SINGULARITIES AND DIFFERENTIAL EQUATIONS BANACH CENTER PUBLICATIONS, VOLUME 33 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1996

CLASSIFICATION OF (1,1) TENSOR FIELDS AND BIHAMILTONIAN STRUCTURES

FRANCISCO JAVIER TURIEL

Sección de Matemáticas, Facultad de Ciencias A.P. 59, 29080 Málaga, Spain E-mail: turiel@ccuma.sci.uma.es

Abstract. Consider a (1,1) tensor field J, defined on a real or complex m-dimensional manifold M, whose Nijenhuis torsion vanishes. Suppose that for each point $p \in M$ there exist functions f_1, \ldots, f_m , defined around p, such that $(df_1 \wedge \ldots \wedge df_m)(p) \neq 0$ and $d(df_j(J(y))(p) = 0$, $j = 1, \ldots, m$. Then there exists a dense open set such that we can find coordinates, around each of its points, on which J is written with affine coefficients. This result is obtained by associating to J a bihamiltonian structure on T^*M .

Introduction. Consider a (1,1) tensor field J, defined on a real or complex m-dimensional manifold M, whose Nijenhuis torsion vanishes. Suppose that for each point $p \in M$ there exist functions f_1, \ldots, f_m , defined around p, such that $(df_1 \wedge \ldots \wedge df_m)(p) \neq 0$ and $d(df_j \circ J)(p) = 0$, $j = 1, \ldots, m$ [here $df \circ J$ means df(J())]. In this paper we give a complete local classification of J on a dense open set that we call the regular open set. Moreover, near each regular point, i.e. each element of the regular open set, J is written with affine coefficients on a suitable coordinate system.

To express the condition about functions f_1, \ldots, f_m , stated above, in a simple computational way we introduce the invariant P_J (see section 1). This invariant only depends on the 1-jet of J at each point, and $P_J(p)=0$ iff functions f_1, \ldots, f_m as before exist. When J defines a G-structure, the first-order structure function being zero implies $P_J=0$ and $N_J=0$ (this last property is well known). Besides all points of M are regular; therefore this work generalizes the main result of [5]. On the other hand N_J and P_J both together can be considered as a generalization of the first-order structure function.

This kind of tensor fields appear in a natural way in Differential Geometry. For example, on the base space of a bilagrangian fibration (see [1]) there exists a tensor field J,

¹⁹⁹¹ Mathematics Subject Classification: Primary 53C15; Secondary 58H05, 35N99.

Key words and phrases: (1,1) tensor field, bihamiltonian structure.

Supported by DGICYT under grant PB91-0412.

The paper is in final form and no version of it will be published elsewhere.

450 F. J. TURIEL

with $N_J = 0$, such that if (x_1, \ldots, x_m) are action coordinates then each $dx_j \circ J$ is closed; so $P_J = 0$. From a wider viewpoint, when $N_J = 0$, we can study the equation:

$$(1) d(df \circ J) = 0;$$

i.e. the existence of conservation laws for J. Our classification shows that the existence, close to p, of m functionally independent solutions to equation (1) is equivalent to $P_J = 0$ near p.

Partial answers to the foregoing question may be found in [2], [6] and [7]. In [4], by using eigenvalues and eigenspaces, J. Grifone and M. Mehdi give an elegant necessary and sufficient condition for the existence of enough local solutions to equations (1) when J is real analytic. With the Grifone-Mehdi condition all points are regular and a calculation shows that it implies $P_J = 0$. Therefore the Grifone-Mehdi result follows from ours.

Finally, let us sketch the way for classifying J. As $N_J = 0$ we can construct a bihamiltonian structure on T^*M and from it a (1,1) tensor field J^* , prolongation of J to T^*M (see [8]). The main result of [9] gives us the local model of J^* on a dense open set and now a J^* -invariant cross section of T^*M allows us to find a model of J. This cross section exists because $P_J = 0$ implies that the behaviour of J^* does not change along each fiber of T^*M .

In a forthcoming paper we will study some cases where $P_J \neq 0$.

1. The first step. Consider a (1,1) tensor field J on a real or complex manifold M of dimension m. We recall that the Nijenhuis torsion of J is the (1,2) tensor field given by the formula

$$N_J(X,Y) = [JX,JY] + J^2[X,Y] - J[X,JY] - J[JX,Y].$$

If τ is a 1-form $\tau \circ J$ will mean the 1-form defined by $(\tau \circ J)(X) = \tau(JX)$.

For each $p \in M$ let F(2, J)(p) be the vector subspace of all the 2-forms β_{σ} defined by $\beta_{\sigma}(v, w) = \sigma(Jv, w) - \sigma(v, Jw)$ where $v, w \in T_pM$ and σ is a symmetric bilinear form on T_pM . Observe that $F(2, J^k)(p) \subset F(2, J)(p)$ for each $k \in \mathbb{N}$. Set

$$F_J(p) = \frac{\Lambda^2 T_p^* M}{F(2, J)(p)}.$$

Given $\alpha \in T_p^*M$ and a function f defined around p such that $df(p) = \alpha$, the class of $d(df \circ J)(p)$ on $F_J(p)$ only depends on α . That defines a linear map $P_J(p) : T_p^*M \to F_J(p)$ or, from a global viewpoint, $P_J : T^*M \to F_J$ where F_J is the disjoint union of all $F_J(p)$.

Note that $P_J(p)=0$ if and only if there exist functions f_1,\ldots,f_m , defined around p, such that $(df_1\wedge\ldots\wedge df_m)(p)\neq 0$ and $d(df_j\circ J)(p)=0,\ j=1,\ldots m$. When the characteristic polynomial of J(p) equals its minimal polynomial, i.e. when T_pM is cyclic, then $F(2,J)(p)=\Lambda^2T_p^*M$ and automatically $P_J(p)=0$. If $J^2=-\mathrm{Id}$ a straightforward calculation shows that $N_J=0$ implies $P_J=0$. However J can be semisimple, $N_J=0$ and $P_J\neq 0$; e.g. on \mathbb{R}^m , $m\geq 2$, $J=e^{x_1}\mathrm{Id}$.

