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We define quantum bi-Hamiltonian systems, by analogy with the classical case, as deriva-
tions in operator algebras which are inner derivations with respect to two compatible
associative structures. We find such structures by means of the associative version of
Nijenhuis tensors. Explicit examples, e.g. for the harmonic oscillator, are given.

1. Introduction

Bi-Hamiltonian systems at the classical level, as noticed by F. Magri,1 play an

important role in the discussion of complete integrability in the sense of Liouville.

At the quantum level, much earlier, E. P. Wigner2 raised the question: Do the

equations of motion determine the quantum mechanical commutation relations?

The way Wigner formulated his question was the following. Assuming the equa-

tions of motion

i
d

dt
q̂ =

p̂

m
, i

d

dt
p̂ = − ∂̂V

∂q
, (1)
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to find commutation relations such that

d

dt
q̂ = − i

~
[q̂, Ĥ] ,

d

dt
p̂ = − i

~
[p̂, Ĥ] . (2)

Wigner argued that equations of motion have a more immediate physical signifi-

cance than the canonical commutation relations

[p̂, q̂] = −i~ . (3)

The commutation relations we are searching for should define a “quantum Poisson

bracket” in the terminology of Dirac.3 Indeed, Dirac shows that if we look for a Lie

algebra structure on the space of observables such that

[A,BC] = [A,B]C +B[A,C] , (4)

then necessarily

[A,B] = λ(AB −BA) , (5)

with λ being any complex number. To put it differently, according to Dirac, to look

for alternative commutation relations (with the additional requirement (4)), it is

equivalent to look for alternative products on the space of observables with the

requirement that the equations of motion define a derivation with respect to the

associative product.

Recently it has been shown,4 in connection also with deformed oscillators, that

one may obtain a large class of alternative associative products of the kind

A ◦K B = AKB (6)

for which the dynamics is a derivation any time K is an observable which is a

constant of the motion. In particular, it has been applied to a precessing magnetic

dipole.5 It turns out that all these deformations are compatible among themselves in

the sense we will explain later. This is rather unsatisfactory, because in considering

the classical limit of these quantum cases we should be able to recover Poisson

structures which are not necessarily compatible.

This paper is an attempt to put the search of alternative associative products

in a more systematic setting.

2. Some Important Concepts in Cohomology of Algebras

Let (A, ∗) be an associative algebra and V be a A-bimodule, respectively. In other

words, V is a module that is the carrier space for a linear representation Ψ of A
and a linear antirepresentation Ψ′ of A that commute.

By a n-cochain we mean a n-linear mapping from A × · · · × A (n times)

into V . We denote by Cn(A, V ) the space of such n-cochains that can be re-

garded as an additive group. For every n ∈ N we introduce the Hochschild6



November 24, 2000 15:53 WSPC/139-IJMPA 00195

Quantum Bi-Hamiltonian Systems 4799

coboundary operator, as defined by Eilenberg and MacLane, δ : Cn(A, V ) →
Cn+1(A, V ), by

(δα)(a1, . . . , an+1) = a1α(a2, . . . , an+1) +
n∑
i=1

(−1)iα(a1, . . . , ai ∗ ai+1, . . . , an+1)

+ (−1)n+1α(a1, . . . , . . . , an)an+1 . (7)

It is now easy to check that

δ ◦ δ = 0 .

The cohomology groups can be defined as follows: an n cochain α ∈ Cn(A, V ) is

called an n-cocycle if δα = 0, and an element of the form δβ where β ∈ Cn−1(A, V )

is called an n-coboundary. These form a subgroup Bn(A, V ) of the additive group

Zn(A, V ) of n-cocycles. The cohomology group Hn(A, V ) is defined as the quotient

group Hn(A, V ) = Zn(A, V )/Bn(A, V ).

For instance, when n = 1, we obtain

(δα1)(a1, a2) = a1α1(a2)− α1(a1 ∗ a2) + α1(a1)a2 ,

and for n = 2,

(δα2)(a1, a2, a3) = a1α2(a2, a3)− α2(a1 ∗ a2, a3) + α2(a1, a2 ∗ a3)− α2(a1, a2)a3 .

