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Aim
e To study integrability of the geodesic equation (adjoint equation)

in sub-Riemannian problems.

e To show usefulness of the Morales-Ramis theory in proving non-

integrability.




Sub-Riemannian manifolds
Geodesic equation

Classification of integrable homogeneous sub-Riemannian prob-

lems in dimension 3

Nilpotent approximations of 3-dim. sub-Riemannian manifolds
Integrability and nonintegrability in the tangent case
Morales-Ramis theorem and differential Galois group

Optimal energy of the transfer pulses for the n-level quantum sys-

tem and nonintegrability for n > 4
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A sub-Riemannian manifold is a triple (M, D, B), where

Put Dy = D and Dsy1 = D, + |D, Dg|. If for each point ¢ € M, there
exists an integer r(q) (called the nonholonomy degree at ¢) such that
D, (g)(q) = Ty, M, then any two points in M can be joined by a curve
that is almost everywhere tangent to D, called a horizontal curve.

Sub-Riemannian manifold.

e M is a smooth manifold,
e D is a smooth distribution of rank m on M

e B a smoothly varying positive definite bilinear form on D, that is,

a smoothly varying scalar product on D.

Controllability: Rashevsky and Chow'
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Sub-Riemannian metric '

Put ||v| = (B(v,v))Y?2, for any v € D(q) C T,M, and let v : [ — M
be a horizontal curve. We define the length () of ~ as

I(y) = / 15(6) .

We can thus endow M with a metric d: the sub-Riemannian distance
d(q1,q2) between two pints ¢q; and ¢o is the infimum of [(v) over all

horizontal curves joining ¢; and gq-.

e Sub-Riemannian geometry problem: find horizontal curves mini-

mizing the length [(7), i.e., find sub-Riemannian geodesics.

N /




Minimizing: energy versus length'

e The energy F(7) of a curve 7 is defined as
1 :
B() = [ ()P
I

e Analytically it is more convenient to minimize the energy FE(7)
rather than the length [(7).

e As in Riemannian geometry, due to Cauchy-Schwartz inequality,
the minimizers of both problems coincide. Namely, a horizontal
curve v minimizes the energy E among all horizontal curves joining
g1 and g9 in time 7' if and only if it minimizes the length [ among

all horizontal curves joining ¢; and g2 and is parameterized to have

/

constant speed ¢ = d(q1,q2)/T.
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Sub-Riemannian hamiltonian.

Choose a local orthonormal frame (Xi,...,X,,) of D, that is,

Consider each X; as a fiber-linear function on 7M. Then each
X? can be interpreted as a fiber-quadratic function on T* M

We have |
h = 5(X12+---+X§,L).

The hamiltonian equation associated with h will be called geodesic
equation.

The projections to M of its solutions are sub-Riemannian geodesics,
called normal geodesics. Notice that in the general case there may

exist length minimizing horizontal curves that are not projections

/

of solutions of the geodesic equation (Montgomery).
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Formulating an optimal control problem'

e For a given framing D = (Xy,..., X,;,) by m orthonormal vector
fields, any integral curve q(t) of D satisfies

Diog(t) = ) Xia®)ui),

where u;(t), for 1 <1 < m, are controls.

e A geodesic is a trajectory of X that minimizes the energy

1 m
E = 5/z:uf(t)dt.
I =1

e The geometric problem of minimizing the subriemannian distance

is the optimal control problem of minimizing the energy E for the

/

control-linear system ..
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Pontryagin Maximum Principle (PMP) I

e To solve this optimal control problem, we will apply the Pontryagin

Maximum Principle (PMP) to the problem of minimization of E.

e Define the hamiltonian of the optimal control problem

* m - 1
h:T*M x R — R, hqp, Z<p,u] >—§u3)
7=1
e Define the maximized hamiltonian h (solve g—z = 0 which gives

U j =< p, Xj >) by

1
h(x,p) = maxh (q,p,u) = =3 (<p, X >)?
71=1

(a quadratic function on fibres).
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Pontryagin Maximum Principle - statement'
Theorem 1 If a control u(t) and the corresponding normal trajectory
q(t) minimize the cost E, then there exits a curve p(t) € T;(t)M in the
cotangent bundle such that \(t) = (q(t),p(t)) satisfies the following

. —
hamiltonian equation \(t) = h (A(t)) on T*M:

dz%@@m@)

ﬁz—%@@m@%

where h is the maximized hamiltonian, and w;(t) =< p(t), X,;(q(t)) >

are optimal controls.