Let $\mathbb{K}_N[t]$ be the polynomial algebra in one variable over the ring of differentiable functions on a manifold N. Here differentiable means C^{∞} if N is a real manifold ($\mathbb{K} = \mathbb{R}$) and holomorphic in the complex case ($\mathbb{K} = \mathbb{C}$). A polynomial $\varphi \in \mathbb{K}_N[t]$ is called *irreducible* if it is irreducible at each point of N. We shall say that $\varphi, \rho \in \mathbb{K}_N[t]$ are

relatively prime if they are at each point. Consider an endomorphism field H of a vector bundle $\pi: V \to N$, i.e. a cross section of $V \otimes V^*$. We will say that H has constant algebraic type if there exist relatively prime irreducible polynomials $\varphi_1, \ldots, \varphi_\ell \in \mathbb{K}_N[t]$ and natural numbers $a_{ij}, i = 1, \ldots, r_j, j = 1, \ldots, \ell$, such that for each $p \in N$ the family $\{\varphi_j^{a_{ij}}(p)\}, i = 1, \ldots, r_j, j = 1, \ldots, \ell$, is the family of elementary divisors of H(p).

Suppose that J defines a G-structure, i.e. J has constant algebraic type on M and $\varphi_1, \ldots, \varphi_\ell \in \mathbb{K}[t]$. If its first-order structure function vanishes then $P_J = 0$. Indeed, around each point $p \in M$ there exists a linear connection ∇ , whose torsion at p vanishes, such that $\nabla J = 0$. Let f_1, \ldots, f_m be normal coordinates with origin p; then $d(df_j \circ J)(p) = 0$ and $P_J(p) = 0$. Conversely $N_J = 0$ and $P_J = 0$ imply that the first-order structure function equals zero. In a word, the invariants N_J and P_J can be seen as a generalization of the first-order structure function to the case where J does not define a G-structure.

Henceforth we shall suppose $N_J = 0$. Set $g_k = \operatorname{trace}(J^k)$ and $E = \bigcap_{j=1}^m \operatorname{Ker} dg_j$. It is well known that $(k+1)dg_k \circ J = kdg_{k+1}$ and $JE \subset E$ (see [9]).

We say that a point $p \in M$ is regular if there exists an open neighbourhood A of p such that:

- (1) J has constant algebraic type on A,
- (2) E, restricted to A, is a vector subbundle of TA.
- (3) The restriction of J to E has constant algebraic type on A.

The set of all regular points is a dense open set of M which we shall call the regular open set. Our local classification of J only refers to the regular open set.

Now suppose that on an open neighbourhood of a regular point p the characteristic polynomial φ of J is the product $\varphi_1 \cdot \varphi_2$ of two monic relatively prime polynomials φ_1 and φ_2 . Then around p the structure (M, J) decomposes into a product of two similar structures $(M_1, J_1) \times (M_2, J_2)$, where φ_1 is the characteristic polynomial of J_1 (more exactly φ_1 is the pull-back of the characteristic polynomial of J_1) and φ_2 that of J_2 (see [3] and [9]). Moreover $N_{J_1} = 0$, $N_{J_2} = 0$, and p_1 and p_2 are regular points where $p = (p_1, p_2)$. On the other hand $P_{J_1} = 0$ and $P_{J_2} = 0$ if $P_{J} = 0$.

This splitting property reduces the classification to the case where the characteristic polynomial φ of J is a power of an irreducible one. Therefore we have only two possibilities: $\varphi = (t+f)^m$, or $\varphi = (t^2 + ft + g)^n$ where m = 2n and M is a real manifold.

2. The case $\varphi = (t+f)^m$. In this section, by associating to J a bihamiltonian structure on T^*M , we prove the following result:

THEOREM 1. Consider a (1,1) tensor field J such that $N_J = 0$ and $P_J = 0$. Suppose that its characteristic polynomial is $(t+f)^m$. Then around each regular point p there exist coordinates $((x_i^j), y)$ with origin p, i.e. $p \equiv 0$, such that:

(a) $i = 1, ..., r_j$ and $r_1 \ge r_2 \ge ... \ge r_\ell$. Moreover we also consider the case with no coordinates (x_i^j) , i.e. $\ell = 0$, and the case with coordinates (x_i^j) only.

(b)
$$J = (y+a)\operatorname{Id} + H + Y \otimes dy$$
 where

$$H = \sum_{j=1}^{\ell} \left(\sum_{i=1}^{r_j-1} \frac{\partial}{\partial x_{i+1}^j} \otimes dx_i^j \right) \quad and \quad Y = \frac{\partial}{\partial x_1^1} + \sum_{j=1}^{\ell} \left(\sum_{i=2}^{r_j} (1-i) x_i^j \frac{\partial}{\partial x_i^j} \right).$$

Remark. In the first special case m=1 and $J=(y+a)\operatorname{Id}$; in the second one $m=r_1+\ldots+r_\ell$ and $J=a\operatorname{Id}+\sum_{j=1}^\ell(\sum_{i=1}^{r_j-1}\partial/\partial x_{i+1}^j\otimes dx_i^j)$. The elementary divisors of J determine its model completely. If there is no coordinate y, i.e. if J defines a G-structure, they are: $\{(t-a)^{r_j}\},\ j=1,\ldots,\ell$. Otherwise they are: $(t-(y+a))^{r_1+1};\ \{(t-(y+a))^{r_j}\},\ j=2,\ldots,\ell$.

