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Abstract. Consider a (1,1) tensor field .J, defined on a real or complex m-dimensional
manifold M, whose Nijenhuis torsion vanishes. Suppose that for each point p € M there exist
functions f1,..., fm, defined around p, such that (df1 A...Adfm)(p) # 0 and d(df;(J( )))(p) = 0,
j=1,...,m. Then there exists a dense open set such that we can find coordinates, around each
of its points, on which J is written with affine coefficients. This result is obtained by associating
to J a bihamiltonian structure on T M.

Introduction. Consider a (1,1) tensor field .J, defined on a real or complex m-
dimensional manifold M, whose Nijenhuis torsion vanishes. Suppose that for each point
p € M there exist functions f1,. .., fm, defined around p, such that (df1 A...Adfm)(p) # 0
and d(dfj 0 J)(p) =0, j =1,...,m [here df o J means df (J( ))]. In this paper we give a
complete local classification of J on a dense open set that we call the regular open set.
Moreover, near each regular point, i.e. each element of the regular open set, J is written
with affine coefficients on a suitable coordinate system.

To express the condition about functions fi,. .., fm, stated above, in a simple compu-
tational way we introduce the invariant P (see section 1). This invariant only depends on
the 1-jet of J at each point, and P;(p) = 0 iff functions fi,..., fm as before exist. When
J defines a G-structure, the first-order structure function being zero implies Py = 0 and
Ny = 0 (this last property is well known). Besides all points of M are regular; therefore
this work generalizes the main result of [5]. On the other hand Ny and P; both together
can be considered as a generalization of the first-order structure function.

This kind of tensor fields appear in a natural way in Differential Geometry. For ex-
ample, on the base space of a bilagrangian fibration (see [1]) there exists a tensor field J,
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with N; = 0, such that if (z1,...,2,,) are action coordinates then each dx; o J is closed;
so Py = 0. From a wider viewpoint, when N; = 0, we can study the equation:

(1) d(df o J) = 0;

i.e. the existence of conservation laws for J. Our classification shows that the existence,
close to p, of m functionally independent solutions to equation (1) is equivalent to Py =0
near p. :

Partial answers to the foregoing question may be found in [2], [6] and [7]. In [4], by
using eigenvalues and eigenspaces, J. Grifone and M. Mehdi give an elegant necessary and
sufficient condition for the existence of enough local solutions to equations (1) when Jis
real analytic. With the Grifone-Mehdi condition all points are regular and a calculation
shows that it implies P; = 0. Therefore the Grifone-Mehdi result follows from ours.

Finally, let us sketch the way for classifying J. As N; = 0 we can construct a bi- |
hamiltonian structure on 7*M and from it a (1,1) tensor field J*, prolongation of J to
T*M (see [8]). The main result of [9] gives us the local model of J* on a dense open set
and now a J*-invariant cross section of T*M allows us to find a model of J. This cross
section exists because P; = 0 implies that the behaviour of J* does not change along
each fiber of T* M.

In a forthcoming paper we will study some cases where P; # 0.

1. The first step. Consider a (1,1) tensor field .J on a real or complex manifold M
of dimension m. We recall that the Nijenhuis torsion of .J is the (1,2) tensor field given
by the formula

NAX, Y = [JX TP X Y =J[ X IV ] = X, T

If 7 is a 1-form 7 o J will mean the 1-form defined by (70 J)(X) = 7(JX).

For each p € M let F(2, J)(p) be the vector subspace of all the 2-forms 3, defined by
Ba(v, w) = o(Jv,w) — o(v, Jw) where v, w € T, M and o is a symmetric bilinear form on
T,M. Observe that F(2,J*)(p) C F(2,J)(p) for each k € N. Set

o ATy M
"= 7 )
Given a € Ty M and a function f defined around p such that df(p) = «, the class of
d(df o J)(p) on Fy(p) only depends on . That defines a linear map Py(p) : Ty M — F;(p)
or, from a global viewpoint, Py : T*M — Fj; where F; is the disjoint union of all F;(p).