The simplest example obtains when V is the additive group of A, and then the

A-bimodule structure is given by left and right multiplication.

3. Compatible Associative Products and Associative

Nijenhuis Tensors

By analogy with the classical case, where a bi-Hamiltonian system consists of two

compatible Poisson brackets and a system which is Hamiltonian with respect to

both brackets, by a weak quantum bi-Hamiltonian system we shall mean two Lie

algebra structures on the space Op(H) of operators on a Hilbert space H (one of

them will be usually the original one) which are compatible in the sense that the

corresponding commutators are compatible Lie brackets (i.e. their sum is again a

Lie bracket) and a derivation D ∈ Der(Op(H)) which is an inner derivation with

respect to both associative structures.7

Since we want the Leibniz rule

[A,B ◦C] = [A,B] ◦ C +B ◦ [A,C] , (8)

in view of the Dirac’s proof,3 (pp. 85–86), that derivations of a sufficiently non-

degenerate associative algebra are just adjoint operators, we would like to have a

new bracket in the form of the commutator of a new associative structure. We will

call such pairs of associative structures just weak quantum bi-Hamiltonian ones. A

possible additional requirement is that both associative structures have the same

unit 1. Let us note that one can also consider a stronger version of compatibility

of associative products “◦1” and “◦2” requiring that ◦1 + λ◦2 is associative for all
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λ ∈ K, where K is the ground field (then the mean (◦1 + ◦2)/2 is again associative

with the same unit 1) and this is what we mean by a quantum bi-Hamiltonian

system. We start with some pure algebraic observations.

Let (A, ·) be a unital associative algebra. A simple way to define a new asso-

ciative product on A is to take an element K ∈ A and to define a new product by

A ◦K B = AKB . (9)

(We will usually skip the product symbol for the original associative structure.)

Observe that the unit is not preserved unless K = 1 and that we have the homo-

morphism of the products

TK(A ◦K B) = TK(A)TK(B) (10)

for TK being the linear map

TK : A → A , TK(A) = KA , (11)

which is an isomorphism (nonunital, however) in case K is invertible.

This example can be generalized if we deform the associative structure by an

associative analog of the Nijenhuis map (tensor), known better in the Lie alge-

bra case.

Let (A, µ) be an associative algebra over a field K, with the product

µ : A×A → A , (A,B) 7→ AB (12)

and let N : A → A be a linear map (N ∈ A∗ ⊗ A). If N is a derivation of the

algebra (A, µ), then N(A)B +AN(B)−N(AB) = 0. In any case, the map

µN : (A,B) 7→ A ◦N B = N(A)B +AN(B)−N(AB) , (13)

is a bilinear map and therefore it defines a new algebra structure (A, µN ). Using the

terminology introduced in the preceding section, and considering the A-bimodule

structure in A as given by left and right multiplication, we can say that A ◦N B =

δµN(A,B) and therefore that N is a derivation of the original algebra if and only if

N is a one-cocycle with respect to the Hochschild coboundary operator δµ associated

with the product µ.

The obstruction for the linear map N to be a homomorphism of these products

is measured by the µ-Nijenhuis torsion of N :

TN (A,B) = N(A ◦N B)−N(A)N(B) . (14)

Definition 1. We say that the linear map N : A → A is a µ-Nijenhuis tensor if

the µ-Nijenhuis torsion of N vanishes, TN(A,B) = 0, ∀A, B ∈ A.

In this case N is a homomorphism of the corresponding products:

N(A ◦N B) = N(A)N(B) , (15)

i.e.

N(N(A)B +AN(B)−N(AB)) −N(A)N(B) = 0 .
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Theorem 1. The product µN defined by (13) is associative if and only if the µ-

Nijenhuis torsion TN of N is a two-Hochschild cocycle of the algebra A, i.e.

δµTN (A,B,C) := ATN (B,C)− TN (AB,C) + TN (A,BC)− TN (A,B)C = 0 .

(16)

If this is the case, µN is an associative product compatible with µ, i.e. µ+ λµN are

associative for all λ ∈ K. If µ is unital with the unit 1, then µN has the same unit

providing that N(1) = 1.

In particular, if N is a µ-Nijenhuis tensor, then µN is an associative product

on A which is compatible with µ.

