chord, called the major chord.
- \rightarrow Link

And the problem is with the 5th overtone of the first note, and the 4 th overtone of the 3rd note.

1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2

- In particular, instantenous play of the 1st, 3rd and 5th note, in the white keys, is an important chord, called the major chord.
- Link
- And the problem is with the 5 th overtone of the first note, and the 4th overtone of the 3rd note.

Just intonation: elimination of beats

1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2

- It is as simple as:

$$
4 \times \frac{81}{64} \simeq 5.0625 \simeq 5 \times 1
$$

- Because a superposition of two sinusoidal waves with so close frequencies produces this:

1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2

- It is as simple as:

$$
4 \times \frac{81}{64} \simeq 5.0625 \simeq 5 \times 1
$$

- Because a superposition of two sinusoidal waves with so close frequencies produces this:

1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2

- It is as simple as:

$$
4 \times \frac{81}{64} \simeq 5.0625 \simeq 5 \times 1
$$

- Because a superposition of two sinusoidal waves with so close frequencies produces this:

Just intonation

Just	1	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{15}{8}$	2
Pyth.	1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$	2
$\frac{81 / 64}{5 / 4}=1.0125$								

Just intonation

Just	9	$\frac{5}{4}$	$\frac{4}{3}$	2	$\frac{5}{3}$	$\frac{15}{8}$	2
Pyth.	$\frac{9}{8}$	$\frac{81}{64}$	3	2	$\frac{27}{16}$	$\frac{243}{128}$	2
				$\frac{243 / 128}{15 / 8}=1.0125$			

Just	1	$\frac{9}{8}$	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{15}{8}$
Pyth.	1	$\frac{9}{8}$	$\frac{81}{64}$	$\frac{4}{3}$	$\frac{3}{2}$	$\frac{27}{16}$	$\frac{243}{128}$

Circle of fifths

- Long time ago people observed that

$$
\left(\frac{3}{2}\right)^{12} \simeq 2^{7}
$$

- Well...

- This is the same as saying that

Circle of fifths

- Long time ago people observed that

$$
\left(\frac{3}{2}\right)^{12} \simeq 2^{7}
$$

- This is the same as saying that

$$
\left(\frac{3}{2}\right)^{\frac{12}{7}} \simeq 2
$$

Circle of fifths

- Long time ago people observed that

$$
\left(\frac{3}{2}\right)^{12} \simeq 2^{7}
$$

- This is the same as saying that

$$
\left(\frac{3}{2}\right)^{\frac{12}{7}} \simeq 2
$$

- Well...

Circle of fifths

- Long time ago people observed that

$$
\left(\frac{3}{2}\right)^{12} \simeq 2^{7}
$$

- This is the same as saying that

$$
\left(\frac{3}{2}\right)^{\frac{12}{7}} \simeq 2
$$

- Well...

$$
\left(\frac{3}{2}\right)^{\frac{12}{7}}-2 \simeq 0.00387547
$$

Circle of fifths

- This means that starting in the pitch class C and heating the successive key notes by the musical intervals of the fifth, the thirteenth heated fifth will sound as C.
- Well..., with a good aproximation.

Circle of fifths

- This means that starting in the pitch class C and heating the successive key notes by the musical intervals of the fifth, the thirteenth heated fifth will sound as C.
- Well..., with a good aproximation.

Circle of fifths

- This means that starting in the pitch class C and heating the successive key notes by the musical intervals of the fifth, the thirteenth heated fifth will sound as C.
- Well...,
with a good aproximation.

Circle of fifths

- This means that starting in the pitch class C and heating the successive key notes by the musical intervals of the fifth, the thirteenth heated fifth will sound as C.
- Well..., with a good aproximation.

Circle of fifths

Circle of fifths

Circle of fifths

- This, in particular explains $88=2+12 \times 7+2$ keys of the piano!
- twelve keys in each octaves, and seven octaves, to go around in terms of the fifths to the same pitch class C.

Circle of fifths

- This, in particular explains $88=2+12 \times 7+2$ keys of the piano!
- twelve keys in each octaves, and seven octaves, to go
around in terms of the fifths to the same pitch class C.

Circle of fifths

- This, in particular explains $88=2+12 \times 7+2$ keys of the piano!
- twelve keys in each octaves, and seven octaves, to go around in terms of the fifths to the same pitch class C.