Note that P;(p) = 0 if and only if there exist functions fi,..., f;, defined around
p, such that (dfi A ... Adfn)(p) # 0 and d(dfj ¢ J)(p) = 0, j = 1,...m. When the
characteristic polynomial of J(p) equals its minimal polynomial, i.e. when T,,M is cyclic,
then F(2,J)(p) = A>Ty M and automatically P;(p) = 0. If J? = —1d a straightforward
calculation shows that N; = 0 implies P; = 0. However .J can be semisimple, Ny = 0
and P; #0;eg.on R™, m > 2, J =" Id.

Let Ky [t] be the polynomial algebra in one variable over the ring of differentiable
functions on a manifold N. Here differentiable means C* if N is a real manifold (K =
R) and holomorphic in the complex case (K = C). A polynomial ¢ € Ky[t] is called
irreducible if it is irreducible at each point of N. We shall say that w,p € Ky|[t] are
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relatively prime if they are at each point. Consider an endomorphism field H of a vector
bundle # : V — N, i.e. a cross section of V ® V*. We will say that H has constant
algebraic type if there exist relatively prime irreducible polynomials @1, ..., @, € Ky[t]
and natural numbers a;;, ¢ = 1,...,7;, 7 =1,..., ¢, such that for each p € N the family
{o;7(P)}, i =1,...,75, 5 = 1,...,4, is the family of elementary divisors of H (p).
Suppose that J defines a G-structure, i.e. J has constant algebraic type on M and
91, - - -, ¢ € K[t]. If its first-order structure function vanishes then P; = (. Indeed, around
each point p € M there exists a linear connection V, whose torsion at p vanishes, such
that VJ = 0. Let fi,..., fm be normal coordinates with origin p; then d(df; o J)(p) = 0
and P;(p) = 0. Conversely N; = 0 and P; = 0 imply that the first-order structure
function equals zero. In a word, the invariants N; and Py can be seen as a generalization
of the first-order structure function to the case where J does not define a G-structure.

Henceforth we shall suppose Ny = 0. Set gy, = trace(J*) and E = ﬂ;nzl Kerdg;. It is
well known that (k + 1)dgr o J = kdgr41 and JE C E (see [9]).

We say that a point p € M is regular if there exists an open neighbourhood A of p
such that:

(1) J has constant algebraic type on A,
(2) E, restricted to A, is a vector subbundle of T'A.
(3) The restriction of J to E has constant algebraic type on A.

The set of all regular points is a dense open set of M which we shall call the regular
open set. Our local classification of J only refers to the regular open set.

Now suppose that on an open neighbourhood of a regular point p the characteristic
polynomial ¢ of J is the product ¢; - w2 of two monic relatively prime polynomials ¢,
and 2. Then around p the structure (M, J) decomposes into a product of two similar
structures (M, J1) x (Ma, J2), where ¢, is the characteristic polynomial of J; (more
exactly ¢, is the pull-back of the characteristic polynomial of J1) and ¢, that of Jo
(see [3] and [9]). Moreover Nj, = 0, Ny, = 0, and p; and p, are regular points where
p = (p1,p2). On the other hand P;, =0 and Py, =0 if Py = 0.

This splitting property reduces the classification to the case where the characteristic
polynomial ¢ of J is a power of an irreducible one. Therefore we have only two possibil-
ities: ¢ = (t+ f)™, or ¢ = (2 + ft + g)™ where m = 2n and M is a real manifold.

2. The case ¢ = (t+ f)™. In this section, by associating to J a bihamiltonian
structure on T* M, we prove the following result:

THEOREM 1. Consider a (1,1) tensor field J such that Ny = 0 and Py = 0. Suppose
that its characteristic polynomial is (t+ f)™. Then around each reqular point p there exist
coordinates ((zl),y) with origin p, i.e. p =0, such that:

(@)i=1,...,7; andry > ro > ... > 4. Moreover we also consider the case with no

coordinates {xi) i.e. £ =20, and the case with coordinates (:I:i) only.
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(b) J=(y+a)ld+H + Y @ dy where

ri=—1

O s g 0
H = Z(;ammmﬁ) and Y_81+Z(§1—3)z3;)

Remark. In the first special case m = 1 and J = (y + a)1d; in the second oné‘
m=ri+...4+r,and J =ald+ Zj=l(2:f__;1 8/dxl,, ®dal). The elementary divisors of
J determine its model completely. If there is no coordinate y, i.e. if J defines a G-structure,
they are: { (t—a)™},j=1,...,£ Otherwise they are: (t — (y+a))™*t; {(t — (y+a) '"J},
Ji=i2giial: 1