Proof. By direct computation,

(A ◦N B) ◦N C −A ◦N (B ◦N C)

= −ATN (B,C) + TN (AB,C)− TN (A,BC) + TN (A,B)C

= −δµTN (A,B,C) .

As for the compatibility, it suffices to prove

(AB) ◦N C + (A ◦N B)C = A(B ◦N C) +A ◦N (BC) , (17)

which is straightforward:

(AB) ◦N C + (A ◦N B)C = N(AB)C +ABN(C) −N(ABC)

+N(A)BC +AN(B)C −N(AB)C

= N(A)BC +AN(B)C +ABN(C)−N(ABC)

= A(B ◦N C) +A ◦N (BC) .

The relation (17) means that the map µN , as seen as two-cochain in the algebra

(A, µ), is a two-cocycle because

δµN (A,B,C) = A(B ◦N C)− (AB) ◦N C +A ◦N (BC)− (A ◦N B)C .

Remark. Note that the compatibility condition (17) holds automatically, no matter

if µN is associative or not. If we look for a new associative product ◦ which is com-

patible in the sense of (17), then this means that the new product is a Hochschild

cocycle of the original associative algebra. If our algebra is, for instance, the algebra

of n×n matrices, due to the Morita equivalence (cf. Ref. 8), its Hochschild cohomol-

ogy are the same as the Hochschild cohomology of K (regarded as one-dimensional

algebra over itself), thus vanish in dimensions > 0, so our product ◦ has to be a

Hochschild coboundary, i.e. of the form ◦N for some N . This shows that we have

not much freedom and, looking for compatible associative products, we must, in

principle, work with Nijenhuis tensors.
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4802 J. F. Cariñena, J. Grabowski & G. Marmo

The above observations can be reformulated in terms of the so called Gersten-

haber bracket [ , ]G, which is a graded Lie bracket on the graded space of multilinear

maps of A into A and which recognizes associative products (cf. Refs. 9 and 10), in

full correspondence with the analogous theory for Nijenhuis tensors for Lie algebras

and the Richardson–Nijenhuis bracket (cf. Ref. 11). In particular, µN = [µ,N ]G and

2TN(A,B) = [N, [µ,N ]G]G + [µ,N2]G , (18)

so that Theorem 1 is a direct consequence of the graded Jacobi identity for the

Gerstenhaber bracket and the fact that [µ, ·]G is proportional to the Hochschild

coboundary operator δµ. (In particular, [µ, µ]G = 0, so that [µ, [µ,N ]G]G = 0,

which is the compatibility condition (17).)

Now, we will show that a Nijenhuis tensor gives rise to a whole hierarchy of

Nijenhuis tensors and associative structures, as has been already discovered by

Saletan.12 Putting Nk instead of N in the above, we can consider products µNk .

Lemma 1. If N is a µ-Nijenhuis tensor, then the products µNk+r and µNk are

Nr-related, i.e.

Nr(A ◦Nk+r B) = Nr(A) ◦Nk Nr(B) (19)

for all k, r = 0, 1, 2, . . . .

Proof. We will start with proving

N(A ◦Nk+1 B) = N(A) ◦Nk N(B) . (20)

Applying Nk to the Nijenhuis torsion

N(N(A)B) +N(AN(B)) −N2(AB)−N(A)N(B) , (21)

which vanish by assumption, we get

Nk+2(AB) −Nk+1(AN(B)) = Nk+1(N(A)B) −Nk(N(A)N(B)) . (22)

Using (22) inductively for k := k − 1, we end up with

Nk+2(AB) −Nk+1(AN(B)) = N(Nk+1(A)B) −Nk+1(A)N(B) . (23)

In a similar way, we get

Nk+2(AB)−Nk+1(N(A)B) = N(ANk+1(B))−N(A)Nk+1(B) (24)

which, combined with (22), gives

Nk+1(AN(B)) −Nk(N(A)N(B)) = N(ANk+1(B))−N(A)Nk+1(B) . (25)

Combining now (25) and (23), we find

Nk+2(AB) −Nk(N(A)N(B))

= N(Nk+1(A)B +ANk+1(B)) −Nk+1(A)N(B)−N(A)Nk+1(B)
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which can be rewritten in the form

Nk(N(A))N(B) +N(A)Nk(N(B))−Nk(N(A)N(B))

= N(Nk+1(A)B +ANk+1(B)−Nk+1(AB)) .