Returning to $\frac{3}{2}^{12} \simeq 2^{7}$

- For the pourpose of this lecture, I will call the modulus of the difference $\left|\left(\frac{3}{2}\right) \frac{12}{7}-2\right|=\mid 1(n+n)$ a comma of the tuning system.
- In the tuning systems we considered here, the comma $\mu_{(3,12,7)}=0.00387547$ is related to the three natural numbers i, t, k which are:
- $f=3$, the third harmonic, which we used in the form of the ratio $\frac{3}{2}$, to generate our piano keys steps;
- $t=12$, the number of keys in one octave of our tuning system;
- $k=7$, the number of octaves needed to go from C back to C, by jumping through the keys by the intervals of $\frac{3}{2}$.
- For the pourpose of this lecture, I will call the modulus of the difference $\left|\left(\frac{3}{2}\right)^{\frac{12}{7}}-2\right|=\mu_{(3,12,7)}$, a comma, of the tuning system.
- In the tuning systems we considered here, the comma $\mu_{(3,12.7)}=0.00387547$ is related to the three natural
numbers f, t, k which are:


```
Returning to }\mp@subsup{\frac{3}{2}}{}{12}\simeq\mp@subsup{2}{}{7
```

- For the pourpose of this lecture, I will call the modulus of the difference $\left|\left(\frac{3}{2}\right)^{\frac{12}{7}}-2\right|=\mu_{(3,12,7)}$, a comma, of the tuning system.
- In the tuning systems we considered here, the comma $\mu_{(3,12,7)}=0.00387547$ is related to the three natural numbers $, t, k$ which are:


```
Returning to }\mp@subsup{\frac{3}{2}}{}{12}\simeq\mp@subsup{2}{}{7
```

- For the pourpose of this lecture, I will call the modulus of the difference $\left|\left(\frac{3}{2}\right)^{\frac{12}{7}}-2\right|=\mu_{(3,12,7)}$, a comma, of the tuning system.
- In the tuning systems we considered here, the comma $\mu_{(3,12,7)}=0.00387547$ is related to the three natural numbers f, t, k which are:

ratio $\frac{3}{2}$, to generate our piano keys steps;
 the number of keys in one octave of our tuning
 system;
 the number of octaves needed to go from C back to
 C, by jumping through the keys by the intervals of

```
Returning to }\mp@subsup{\frac{3}{2}}{}{12}\simeq\mp@subsup{2}{}{7
```

- For the pourpose of this lecture, I will call the modulus of the difference $\left|\left(\frac{3}{2}\right)^{\frac{12}{7}}-2\right|=\mu_{(3,12,7)}$, a comma, of the tuning system.
- In the tuning systems we considered here, the comma $\mu_{(3,12,7)}=0.00387547$ is related to the three natural numbers f, t, k which are:
- $f=3$, the third harmonic, which we used in the form of the
ratio $\frac{3}{2}$, to generate our piano keys steps;
the number of keys in one octave of our tuning
system;
the number of octaves needed to go from C back to
C, by jumping through the keys by the intervals of
- For the pourpose of this lecture, I will call the modulus of the difference $\left|\left(\frac{3}{2}\right)^{\frac{12}{7}}-2\right|=\mu_{(3,12,7)}$, a comma, of the tuning system.
- In the tuning systems we considered here, the comma $\mu_{(3,12,7)}=0.00387547$ is related to the three natural numbers f, t, k which are:
- $f=3$, the third harmonic, which we used in the form of the ratio $\frac{3}{2}$, to generate our piano keys steps; system;
the number of octaves needed to go from C back to C, by jumping through the keys by the intervals of
- For the pourpose of this lecture, I will call the modulus of the difference $\left|\left(\frac{3}{2}\right)^{\frac{12}{7}}-2\right|=\mu_{(3,12,7)}$, a comma, of the tuning system.
- In the tuning systems we considered here, the comma $\mu_{(3,12,7)}=0.00387547$ is related to the three natural numbers f, t, k which are:
- $f=3$, the third harmonic, which we used in the form of the ratio $\frac{3}{2}$, to generate our piano keys steps;
- $t=12$, the number of keys in one octave of our tuning system;
the number of octaves needed to go from C back to by jumping through the keys by the intervals of
- For the pourpose of this lecture, I will call the modulus of the difference $\left|\left(\frac{3}{2}\right)^{\frac{12}{7}}-2\right|=\mu_{(3,12,7)}$, a comma, of the tuning system.
- In the tuning systems we considered here, the comma $\mu_{(3,12,7)}=0.00387547$ is related to the three natural numbers f, t, k which are:
- $f=3$, the third harmonic, which we used in the form of the ratio $\frac{3}{2}$, to generate our piano keys steps;
- $t=12$, the number of keys in one octave of our tuning system;
the number of octaves needed to go from C back to
by jumping through the keys by the intervals of
- For the pourpose of this lecture, I will call the modulus of the difference $\left|\left(\frac{3}{2}\right)^{\frac{12}{7}}-2\right|=\mu_{(3,12,7)}$, a comma, of the tuning system.
- In the tuning systems we considered here, the comma $\mu_{(3,12,7)}=0.00387547$ is related to the three natural numbers f, t, k which are:
- $f=3$, the third harmonic, which we used in the form of the ratio $\frac{3}{2}$, to generate our piano keys steps;
- $t=12$, the number of keys in one octave of our tuning system;
- $k=7$, the number of octaves needed to go from C back to C, by jumping through the keys by the intervals of
- For the pourpose of this lecture, I will call the modulus of the difference $\left|\left(\frac{3}{2}\right)^{\frac{12}{7}}-2\right|=\mu_{(3,12,7)}$, a comma, of the tuning system.
- In the tuning systems we considered here, the comma $\mu_{(3,12,7)}=0.00387547$ is related to the three natural numbers f, t, k which are:
- $f=3$, the third harmonic, which we used in the form of the ratio $\frac{3}{2}$, to generate our piano keys steps;
- $t=12$, the number of keys in one octave of our tuning system;
- $k=7$, the number of octaves needed to go from C back to C, by jumping through the keys by the intervals of $\frac{3}{2}$.

