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Singular Lagrangian fibrations

We consider a symplectic manifold (M2n, ω), a smooth Hamilto-

nian H : M2n → R and the corresponding Hamiltonian system

dx

dt
= XH(x) = ω−1dH(x)

with n commuting independent first integrals f1, . . . , fn.

To each integrable system we can naturally assign:

1) Momentum mapping F = (f1, . . . , fn) : M2n → Rn.

2) Action of Rn generated by translations along Xf1, . . . , Xfn.

3) Singular Lagrangian fibration, whose fibers are connected

components of F−1(a), a ∈ Rn; we assume that all of them

are compact.



Dynamics: topological viewpoint

What do we usually want to know about a given dynamical
system?
Equilibrium points, remarkable trajectories, stability, limit sets,
different types of motion (depending on the initial data),
bifurcations

In the case of integrable systems, all this information is contained
in the “topology” of the corresponding Lagrangian fibration.

General theory and Applications:
Atiyah, Audin, Boucetta, A. Brailov, Yu. Brailov, Colin de Verdière, Cushman,

Dazord, Delzant, Dufour, Duistermaat, Dullin, Eliasson, Fomenko, Guillemin,

Ito, Kalashnikov, Kharlamov, Lerman, Leung, S. Matveev, V. Matveev,

Miranda, Mishachev, Molino, Morozov, Nguyen Tien Zung, Orel, Oshemkov,

Pogosyan, Rüssmann, Ryabov, Selivanova, Sternberg, Symington, Toulet,

Umanskii, Vey, San Vu Ngoc, Zotiev, Zieschang, etc.



Question

Does the bi-Hamiltonian structure (if it exists) help to

understand the qualitative properties of a system, in particular,

the properties of the structure of the Lagrangian fibration?

Do bi-Hamiltonian systems possess any specific topological

properties? What is the relationship between “topology” and

being “bi-Hamiltonian”?



Special case of bi-Hamiltonian systems

Consider a family of degenerate compatible Poisson brackets

{·, ·}λ = {·, ·}A + λ{·, ·}B on M and assume that all of them are

of the same rank R < dimM .

Let F be the set of functions generated by the Casimir functions

of all {·, ·}λ.

Classical bi-Hamiltonian fact: F is a commutative algebra of

first integrals of any bi-Hamiltonian system associated with this

pencil.

F generates a singular Lagrangian fibration L on our Poisson

manifold M and we are interested in its properties.



Question. What is the singular set of this fibration, i.e., the set

where the first integrals become “functionally dependent”?

Equivalently: what are those points x ∈ M where the space in

T ∗xM generated by the differentials df(x), x ∈ F, is not maximal

isotropic?

Linear algebra gives the following answer:

Proposition. x is singular if and only if there is λ ∈ C̄ such that

the rank of {·, ·}λ at x is less than R.

Principle: the nature of singularities of L is essentially defined

by the singularities of {·, ·}λ, λ ∈ C̄.



Example 1: argument shift method

g is a semisimple Lie algebra, {·, ·} the standard Lie-Poisson
bracket

{f, g}(x) = 〈x, [df(x), dg(x)]〉

and

{f, g}a(x) = 〈a, [df(x), dg(x)]〉, a ∈ g

The corresponding commuting functions (a-shifts) are f i
k(x)

defined by

fk(x + λa) = f0
k (x) + λf1

k (x) + λ2f2
k (x) + . . .

where fk are Casimir functions of g, i < deg fk.

Mischenko-Fomenko theorem: f i
k are functinally independent,

1 ≥ k ≥ rank g, 0 ≤ i < deg fk.



Proposition. x ∈ g is critical for the family of a-shifts (i.e.,

the differentials of df i
k(x) are linearly dependent), if and only if

there is λ ∈ C such that x + λa is singular in the sense that the

dimension of the adjoint orbit O(x + λa) is not maximal.

In other words, the critical set K for the momentum mapping

Fa (i.e., the singular set for the Lagrangian fibration) has a very

simple structure: this is the cylinder over the set gsing of all

singular adjoint orbits (more precisely the intersection of the

“complex” cylinder with the “real” Lie algebra g):

K = (gsing + λa) ∩ g, gsing ⊂ gC, λ ∈ C.



Let g be a compact Lie algebra.

Question. What are generic singularities of the Lagrangian
fibration associated with a-shifts? What are typical bifurcations
of Lagrangian tori?

generic singularity ⇒
rank of dFa drops by 1 ⇒
there is exactly one λ ∈ R such that x + λa is singular ⇒
the singularity of x + λa is of so(3) type ⇒
generic singularities of La are all elliptic

Conclusions:
Typical bifurcations: Tn → Tn−1 → ∅
No hyperbolic singularities
Only one family of regular tori
F−1(c) is connected



Example 2: Euler-Manakov top

d

dt
X = [Ω(X), X], X = ΩJ + JΩ, X ∈ so(n), J symmetric

Integrability follows from:

d

dt
(X + λJ2) = [Ω(X) + J, X + J2]

Commuting first integrals: fk,λ(X) = Tr(X + λJ2)k

Bi-Hamiltonian structure:

[X, Y ] = [X, Y ]I = XY −Y X and [X, Y ]A = XAY −Y AX,

where A = J2 is a symmetric matrix, I is the identity matrix.

