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Hamiltonian systems

Complex analytic symplectic manifold: (M2n, ω). Our main
example

M2n = C2n, ω =
n∑

i=1

dqi ∧ dpi .

Holomorphic Hamiltonian: H : M2n → C. Our main example

H =
1
2

n∑
i=1

p2
i + V (q1, . . . ,qn),

where
V ∈ C(q1, . . . ,qn) =: C(q).
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Hamiltonian systems

Hamiltonian vector field: XH , ω(XH ,Y ) = dH · Y . In our example

XH =
n∑

i=1

(
pi
∂

∂qi
− ∂V
∂qi

∂

∂pi

)
.

Poisson bracket: {F ,G} := ω(XF ,XG). In our example

{F ,G} :=
n∑

i=1

(
∂F
∂qi

∂G
∂pi
− ∂F
∂pi

∂G
∂qi

)
.

First integrals of XH : {H,F} = 0.
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Integrability

Definition
A Hamiltonian system is partially integrable iff

it admits independent first integrals F1 = H, . . . ,Fm, 1 < m ≤ n,
and
{Fi ,Fj} = 0, for 1 < i , j < m.

Definition
A Hamiltonian system is superintegrable iff

it admits independent first integrals F1 = H, . . . ,Fn+m, 1 ≤ m < n,
and
{Fi ,Fj} = 0, for 1 ≤ i , j ≤ n.
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Our problem

Problem
Find necessary conditions for partial and superintegrabilty for an
arbitrary 1 < m < n.

. . . method?

Hint
In the frame of the of the differential Galois approach to the
integrability (Morales-Ramis theory).
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Variational equations

Main Idea
A non-linear system leaves fingerprints of its properties in variational
equations.

Main assumption: for a given holomorphic system

d
dt

x = v(x), x ∈ Mn, t ∈ C (1)

we know a non-equilibrium particular solution ϕ(t), Γ is the
corresponding phase curve.

Variational equations

d
dt
ξ = A(t)ξ, A(t) =

∂v
∂x

(ϕ(t)), ξ ∈ TΓMn (2)
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Leading terms

Definition
The leading term f of a holomorphic function F is the lowest order term
of an expansion

F (ϕ(t) + ξ) = Fm(ξ) + O(‖ξ‖m+1), Fm 6= 0,

i.e., f (ξ) := Fm(ξ). Note that f (ξ) is a homogeneous polynomial with
respect to ξ = (ξ1, . . . , ξn) of degree m and its coefficients are
polynomials in ϕ(t).

Definition
If F is a meromorphic function, then F = P/Q for certain holomorphic
functions P and Q. In this case, the leading term f of F is defined as
f = p/q, where p and q are leading terms of P and Q, respectively. As
result f (ξ) is a homogeneous rational function of ξ.
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First integrals of the system and its VEs

First implication
If F is a meromorphic (holomorphic) first integral of the differential
system, then its leading term f is a rational (polynomial) first integral of
variational equations. Similarly, If the system possesses k ≥ 2
functionally independent meromorphic first integrals F1, . . . ,Fk , then,
by the Ziglin Lemma, VEs have k functionally independent rational first
integrals. Warning: generally they are NOT leading terms of F1, . . . ,Fk !

Second implication
If G ⊂ GL(n,C) is the differential Galois group of (2), and f ∈ C(ξ) its
rational first integral of variational equations, then
(g−1 · f )(ξ) := f (g(ξ)) = f (ξ) for every g ∈ G, i.e.,
f is a rational invariant of group G.
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Correspondence between first integrals of the
system and invariants of DGG

Theorem
If system has k functionally independent first integrals which are
meromorphic in a connected neighbourhood of a non-equilibrium
solution ϕ(t), then the differential Galois group G of the variational
equations along ϕ(t) has k functionally independent rational invariants.

C(x)G := {f ∈ C(x) | g · f = f for all g ∈ G }

Fact
The differential Galois group G of a system of linear equations is a
linear algebraic group, so in particular it is also a Lie group.