Let $c_J: T^*M \to T^*M$ be the morphism of T^*M defined by $c_J(\tau) = \tau \circ J$ and let ω be the Liouville symplectic form of T^*M . Set $\omega_1 = (c_J)^*\omega$ where c_J is regarded as a differentiable map. Consider the (1,1) tensor field J^* , on T^*M , defined by $\omega_1(X,Y) = \omega(J^*X,Y)$. Then $N_{J^*} = 0$, because $N_J = 0$, and $\{\omega,\omega_1\}$ is a bihamiltonian structure (see [8]). If (x_1,\ldots,x_m) are coordinates on M, $(x_1,\ldots,x_m,z_1,\ldots,z_m)$ the associated coordinates on T^*M , and $J = \sum_{i,j=1}^m f_{ij}\partial/\partial x_i \otimes dx_j$ then

$$J^* = \sum_{i,j=1}^m f_{ij} \left(\frac{\partial}{\partial x_i} \otimes dx_j + \frac{\partial}{\partial z_j} \otimes dz_i \right) + \sum_{i,j,k=1}^m z_i \left(\frac{\partial f_{ij}}{\partial x_k} - \frac{\partial f_{ik}}{\partial x_j} \right) \frac{\partial}{\partial z_j} \otimes dx_k.$$

Hence $\pi_* \circ J^* = J \circ \pi_*$.

Throughout the rest of this section J is as in theorem 1. By the local expression of J^* given above, its characteristic polynomial is $\varphi^* = (t + f \circ \pi)^{2m}$. Since $P_J = 0$, around each regular point $p \in M$ there exist coordinates (x_1, \ldots, x_m) such that $d(dx_i \circ J)(p) = 0$, $i = 1, \ldots, m$. Even more if $df(p) \neq 0$ [regularity implies df(p) = 0 iff f is constant near p] we can suppose $f = x_1$ because $g_1 = -mf$ and $dg_1 \circ J = \frac{dg_2}{2}$. But $dx_i \circ J = \sum_{j=1}^m f_{ij} dx_j$, then $\frac{\partial f_{ij}}{\partial x_k}(p) = \frac{\partial f_{ik}}{\partial x_j}(p)$ and

$$J^*(p,z) = \sum_{i,j=1}^m f_{ij}(p) \left(\frac{\partial}{\partial x_i} \otimes dx_j + \frac{\partial}{\partial z_j} \otimes dz_i \right) (p,z).$$

Therefore the elementary divisors of J(p) and $(J_{|E})(p)$ determine those of $J^*(p,z)$ and $(J^*_{|E^*})(p,z)$ completely, and the pull-back of the regular open set of J is included in the regular open set of J^* . This is the role of the assumption $P_J = 0$ while $N_J = 0$ assures us that $\{\omega, \omega_1\}$ is bihamiltonian.

The zero cross section allows us to consider M as a submanifold of T^*M . Take a regular point $p \in M$ such that df(p) = 0, i.e. f constant near p. By theorem 3 of [9] there exist coordinates (y_1, \ldots, y_{2m}) on an open neighbourhood A of p, with origin this point, on which ω and ω_1 are written with constant coefficients and J^* as well. By rearranging coordinates (y_1, \ldots, y_{2m}) if necessary, we can suppose that $\{\frac{\partial}{\partial y_1}(p), \ldots, \frac{\partial}{\partial y_m}(p)\}$ spans T_pM and $\{\frac{\partial}{\partial y_{m+1}}(p), \ldots, \frac{\partial}{\partial y_{2m}}(p)\}$ spans the vertical subspace $\operatorname{Ker} \pi_*(p)$ at p. Both subspaces are J^* -invariant as the local expression of J^* shows. Set $A_0 = \{y \in A : y_{m+1} = \ldots = y_{2m} = 0\}$. As $\operatorname{rank}((\pi_{|A_0})(p)) = m$ we can choose an open neighbourhood B of p on A_0 such that $\pi(B)$ is open and $\pi: B \to \pi(B)$ a diffeomorphism.

By construction $J^*(TA_0) \subset TA_0$. Let J' be the restriction of J^* to A_0 . The tensor

field J' is written with constant coefficients on A_0 . Moreover $(\pi_{|A_0})_* \circ J' = J \circ (\pi_{|A_0})_*$ since $\pi_* \circ J^* = J \circ \pi_*$. Then J is written with constant coefficients on $\pi(B)$, which proves theorem 1 when df(p) = 0.

The proof of the other case is basically the same but we have to rearrange coordinates in a more sophisticated way. Let V be a real or complex vector space of dimension 2n. Consider $\alpha, \alpha_1 \in \Lambda^2 V^*$ such that $\alpha^n \neq 0$. Let \tilde{J} be the endomorphism of V given by $\alpha_1(v,w) = \alpha(\tilde{J}v,w)$. Suppose \tilde{J} nilpotent (see proposition 1 of [9] for the model of $\{\alpha,\alpha_1\}$). An n-dimensional vector subspace W of V is called bilagrangian if $\alpha(v,w) = \alpha_1(v,w) = 0$ for all $v,w \in W$; in other words W is lagrangian for α and $JW \subset W$. When W is bilagrangian and there exists another bilagrangian subspace W' such that $V = W \oplus W'$ we shall say that W is superlagrangian. A bilagrangian subspace W is superlagrangian if and only if the elementary divisors of $J_{|W}$ are half those of J; i.e. if $\{t^{r_j}\}, j = 1, \ldots, \ell$, are the elementary divisors of $J_{|W}$ then $\{t^{r_j}, t^{r_j}\}, j = 1, \ldots, \ell$, are those of J.