Designing a tuning system

- Question: Can we have a Pythagorian tuning system with t keys in every octave, which has k octaves and which is generated from the first octave $1 \longleftrightarrow 2$ by a harmonic ${ }^{2} f$, such that
- its comma $\mu\left(r_{1}, k\right)<0.01$,
- the number of tones $t \times k<100$,
- its generating harmonic $f<64$?
- l call this system Pythagorian, although it is based on f rather than $f=3$. But this is a straightforward generalization.
- Question: Can we have a Pythagorian tuning system with t keys in every octave, which has k octaves
generated from the first octave such that
- its comma
- the number of tones
- its generating harmonic $f<64$?
- I call this system Pythagorian, although it is based on f rather than $f=3$. But this is a straightforward generalization.
- Question: Can we have a Pythagorian tuning system with t keys in every octave, which has k octaves and which is generated from the first octave $1 \longleftrightarrow 2$ by a harmonic ${ }^{2} f$,
- its comma
- the number of tones
- its generating harmonic $f<64$?
- I call this system Pythagorian, although it is based on rather than $f=3$. But this is a straightforward generalization.
- Question: Can we have a Pythagorian tuning system with t keys in every octave, which has k octaves and which is generated from the first octave $1 \longleftrightarrow 2$ by a harmonic ${ }^{2} f$, such that
- its comma $\mu_{(f, t, k)}<0.01$,
- the number of tones
- its generating harmonic
- I call this system Pythagorian, although it is based on rather than $f=3$. But this is a straightforward generalization.
- Question: Can we have a Pythagorian tuning system with t keys in every octave, which has k octaves and which is generated from the first octave $1 \longleftrightarrow 2$ by a harmonic ${ }^{2} f$, such that
- its comma $\mu_{(f, t, k)}<0.01$,
- the number of tones $t \times k<100$,
- its generating harmonic
- I call this system Pythagorian, although it is based on rather than $f=3$. But this is a straightforward generalization.
- Question: Can we have a Pythagorian tuning system with t keys in every octave, which has k octaves and which is generated from the first octave $1 \longleftrightarrow 2$ by a harmonic ${ }^{2} f$, such that
- its comma $\mu_{(f, t, k)}<0.01$,
- the number of tones $t \times k<100$,
- its generating harmonic $f<64$?
- I call this system Pythagorian, although it is based on f rather than $f=3$. But this is a straightforward
generalization.
- Question: Can we have a Pythagorian tuning system with t keys in every octave, which has k octaves and which is generated from the first octave $1 \longleftrightarrow 2$ by a harmonic ${ }^{2} f$, such that
- its comma $\mu_{(f, t, k)}<0.01$,
- the number of tones $t \times k<100$,
- its generating harmonic $f<64$?
- I call this system Pythagorian, although it is based on f rather than $f=3$. But this is a straightforward generalization.