A. J. Maciejewski (Poland) Partial and superintegrabilty August 4, 2008 12 / 40



Passing to Lie algebras

g ⊂ gl(n,C) – the Lie algebra of G.

With a Y ∈ g we connect a linear vector field:

x 7→ Y (x) := Y · x

for x ∈ Cn.

Definition
f ∈ C(x) is an integral of g, iff LY (f ) = 0 for all Y ∈ g.

C(x)g := {f ∈ C(x) | LY (f ) = 0 for all Y ∈ g }

Lemma

If f1, . . . , fk ∈ C(x)G are algebraically independent invariants of an
algebraic group G ⊂ GL(n,C), then f1, . . . , fk ∈ C(x)g, where g is the
Lie algebra of G.
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Normal Variational Equations

Fact
v(ϕ(t)) is a non-zero solution of VEs

d
dt
ξ =

∂v
∂x

(ϕ(t))ξ.

The reduction gives NVEs

d
dt
η = AN(t)η, η ∈ Cn−1.

Formally
N = TΓMn/T Γ, π : TΓMn → F ,

d
dt
η = π?(T v(x)π−1(η)), η ∈ N
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Main Theorem

Fact
For a Hamiltonian system the differential Galois group G of variatonal
equations is a subgroup of Sp(2n,C) and its Lie algebra g is a Lie
subalgebra of sp(2n,C).

Theorem (Morales-Ramis)
Assume that a Hamiltonian system is meromorphically integrable in
the Liouville sense in a neighbourhood of the analytic phase curve Γ.
Then the Lie algebra g of the differential Galois group G of the
variational equations along Γ is Abelian.
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Outline of the proof

1 Commuting independent first integrals F1, . . . ,Fn of XH give
rational, commuting and indepenent first integrals f1, . . . fn of
variational variational equations (Ziglin)

2 Thus, f1, . . . fn ∈ C(x ,y)g, where g is the Lie algebra of the
differential Galois group of variational equations.

3 Missing point:

Lemma (Key Lemma)
If a Lie algebra g ⊂ sp(2n,C) admits n independent and commuting
first integrals, then it is Abelian.
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NVEs for Hamiltonian Systems

Double reduction
Restrict Hamilton’s equations to the level E = H(ϕ(t)) and then reduce
VEs to the normal boundle.

d
dt
η = AN(t)η, η ∈ C2n−2.

Fact I
GN is a linear algebraic subgroup of Sp(2n − 2,C).

Fact II
The Morales-Ramis Theorem is true if we change VEs to NVEs.
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Maximally superintegrable Hamiltonian systems

Theorem (I)
Assume that a holomorphic Hamiltonian system with n degrees admits
2n− 1 first integrals which are meromorphic in a neighbourhood U of a
phase curve Γ and independent in U \ Γ. Then the Lie algebra gN of the
differential Galois group GN of the normal variational equations along Γ
is the zero algebra, i.e., GN is a finite subgroup of Sp(2n − 2,C).
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Proof

GN admits 2n − 2 independent rational first integrals f1, . . . , f2n−2;
for each Y ∈ gN ⊂ sp(2n − 2,C), Y (fi) = 0 for i = 1, . . . ,2n − 2,
thus Y = 0.
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Maximally superintegrable non-Hamiltonian
systems

Theorem (II)
Assume that a holomorphic n-dimensional system admits n − 1 first
integrals which are meromorphic in a neighbourhood U of a phase
curve Γ and independent in U \ Γ. Then the Lie algebra gN of the
differential Galois group GN of the normal variational equations along Γ
is the zero algebra, i.e., GN is a finite subgroup of GL(n − 1,C).
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Darboux Points and Particular Solutions

Assumption
Potential V ∈ C(q) is homogeneous and deg V = k ∈ Z?.

Definition
Darboux point d ∈ Cn is a solution of

V ′(d) = d , d 6= 0.

Particular solution

q(t) = ϕ(t)d , p(t) = ϕ̇(t)d , provided ϕ̈ = −ϕk−1.