LEMMA 1. Consider a basis $\{e_i^j\}$, $i=1,\ldots,2r_j$, $j=1,\ldots,\ell$, of V such that

$$\alpha = \sum_{j=1}^{\ell} \left(\sum_{k=1}^{r_j} e_{2k-1}^{*j} \wedge e_{2k}^{*j} \right) \quad and \quad \alpha_1 = \sum_{j=1}^{\ell} \left(\sum_{k=1}^{r_j-1} e_{2k-1}^{*j} \wedge e_{2k+2}^{*j} \right).$$

Let W be the vector subspace spanned by $\{e^j_{2k-1}\}$, $k=1,\ldots,r_j,\ j=1,\ldots,\ell$. Then for each superlagrangian subspace W' of V there exists $T\in GL(V)$ such that $T^*\alpha=\alpha$, $T^*\alpha_1=\alpha_1$ and $W\cap TW'=\{0\}$. Moreover if $e^1_{2r_1-1}\not\in W'$ we can choose T in such a way that $Te^1_1=e^1_1$.

Now take a regular point $p \in M$. Suppose $df(p) \neq 0$. By theorem 3 of [9] there exist coordinates $(x, y) = ((x_i^j), y_1, y_2), i = 1, \ldots, 2r_j$ and $r_1 \geq r_2 \geq \ldots \geq r_\ell$, with origin p, such that

$$\omega = \sum_{j=1}^{\ell} \left(\sum_{k=1}^{r_j} dx_{2k-1}^j \wedge dx_{2k}^j \right) + dy_1 \wedge dy_2$$

and $\omega_1 = (y_2 + a)\omega + \tau + \alpha \wedge dy_2$ where

$$\tau = \sum_{j=1}^{\ell} \left(\sum_{k=1}^{r_j - 1} dx_{2k-1}^j \wedge dx_{2k+2}^j \right)$$

and

$$\alpha = dx_2^1 + \sum_{j=1}^\ell \Big(\sum_{k=1}^{r_j} [(k+1/2) x_{2k}^j dx_{2k-1}^j + (k-1/2) x_{2k-1}^j dx_{2k}^j] \Big).$$

Hence $J^* = (y_2 + a) \operatorname{Id} + H^* + \frac{\partial}{\partial y_1} \otimes \alpha - Z \otimes dy_2$ where

$$H^* = \sum_{j=1}^\ell \left(\sum_{k=1}^{r_j-1} \frac{\partial}{\partial x_{2k+1}^j} \otimes dx_{2k-1}^j + \sum_{k=2}^{r_j} \frac{\partial}{\partial x_{2k-2}^j} \otimes dx_{2k}^j \right)$$

and

$$Z = \frac{\partial}{\partial x_1^1} + \sum_{j=1}^{\ell} \left(\sum_{k=1}^{r_j} \left[(k - 1/2) x_{2k-1}^j \frac{\partial}{\partial x_{2k-1}^j} - (k + 1/2) x_{2k}^j \frac{\partial}{\partial x_{2k}^j} \right] \right).$$

LEMMA 2. The vector $\frac{\partial}{\partial x_{2r_1-1}^1}(p)$ does not belong to the vertical subspace $\operatorname{Ker} \pi_*(p)$.

Proof. By the local expression of J^* in the coordinates $(x_1,\ldots,x_m,z_1,\ldots,z_m)$ given at the beginning of this section, $\operatorname{Ker} \pi_*(p)$ and T_pM are $J^*(p)$ -invariant, and $J_{|\operatorname{Ker} \pi_*(p)|}$ and $J_{|T_pM|}$ have the same elementary divisors. As $p\equiv 0$ in coordinates (x,y), the elementary divisors of $J^*(p)$ are $(t-a)^{r_1+1}$; $(t-a)^{r_1+1}$; $\{(t-a)^{r_j},(t-a)^{r_j}\},\ j=2,\ldots,\ell$. Therefore there exists $v\in T_pM$ spanning a cyclic subspace U of dimension r_1+1 such that $U\cap\operatorname{Ker} \pi_*(p)=\{0\}$.

Moreover $v = a \frac{\partial}{\partial y_2}(p) + b \frac{\partial}{\partial x_{2r_1}^1}(p) + v_1$ where $(J^*(p) - a \operatorname{Id})^{r_1} v_1 = 0$.

By construction

$$(J^*(p) - a\operatorname{Id})^{r_1}v = a\frac{\partial}{\partial x_{2r_1-1}^1}(p) + b\frac{\partial}{\partial y_1}(p)$$

does not belong to Ker $\pi_*(p)$. As $\omega(\partial/\partial y_1, \cdot) = dy_2 = -d(f \circ \pi)$ and $\omega = \sum_{j=1}^m dz_j \wedge dx_j$ in coordinates $(x_1, \dots, x_m, z_1, \dots, z_m)$ of T^*M , the vector $\frac{\partial}{\partial y_1}(p)$ belongs to Ker $\pi_*(p)$. So $\frac{\partial}{\partial x_{2r_1-1}^0}(p) \notin \text{Ker } \pi_*(p)$.

Set
$$\omega' = \sum_{j=1}^{\ell} (\sum_{k=1}^{r_j} dx_{2k-1}^j \wedge dx_{2k}^j)$$
.

LEMMA 3. The vector subspace (Ker $\pi_* \cap \text{Ker } dy_1 \cap \text{Ker } dy_2$)(p), regarded as a subspace of $T_0 \mathbb{K}^{2m-2}$, is superlagrangian with respect to $\{\omega'(0), \tau(0)\}$.

Proof. As $f \circ \pi = -(y_2 + a)$, $\operatorname{Ker} \pi_*(p) \subset \operatorname{Ker} dy_2(p) = \operatorname{Ker} d(f \circ \pi)(p)$. Now note that $((J^* - a\operatorname{Id})^{r_1}\operatorname{Ker} \pi_*)(p)$ is a 1-dimensional subspace of $\operatorname{Ker} \pi_*(p) \cap \mathbb{K}\{\frac{\partial}{\partial x_{2r_1-1}^1}(p), \frac{\partial}{\partial y_1}(p)\}$ (here $\mathbb{K}\{v_1, \ldots, v_s\}$ is the space spanned by $\{v_1, \ldots, v_s\}$). So $((J^* - a\operatorname{Id})^{r_1}\operatorname{Ker} \pi_*)(p) = \mathbb{K}\{\frac{\partial}{\partial y_1}(p)\}$ since $\frac{\partial}{\partial x_{2r_1-1}^1}(p) \not\in \operatorname{Ker} \pi_*(p)$.