N /

10




~

Integrability of the geodesic equation'

Our main problem: study integrability of the geodesic equation.

Brockett and Dai started a systematic study of integrability of the

geodesic equation (in terms of elliptic functions) in SR-geometry.

3-dimensional nilpotent cases are integrable: Heisenberg (in terms
of trigonometric functions) and Martinet (in terms of elliptic func-

tions, Bonnard, Chyba, Trelat); and the tangent case?

Jurdjevic has shown integrability (in terms of elliptic functions) of

several invariant SR-problems on Lie groups.

There exist nonintegrable sub-Rimennian geodesic equations in

nilpotent cases (a 6-dim. example of Montgomery-Shapiro).

/
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Our goal I

e Classify all cases of integrable adjoint geodesic equation for homoge-

neous spaces in dimension 3
e Study integrability of the nilpotent tangent case in dimension 3.

e Integrability of some quantum systems on SO(n)
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Homogenous and symmetric SR—spacesI

e A sub-Riemannian isometry between SR-manifolds (M, D, B) and
(M, D, B) is a diffeomorphism 1 : M — M such that ¢, (D) = D
and B = ¢*(B).

e A homogeneous sub-Riemannian space, shortly, a SR-homogeneous
space, is a sub-Riemannian manifold for which the group of its
sub-Riemannian isometries is a Lie group that acts smoothly and
transitively on the manifold.

e A SR-homogeneous space is said to be symmetric, shortly, SR-
symmetric, if for each point ¢ € M there exists an isometry 1

such that ¢ (q) = q and ¥.|p(y) = —1d.

/
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3-dimensional homogeneous sub-Riemannian spaces'

Lemma 1 (Fulbel-Gorodski) To any 3-dimensional SR-homogenous
space (M, D, B) there corresponds a Lie group G that acts simply and
transitively on M (need not be the group of SR-isometries).
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Pontryagin Maximum Principle on a Lie group GI

Using the PMP we conclude that if Q(¢) is a minimizing curve in G,
then there exits a curve P(¢) € T¢,, G such that (Q(¢), P(¢)) satisfies

the hamiltonian system

: OH

Q = @(Q(t)vp(t))

: OH

P = _8—X(Q<t)7p(t))a

where H : T*G — R is given by

1m
H(Q,P) = 5; (< P, X; >)2




Poisson structure on g*'

e Upon the identification of the space of left invariant vector fields

on G with the Lie algebra g of (G, the hamiltonian H(Q, P) =
% Z;-n:l(< P, X; >)? becomes identified with a quadratic function

on g*.

e The dual g* of the Lie algebra g carries a Poisson bracket defined,
for any smooth functions 1 and ¢, on g*, by

{1, 02}1(n) = (n, [de1,dp2](n)), for each n € g*.

16
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Adjoint equation I

To the hamiltonian H on g* (considered as a Poisson manifold) we

associate the Hamiltonian vector field H on g" defined by
H(p) = {p, H}, for each p € C™(g*).
We will call the differential equation
i(t) = Hn(t), n(t) € g"

%
defined on g* by the Hamiltonian vector field H associated to H, the
adjoint equation of the hamiltonian system

. OH
RATONZ0)
P=-55Q.Pe) (i) = Hu®)).

17
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Form a basis Xq,..., X, X;na1,..., X, and put
Hj =< P, Xj >,

for 1 <1 <n, which allows to rewrite the hamiltonian as
1 m
_ 4L 2
H= 2 Z H
71=1
the optimal controls as

uj(t) — Hj(t) =< P(t),XJ(Q(t)) >,

and the corresponding hamiltonian system as

Q=) H;X;
71=1

— (H.H}, 1<i<n, (7'7(15) - ﬁ(n(t))) .