But the last one is exactly (20). Now, applying (20) inductively

Nr(A ◦Nk+r B) = Nr−1N(A ◦Nk+r B) = Nr−1(N(A) ◦Nk+r−1 N(B)) , (26)

we end up with (19).

Theorem 2. If N is a µ-Nijenhuis tensor, then

(µNi)Nk = µNi+k (27)

and Nr is a µNi-Nijenhuis tensor, i.e.

Nr(A(◦Ni)NrB) = Nr(A) ◦Ni Nr(B) (28)

for all i, k = 0, 1, 2, . . . . In particular, all products µNk are associative

and compatible.

Proof. First, we show that

(µNi)N = µNi+1 . (29)

Indeed,

A(◦Ni)NB = N(A) ◦Ni B +A ◦Ni N(B)−N(A ◦Ni B)

= N i+1(A)B +N(A)N i(B)−N i(N(A)B) +N i(A)N(B)

+ AN i+1(B)−N i(AN(B)) −N(A) ◦Ni−1 N(B)

= N i+1(A)B +AN i+1(B)−N i+1(AB) −N i(N(A)B

+ AN(B)−N(AB)) +N i−1(N(A)N(B))

= N i+1(A)B +AN+1(B)−N i+1(AB)

−N i−1(N(A ◦N B)−N(A)N(B)) = A ◦Ni+1 B ,

where we have used, according to Lemma, N(A ◦Ni B) = N(A) ◦Ni−1 N(B). Now,

(29) together with (20) show that N is a µNi-Nijenhuis tensor which produces a

compatible associative product (µNi)N = µNi+1 . Thus we can apply Lemma and

(29) to µNi instead of µ that proves the theorem.

There is a way to obtain a new Nijenhuis tensor from two of them. Two Nijen-

huis tensors N1 and N2 on A will be said to be compatible if N1 + N2 is again a

Nijenhuis tensor.
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Theorem 3. Nijenhuis tensors N1 and N2 are compatible if and only if

N1(A ◦N2 B) +N2(A ◦N1 B) = N1(A)N2(B) +N2(A)N1(B) . (30)

If N1 is compatible with N2, . . . , Nk, then it is compatible with any linear combina-

tion of them. If N1, . . . , Nk are pairwise compatible, then any two linear combina-

tions of them are compatible.

Proof. The first statement is a direct consequence of definitions if we only observe

that ◦N1+N2 = ◦N1 + ◦N2. The rest follows from the fact that (30) depends linearly

on N1 and N2.

Theorem 4. If N is a Nijenhuis tensor, then all linear combinations of Nk, k =

0, 1, 2, . . . , are compatible.

Proof. Indeed, for k ≥ r,

Nk(A ◦Nr B) +Nr(A ◦Nk B)

= Nk−r(Nr(A)Nr(B)) +Nr(A) ◦Nk−r Nr(B)

= Nk(A)Nr(B) +Nr(A)Nk(B) ,

where we have used Theorem 2. Now, the assertion follows from Theorem 3.

Remark. Let us observe that the product (6) can be obtained from the Nijenhuis

tensor NK(A) = KA. Indeed,

A ◦NK B = (KA)B +A(KB)−K(AB) = AKB . (31)

The operator NK is a Nijenhuis tensor, since

NK(A ◦NK B) = K(AKB) = (KA)(KB) = NK(A)NK(B) . (32)

In particular, the operators of multiplication by elements of the field K are Ni-

jenhuis tensors. Other examples of Nijenhuis tensors can be constructed in the

following way.

Theorem 5. If A = A1 ⊕ A2 is a decomposition of an associative algebra A
(nonunital in general) with the multiplication µ into two subalgebras (A with such

a decomposition is called a twilled algebra) and P1, P2 denote the corresponding

projections of A onto A1 and A2, respectively, then any linear combination N =

λ1P1 + λ2P2 is a µ-Nijenhuis tensor.