Let ¢; : T*M — T*M be the morphism of 7*M defined by ¢;(7) = 70 J and let
w be the Liouville symplectic form of T*M. Set w; = (cj)*w where ¢y is regarded as a
differentiable map. Consider the (1,1) tensor field J*, on T* M, defined by w;(X,Y) =
w(J*X,Y). Then N;. = 0, because N;j = 0, and {w,w;} is a bihamiltonian structure
(see [8]). If (z1,..., ,Zm) are coordinates on M, (z1,...,Zm,21,...,2m) the associated
coordinates on T*M, and J =371"_) fi;0/0z; ® dz; then

e e fy;  Ofux
Z f”( - ® dxj + 5% ®dzl) 4 Z z@(amk gk s )g-@dxk

i,j=1 i,5,k=1

Hence w, 0o J* = Jom,.

Throughout the rest of this section .J is as in theorem 1. By the local expression of
J* given above, its characteristic polynomial is ¢* = (¢ 4 f o 7)?™. Since P; = 0, around
each regular point p € M there exist coordinates (1, ..., s ) such that d(dz;0.J)(p) = 0,
i=1,...,m. Even more if df (p) # 0 [regularity implies df(p) = 0 iff f is constant near p]

we can suppose f = x; because g1 = —mf and dgy o J = 2. But dz;0J = Z} 1 Jis ds
a iq 2k
then —éé-f(p) = %;—:(p) and

J*(9,2) ;l fii p}( - ® daj + 3‘9 ®dzl)( 2).

Therefore the elementary divisors of J(p) and (Jig)(p) determine those of J*(p, z)
and (J* g-)(p, 2) completely, and the pull-back of the regular open set of J is included
in the regular open set of J*. This is the role of the assumption P; = 0 while Ny =0
assures us that {w,w;} is bihamiltonian.

The zero cross section allows us to consider M as a submanifold of 7" M. Take a
regular point p € M such that df (p) = 0, i.e. f constant near p. By theorem 3 of [9] there
exist coordinates (y1,...,%2m) on an open neighbourhood A of p, with origin this point,
on which w and w; are written with constant coefficients and J* as well. By rearranging
coordinates (y1,...,Y2m) if necessary, we can suppose that { 6?1 (D) a,- (p)} spans
T, M and {5521-;(;)} 6ya (p)} spans the vertical subspace Ker 7, (p) at p. Both sub-
spaces are J “~invar1ant as the local expression of J* shows. Set Ag = {y € A : yps1 =

. = Y2m = 0}. As rank((m4,)(p)) = m we can choose an open neighbourhood B of p
on Ag such that w(B) is open and 7 : B — n(B) a diffeomorphism.

By construction J*(T'Ag) C T'Ag. Let J' be the restriction of J* to Ag. The tensor
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field J' is written with constant coefficients on Ag. Moreover (m4,)« © J' = J o (| 4,)x
since 7, 0 J* = Jom,. Then J is written with constant coefficients on 7(B), which proves
theorem 1 when df (p) = 0.

The proof of the other case is basically the same but we have to rearrange coordinates
in a more sophisticated way. Let V' be a real or complex vector space of dimension
2n. Consider e,y € A?V* such that o™ # 0. Let J be the endomorphism of V given
by a1(v,w) = a(Jv,w). Suppose J nilpotent (see proposition 1 of [9] for the model of
{a,a1}). An n-dimensional vector subspace W of V is called bilagrangian if a(v,w) =
ai(v,w) = 0 for all v,w € W; in other words W is lagrangian for « and JW C W.
When W is bilagrangian and there exists another bilagrangian subspace W' such that
V =W & W' we shall say that W is superlagrangian. A bilagrangian subspace W is
superlagrangian if and only if the elementary divisors of Jyy are half those of J; i.e. if
{t"}, 3 = 1,...,4, are the elementary divisors of Jjy then {t"7,¢™}, j = 1,...,¢, are
those of J.