18
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Integrability I

The adjoint equation is a Lie-Poisson equation defined by a Poisson
structure on g* whose structure constants Cf, ; are those defining
the Lie algebra g.

This Poisson structure is degenerated and of rank, say, 2r.

Since dim g* = n, the Poisson structure admits £ = n —2r Casimir
functions C, ..., C,,—o whose common constant level sets M, =
neg* : Ci(n)=cy,...,Cph_2.(n) = cp_o,} are 2r-dimensional
submanifolds of g* equipped with a symplectic structure defined

by the restriction of the Poisson structure to M..

The adjoint equation restricted to M, is a hamiltonian equation.

/
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Integrability - deﬁnition'

If a Lie-Poisson equation possesses k + r functionally independent
first integrals belonging to a category C such that the first k in-
tegrals are Casimir functions and the remaining r ones commute,

then we will say that this equation is integrable in the category C.

20
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The Lie algebra g of G has a decomposition g = p + [p, p], where for a
chosen base point ¢ € M we identify g with T, M, the subspace p of g
with D(q), and the quadratic form b defined on p with B. The triple
(g, p, b) will be called a sub-Riemannian Lie algebra (does not depend

on the chosen base point q).

The SR-Lie algebra in the SR-symmetric cases is given by the normal

form (sub-symmetric Lie algebras):

:X17X2: — X37
X1, X3] = aXo,
:X27X3: — bX17

where (a,b) € R?; above g = span {X1, X5, X3}, p = span{X;, X5},
and X7, Xy are orthonormal.

N /
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Integrability of the SR-symmetric case'

Theorem 2 For any 3-dimensional sub-Riemannian homogeneous space

the following conditions are equivalent:

(i) The sub-Riemannian space is symmetric.

(ii) The adjoint equation has two functionally independent quadratic

first integrals;

(iii) The optimal controls are elliptic functions;

(iv) All solutions of the complexified adjoint equation are single-

valued functions of the complex time;

/
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Nonintegrability of the SR-non symmetric Spacesl

The Lie algebra of an orthonormal frame can be brought in the SR-

symmetric case to the following normal form

:X17X2: — X37
:Xl,Xg: = CLX2 + ng,
:X27X3: — 07

where (a,b) € R? and ab # 0. When a = 0 or b = 0 the underlying
space is isometric to a sub-symmetric space. By a proper rescaling we

can assume b = 1.

We distinguish two subsets of the classification parameter:

N /
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e o € A, C R if and only if there exist positive integers m and n

such that a = mn/(m — n)?

e ¢ € A, C R if and only if there exist integers m and n such that
a=mn/(m—n)? and a # —1/4.

Theorem 3 For any non symmetric sub-homogeneous space defined

by the parameter a we have:

(i) The adjoint equation admits a polynomial fist integral indepen-
dent with the hamiltonian H if and only if a € Ay;

(ii) The adjoint equation admits a rational fist integral independent
with the hamiltonian H if and only if a € A,

(iii) If a € R\ A, then the adjoint equation does not admit any real-
meromorphic first integral independent with the hamiltonian H .

N /
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Lie algebra of the system'

Consider the system .
=) Xi(&)us.
i=1
on a manifold M. We have D = span { X1, ..., X;,, }.
o Let L1 =spang{Xy,..., X}
e Define inductively
Ls=Ls 14+ [Ls_1,L1] for s> 2.
e Clearly Ls(q) = Ds(q) and the sum
L(X1,.... Xm)=L=) L,

s>1

\ is the Lie algebra of the system.

25



Weights

e For g € M, put Ls(q) ={X(q): X € L}

e Denote ns(q) = dim Ls(q). For a completely nonholonomic system

we have
1 <ni(q) <na2(q) < <npglg) =n

and we will call (n1(q),n2(q),...,ny(q(q)) the growth vector of

the system (we will omit indicating the point if it is not confusing).

e Define weights w; < --- < w, by putting w; = s if ngs_; < j < ng,
with nog — 0.