Proof. Since λ1P1 + λ2P2 = (λ1 − λ2)P1 + λ2I, it is sufficient to show that P1 is a

µ-Nijenhuis tensor. Using the decomposition A = A1 +A2 etc. we have

A ◦P1 B = A1B +AB1 − (AB)1 , (33)
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so that µP1 = µ on A1, µP1 = 0 on A2, and

A1 ◦P1 B2 = P2(A1B2) , A2 ◦P1 B1 = P2(A2B1) . (34)

Hence,

A ◦P1 B = A1B1 + P2(A1B2 +A2B1) (35)

and

P1(A ◦P1 B) = P1(A1B1 + P2(A1B2 +A2B1)) = A1B1 = P1(A)P1(B) , (36)

so that P1 is a Nijenhuis tensor.

Example 1. Take A = M2(K) — the algebra of 2× 2-matrices A =
(
a b

c d

)
. Take

A1 to be the algebra of upper-triangular matrices A =
(
a b

0 d

)
and let A2 be the

(commutative) algebra of strictly lower-triangular matrices A =
(

0 0

c 0

)
. Taking the

Nijenhuis tensor P1, we get new associative matrix multiplication in the form(
a b

c d

)
◦
(
a′ b′

c′ d′

)
=

(
aa′ ab′ + bd′

ca′ + dc′ dd′

)
. (37)

Note that the unit matrix I remains the unit for this new product and that inner

derivations given by diagonal matrices are the same for both products.

Of course, we can use the complementary projection instead and get the product(
a b

c d

)
◦′
(
a′ b′

c′ d′

)
=

(
bc′ 0

0 cb′

)
(38)

which is associative but not unital. Of course, this example admits an obvious

generalization to algebras of matrices of any dimension. Note also that we can

consider these products at the level of the operator algebra Op(H) over a Hilbert

space H directly, viewing this algebra as algebra of infinite matrices, or using a

decomposition of H into a direct sum of subspaces, so that we can write operators

in a matrix form.

Remark. Observe that the product (35) is associative even if A2 is not a subalgebra

but just a complementary subspace. Indeed,

(A ◦B) ◦ C = (A1B1 + P2(A1B2 +A2B1)) ◦ C

= A1B1C1 + P2(A1B1C2 + P2(A1B2 +A2B1)C1)

= A1B1C1 + P2(A1B1C2 +A1B2C1 +A2B1C1) = A ◦ (B ◦ C) .

However, this product is not of the form µP1 and it is, in general, not compatible

with the original one.
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Example 2. Again, for the matrix algebra A = M2(K) take A1 = span〈I, C〉,
A2 = span〈A,B〉, where

A =

(
1 0

0 −1

)
, B =

(
0 1

1 0

)
,

C =

(
0 1

−1 0

)
, I =

(
1 0

0 1

)
.

(39)

Using the Nijenhuis tensor P1, we get the product

A ◦B = B ◦A = 0 , A ◦A = 0 , B ◦B = 0 ,

A ◦C = B , C ◦A = −B ,
B ◦C = −A , C ◦B = A , C ◦ C = −I ,

and I remains the unit for this product. The inner derivation associated with C is

the same for both products.

The product (35) is in fact a contraction of the original one, since

A ◦P1 B = lim
h→∞

T−1
h (Th(A)Th(B)) , (40)

where Th(A) = A1 + hA2. Indeed,

T−1
h (Th(A)Th(B)) = T−1

h (A1B1 + h(A2B1 +A2B1) + h2A2B2)

= A1B1 + P2(A2B1 +A1B2) + hP1(A2B1 +A1B2)

+ hP2(A2B2) + h2P1(A2B2)

which tends to A1B1 + P2(A2B1 +A1B2) as h→ 0.

This can be generalized as follows. Using a decomposition of the algebra A into

the direct sum A = A1⊕A2, where A1 is assumed to be a subalgebra, we will write

A = A1 + A2 for any element A ∈ A accordingly to this decomposition. Suppose

that we have invertible linear operators N1, N2 acting, respectively, on A1 and A2.