Designing a tuning system

Theorem

The only values of (f, t, k) that answer the question in positive are in the following table:
$f \quad t \quad k \quad \mu$
$\begin{array}{llll}\frac{3}{2} & 12 & 7 & 0.00387547\end{array}$
$\begin{array}{llll}\frac{11}{8} & 13 & 6 & 0.00631819\end{array}$
$\begin{array}{llll}\frac{13}{8} & 10 & 7 & 0.000871016\end{array}$
$\begin{array}{llll}\frac{17}{16} & 23 & 2 & 0.00808825\end{array}$
$\begin{array}{llll}\frac{27}{16} & 4 & 3 & 0.00905446\end{array}$
$\begin{array}{llll}\frac{29}{16} & 7 & 6 & 0.00135602\end{array}$

Designing a tuning system

f	t	k	μ
$\frac{33}{32}$	45	2	0.00156911
$\frac{37}{32}$	19	4	0.0070528
$\frac{39}{32}$	7	2	0.00151358
$\frac{41}{32}$	14	5	0.00158879
$\frac{43}{32}$	7	3	0.00744747
$\frac{47}{32}$	9	5	0.00241079
$\frac{53}{32}$	11	8	0.00123505
$\frac{55}{32}$	9	7	0.00639457
$\frac{57}{32}$	6	5	0.000737349
$\frac{59}{32}$	9	8	0.00971721

Pythagorian system with 10 keys and 7 octaves

- We see that among all Pythagorian systems, based on $f<56$, the system with $f=13, t=10, k=7$ is the system with the smallest comma.
- It is precisely the system which Leszek Możdér wanted us to design for him. His motivation for using $t=10, k=7$ is kind of 'mystic'; totally unclear for us.
- The Pythagorian decaphonic piano has six white keys and four black keys.
- Its octave with six white keys is generated by $f=13$, which plays the role of the 'fifth', when compared to the $t=12, k=7$ Pythagorian system.
- Since we have ten keys, and $k=7$, to cover a passage from C to C via the 'fifths' of $\frac{18}{8}$, the piano needs 70 keys, only.
- It should be stressed, that in our analysis we did not insist on having $t=10$ keys! The decimal/decaphonic system, with seven octaves, was distinguished by pure mathematics.
- We see that among all Pythagorian systems, based on $f<56$, the system with $f=13, t=10, k=7$ is the system with the smallest comma.
- It is precisely the system which Leszek Możdèr wanted us to design for him. His motivation for using
kind of 'mystic'; totally unclear for us.
- The Pythagorian decaphonic piano has six white keys and four black keys.
- Its octave with six white keys is generated by which plays the role of the 'fifth', when compared to the Pythagorian system.
- Since we have ten keys, and from C to C via the 'fifths' of $\frac{18}{8}$, the piano needs 70 keys, only.
- It should be stressed, that in our analysis we did not insist on having $t=10$ keys! The decimal/decaphonic system,
with seven octaves, was distinguished by pure
mathematics.

Pythagorian system with 10 keys and 7 octaves

- We see that among all Pythagorian systems, based on $f<56$, the system with $f=13, t=10, k=7$ is the system with the smallest comma.
- It is precisely the system which Leszek Możdèr wanted us to design for him.
kind of 'mystic'; totally unclear for us.
- The Pythagorian decaphonic piano has six white keys and four black keys.
- Its octave with six white keys is generated by which plays the role of the 'fifth', when compared to the Pythagorian system.
- Since we have ten keys, and from C to C via the 'fifths' of the piano needs 70 keys, only.
- It should be stressed, that in our analysis we did not insist on having $t=10$ keys! The decimal/decaphonic system,
with seven octaves, was distinguished by pure
mathematics.

Pythagorian system with 10 keys and 7 octaves

- We see that among all Pythagorian systems, based on $f<56$, the system with $f=13, t=10, k=7$ is the system with the smallest comma.
- It is precisely the system which Leszek Możdèr wanted us to design for him. His motivation for using $t=10, k=7$ is kind of 'mystic';
- The Pythagorian decaphonic piano has six white keys and four black keys.
- Its octave with six white keys is generated by which plays the role of the 'fifth', when compared to the Pythagorian system.
- Since we have ten keys, and from C to C via the 'fifths' of the piano needs 70 keys,
only.
- It should be stressed, that in our analysis we did not insist on having $t=10$ keys! The decimal/decaphonic system,
with seven octaves, was distinguished by pure
mathematics.