Phase curve Γε:

ϕ̇2 =
2
k

(
ε− ϕk

)
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Variational equations

ẍ = −ϕ(t)k−2V ′′(d)x .

If V ′′(d) is diagonalisable, then in an appropiate base

ÿi = −λiϕ(t)k−2yi , 1 ≤ i ≤ n, (3)

where λ1, . . . , λn are eigenvalues of V ′′(d). One of these eigenvalues,
let us say λn is k − 1.
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Differential Galois group

G ⊂ G(λ1)× · · · × G(λn) ⊂ Sp(2n,C), G(λi) ⊂ Sp(2,C).

and

GN ⊂ G(λ1)× · · · × G(λn−1) ⊂ Sp(2n − 2,C), G(λi) ⊂ Sp(2,C).

Hence
g ⊂ g1 ⊕ · · · ⊕ gn,

and
gN ⊂ g1 ⊕ · · · ⊕ gn−1,

where gi is a Lie subalgebra of sp(2,C), for i = 1, . . . ,n.
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Transformation to hypergeometric equations

η̈ = −λϕ(t)k−2η,

Γε : ε =
1
2
ϕ̇2 +

1
k
ϕk .

Differential Galois group G(k , λ) ⊂ Sp(2,C).
Yoshida transformation

z :=
1
εk
ϕ(t)k .

z(1− z)η′′ + [c − (a + b + 1)z]η′ − abη = 0,

a + b =
k − 2

2k
, ab = − λi

2k
, c = 1− 1

k
.

 (H)

Differenial Galois group G(k , λ) ⊂ GL(2,C).
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Properties of G(k , λ)◦

Fact
The identity component G(k , λ)◦ is isomorphic to G(k , λ)◦.

Proposition
If G(k , λ)◦ is solvable then it is Abelian.

Lemma (K)

The identity component G(k , λ)◦ of the differential Galois group of
hypergeometric equation (H) is Abelian if and only if (k , λ) belong to
the following list
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Properties G(k , λ)◦

case k λ

1. ±2 λ

2. k p +
k
2

p(p − 1)

3. k
1
2

(
k − 1

k
+ p(p + 1)k

)
4. 3 − 1

24
+

1
6

(1 + 3p)2 , − 1
24

+
3

32
(1 + 4p)2

− 1
24

+
3

50
(1 + 5p)2 , − 1

24
+

6
25

(1 + 5p)2

5. 4 −1
8

+
2
9

(1 + 3p)2
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Properties G(k , λ)◦

case k λ

6. 5 − 9
40

+
5
18

(1 + 3p)2 , − 9
40

+
2
5

(1 + 5p)2

7. −3
25
24
− 1

6
(1 + 3p)2 ,

25
24
− 3

32
(1 + 4p)2

25
24
− 3

50
(1 + 5p)2 ,

25
24
− 6

25
(1 + 5p)2

8. −4
9
8
− 2

9
(1 + 3p)2

9. −5
49
40
− 5

18
(1 + 3p)2 ,

49
40
− 2

5
(1 + 5p)2

where p is an integer and λ an arbitrary complex number.
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Theorem

Assume that the Hamiltonian a natural Hamiltonian system system
with a homogeneous potential V ∈ C(q) of degree k ∈ Z? satisfies the
following conditions:

1 there exists a non-zero d ∈ Cn such that V ′(d) = d , and
2 matrix V ′′(d) is diagonalizable with eigenvalues
λ1, . . . , λn−1, λn = k − 1;

3 the system admits 2n − 1 functionally independent first integrals
F1 = H,F2, . . . ,F2n−1 which are meromorphic in a connected
neighbourhood of phase curve Γε.
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Our Theorem

Theorem (continuation)
Then each (k , λi) belongs to the list from Lemma K, and moreover

if |k | > 2, then each pair (k , λi) for 1 ≤ i ≤ n − 1, belongs to items
3–9 of the table from Lemma K;
if |k | ≤ 2, then each pair (k , λi), for 1 ≤ i ≤ n − 1 belongs to the
following list

case k λ

I. −2 1− r2

II. −1 1

III. 1 0

IV . 2 r2

(4)

where r ∈ Q?;
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Separable potential