LEMMA 1. Consider a basis {eg}, =iy oy 205, T =0 00,8, of Vi such that

T5—1

Ty ) )
= Z (Ze‘zi—l A e;i-.) and a; = Z ( Z ext—1 M 62k+2)

i=1 k=1 =1 k=1

Let W be the vector subspace spanned by {e:f,;,,c_l]-T k=1,...,743 5 = 1,...,£ Then for
each superlagrangian subspace W' of V' there exists T € GL(V) such that T*a = a,
T*a; = a1 and WNTW' = {0}. Moreover if e}, _, & W' we can choose T in such a
way that Tel = e].

Now take a regular point p € M. Suppose df (p) # 0. By theorem 3 of [9] there exist
coordinates (z,y) = ({xf),yl,yz), t=1,...,2r; and r; > 7r9 > ... > 74, with origin p,
such that

£ T
W= Z (Zdatik_l A dx%k) + diyy A dys
J=1 k=1

and wy = (y2 + a)w + 7 + a A dyo where

£ ‘J"j—l
_ ol J
== Z ( Z dzy, A d$2k+2)
j=1 k=l

and
£ T . 3
a=d$§+2( [(k+1/2)2, dxs, | + (k- l/2):c§k_1da:§k]).
i=1 k=1
Hence J* = (y2 + a) Id +H* + ;3,% ® a — Z @ dys where

= ) -
H*:Z(Z ®dz}, 1+23$32k 2®dw§k)

k=1 E}:"2!«+1
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and
j 9 ;0
1 + Z Z (k- 1/2)afy 1 —— — (k+ 1/l —| ).
k=1 Oz, _; Oy,

LEMMA 2. The vector 3—1—(p) does not belong to the vertical subspace Kerm,(p).

21"1 1

Proof. By the local expression of J* in the coordinates (z1,...,Zm, 21, .-, Zm) given
at the beginning of this section, Kerm.(p) and T, M are J*(p)-invariant, and Jiker . (p)
and Jir,p have the same elementary divisors. As p = 0 in coordinates (z,y), the ele-
mentary divisors of J*(p) are (t — &)™ *; (¢t — o)t {(t —a), (t—a)¥}, 1 =2,...,4
Therefore there exists v € T, M spanning a cyclic subspace U of dimension 71 + 1 such
that U N Ker m,(p) = {0}.

Moreover v = a—é,%;(p) + ba—:g:(p) + vy where (J*(p) — aId)"v; = 0.

By construction

a a
J*(p) — a1d)" v = g B
() o Td) 0 = 4 —(p) + b o)
does not belong to Kerm.(p). As w(8/0y1, ) = dy> = —d(for) and w = 371" | dz; A da;
in coordinates (x1,...,%m,21,...,%%) of T"M, the vector %(p) belongs to Ker . (p).

So E%%(p) g Kerm.(p). m

¢ ry j j
Set w' = 3751 (kg dady_y A dayy,).
LEMMA 3. The vector subspace (Ker w, NKer dyy NKer dy2)(p), regarded as a subspace
of ToK?™=2, is superlagrangian with respect to {w'(0),7(0)}.

Proof. As for = —(y2+a), Kerm.(p) C Kerdys(p) = Kerd(for)(p). Now note that
((J* —ald)™ Kerm,)(p) is a 1-dimensional subspace of Ker m,(p) N K{ aga—_(p), 5!—35 (p)}
{here K{'ul ..,Vs} is the space spanned by {v1,...,vs}). So ((J* — aId)™ Kerm.)(p) =
K{ -2 g5 ()} since 5—1—( ) & Kerm.(p).

On the other hand ToK?™=2 can be seen as the quotient space Ker dys(p),/K{ %(p)},
which identifies (Kerm, N Kerdy; N Kerdyz)(p) with Kerw,.,(p)/ﬂ({%(p)}, and (H* +
a1d)(0) as the endomorphism induced by J* ker dy,(p)- Therefore the elementary divisors
of H‘|(Kcrfr.ﬂKcrdylﬂKcrdy;)(p) are {t?.j}: .? =1,.. *f u

LEMMA 4. Let {e}, i = 1,. 527, 3 =1,...,4, be the canonical basis of K*™ 2 = |

- -;- £ i—1 *] g
K? x...xK?". Seta=3;_ 1( k1 €% 1/\“3%) and ay = 23 i e 1A\€3742)-
Given T € GL(K*™7?) if Tef = e} T = a and T*ay = ay, there exists a germ of
diffeomorphism G : (K*™,0) — (K?™,0) such that G(z,y) = (G(z),y); G*w = w;
G*w = wy and G,(0) =