/
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Privileged coordinates'

We will call X7, ...X,,© the nonholonomic partial derivatives of
order 1 of a function ¢

X, X;, nonholonomic derivatives of order two of ¢ etc.

If all the nonholonomic derivatives of order < s — 1 of ¢ vanish at
g, we say that ¢ is of order > s at q. A function ¢ is of order s
at ¢ if it is of order > s but not of order > s + 1.

Local coordinates (£1,...,&,) are privileged coordinates at q if the
order of &; is w; for 1 <1 < n.

The integers (w1, ...,w,) are the weights of the privileged co-
ordinates (&1,...,&,). Homogeneity is considered with respect to
them.

/
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Nilpotent approximations'

e Using privileged coordinates we can rewrite the system as

&= Xij(&,... &-1)ui + O(J|€]")
1=1

for 1 < j < n, where the components X;; are homogeneous poly-
nomials of weighted degree w; — 1.

e By dropping the terms O(||&]|™7), we get

RN s v 0
§:ZXZ(§)uZ, where XZ :ZXZJ(é-l?)gj 1)(9&-
i=1 g=1 7

called the mlpatent approximation of the system. The Lie algebra
L(X1,...,X,) is nilpotent.

28
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Consider a 3-dimensional sub-Riemannian manifold (M, D, B), where

~

3-dimensional sub-Riemannian manifolds.

e M is a 3-dimensional manifold,
e D is a rank 2 smooth distribution on M
e B is a smoothly varying positive definite quadratic form on D.

e Represent locally the sub-Riemannian structure (M, D, B) by the

control system
£ = X1(Eur + Xo(&)uo,

where the smooth vector fields X; and X5 form an orthonormal

frame of D.

/
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Normal form '

An isometry between two sub-Riemannian manifolds (M, D, B) and
(M, D, B) is a diffeomorphism ¢ : M — M such that ¢.(D) = D
and B = ¢*(B). Agrachev et al have shown that there exists a sub-
Riemannian isometry transforming the orthonormal frame (X;, X5)

into an orthonormal frame, which in local coordinates (x,y, 2) takes

the following normal form around 0 € R3:

0 0 vy 0
_ 2 — _ < —
Xi(z,y,2) = (L+y76(z,9,2)) o wyﬁ(fb,y,Z)ay +57(@ 9, 2) 5
- 9 ) o = 9
X2(xay7 Z) - Clﬁyﬁ(ll}',y,Z)% + (1 T 6(xayaz)) a—y o 57(377:%2)@

N /
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Contact case I

If v(0,0,0) #£ 0, then we are in the contact case.

The growth vector in the contact case is (2,3) and the variables
x, Yy, 2z have weights 1, 1, and 2, respectively.

The normal form for the nilpotent approximation is

s 0 0
Xi(o,y2) =g+
s 0 r O
Xg(a:,y, Z) :8—y — 655

All cases are isometric to the Heisenberg case ¢ = 1.
The Heisenberg case is integrable in trigonometric functions.

The general contact case (non nilpotent) has been completely an-

alyzed by Agrachev, Gauthier, Kupka, and Chakir. /
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Martinet case I

If ~ is of order 1 with respect to (z,y), then we are in the Martinet
case

The growth vector at 0 € R? in the Martinet case is (2,2, 3) and
the weights of the variables x,y, z are 1, 1, and 3, respectively.

the set of points, at which the growth vector is (2,2, 3), is a smooth
surface (called Martinet surface) and the distribution D spanned
by X7 and X5 is transversal to the Martinet surface.

The normal form for the nilpotent approximation is

~ 0 0
Xl(ilf,y,Z> :% T %(CLZE + by)%
N 0 «x 0
Xo(z,y, 2) oy 5(% + by)@-

32



Martinet case - cont.'

e All nilpotent Martinet cases are integrable in terms of elliptic func-

tions.

e sub-Riemannian geometry in the general (non nilpotent) case has
been intensively studied by Bonnard, Chyba, and Trélat.