V = Aqk
1 + Bqk

2

Darboux points d1 = (0, ( 1
Bk )1/(k−2)) and d2 = (( 1

Ak )1/(k−2),0) for
k 6= 2; for d = (1,0) and d = (0,1)

non-trivial eigenvalues λ(d i) = 0 for k 6= 2; for k = 2 λ(d1) = B/A
and λ(d2) = A/B
by our theorem, if V is integrable, then either k = −2, or k = 1 or
k = 2 and, in this last case, A/B = r2 for r ∈ Q?.
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Radial potential

V = αr k , r =
√

q2
1 + q2

2

infintely many Darboux points
non-trivial eigenvalue at each of them λ(d) = 1. Thus, by our
theorem, if V is superintegrable, then k = −1 or k = 2.
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Three body problem

V =
1
k

[
(q1 − q2)k + (q2 − q3)k + (q3 − q1)k

]
, k ∈ Z \ {0,1}

F2 = p1 + p2 + p3,

Lemma

Assume that k ∈ Z \ {−2,0,1,2,4}. Then the potential V is not
integrable by meromorphic first integrals in the Liouville sense.

k = 4, one additional first integral F3;
k = 2 two additional first integrals F3 and F4;
k = −2 three additional first integrals F3, F4 and F5;

Lemma

Assume that k ∈ Z \ {0,1,−2}. Then the potential V is not maximally
superintegrable by meromorphic first integrals.
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Restriction of the problem

Problem
Whether a Hamiltonian system admits just one odditional first integral?

Lemma
If H admits an additional first integral meromorphic in a neighbourhood
of Γ, then dim GN < (n − 1)(2n − 1), i.e., dim GN is not maximal.
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Certain Kolchin Theorem

w ′′i = riwi , ri ∈ C(z), i = 1, . . .m, (P)

Theorem (Kolchin)

Assume then the differential Galois group G of the system (P) has
dimension smaller than 3m. Then either the differential Galois group
Gi for i-the equation has dimension smaller than 3, or there exist
indices 1 ≤ i < j ≤ m and fundamental matrices Wi and Wj of
solutions of i-th and j-th equations, such that

Wi = αAWj (5)

for a certain 2× 2 matrix A with coefficients in C(z) and α2 ∈ C(z).
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Our Lemma

Lemma

Assume that each equation in the product (P) is Fuchsian and has
singularities at S := {z1, . . . , zl} ∈ CP1, and differential Galois group G
of the system (P) has dimension smaller than 3m. If the second
possibility the Kolchin Theorem occurs for i-th and j-th equations, then
for all z? ∈ S the local monodromy matrices Mi(z?), Mj(z?) around
point z? of the respective equations, satisfy either Mi(z?) = Mj(z?), or
Mi(z?) = −Mj(z?).
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Our Theorem

Theorem

Assume that a homogeneous potential V ∈ C(q) of degree k ∈ Z?

satisfies the following conditions:
1 there exists a non-zero d ∈ Cn such that V ′(d) = d , and
2 matrix V ′′(d) is semi-simple with eigenvalues λ1, . . . , λn = k − 1;
3 the system admits an additional meromorphic first integral F in a

connected neighbourhood of the phase curve Γε.
Then either:
A1. there exists 1 ≤ r < n such that pair (k , λr ) belongs to the list from

Lemma K, or
A2. there exist 1 ≤ i < j < n such that

1
2k

√
(k − 2)2 + 8kλi =

1
2k

√
(k − 2)2 + 8kλj + p, (6)

for some p ∈ Z.
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The second possibility

V = (q2
1 + q2

2)2 +
1
2
λq2

3(q2
1 + q2

2) +
1
4

q4
3 , λ ∈ C.

First integral F = q1p2 − q2p1.
Darboux point d = (0,0,1).
V ′′(d) = diag(λ, λ,3).
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