Proof. We will adapt to our case the proof of proposition 3 of [9]. Consider the map
Gr : K™ — K*™ given by Gr(z,y) = (I,y). Then Girw = w and Ghw; = wy +dgAdys
where g is a quadratic function such that d(dg o H*) = 0. Indeed G preserves dz3(0) =
w(%, )(0) and H*, and d(a o H*) = —27.
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Let D and L be the exterior derivative and the Lie derivative with respect to the
2r;

variables = only. We begin searching for a vector field X, = 2 215 Pz, 0) B J)
defined on an open neighbourhood of the compact {0} x [0,1] € K*™~2 x K, such that:

(1) Ly, =Lx,7=0.
(2) Lx, (o +tDg) = Dg (remark that dg = Dg).
(3) Foreachi=1,...,2r; and j =1,...,£, ¢! and Dg] vanish on {0} x [0, 1].

Consider the vector field Z, given by w (Z‘, ) = a + tDg. Take a function f(z,t),
defined around {0} x [0, 1], such that:

O 2f=—f-g

(I) D(Dfo H*) =

(III) For all i = 1, 21'_, =1 culyiki= 1, 2r and8:= 1,.:05£; the partial
derivatives df/dz! and 2 f/8z30x? vanish on {0} x [0, 1].

Let X; the vector field defined by w'(X:, ) = Df. Then X, satisfies conditions (1),
(2) and (3). By proposition 1.A (see the appendix) this kind of functions exists because
g is quadratic, D(Dg o H*) = 0, Z,(0) = 8/0z}, and Lz, H* = —H* since Lz,w’' =
D(a+tDg) = —w" and Lz, 7 = D(ao H* +tDgo H*) = —271.

By integrating the vector field — X, we obtain a germ of diffeomorphism F : (K?*™~2,0)
— (K®™-2 0) such that F*«’' = u'; F*r = 7; F*(a + Dg) = a and F,(0) = Id. Now set
G = F o Gy where F(z,y) = (F(z),y). =

Let W be the subspace of T,T7*M spanned by {Bzﬁ_l(p)}‘ k=1,...,7r§ =

.,£. By lemmas 1, 2, 3 and 4 we can suppose, without loss of generality, W N
(Ker w. Ndy; Ndy2)(p) = {0}, which implies (W & K{;2- 3y2 (p)}) N Kerm.(p) = {0}. Indeed
dim(Ker 7, Ndy1 Ndy2)(p) = m — 1 (lemma 3) and 3—(}1) € Ker 7.(p) (lemma 2, proof);
then Ker m. (p) = K{ W(p)} @ (Ker 7. Ndy; Ndys)(p).

Set Ag = {(z,y) € A : m% =p=0%=1,...,73=1,...,£ where A is the
domain of coordinates (z,y). Then J*(T'Ap) C T'Ap and T,Ap ® Kerm.(p) = T,7"M.
Finally, by reasoning as in the case df (p) = 0 we can state:

PROPOSITION 1. Under the assumptions of theorem 1, if df (p) # O then there ezist
coordinates ((z]),y) as in this theorem such that J = (y + a)Id+H + Y ® dy where

ri=1

T ) ) 6
H= Z(Za iﬂ@dﬂ) and Y = 5— 1+;(;(1/2—3)mf6—x§.).

When df(p) # 0, proposition 1 shows that the local model of J only depends on its
elementary divisors.

LEMMA 5. Consider on K™ = K™ x ... x K xK, withry > ... 2 re if £ > 0,
coordinates ((x7),y). Let L be the Lie derivative with respect to variables (z]) only. Set
J=(y+a)ld+H +Y @dy where ¥ a.s a vector field defined around the origin such that
dy(Y)=0and H=3;, (T% ;53— 2 ®dzl). If Ly H = H and H™ 'Y (0) # 0, then
N; =0 and close to the origin Py = 0 and J has constant algebraic type.
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The elementary divisors of J, near the origin, are the same both for proposition 1 and
lemma 5: (¢ — (y +a)) %L {(t - (y+a))?}, 7 =2,...,£ So their models are equivalent.
We finish the proof of theorem 1 by taking c

8 ;)
Y:—_"F 1‘— ':—-')
9z} ;(2( 0 et

The model announced by the author in a lecture at the Banach Center is obtained by
setting