On the other hand $T_0\mathbb{K}^{2m-2}$ can be seen as the quotient space $\operatorname{Ker} dy_2(p)/\mathbb{K}\{\frac{\partial}{\partial y_1}(p)\}$, which identifies $(\operatorname{Ker} \pi_* \cap \operatorname{Ker} dy_1 \cap \operatorname{Ker} dy_2)(p)$ with $\operatorname{Ker} \pi_*(p)/\mathbb{K}\{\frac{\partial}{\partial y_1}(p)\}$, and $(H^* + a\operatorname{Id})(0)$ as the endomorphism induced by $J^*_{|\operatorname{Ker} dy_2(p)}$. Therefore the elementary divisors of $H^*_{|\operatorname{(Ker} \pi_* \cap \operatorname{Ker} dy_1 \cap \operatorname{Ker} dy_2)(p)}$ are $\{t^{r_j}\}$, $j = 1, \ldots, \ell$.

LEMMA 4. Let $\{e_i^j\}$, $i=1,\ldots,2r_j$, $j=1,\ldots,\ell$, be the canonical basis of $\mathbb{K}^{2m-2}=\mathbb{K}^{2r_1}\times\ldots\times\mathbb{K}^{2r_\ell}$. Set $\alpha=\sum_{j=1}^\ell(\sum_{k=1}^{r_j}e_{2k-1}^*\wedge e_{2k}^{*j})$ and $\alpha_1=\sum_{j=1}^\ell(\sum_{k=1}^{r_j-1}e_{2k-1}^{*j}\wedge e_{2k+2}^{*j})$. Given $T\in GL(\mathbb{K}^{2m-2})$ if $Te_1^1=e_1^1$; $T^*\alpha=\alpha$ and $T^*\alpha_1=\alpha_1$, there exists a germ of diffeomorphism $\tilde{G}:(\mathbf{K}^{2m},0)\to(\mathbf{K}^{2m},0)$ such that $\tilde{G}(x,y)=(G(x),y)$; $\tilde{G}^*\omega=\omega$; $\tilde{G}^*\omega_1=\omega_1$ and $G_*(0)=T$.

Proof. We will adapt to our case the proof of proposition 3 of [9]. Consider the map $G_T: \mathbb{K}^{2m} \to \mathbb{K}^{2m}$ given by $G_T(x,y) = (Tx,y)$. Then $G_T^*\omega = \omega$ and $G_T^*\omega_1 = \omega_1 + dg \wedge dy_2$ where g is a quadratic function such that $d(dg \circ H^*) = 0$. Indeed G_T preserves $dx_2^1(0) = \omega(\frac{\partial}{\partial x_1^1}, \)(0)$ and H^* , and $d(\alpha \circ H^*) = -2\tau$.

Let D and \mathbb{L} be the exterior derivative and the Lie derivative with respect to the variables x only. We begin searching for a vector field $X_t = \sum_{j=1}^{\ell} (\sum_{i=1}^{2r_j} \varphi_i^j(x,t) \frac{\partial}{\partial x_i^j})$, defined on an open neighbourhood of the compact $\{0\} \times [0,1] \subset \mathbb{K}^{2m-2} \times \mathbb{K}$, such that:

- (1) $\mathbb{L}_{X_t}\omega' = \mathbb{L}_{X_t}\tau = 0.$
- (2) $\mathbb{L}_{X_t}(\alpha + tDg) = Dg$ (remark that dg = Dg).
- (3) For each $i = 1, ..., 2r_j$ and $j = 1, ..., \ell$, φ_i^j and $D\varphi_i^j$ vanish on $\{0\} \times [0, 1]$.

Consider the vector field Z_t given by $\omega'(Z_t,) = \alpha + tDg$. Take a function f(x,t), defined around $\{0\} \times [0,1]$, such that:

- (I) $Z_t f = -f g$.
- (II) $D(Df \circ H^*) = 0$.
- (III) For all $i=1,\ldots,2r_j,\ j=1,\ldots,\ell,\ k=1,\ldots,2r_s$ and $s=1,\ldots,\ell$, the partial derivatives $\partial f/\partial x_i^j$ and $\partial^2 f/\partial x_k^s \partial x_i^j$ vanish on $\{0\} \times [0,1]$.

Let X_t the vector field defined by $\omega'(X_t, \cdot) = Df$. Then X_t satisfies conditions (1), (2) and (3). By proposition 1.A (see the appendix) this kind of functions exists because g is quadratic, $D(Dg \circ H^*) = 0$, $Z_t(0) = \partial/\partial x_1^1$, and $\mathbb{L}_{Z_t}H^* = -H^*$ since $\mathbb{L}_{Z_t}\omega' = D(\alpha + tDg) = -\omega'$ and $\mathbb{L}_{Z_t}\tau = D(\alpha \circ H^* + tDg \circ H^*) = -2\tau$.

By integrating the vector field $-X_t$ we obtain a germ of diffeomorphism $F: (\mathbb{K}^{2m-2}, 0) \to (\mathbb{K}^{2m-2}, 0)$ such that $F^*\omega' = \omega'$; $F^*\tau = \tau$; $F^*(\alpha + Dg) = \alpha$ and $F_*(0) = \mathrm{Id}$. Now set $\tilde{G} = \tilde{F} \circ G_T$ where $\tilde{F}(x, y) = (F(x), y)$.