For any h ∈ K we define Th : A → A by Th(A) = N1(A1) + hN2(A2) and put

A ◦h B = T−1
h (Th(A)Th(B)) . (41)

The product “◦h” is clearly associative and

A ◦h B = N−1
1 (N1(A1)N1(B1))

+N−1
2 ((N1(A1)N2(B2) +N2(A2)N1(B1) + hN2(A2)N2(B2))2)

+ hN−1
1 ((N1(A1)N2(B2) +N2(A2)N1(B1) + hN2(A2)N2(B2))1) .

Passing formally with h→ 0, we get the contracted associative product

A ◦B = N−1
1 (N1(A1)N1(B1)) +N−1

2 ((N1(A1)N2(B2) +N2(A2)N1(B1))2) . (42)

If we assume that there is an associative product ◦1 on A1 such that N1(A1◦1B1) =

N1(A1)N1(B1), then we can write the product (42) in the form

A ◦B = N1(A1) ◦1 N1(B1) +N−1
2 ((N1(A1)N2(B2) +N2(A2)N1(B1))2) . (43)

Now we can skip the assumption that N1 is invertible. We can get even more, as

one can check by direct calculations.
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Theorem 6. Let A = A1 ⊕ A2 be a decomposition of an associative algebra into

subspaces such that A1 is a subalgebra. Let ◦1 be an additional associative product

on A1 and let N1, N
′
1 : A1 → A1 be homomorphisms of the product ◦1 into the

original one (N1(A1 ◦1 B1) = N1(A1)N1(B1), etc.). Then, for any invertible linear

map N2 : A2 → A2, the product

A ◦B = A1 ◦1 B1 +N−1
2 ((N1(A1)N2(B2) +N2(A2)N

′
1(B1))2) (44)

is an associative product on A.

We obtain a particular case of the above theorem if we start with a Nijenhuis tensor

N1 on the subalgebra A1 and we put N ′1 = N1 and ◦1 = ◦N1 .

Example 3. Let A be a matrix algebra,A1 be the subalgebra of diagonal matrices,

and A2 be the complementary subspace of matrix with 0 on the diagonal. Denote

by ∆(A) the diagonal part of the matrix A. We define N1 : A1 → A1 to be the

multiplication by an invertible diagonal matrix K which is a Nijenhuis tensor. We

have A ◦1B = KAB for diagonal matrices A and B. Finally, putting N ′1 = N1 and

N2 = I on A2, we get a new associative product (44)

A ◦B = K∆(A)∆(B) +K∆(A)(B −∆(B)) + (A−∆(A))K∆(B)

= K∆(A)B +AK∆(B)−K∆(A)∆(B) . (45)

W have used the fact that A2 is invariant with respect to the multiplication by

diagonal matrices. Note also, that the above product is not µK∆ since, in general,

∆(A)∆(B) 6= ∆(AB).

To construct a Nijenhuis tensor N on A = A1 ⊕ A2 from N1, we can use

the following.

Theorem 7. If N1 is a Nijenhuis tensor on the subalgebra A1 in the decomposition

A = A1 ⊕A2, then N(A) = N1(A1) is a Nijenhuis tensor on A if and only if

N2
1 ((A2B2)1) = 0 ,

N1((N1(A1)B2)1 −N1((A1B2)1)) = 0 , (46)

N1((A2N1(B1))1 −N1((A2B1)1)) = 0 ,

far all Ai, Bi ∈ Ai, i = 1, 2. In particular, this is the case for A2 being a (two-

sided) ideal.

Proof. Since

A ◦N B = N1(A1)B +AN1(B1)−N1((AB)1)

= A1 ◦N1 B1 +N1(A1)B2 +A2N1(B1)−N1((A1B2 +A2B1 +A2B2)1) ,

we just rewrite the condition N1((A ◦N B)1) = N1(A1)N1(B1) using the fact that

N1 is a Nijenhuis tensor and that Ai, Bi ∈ Ai can be chosen independently.



November 24, 2000 15:53 WSPC/139-IJMPA 00195
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Example 4. Let A be the algebra of n × n-matrices which are upper-triangular.