Y= 50 Z (Z )

Another interesting model is glven by taking
;0
By B
Y = — 8 — + E (;1 ri+1 z)miaxf)

For this model the forms dyo J = (y +a)dy and daf, o J = (y +a)dal, +z], dy+dzf;j_1 3
are closed. As Ny = 0 all the forms dz], oJ* are closed too. Therefore if the characteristic
polynomial of J is (¢ + f)™, for each regular point p and for all Ag € T,y M there exists a 1
closed 1-form )\, defined near p, such that A(p) = Ag and d(AoJ) = 0; usually Ais called
a conservation law. In other words, the equation d(df o J) = 0 has enough local solutions _'
on the regular open set. !

3. The case ¢ = (t*+ ft+g)™. Since our problem is local we can suppose M connected
and all of its points regular. Set Jy = 2(4g— 22T+ f(49 — f2)~% Id which makes sense
because f2 — 4g < 0. By construction Jy defines a G-structure and (J§ + Id)™ = 0. Let
H be the semisimple part of Jo. Then H is a complex structure, .JJ a holomorphic tensor 4
field and (¢ + k)™ its complex characteristic polynomial, where h = 3(f — i(4g — F2)5) s
holomorphic.

Indeed, consider {w,w;} and J* on T*M as in section 2. Now the characteristic
polynomial of J* is ¢* = (#2 + (f o ™)t + (g o m))?". Let A be the regular open set
of J*. Set J; = 2((4g — f2)"% o 7)J* + ((f(4g — f?)~%) o 7)Id. On each connected
component of A the tensor field Jg defines a G-structure; moreover ((Jg)? + Id)*" = 0.
Let H* be the semisimple part of .J. In section 6 of [9] we showed that " is a complex
structure, J* holomorphic and (¢ + k*)*" its complex characteristic polynomial, where
h* = L(for—i(4g—f?)¥om) is a holomorphic function. On the other hand m.0J5 = Joom.
and 7, 0 H* = H o7, because m, 0 J* = J oxw,. So holomorphy holds on #(A4), and on M
as well since A is dense on T*M and w(A) on M.

The complex regular set of J is M (see section 6 of [9] again).

Suppose Py = 0. Let f = f1 + if> a holomorphic function. Then d(df o J) = d(dfy o
J) + i(d(dfz o J)) is a holomorphic 2-form, so d(dfi o J)(HX,Y) = d(dfi o J)(X, HY)
and d(dfz o J)(X,Y) = —d(dfs o J)(HX,Y). As P;(p) = 0 from the real viewpoint,
there exists a real symmetric bilinear form ¢ on T, M such that d(dfy o J)(p)(v,w) =
o(J(p)v,w) — o(v, J(P)w). Set o1(v,w) = 3(o(v,w) — o(H(p)v, H(p)w)) and &(v,w) =
o1(v,w) —io1 (H(p)v,w). As J and H commute & is a complex symmetric bilinear form
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and d(df o J)(p)(v,w) = é(J(p)v,w) — &(v, J(p)w). In other words P; = 0 from the
complex viewpoint. So to find a model of J, regard M as a complex manifold of dimension
n and apply theorem 1. Then forget the complex structure and regard J as a real tensor
field.

THEOREM 2. Suppose Nj = 0 and P; = 0. Then the local model of J around each
reqular point is a finite product of models chosen among:

(a) For a complez manifold, those of theorem 1.
(b) For a real manifold, those of theorem 1 and those obtained considering the complex
models of that theorem from the real viewpoint.

The local model of J is completely determined by its elementary divisors.

Remark. Suppose N; = 0. Let p be a regular point. By theorem 2 there exist enough
solutions to the equation d(dfo.J) = 0, i.e. conservation laws, near p iff P; vanishes around
this point. Nevertheless the existence of this kind of functions does not imply Ny = 0;
e.g. on K2 consider J = €22 Id +0/8z; ® dz1; fi = 21 — €®2 and fo = z.

Appendix. Consider an open set A of K" endowed with a nilpotent constant coef-
ficient (1,1) tensor field H. Let B be a differentiable manifold (the parameter space).
Elements of A x B will be denoted by (z, y) while by D, D® and L we mean the exterior
derivative, the second-order differential and the Lie derivative, all of them with respect to
the variables (z,,...,z,) only. Let Z be a vector field on A depending on the parameter
y € B. We say that Z is generic at a point (z,y) if the dimension of the cyclic subspace
spanned by Z(z,y) equals the degree of the minimal polynomial of H.