Commuting integrals as Casimirs of {·, ·}A+λI:

hk,λ(X) = Tr(X(A + λI)−1)k



Let LA be the Lagrangian fibration on so(n) generated by the
family of compatible Poisson brackets {·, ·}A+λI.

KA ⊂ so(n, R) singular set of LA

S ⊂ so(n, C) set of all singular orbits (algebraic variety of
codimension 3).

Proposition.

KA = Re
(
∪λ∈C̄ (A + λI)1/2 S (A + λI)1/2

)
In other words, X ∈ so(n) is a singular point for the Lagrangian
fibration LA if and only if X can be presented in the form

X = (A + λI)1/2 X ′ (A + λI)1/2

where X ′ is a singular skew symmetric complex matrix and λ ∈ C̄.



Case n = 4:

S ⊂ so(4, C) is the union of two 3-dim subspaces

P1 =


0 z3 −z2 z1
−z3 0 z1 z2
z2 −z1 0 z3
−z1 −z2 −z3 0

 and P1 =


0 −z3 z2 z1
z3 0 −z1 z2
−z2 z1 0 z3
−z1 −z2 −z3 0



The singular set for LA is:

KA =
⋃

i=1,2, λ∈C̄
Pλ

i ,

where Pλ
i = (A + λI)1/2 Pi (A + λI)1/2



Stability:

Assume that X ∈ SA and there exists exactly one λ ∈ R such
that X ∈ Sλ = Pλ

1 ∪ Pλ
2 .

Let A = diag(a1, a2, a3, a4), and a1 < a2 < a3 < a4,

Proposition. If λ < a1 or λ > a4, then the closed trajectory
through X is stable.

Proof. If λ < a1, then {·, ·} is isomorphic to so(4)-bracket

It is easy to see that λ cannot belong to (a1, a2), (a3, a4)

If λ ∈ (a2, a3), then {·, ·} is isomorphic to so(2,2)-bracket. Both
stable and unstable trajectories are possible.



Non-degenerate singularities

Let F be a complete family of commuting functions and
L the corresponding Lagrangian fibration.

Let x ∈ M2n be an equilibrium point in the sense that df(x) = 0
for every f ∈ F. Consider Af = ω−1d2f(x) as a linear operator. It
is easy to see that Af , f ∈ F, generate a commutative subalgebra
K in sp(TxM, ω).

Definition 1. x ∈ M is non-degenerate, if K is a Cartan subal-
gebra.

Definition 1′. x ∈ M is non-degenerate, if K is n-dimensional
and there is f ∈ F such that the ”characteristic” polynomial

P (t) = det(
∑

d2f(x)− tω)
has no multiple roots.



Local classification of non-degenerate singularities

Three simplest (quadratic) singularities:

1) f = p2 + q2, ω = dp ∧ dq, dim = 2 — elliptic case;
2) f = pq, ω = dp ∧ dq, dim = 2 — hyperbolic case;
3) f1 = p1q1 + p2q2, f2 = p1q2 − p2q1,
ω = dp1 ∧ dq1 + dp2 ∧ dq2 — focus-focus case.

Theorem (Eliasson, 1990) Any non-degenerate singularity is
locally symplectomorphic to the direct product of singularities
of these three types.

In particular, the tangent space TxM is naturally decomposed into
direct sum of subspaces of dimension 2 and 4, each of which is
invariant under any linearized vector field Xf , f ∈ F.



Local analysis of equilibrium points for Euler-Manakov top

Let X ∈ so(n) be an equilibrium point and regular. Consider the
following ”characteristic” equation:

rank({·, ·}A−λI(X)) < dim so(n)− ind so(n)

Observation: Typically this equation has 1
2 dimO(X) distinct

roots λi ∈ C so that the matrix of the bracket {·, ·}A+λI at the
equilibrium point X can be presented in the block-diagonal form
ΦA+λI = Φ0 ⊕ . . .⊕Φλk

⊕ . . .⊕Φak±ibk
⊕ . . ., where Φ0 is a zero

block and

Φλk
=

(
0 λk−λ

λ−λk

)
, Φak±ibk

=


ak−λ bk
−bk ak−λ

λ−ak bk
−bk λ−ak





Thus, there is a natural ”Jordan-Kronecker” decomposition of

the cotangent space T ∗Xso(n) into 2 and 4 dimensional subspaces

(+ common kernel).

On the other hand, there is an ”Eliasson” decomposition of the

tangent space TXso(n) into 2 and 4 dimensional invariant sub-

spaces for linearized (bi-hamiltonian) vector fields (+ common

zero-space).

Proposition These decompositions are dual to each other.

This observation immediately simplifies everything!



Open questions

Q1. Are the ”Eliasson” and ”Jordan–Kronecker” decomposi-

tions always dual to each other?

Q2. What is a ”generic” singular point for a family of compatible

Poisson brackets?

Q3. What is a ”normal form” of a family of compatible Poisson

brackets at a ”generic” singular point?

Q4. Is there any general procedure to verify non-degeneracy

of singular points related to a family of compatible Poisson

brackets?