Let W be the subspace of T_pT^*M spanned by $\{\frac{\partial}{\partial x_{2k-1}^j}(p)\}$, $k=1,\ldots,r_j,\ j=1,\ldots,\ell$. By lemmas 1, 2, 3 and 4 we can suppose, without loss of generality, $W\cap (\operatorname{Ker}\pi_*\cap dy_1\cap dy_2)(p)=\{0\}$, which implies $(W\oplus \mathbb{K}\{\frac{\partial}{\partial y_2}(p)\})\cap \operatorname{Ker}\pi_*(p)=\{0\}$. Indeed $\dim(\operatorname{Ker}\pi_*\cap dy_1\cap dy_2)(p)=m-1$ (lemma 3) and $\frac{\partial}{\partial y_1}(p)\in \operatorname{Ker}\pi_*(p)$ (lemma 2, proof); then $\operatorname{Ker}\pi_*(p)=\mathbb{K}\{\frac{\partial}{\partial y_1}(p)\}\oplus (\operatorname{Ker}\pi_*\cap dy_1\cap dy_2)(p)$.

Set $A_0 = \{(x,y) \in A : x_{2k}^j = y_1 = 0, k = 1, \dots, r_j, j = 1, \dots, \ell\}$ where A is the domain of coordinates (x,y). Then $J^*(TA_0) \subset TA_0$ and $T_pA_0 \oplus \operatorname{Ker} \pi_*(p) = T_pT^*M$. Finally, by reasoning as in the case df(p) = 0 we can state:

PROPOSITION 1. Under the assumptions of theorem 1, if $df(p) \neq 0$ then there exist coordinates $((x_i^j), y)$ as in this theorem such that $J = (y + a) \operatorname{Id} + H + Y \otimes dy$ where

$$H = \sum_{j=1}^{\ell} \left(\sum_{i=1}^{r_j-1} \frac{\partial}{\partial x_{i+1}^j} \otimes dx_i^j \right) \quad and \quad Y = \frac{\partial}{\partial x_1^1} + \sum_{j=1}^{\ell} \left(\sum_{i=1}^{r_j} (1/2 - i) x_i^j \frac{\partial}{\partial x_i^j} \right).$$

When $df(p) \neq 0$, proposition 1 shows that the local model of J only depends on its elementary divisors.

LEMMA 5. Consider on $\mathbb{K}^m = \mathbb{K}^{r_1} \times \ldots \times \mathbb{K}^{r_\ell} \times \mathbb{K}$, with $r_1 \geq \ldots \geq r_\ell$ if $\ell > 0$, coordinates $((x_i^j), y)$. Let \mathbb{L} be the Lie derivative with respect to variables (x_i^j) only. Set $J = (y+a)\operatorname{Id} + H + Y \otimes dy$ where Y is a vector field defined around the origin such that dy(Y) = 0 and $H = \sum_{j=1}^{\ell} \left(\sum_{i=1}^{r_j-1} \frac{\partial}{\partial x_{i+1}^j} \otimes dx_i^j\right)$. If $\mathbb{L}_Y H = H$ and $H^{r_1-1}Y(0) \neq 0$, then $N_J = 0$ and close to the origin $P_J = 0$ and J has constant algebraic type.

456 F. J. TURIEL

The elementary divisors of J, near the origin, are the same both for proposition 1 and lemma 5: $(t-(y+a))^{r_1+1}$; $\{(t-(y+a))^{r_j}\}, j=2,\ldots,\ell$. So their models are equivalent. We finish the proof of theorem 1 by taking

$$Y = \frac{\partial}{\partial x_1^1} + \sum_{i=1}^{\ell} \left(\sum_{i=2}^{r_j} (1-i) x_i^j \frac{\partial}{\partial x_i^j} \right).$$

The model announced by the author in a lecture at the Banach Center is obtained by setting

$$Y = \frac{\partial}{\partial x_1^1} - \sum_{j=1}^{\ell} \left(\sum_{i=1}^{r_j} i x_i^j \frac{\partial}{\partial x_i^j} \right).$$

Another interesting model is given by taking

$$Y = \frac{\partial}{\partial x_1^1} + \sum_{i=1}^{\ell} \left(\sum_{i=1}^{r_j} (r_j + 1 - i) x_i^j \frac{\partial}{\partial x_i^j} \right).$$

For this model the forms $dy \circ J = (y+a)dy$ and $dx_{r_j}^j \circ J = (y+a)dx_{r_j}^j + x_{r_j}^j dy + dx_{r_j-1}^j$ are closed. As $N_J = 0$ all the forms $dx_{r_j}^j \circ J^k$ are closed too. Therefore if the characteristic polynomial of J is $(t+f)^m$, for each regular point p and for all $\lambda_0 \in T_p^*M$ there exists a closed 1-form λ , defined near p, such that $\lambda(p) = \lambda_0$ and $d(\lambda \circ J) = 0$; usually λ is called a conservation law. In other words, the equation $d(df \circ J) = 0$ has enough local solutions on the regular open set.

3. The case $\varphi = (t^2 + ft + g)^n$. Since our problem is local we can suppose M connected and all of its points regular. Set $J_0 = 2(4g - f^2)^{-\frac{1}{2}}J + f(4g - f^2)^{-\frac{1}{2}}$ Id which makes sense because $f^2 - 4g < 0$. By construction J_0 defines a G-structure and $(J_0^2 + \mathrm{Id})^n = 0$. Let H be the semisimple part of J_0 . Then H is a complex structure, J a holomorphic tensor field and $(t+h)^n$ its complex characteristic polynomial, where $h = \frac{1}{2}(f - i(4g - f^2)^{\frac{1}{2}})$ is holomorphic.