PROPOSITION 1.A. Suppose given p € A, a compact set K C B, a scalar a € K and
a function g : A x B — K, such that: (1) Lz H = cH where ¢ € K; (2) Z is generic on
{p} x K; (3) D(Dgo H) =0, g({p} x B) =0 and Dg({p} x B) = 0.

Then there exist an open neighbourhood U of p, an open set V. O K and a function
f:UxV — K such that: (I) Zf =af +g; (II) D(Df o H) = 0; (II) Df({p} x V) =0
and D® f({p} x V) = 0. Moreover if Dg(Ker H") = 0 we can choose f in such a way
that Df(Ker H™) = 0.

The proof of this result is essentially that of proposition 1.A of [9]. Before lemma 2.A
no change is needed at all. This last result should be replaced with:

LEmMA 2".A. Consider a function h; : A x B — K. Suppose Dhy(KerH) = 0 and
D(Dhy o H) = 0. Then there ezist an open neighbourhood U of p and a function h :
U x B — K such that: (1) Dho H = Dhy; (2) h({p} x B) = 0; (3) Dh(p,y) = 0 for all
y € B such that Dhy(p,y) = 0; D®h(p,y) = 0 for each y € B such that Dhy(p,y) =0
and D®h,(p,y) = 0.

Proof. There exist a vector subbundle E of TA and a morphism p : TA — T A such
that TA = E @ Ker H and (po H)|g = Id. Set a = Dh; o p. Obviously a o H = Dh;.
Let C be the set of all y € B such that Dhy(p,y) = 0 and D®h;(p,y) = 0. Suppose
a=3 ", gjdz;. Then g;({p} x C) =0 and Dg;({p} xC) =0,j=1,...,n.
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By rearranging coordinates (z1,...,2,) we can suppose the foliation Ker H given by
dxy = ...=dzy, = 0. From lemma 1.A, Da(Im H,Im H) = 0so Da = 2;;1(2;;1 fijdzy)
A dz; where each f;; equals zero on {p} x C. 4

Let U = [[_, U; be an open neighbourhood of p, product of intervals (K = R) or disks
(K = {?C) As Da is closed, there exist functions f_,,. U x B — K such that ('3)2,/0:1»u fii
and f;(U1 X ... X Ug X {(Prs1,--»Pa)} X B) =0, =k+1,...,n, 5 =1,....k where
o= (P, .,pn) Therefore f_T {p} x B) =0 and Df;({p} x C — 0 ]

Set 3= Da — D(ZFl fjd:}:_?} = Zie:l e;pdzi Adzy. As D = 0, the functions e;; do
not depend on (Zx41,...,Zn). By construction ey ({p} x C) = 0. -

Now we can find functions es, ..., ex : U x B — KK, which do not depend on (Zj4+1,...

), such that de;/0z; = e1; and e;({p1} x Ua X ... x Uy x B) =0, j = 2,..., k"
So e;({p} x B) = 0 and De;({p} x C) = 0. Set 5’ = Zf: o €;dz;. Then B, = § — DESS
is closed and B1({p} x C) = 0. Moreover 5 only involves the variables (z2,...,x) and =
differentials dwa, . . ., dzy. By induction we construct 8= E 1 €5dz; such that DB=8,
&({p} x B) = 0 and D&({p} x C) = 0,5 =1,.... k. |

Set oy = Z?:l fidz; where f; = f;+é;. Again fj({p}xB) = 0and Df;({p}xC) =0,
j =1,...,k. By construction a; o H = 0 and D(a — 1) = 0. Therefore there exists a
function h : U x B — K such that h({p} x B) = 0 and Dh = a@ — a;. Now Dho H =
ao H = Dh; and Dh(p,y) = a(p,y) = (Dhy o p)(p,y), which proves (1), (2) and (3).
Finally, note that Dh = 3%, (g; — f)dz; + X741 954z so DPh({p} x C) = 0. =

Beyond this point both propositions have the same proof (lemma 2'.A assures us that
Dgo({p} x B) =0).
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