33




~

Tangent case I

The next degeneration, tangent case, occurs at points at which
the distribution D is tangent to the Martinet surface.

Generically, the growth vector at such a tangency point is (2, 2, 2, 3)
and the variables z,y, z are of weights 1, 1, and 4, respectively.

v is of order 2 with respect to (z,y).

The normal form of the nilpotent approximation of the tangent

case 1S
~ 9, 0
Xl(wayvz) — % %(axQ =+ by2)$
~ O €T 0
XQ(CU,y,Z) — (9_y o 5(0’562 + by2)$

We can assume that a = 1 (by normalizing z).

34
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Tangent case: geodesic equation'

The geodesic equation in the nilpotent tangent case is:

(GE)

where u; =p+

, r
i =p+ o (@ + by,
, ra
j=q— 4@+,
) 1 r
d= 5@ + by ) (yp — 2q) + (2" + ) (2" + by?),
, r
p = —rryu; + 5(3352 + by® Juz,
, r
q = —5(332 + BbyQ)ul + brryus.
=0
Ty ra

5 (z® +by?) and uy = q — 7(x2 + by?).

35




Integrability problem I

e The hamiltonian H and H; = r are first integrals.

e Integrability problem: find a third first integral Ho, commuting
with H and H;, and functionally independent with H and H;
(Liouville integrability).

e We will distinguish the elliptic nilpotent tangent case, for which
a =1 and b > 0 and the hyperbolic nilpotent tangent case, for
which a =1 and b < 0.

36
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Tangent case: integrable cases'

M. Pelletier proved that if b = 1 (symmetric elliptic case), then
the Hamiltonian (GE) is integrable in the Liouville sense with an
additional first integral given by

Ho = zq — yp.

Geometric reason: if b = 1, then the rotation in the (z,y) space is

a sub-Riemannian isometry.

For b = 0, the geodesic equation (GE) is also integrable. In this
case the third first integral has the form

Hy = 6q + ra°.

Both cases are integrable in terms of elliptic functions.

37



Main result '

Theorem 4 The complexified geodesic equation for the 3-dimensional
nilpotent tangent case s not meromorphically integrable in the Liou-
ville sense, except for b =1 and b = 0, that is, for b € R\ {0,1} the
complezified system (GE) does not possess a meromorphic first inte-

gral, commuting with H and Hi and functionally independent with H
and H;.

e Our proof is based on the Morales-Ramis theory

N /
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Morales-Ramis theory I

Consider a complex analytic hamiltonian differential equation
dx
— =v(x), teC,
o = ()

on an analytic symplectic manifold M (say, C™). Let ¢(t) be its non-

stationary solution and I" its maximal analytic prolongation (Riemann

surface). Take the linearization (variational equation) along I

% = e

Theorem 5 (Morales-Ramis) If the hamiltonian system on M (C™)
1s Liouwille integrable in the meromorphic category, then the identity

component of the differential Galois group of the (normal) variational
equation along I' is abelian.

N /
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Differential Galois group'

Consider a homogeneous ordinary linear differential equation in C",
over the field F' = C(z) of rational functions of z € C

d
L(Y)= =Y -A(Y =0, YeC,

where A7 € C(z2)

e Where do the solutions live?

Theorem 6 There exits a unique (up to isomorphism) PVy D C(z),
the smallest differential field extension containing n linearly indepen-
dent, over C, solutions of L(Y) = 0 (Picard-Vessiot extension).

We have (PVy, D) D (C(z), &), where the derivation D restricted to

C(z) is L.

N /
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Differential Galois group - continuation'

The space of solutions V ={Y € PV, | L(Y) = 0} is a linear space
over C.