Indeed, consider $\{\omega,\omega_1\}$ and J^* on T^*M as in section 2. Now the characteristic polynomial of J^* is $\varphi^*=(t^2+(f\circ\pi)t+(g\circ\pi))^{2n}$. Let A be the regular open set of J^* . Set $J_0^*=2((4g-f^2)^{-\frac{1}{2}}\circ\pi)J^*+((f(4g-f^2)^{-\frac{1}{2}})\circ\pi)\operatorname{Id}$. On each connected component of A the tensor field J_0^* defines a G-structure; moreover $((J_0^*)^2+\operatorname{Id})^{2n}=0$. Let H^* be the semisimple part of J. In section 6 of [9] we showed that H^* is a complex structure, J^* holomorphic and $(t+h^*)^{2n}$ its complex characteristic polynomial, where $h^*=\frac{1}{2}(f\circ\pi-i(4g-f^2)^{\frac{1}{2}}\circ\pi)$ is a holomorphic function. On the other hand $\pi_*\circ J_0^*=J_0\circ\pi_*$ and $\pi_*\circ H^*=H\circ\pi_*$ because $\pi_*\circ J^*=J\circ\pi_*$. So holomorphy holds on $\pi(A)$, and on M as well since A is dense on T^*M and $\pi(A)$ on M.

The complex regular set of J is M (see section 6 of [9] again).

Suppose $P_J=0$. Let $f=f_1+if_2$ a holomorphic function. Then $d(df\circ J)=d(df_1\circ J)+i(d(df_2\circ J))$ is a holomorphic 2-form, so $d(df_1\circ J)(HX,Y)=d(df_1\circ J)(X,HY)$ and $d(df_2\circ J)(X,Y)=-d(df_1\circ J)(HX,Y)$. As $P_J(p)=0$ from the real viewpoint, there exists a real symmetric bilinear form σ on T_pM such that $d(df_1\circ J)(p)(v,w)=\sigma(J(p)v,w)-\sigma(v,J(p)w)$. Set $\sigma_1(v,w)=\frac{1}{2}(\sigma(v,w)-\sigma(H(p)v,H(p)w))$ and $\tilde{\sigma}(v,w)=\sigma_1(v,w)-i\sigma_1(H(p)v,w)$. As J and J commute J is a complex symmetric bilinear form

and $d(df \circ J)(p)(v, w) = \tilde{\sigma}(J(p)v, w) - \tilde{\sigma}(v, J(p)w)$. In other words $P_J = 0$ from the complex viewpoint. So to find a model of J, regard M as a complex manifold of dimension n and apply theorem 1. Then forget the complex structure and regard J as a real tensor field.

THEOREM 2. Suppose $N_J = 0$ and $P_J = 0$. Then the local model of J around each regular point is a finite product of models chosen among:

- (a) For a complex manifold, those of theorem 1.
- (b) For a real manifold, those of theorem 1 and those obtained considering the complex models of that theorem from the real viewpoint.

The local model of J is completely determined by its elementary divisors.

Remark. Suppose $N_J=0$. Let p be a regular point. By theorem 2 there exist enough solutions to the equation $d(df \circ J)=0$, i.e. conservation laws, near p iff P_J vanishes around this point. Nevertheless the existence of this kind of functions does not imply $N_J=0$; e.g. on \mathbb{K}^2 consider $J=e^{x_2}\operatorname{Id} + \partial/\partial x_2\otimes dx_1$; $f_1=x_1-e^{x_2}$ and $f_2=x_2$.

Appendix. Consider an open set A of \mathbb{K}^n endowed with a nilpotent constant coefficient (1,1) tensor field H. Let B be a differentiable manifold (the parameter space). Elements of $A \times B$ will be denoted by (x,y) while by D, $D^{(2)}$ and \mathbb{L} we mean the exterior derivative, the second-order differential and the Lie derivative, all of them with respect to the variables (x_1, \ldots, x_n) only. Let Z be a vector field on A depending on the parameter $y \in B$. We say that Z is generic at a point (x,y) if the dimension of the cyclic subspace spanned by Z(x,y) equals the degree of the minimal polynomial of H.

PROPOSITION 1.A. Suppose given $p \in A$, a compact set $K \subset B$, a scalar $a \in \mathbb{K}$ and a function $g: A \times B \to \mathbb{K}$, such that: (1) $\mathbb{L}_Z H = cH$ where $c \in \mathbb{K}$; (2) Z is generic on $\{p\} \times K$; (3) $D(Dg \circ H) = 0$, $g(\{p\} \times B) = 0$ and $Dg(\{p\} \times B) = 0$.

Then there exist an open neighbourhood U of p, an open set $V \supset K$ and a function $f: U \times V \to \mathbb{K}$ such that: (I) Zf = af + g; (II) $D(Df \circ H) = 0$; (III) $Df(\{p\} \times V) = 0$ and $D^{(2)}f(\{p\} \times V) = 0$. Moreover if $Dg(\operatorname{Ker} H^r) = 0$ we can choose f in such a way that $Df(\operatorname{Ker} H^r) = 0$.

The proof of this result is essentially that of proposition 1.A of [9]. Before lemma 2.A no change is needed at all. This last result should be replaced with:

LEMMA 2'.A. Consider a function $h_1: A \times B \to \mathbb{K}$. Suppose $Dh_1(KerH) = 0$ and $D(Dh_1 \circ H) = 0$. Then there exist an open neighbourhood U of p and a function $h: U \times B \to \mathbb{K}$ such that: (1) $Dh \circ H = Dh_1$; (2) $h(\{p\} \times B) = 0$; (3) Dh(p,y) = 0 for all $y \in B$ such that $Dh_1(p,y) = 0$; $D^{(2)}h(p,y) = 0$ for each $y \in B$ such that $Dh_1(p,y) = 0$ and $D^{(2)}h_1(p,y) = 0$.