Pythagorian system with 10 keys and 7 octaves

- We see that among all Pythagorian systems, based on $f<56$, the system with $f=13, t=10, k=7$ is the system with the smallest comma.
- It is precisely the system which Leszek Możdèr wanted us to design for him. His motivation for using $t=10, k=7$ is kind of 'mystic'; totally unclear for us.
- Since we have ten keys, and from C to C via the 'fifths' of the piano needs 70 keys,
only.
- It should be stressed, that in our analysis we did not insist on having $t=10$ keys! The decimal/decaphonic system,
with seven octaves, was distinguished by pure
mathematics.

Pythagorian system with 10 keys and 7 octaves

- We see that among all Pythagorian systems, based on $f<56$, the system with $f=13, t=10, k=7$ is the system with the smallest comma.
- It is precisely the system which Leszek Możdèr wanted us to design for him. His motivation for using $t=10, k=7$ is kind of 'mystic'; totally unclear for us.
- The Pythagorian decaphonic piano has six white keys and four black keys.
Its octave with six white keys is generated by
which plays the role of the 'fifth', when compared to the
Pythagorian system.
- Since we have ten keys, and
from C to C via the 'fifths' of
$=7$, to cover a passage
the piano needs 70 keys,
only.
It should be stressed, that in our analysis we did not insist
on having $t=10$ keys! The decimal/decaphonic system,
with seven octaves, was distinguished by pure
mathematics.
- We see that among all Pythagorian systems, based on $f<56$, the system with $f=13, t=10, k=7$ is the system with the smallest comma.
- It is precisely the system which Leszek Możdèr wanted us to design for him. His motivation for using $t=10, k=7$ is kind of 'mystic'; totally unclear for us.
- The Pythagorian decaphonic piano has six white keys and four black keys.
- Its octave with six white keys is generated by $f=\frac{13}{8}$, which plays the role of the 'fifth', when compared to the $t=12, k=7$ Pythagorian system.

- We see that among all Pythagorian systems, based on $f<56$, the system with $f=13, t=10, k=7$ is the system with the smallest comma.
- It is precisely the system which Leszek Możdèr wanted us to design for him. His motivation for using $t=10, k=7$ is kind of 'mystic'; totally unclear for us.
- The Pythagorian decaphonic piano has six white keys and four black keys.
- Its octave with six white keys is generated by $f=\frac{13}{8}$, which plays the role of the 'fifth', when compared to the $t=12, k=7$ Pythagorian system.
- Since we have ten keys, and $k=7$, to cover a passage from C to C via the 'fifths' of $\frac{13}{8}$, the piano needs 70 keys, only.
It should be stressed, that in our analysis we did not insist
on having $t=10$ keys! The decimal/decaphonic system,
with seven octaves, was distinguished by pure
- We see that among all Pythagorian systems, based on $f<56$, the system with $f=13, t=10, k=7$ is the system with the smallest comma.
- It is precisely the system which Leszek Możdèr wanted us to design for him. His motivation for using $t=10, k=7$ is kind of 'mystic'; totally unclear for us.
- The Pythagorian decaphonic piano has six white keys and four black keys.
- Its octave with six white keys is generated by $f=\frac{13}{8}$, which plays the role of the 'fifth', when compared to the $t=12, k=7$ Pythagorian system.
- Since we have ten keys, and $k=7$, to cover a passage from C to C via the 'fifths' of $\frac{13}{8}$, the piano needs 70 keys, only.
- It should be stressed, that in our analysis we did not insist on having $t=10$ keys!
with seven octaves, was distinguished by pure
- We see that among all Pythagorian systems, based on $f<56$, the system with $f=13, t=10, k=7$ is the system with the smallest comma.
- It is precisely the system which Leszek Możdèr wanted us to design for him. His motivation for using $t=10, k=7$ is kind of 'mystic'; totally unclear for us.
- The Pythagorian decaphonic piano has six white keys and four black keys.
- Its octave with six white keys is generated by $f=\frac{13}{8}$, which plays the role of the 'fifth', when compared to the $t=12, k=7$ Pythagorian system.
- Since we have ten keys, and $k=7$, to cover a passage from C to C via the 'fifths' of $\frac{13}{8}$, the piano needs 70 keys, only.
- It should be stressed, that in our analysis we did not insist on having $t=10$ keys! The decimal/decaphonic system, with seven octaves, was distinguished by pure mathematics.