Take A1 to be the commutative subalgebra of diagonal matrices and A2 to be the

complementary subalgebra of strictly upper-triangular matrices. Put N1 to be the

multiplication by a diagonal matrix K from the left. Then N1 is a Nijenhuis tensor

on A1 which can be extended to the Nijenhuis tensor N(A) = N1(A1) on A. Indeed,

in this case A2 is an ideal. The corresponding deformed product has the form

A ◦N B = K∆(A)B +AK∆(B)−K∆(AB) , (47)

where ∆(A) denotes the diagonal part of A.

Let us recall (cf. Ref. 10) that a Nijenhuis tensor for a Lie algebra (L, [·, ·]) is a

linear mapping N : L → L such that N([A,B]N ) = [N(A), N(B)], where

[A,B]N = [N(A), B] + [A,N(B)]−N [A,B] . (48)

It is well known (see e.g. Ref. 10) that [·, ·]N is a compatible Lie bracket if N is a

Nijenhuis tensor. The relation between Nijenhuis tensors in the associative and Lie

algebra cases describes the following.

Theorem 8. If N is a µ-Nijenhuis tensor for an associative algebra (A, µ), then

N is a Nijenhuis tensor for the Lie algebra (A, [ , ]), where [A,B] = AB − BA is

the commutator, and

[A,B]N = A ◦N B −B ◦N A , (49)

i.e. the deformed Lie bracket [·, ·]N is the commutator of the deformed associative

product ◦N .

Proof. By definition,

[A,B]N = [N(A), B] + [A,N(B)]−N [A,B]

= N(A)B −BN(A) +AN(B) −N(B)A−N(AB −BA)

= (N(A)B +AN(B) −N(AB))− (N(B)A +BN(A)−N(BA))

= A ◦N B −B ◦N A.

Then,

N([A,B]N ) = N(A ◦N B −B ◦N A)

= N(A)N(B) −N(B)N(A) = [N(A), N(B)] , (50)

i.e. N is a Lie–Nijenhuis tensor.

The above shows that we can apply the well–known theory of Nijenhuis tensors

in the Lie algebra case for the “commutator part” of the associative Nijenhuis

tensor to construct commuting elements etc. On the other hand, it is harder to
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find associative Nijenhuis tensors, since vanishing of the Nijenhuis torsion in the

Lie algebra case

N(A ◦N B −B ◦N A) = N(A)N(B) −N(B)N(B) (51)

refers only to the skew-symmetrizations (commutators) of the corresponding

products. Similarly, [A,B]N = A ◦N B − B ◦N A is a Lie bracket if and only if

the total skew-symmetrization of the associator

AssN (A,B,C) = (A ◦N B) ◦N C −A ◦N (B ◦N C) (52)

vanishes, which is weaker than just vanishing of the associator itself.

4. Final Examples

Example 5. Let now the algebraA be the algebra of infinite matrices concentrated

about the diagonal, i.e. matrices which are null outside a diagonal strip. The algebra

A represents then unbounded operators on a Hilbert space H with a common dense

domain. We choose A1 to be a subalgebra of upper-triangular matrices and for

A2 we take the supplementary algebra of strict lower-triangular matrices. Then,

the mapping

Nλ(A) = (1− λ)A1 + λA (53)

is a Nijenhuis tensor on A, in view of of Theorem 4, for every λ ∈ C. Since the

corresponding deformed associative products ◦λ give all the same result if one

of factors is a diagonal matrix, the Hamiltonian H for the harmonic oscillator,

H(|en〉) = n|en〉, describes the same motion for all deformed brackets. This time,

however, a† ◦λ a = λH.

Example 6. Let us end up with a version of Example 3 for the algebra A of

unbounded operators as above. Recall that our deformed product is

A ◦B = K∆(A)B +AK∆(B)−K∆(A)∆(B) , (54)

where ∆(A) is the diagonal part of A. If A is diagonal, then A ◦ B = KAB and

B ◦A = BKA, so that

[A,B]◦ = [KA,B] . (55)

Thus the dynamics described by the Heisenberg operator H as above is the same

as the dynamics described by K−1H with respect to the new product. This time,

however, the new product is not compatible with the standard one and we have

a† ◦ a = 0.

5. Conclusions

We have shown that in the Heisenberg picture alternative associative products are

possible which allow to describe the same dynamics on the space of observables.

We hope to consider the corresponding version on the phase space via the Wigner

map, to compare these findings with those available at the classical level.
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