Definition 1 Differential Galois group of L is the group of differen-
tial automorphisms of PV} (i.e., commuting with the derivation D)

preserving all elements of C(z).
The differential Galois group, denoted Gal(PV\C(z))
e preserves solutions

e preserves polynomial relations among them

e is an algebraic subgroup of GL(n,C)(in the hamiltonian case of

Sp(n,C)). y

41



4 )

The (z,y, p, q))-part of the geodesic equation can be transformed to

Z1 = 23,

2o = 24,

23 = ryz122)(24 — 23) — (23 + 24)],

24 = 1ry2122(24 — 23) + b(23 + 24)].
It is obvious that z(t) = (0,ct,0,c) with ¢ # 0 is a solution of the
above equations.

The normal variational equation can be represented as

&1 = (1 - b)yrc’téy.

where (1 —0b)yrc? # 0, which gives the Airy equation. It is known that
the differential Galois group of this equation is SI(2,C) and thus non
Abelian.

N /

42




n-level quantum system'

Consider a quantum system with a finite number of (distinct) levels

in interaction with a time dependent external field.

The energies of the system state appearing on the diagonal, we
put Ho = diag (F1,..., E,).

The time-functions Q,;(-) : R — C, for 1 < 5 < n — 1 have their
supports in [tg,t1]. They couple the states by pairs.

The hamiltonian H is given by:

43




Ho +
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Schrodinger equation I

The state vector ¥(-) : R — C" satisfies the Schrodinger equation

dip(t) —
i— = =Hp = (Ho+ ; Q;(t)H

(we have assumed coupling of neighboring levels only).

We represent

¢(t) — ¢1 (t>€1 + ¢2<t>€2 + - ¢n(t)€n,
where eq, ..., e, is the canonical basis of C"
We have | 41 (t) |2 + | 2(t) |2 +- -+ [ ¥n(t) = 1.

For t < tg and t > tq, | %( ) | is the probability of measuring the
energy E;. Notice that < | 1;(t) [>=0, for t < to and ¢ > {;.
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Optimal problem I

Problem :

Assuming that
‘ wl(t) |2: 1, for t <t

find suitable interaction functions €2,(¢), 1 < j <n — 1, such that

‘ ?ﬁz(t) |2: 1, for t > 11

for some chosen 7 € {2,...,n}, say i = n, and such that the cost
1 t; n—1 ,
E:§/to ;Hlj(t)] dt — min.

(minimize the energy of the transfer pulses).

N
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Resonant case .

Optimal interaction functions {2; correspond to lasers that are in res-
onance (real resonant case, Brockett, Khaneja, Glaser, and Boscain,
Charlot, Gauthier):

Q;(t) = u;(t)e'’, wj = Ej — Ej

for 1 < j <n—1, where u;(-) : R — R are real controls. The cost

function becomes
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Simplifications of the problem'

e We apply the unitary transformation

Y(t) = U)Y(t).
to eliminate the drift Hy = diag (E1, ..., Ey,).

e We pass from C" to R" to get finally the system

= Hrx, x€R",

48




where
[ 0 ui(t) 0 0 \
—ul(t) 0 Ug(t)
Hr = 0 —us(t) . 0
: K K 0 U —1(t)
\ 0 o0 —upa®) 0 )

Introduce the vector fields (infinitesimal generators of rotation in

the (x;,x,)-space)

f 0 0 | < i<
i — LTj 7 —Liz >N
(9513,,; &Ej

49




Optimal problem in R”I

The problem is now: find real controls uy (%), ..., u,_1(t) such that the

corresponding trajectory of

n—1

§=Hrg=) uifij1(a), q€R",
j=1

joins given qg and gr and

1 t; n—1
FE= 5/ Zu?(t)dt — min.

to j:].
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Lifting the problem to SO(n) I

The Lie algebra
{fi2s- s fnmintpq = vectr {fin, 1<i<k <n}=so0(n)

Let F; 1 stand for the left invariant vector fields on SO(n) that

satisfy exactly the same commutation relations as f; .

