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We discuss the construction in Euclidean space
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of the closed convex surface 
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 with prescribed integral curvature (see [1]). The existence of such surface is proved in [1], where 
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 is obtained as a limit of a polyhedrons sequence. 
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 be the unit sphere centered at the origin 
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; denote by dx  the standard measure on 
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. Suppose that for any Borel set 
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 the value of integral curvature transferred from surface 
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 to 
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 is equal to 
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where
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 is the given function, 
[image: image12.wmf](

)

0

,

>

Î

g

S

C

g

. Moreover, we assume that 
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 satisfies the conditions of Aleksandrov’s theorem (see [1]).

We construct the special sequence of polyhedrons. For this purpose the sphere is subjected to a finite triangulation
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 are equal spherical equilateral triangles. конецформыначалоформыFor rays 
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 issuing from the point 
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 to the centers of triangles 
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 and for numbers  
[image: image19.wmf](

)

a

a

m

m

T

=

 there exists a unique, up to a homothety, convex polyhedron with vertices on the rays 
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 and with corresponding curvatures 
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 at these vertices ([1]).  Further, drawing the midlines in triangle
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 (for each 
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), we obtain the subsequent triangulation finer than the previous one. As above we construct a new class of homothetic closed convex polyhedrons. And so on. By  
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 denote the class of homothetic polyhedrons obtained at the nth step of this process. 

Let 
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 be the Euclidean distance in 
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Theorem.  Suppose 
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 be the closed convex surface, which is starlike relative to the origin 
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, and its integral curvature is defined according to (1); then there exists a sequence 
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, …  of   polyhedrons, 
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,  such that for an arbitrary point 
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 and for its corresponding point 
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,  the inequality 
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 holds, if 
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is large enough. 

Note, that the constant 
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 is uniquely determined by the function 
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, by the diameter of P and by the diameter 
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 of the initial triangulation, that is
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 is an absolute constant 
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The proof is based on methods and results developed in theory of manifolds  with bounded curvature (MBC), in the sense of Alexandrov.  In particular, we use a representation of the metric on MBC by Chebyshev line element ([2]). We use also the estimate of the surface deformation generated by a variation of its metric ([3]).

   The result can be applied to some elliptic Monge-Amper equations on a sphere ([4], [5]) to estimate the convergence rate of approximate solutions. 
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