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Ten scale Pythagorian tuning

Equal temperament

- Consider all possible musical systems with t keys in an octave.
- As far as the problem of transposing melodies from one key to another is concerned, the best among these systems is the t-system in which all the adjascent keys are apart the same interval.
- Let this interval be given by a number r.
- We start with our first key, in the first octave, which has frequency value
- The second key has frequency value $1 \times r=r$, , the third key, $r \times r=r^{2}$, the fourth $r^{2} \times r=r^{3}$, and so on, until the $t^{\text {th }}$ key, which will have frequency value
- Since the scale has t keys, the $(t+1)^{\text {th }}$ key starts a new octave, so that the value of this key is on one hand $r=r^{r}$, but on the other hand is 2 .

Equal temperament

- Consider all possible musical systems with t keys in an octave.
- As far as the problem of transposing melodies from one key to another is concerned, the best among these systems is the t-system in which all the adjascent keys are apart the same interval.

Equal temperament

- Consider all possible musical systems with t keys in an octave.
- As far as the problem of transposing melodies from one key to another is concerned, the best among these systems is the t-system in which all the adjascent keys are apart the same interval.
- Let this interval be given by a number r.
- We start with our first key, in the first octave, which has frequency value
- The second key has frequency value $1 \times r=r$, , the third key, $r \times r=r^{2}$, the fourth $r^{2} \times r=r^{3}$, and so on, until the key, which will have frequency value
- Since the scale has t keys, the $(t+1)^{\text {th }}$ key starts a new octave, so that the value of this key is on one hand but on the other hand is 2 .
- Consider all possible musical systems with t keys in an octave.
- As far as the problem of transposing melodies from one key to another is concerned, the best among these systems is the t-system in which all the adjascent keys are apart the same interval.
- Let this interval be given by a number r.
- We start with our first key, in the first octave, which has frequency value 1.

- Consider all possible musical systems with t keys in an octave.
- As far as the problem of transposing melodies from one key to another is concerned, the best among these systems is the t-system in which all the adjascent keys are apart the same interval.
- Let this interval be given by a number r.
- We start with our first key, in the first octave, which has frequency value 1.
- The second key has frequency value $1 \times r=r$,
key, which will have frequency value
- Since the scale has t keys, the $(t+1)^{\text {th }}$ key starts a new octave, so that the value of this key is on one hand but on the other hand is 2 .
- Consider all possible musical systems with t keys in an octave.
- As far as the problem of transposing melodies from one key to another is concerned, the best among these systems is the t-system in which all the adjascent keys are apart the same interval.
- Let this interval be given by a number r.
- We start with our first key, in the first octave, which has frequency value 1.
- The second key has frequency value $1 \times r=r$, , the third key, $r \times r=r^{2}$, the fourth
key, which will have frequency value
- Since the scale has t keys, the $(t+1)^{\text {th }}$ key starts a new octave, so that the value of this key is on one hand but on the other hand is 2 .
- Consider all possible musical systems with t keys in an octave.
- As far as the problem of transposing melodies from one key to another is concerned, the best among these systems is the t-system in which all the adjascent keys are apart the same interval.
- Let this interval be given by a number r.
- We start with our first key, in the first octave, which has frequency value 1.
- The second key has frequency value $1 \times r=r$, , the third key, $r \times r=r^{2}$, the fourth $r^{2} \times r=r^{3}$, and so on, until the
key, which will have frequency value
- Since the scale has t keys, the $(t+1)^{\text {th }}$ key starts a new octave, so that the value of this key is on one hand but on the other hand is 2 .