We lift our optimal control problem to the following left invariant
on G=SO(n): find controls u,(¢) that minimize the energy E of
the curve Q(t) € G =SO(n) (time evolution operator) satisfying

n—1 t1 n 1
Q — E Uij,j_|_1, / dt — man.
j=1 to j=1

It is a sub-Riemannian problem!!!
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3-level system I

Easy to integrate (Brockett, Boscain et al. for the quantum system)

The adjoint equation takes the form
Hi 5= Hy3H;3
H2,3 = —H;3H; 9
Hyi3=0

We get H; 3(t) = const. = a and

ui(t) = Hy 2(t) = rcos(at + @)
us(t) = Hi2(t) = —rsin(at + ¢).

~

H; 3 is a Casimir function; we integrate the system on its constant

level sets.

N

/
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Now it suffices to integrate the linear time-varying system

I — X9 0
X9 = U X1 + U2 —I3 (1)
I3 0 Wiy

which has the first integral:

h = x5 + x5 + 2. (2)
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Main result I

Theorem 7 For the n-level system, n > 4, the complexification of
the adjoint equation on so(n)* is not integrable in the meromorphic
category. More precisely, restricted to the leaves M. of the symplectic
foliation on so(n)*, does not possess any meromorphic first integral

independent of the hamiltonian, i.e. is not Liouwville integrable on M..
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4-level system: Adjoint equation on so(4)*

e By restricting the AE to {H; = 0}, where ¢« > 5 or k > 5, the
nonintegrability problem of the general n-level system reduces to

that of the 4-level system.

e We will consider the complexification AEc of AE on so(4)* by
taking x; € C and ¢t € C, where x1 = Hy 2, x2 = Ha 3, v3 = H; 3,
x4 = H3 4, x5 = H1 4, and 26 = Hy .

e The complexified AE¢ reads as
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d

Ea::J(:I;)VH(x), x = (1,22, T3, 24,75, 26) € C°, teC
where !
H = H(x) = 5 (af + 25 + 7).
and ) ;
0 Tr3 —I9 0 Tg —Ts
—x3 0 r1 —Xg 0 T4
J(2) = Ty —T 0 r5 —I4 0 |
0 Tg —Is 0 Tr3 —T9
— X6 0 T4 —X3 0 1
Ts5 —X4 0 To —T1 0 |

It is a Lie-Poisson system: rank J(z) = 4 so J(x) defines a Poisson

/

structure (a ”degenerated symplectic structure”).
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4 )

e Besides the Hamiltonian H, AE¢ admits two additional first inte-

grals
6
2
Ch = E Ty, Cy = 1174 + T2T5 + T3T6,
i=1

which are actually the Casimir function of the Poisson structure

defined by J(x); the first integrability requirement is satisfied.

e Each level set
Moy ={2€C®|Ci(z) =a, Cy(x)=>},

is a 4-dimensional symplectic manifold on which AFE¢ is hamilto-
nian with Hamiltonian function H,y, ,. We need one more first
integral!

N /
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AFE¢ admits the invariant space
/\/13:{:106(36|x4::£5:x6:0},
foliated by the phase curves I'j, ; = Sg, complex circles, given by

2 2
331+332:h, $3Zf

The normal variational equations along I'}, ¢ reduces to the form

QQ Qp o B
w' = r(2)w, T(Z):zQ+(z—h)2+?+z—h

Singular points at z = 0 and z = h are regular but at oo is irregular.
Indeed, we have (using Kovacic algorithm)

Lemma 2 The differential Galois group of w” = r(z)w is SL(2,C).

SLO(Q, C) is non-abelian, hence the adjoint equation is not integrable.

N
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N

n-level quantum system

4

[optimal control problem: Pontryagin Maximum Principle]

4

[Sub-Riemannian problem on SO(n)}

4

[nonintegrability of a hamiltonian system}

4

[Differential Galois group and complex analysis]
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Conclusions .

e We discussed (non)integrability of the geodesic equation (adjoint

equation) for various Sub-Riemannian problems

e We show usefulness of the Morales-Ramis theory in proving non-
integrability

e open problems: homogenous 4-dimensional SR-problems, general
contact and quasi-contact SR-problems,...
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