Proof. There exist a vector subbundle E of TA and a morphism $\rho: TA \to TA$ such that $TA = E \oplus \operatorname{Ker} H$ and $(\rho \circ H)_{|E} = \operatorname{Id}$. Set $\alpha = Dh_1 \circ \rho$. Obviously $\alpha \circ H = Dh_1$. Let C be the set of all $y \in B$ such that $Dh_1(p,y) = 0$ and $D^{(2)}h_1(p,y) = 0$. Suppose $\alpha = \sum_{j=1}^n g_j dx_j$. Then $g_j(\{p\} \times C) = 0$ and $Dg_j(\{p\} \times C) = 0$, $j = 1, \ldots, n$.

458 F. J. TURIEL

By rearranging coordinates (x_1, \ldots, x_n) we can suppose the foliation Ker H given by $dx_1 = \ldots = dx_k = 0$. From lemma 1.A, $D\alpha(\operatorname{Im} H, \operatorname{Im} H) = 0$ so $D\alpha = \sum_{j=1}^k (\sum_{i=1}^n f_{ij} dx_i) \wedge dx_j$ where each f_{ij} equals zero on $\{p\} \times C$.

Let $U = \prod_{i=1}^n U_i$ be an open neighbourhood of p, product of intervals $(\mathbb{K} = \mathbb{R})$ or disks $(\mathbb{K} = \mathbb{C})$. As $D\alpha$ is closed, there exist functions $\tilde{f}_j : U \times B \to \mathbb{K}$ such that $\partial \tilde{f}_j / \partial x_i = f_{ij}$ and $\tilde{f}_j (U_1 \times \ldots \times U_k \times \{(p_{k+1}, \ldots, p_n)\} \times B) = 0$, $i = k+1, \ldots, n, j = 1, \ldots, k$, where $p = (p_1, \ldots, p_n)$. Therefore $\tilde{f}_j (\{p\} \times B) = 0$ and $D\tilde{f}_j (\{p\} \times C) = 0$.

Set $\beta = D\alpha - D(\sum_{j=1}^k \tilde{f}_j dx_j) = \sum_{i,\ell=1}^k e_{i\ell} dx_i \wedge dx_\ell$. As $D\beta = 0$, the functions $e_{i\ell}$ do not depend on (x_{k+1}, \dots, x_n) . By construction $e_{i\ell}(\{p\} \times C) = 0$.

Now we can find functions $e_2, \ldots, e_k : U \times B \to \mathbb{K}$, which do not depend on (x_{k+1}, \ldots, x_n) , such that $\partial e_j/\partial x_1 = e_{1j}$ and $e_j(\{p_1\} \times U_2 \times \ldots \times U_n \times B) = 0$, $j = 2, \ldots, k$. So $e_j(\{p\} \times B) = 0$ and $De_j(\{p\} \times C) = 0$. Set $\beta' = \sum_{j=2}^k e_j dx_j$. Then $\beta_1 = \beta - D\beta'$ is closed and $\beta_1(\{p\} \times C) = 0$. Moreover β_1 only involves the variables (x_2, \ldots, x_k) and differentials dx_2, \ldots, dx_k . By induction we construct $\tilde{\beta} = \sum_{j=1}^k \tilde{e}_j dx_j$ such that $D\tilde{\beta} = \beta$, $\tilde{e}_j(\{p\} \times B) = 0$ and $D\tilde{e}_j(\{p\} \times C) = 0$, $j = 1, \ldots, k$.

Set $\alpha_1 = \sum_{j=1}^k f_j dx_j$ where $f_j = \tilde{f}_j + \tilde{e}_j$. Again $f_j(\{p\} \times B) = 0$ and $Df_j(\{p\} \times C) = 0$, j = 1, ..., k. By construction $\alpha_1 \circ H = 0$ and $D(\alpha - \alpha_1) = 0$. Therefore there exists a function $h: U \times B \to \mathbb{K}$ such that $h(\{p\} \times B) = 0$ and $Dh = \alpha - \alpha_1$. Now $Dh \circ H = \alpha \circ H = Dh_1$ and $Dh(p, y) = \alpha(p, y) = (Dh_1 \circ \rho)(p, y)$, which proves (1), (2) and (3). Finally, note that $Dh = \sum_{j=1}^k (g_j - f_j) dx_j + \sum_{j=k+1}^n g_j dx_j$ so $D^{(2)}h(\{p\} \times C) = 0$.

Beyond this point both propositions have the same proof (lemma 2'.A assures us that $Dg_0(\{p\} \times B) = 0$).

References

- [1] R. Brouzet, P. Molino et F. J. Turiel, Géométrie des systèmes bihamiltoniens, Indag. Math. 4 (3) (1993), 269-296.
- [2] P. Cabau, J. Grifone et M. Mehdi, Existence de lois de conservation dans le cas cyclique, Ann. Inst. H. Poincaré Phys. Théor. 55 (1991), 789-803.
- [3] A. Frölicher and A. Nijenhuis, Theory of vector-valued differential forms, Part I, Indag. Math. 18 (1956), 338-359.
- [4] J. Grifone and M. Mehdi, Existence of conservation laws and characterization of recursion operators for completely integrable systems, preprint, Univ. Toulouse II, 1993.
- [5] J. Lehmann-Lejeune, Intégrabilité des G-structures définies par une 1-forme 0-déformable à valeurs dans le fibré tangent, Ann. Inst. Fourier (Grenoble) 16 (1966), 329-387.
- [6] H. Osborn, The existence of conservation laws, I, Ann. of Math. 69 (1959), 105-118.
- [7] —, Les lois de conservation, Ann. Inst. Fourier (Grenoble) 14 (1964), 71-82.
- [8] F. J. Turiel, Structures bihamiltoniennes sur le fibré cotangent, C. R. Acad. Sci. Paris Sér. I 308 (1992), 1085–1088.
- [9] —, Classification locale simultanée de deux formes symplectiques compatibles, Manuscripta Math. 82 (1994), 349–362.