Equal temperament

- Consider all possible musical systems with t keys in an octave.
- As far as the problem of transposing melodies from one key to another is concerned, the best among these systems is the t-system in which all the adjascent keys are apart the same interval.
- Let this interval be given by a number r.
- We start with our first key, in the first octave, which has frequency value 1.
- The second key has frequency value $1 \times r=r$, , the third key, $r \times r=r^{2}$, the fourth $r^{2} \times r=r^{3}$, and so on, until the $t^{\text {th }}$ key, which will have frequency value $r^{t-2} \times r=r^{t-1}$.
- Since the scale has t keys, the $(t+1)^{\text {th }}$ key starts a new octave, so that the value of this key is on one hand

Equal temperament

- Consider all possible musical systems with t keys in an octave.
- As far as the problem of transposing melodies from one key to another is concerned, the best among these systems is the t-system in which all the adjascent keys are apart the same interval.
- Let this interval be given by a number r.
- We start with our first key, in the first octave, which has frequency value 1.
- The second key has frequency value $1 \times r=r$, , the third key, $r \times r=r^{2}$, the fourth $r^{2} \times r=r^{3}$, and so on, until the $t^{\text {th }}$ key, which will have frequency value $r^{t-2} \times r=r^{t-1}$.
- Since the scale has t keys, the $(t+1)^{\text {th }}$ key starts a new octave, so that the value of this key is on one hand $r^{t-1} \times r=r^{t}$, but on the other hand is 2 .

Equal temperament

- Consider all possible musical systems with t keys in an octave.
- As far as the problem of transposing melodies from one key to another is concerned, the best among these systems is the t-system in which all the adjascent keys are apart the same interval.
- Let this interval be given by a number r.
- We start with our first key, in the first octave, which has frequency value 1.
- The second key has frequency value $1 \times r=r$, , the third key, $r \times r=r^{2}$, the fourth $r^{2} \times r=r^{3}$, and so on, until the $t^{\text {th }}$ key, which will have frequency value $r^{t-2} \times r=r^{t-1}$.
- Since the scale has t keys, the $(t+1)^{\text {th }}$ key starts a new octave, so that the value of this key is on one hand $r^{t-1} \times r=r^{t}$, but on the other hand is 2 .

Equal temperament

- We thus have $r^{t}=2$, or r is the root of r.
- Thus, the musical intervals in such equally distanced scale are equal to

- A musical scale with t equal intervals $r=(2)^{\frac{1}{t}}$ is called equally tempered, or equal temperament.

Equal temperament

- We thus have $r^{t}=2$, or r is the $t^{\text {th }}$ root of r.
- Thus, the musical intervals in such equally distanced scale are equal to

- A musical scale with t equal intervals $r=(2)^{\bar{t}}$ is called equally tempered, or equal temperament.

Equal temperament

- We thus have $r^{t}=2$, or r is the $t^{\text {th }}$ root of r.
- Thus, the musical intervals in such equally distanced scale are equal to

$$
r=(2)^{\frac{1}{t}}
$$

- A musical scale with t equal intervals $r=(2)^{\frac{1}{t}}$ is called equally tempered, or equal temperament.

Equal temperament

- We thus have $r^{t}=2$, or r is the $t^{\text {th }}$ root of r.
- Thus, the musical intervals in such equally distanced scale are equal to

$$
r=(2)^{\frac{1}{t}}
$$

- A musical scale with t equal intervals $r=(2)^{\frac{1}{t}}$ is called equally tempered, or equal temperament.

Equal temperament for

Equal temperament

- The decaphonic piano of Leszek Mozdzer,
physical implementation will be presented during the concert at Nowa Miodowa Hall on Thursday, 13th July, at 19:00, uses equally tempered 10 scale musical system.
- Mathematically the system has a remarkable property that the differences in musical intervals between each of its ten keys and the corresponding keys of the Pythagorian $f=13, t=10, k=7$ system, are about an order of magnitude smaller, than the corresponding distances differences between keys of the equally tempered 12 piano scale and the keys of its
Pytagorian counterpart.

Equal temperament

- The decaphonic piano of Leszek Mozdzer, which physical implementation will be presented during the concert at Nowa Miodowa Hall on Thursday, 13th July, at 19:00, uses equally tempered 10 scale musical
system.
- Mathematically the system has a remarkable property that the differences in musical intervals between each of its ten keys and the corresponding keys of the Pythagorian system, are about an order of
magnitude smaller, than the corresponding distances
differences between keys of the equally tempered 12
piano scale and the keys of its
Pytagorian counterpart.

Equal temperament

- The decaphonic piano of Leszek Mozdzer, which physical implementation will be presented during the concert at Nowa Miodowa Hall on Thursday, 13th July, at 19:00, uses equally tempered 10 scale musical system.
Mathematically the system has a remarkable property that
the differences in musical intervals between each of its
ten keys and the corresponding keys of the Pythagorian
system, are about an order of
magnitude smaller, than the corresponding distances
differences between keys of the equally tempered 12
piano scale and the keys of its
Pytagorian counterpart.

Equal temperament

- The decaphonic piano of Leszek Mozdzer, which physical implementation will be presented during the concert at Nowa Miodowa Hall on Thursday, 13th July, at 19:00, uses equally tempered 10 scale musical system.
- Mathematically the system has a remarkable property that
the differences in musical intervals between each of its
ten keys and the corresponding keys of the Pythagorian
system, are about an order of
magnitude smaller, than the corresponding distances
differences between keys of the equally tempered 12
piano scale and the keys of its
Pytagorian counterpart.
- The decaphonic piano of Leszek Mozdzer, which physical implementation will be presented during the concert at Nowa Miodowa Hall on Thursday, 13th July, at 19:00, uses equally tempered 10 scale musical system.
- Mathematically the system has a remarkable property that the differences in musical intervals between each of its ten keys

system, are about an order of
magnitude smaller, than the corresponding distances differences between keys of the equally tempered 12 piano scale and the keys of its Pytagorian counterpart.
- The decaphonic piano of Leszek Mozdzer, which physical implementation will be presented during the concert at Nowa Miodowa Hall on Thursday, 13th July, at 19:00, uses equally tempered 10 scale musical system.
- Mathematically the system has a remarkable property that the differences in musical intervals between each of its ten keys and the corresponding keys of the Pythagorian $f=13, t=10, k=7$ system, are about an order of
magnitude smaller, than the corresponding distances
differences between keys of the equally tempered 12
piano scale and the keys of its
Pytagorian counterpart.

Equal temperament

- The decaphonic piano of Leszek Mozdzer, which physical implementation will be presented during the concert at Nowa Miodowa Hall on Thursday, 13th July, at 19:00, uses equally tempered 10 scale musical system.
- Mathematically the system has a remarkable property that the differences in musical intervals between each of its ten keys and the corresponding keys of the Pythagorian $f=13, t=10, k=7$ system, are about an order of magnitude smaller, than the corresponding distances differences between keys of the equally tempered 12 piano scale and the keys of its Pytagorian counterpart.

Equal temperament

- The decaphonic piano of Leszek Mozdzer, which physical implementation will be presented during the concert at Nowa Miodowa Hall on Thursday, 13th July, at 19:00, uses equally tempered 10 scale musical system.
- Mathematically the system has a remarkable property that the differences in musical intervals between each of its ten keys and the corresponding keys of the Pythagorian $f=13, t=10, k=7$ system, are about an order of magnitude smaller, than the corresponding distances differences between keys of the equally tempered 12 piano scale
Pytagorian counterpart.

Equal temperament

- The decaphonic piano of Leszek Mozdzer, which physical implementation will be presented during the concert at Nowa Miodowa Hall on Thursday, 13th July, at 19:00, uses equally tempered 10 scale musical system.
- Mathematically the system has a remarkable property that the differences in musical intervals between each of its ten keys and the corresponding keys of the Pythagorian $f=13, t=10, k=7$ system, are about an order of magnitude smaller, than the corresponding distances differences between keys of the equally tempered 12 piano scale and the keys of its $f=3, t=12, k=7$ Pytagorian counterpart.

[^0]: ${ }^{1}$ Non decaphonic part of this talk uses a lot from the youtube video of Yuval Nov. One can consult his video at
 https://www.youtube.com/watch?v=nK2jYk37Rlg\&ab_channel=Eormant in case one is lost in this part

[^1]: ${ }^{1}$ Non decaphonic part of this talk uses a lot from the youtube video of Yuval Nov. One can consult his video at
 https://www. youtube.com/watch?v=nK2jYk37Rlg\&ab_channel=Formant in case one is lost in this part

[^2]: ${ }^{1}$ Non decaphonic part of this talk uses a lot from the youtube video of Yuval Nov. One can consult his video at
 https://www. youtube.com/watch?v=nK2jYk37Rlg\&ab_channel=Formant in case one is lost in this part

[^3]: ${ }^{1}$ Non decaphonic part of this talk uses a lot from the youtube video of Yuval Nov. One can consult his video at
 https://www. youtube.com/watch?v=nK2jYk37Rlg\&ab_channel=Formant in case one is lost in this part

