
Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 13

1 Linear algebra of pairs of bivectors and completeness of

families of functions in involution

The Jordan–Kronecker decomposition of a pair of bivectors: A bivector b on a vector space
V is an element of

∧2 V . We will view a bivector b sometimes as a skew-symmetric map V ∗ → V
(then its value at x ∈ V ∗ will be denoted by b(x)) and sometimes as a skew-symmetric bilinear form
on V ∗ (then its value at x, y ∈ V ∗ will be denoted by b(x, y)). In particular, b(x, y) = 〈b(x), y〉.

Theorem. (Gelfand–Zakharevich, 1989) Given a finite-dimensional vector space V over C and a
pair of bivectors (b(1), b(2)), b(i) :

∧2 V ∗ → C, there exists a direct decomposition V ∗ = ⊕k
m=1V

∗
m such

that b(i)(V ∗
l , V ∗

m) = 0 for i = 1, 2, l 6= m, and the triples (V ∗
m, b

(1)
m , b

(2)
m ), where b

(i)
m := b(i)|V ∗m, are from

the following list:

1. [the Jordan block j2jm(λ)]: dim V ∗
m = 2jm and in an appropriate basis of V ∗

m the matrices of

b
(1)
m , b

(2)
m are equal to [

0 Ijm

−Ijm 0

]
,

[
0 Jjm(λ)

−Jjm(λ)T 0

]

where Ijm is the unity jm × jm-matrix and

Jjm(λ) :=




λ 1 0 · · · 0
0 λ 1 · · · 0

· · ·
0 0 0 · · · 1
0 0 0 · · · λ




is the Jordan jm × jm-block with the eigenvalue λ;

2. [the Jordan block j2jm(∞)]: dim V ∗
m = 2jm and in an appropriate basis of V ∗

m the matrices of

b
(1)
m , b

(2)
m are equal to [

0 Jjm(0)
−Jjm(0)T 0

]
,

[
0 Ijm

−IT
jm

0

]
;
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3. [the Kronecker block k2km+1]: dim V ∗
m = 2km +1 and in an appropriate basis of V ∗

m the matrices

of b
(1)
m , b

(2)
m are equal to

K1,km :=

[
0 B1,km

−BT
1,km

0

]
, K2,km :=

[
0 B2,km

−BT
2,km

0

]
,

where

B1,km :=




1 0 0 . . . 0 0
0 1 0 . . . 0 0

. . .
0 0 0 . . . 1 0


 , B2,km :=




0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .
0 0 0 . . . 0 1




(km × (km + 1)-matrices).

Kronecker Poisson pencils: Let {ηt}t∈R2 , ηt := t1η1 + t2η2, be a Poisson pencil on M . We say that
it is Kronecker at a point x ∈ M , if the Jordan–Kronecker decomposition of the pair of bivectors
η1|x, η2|x (regarded as elements of

∧2 TCx M , here TCx M is the complexified tangent space) does not
contain Jordan blocks.

Proposition. {ηt}t∈R2 is Kronecker at x if and only if

rank (t1η1|x + t2η2|x) = const, (t1, t2) ∈ C2 \ {0}.

Proof It is easy to see that any nontrivial linear combination of matrices K1,km , K2,km has constant
rank equal to 2km. So the rank can ”jump” at some t 6= 0 if and only if there are Jordan blocks in
the decomposition. ¤

We say that a Poisson pencil Θ on M is Kronecker if there exists an open dense set U ⊂ M such
that Θ is Kronecker at any x ∈ U .

Involutivity of Casimir functions for Kronecker Poisson pencils: We have already proven
that, if t′, t′′ ∈ R2 are linearly independent, then {f, g}ηt = 0 for any f ∈ Ct′(M), g ∈ Ct′′(M), t ∈ R2.
In the same way one can prove that ηt|x(α, β) = 0 for any α ∈ ker ηt′|x, β ∈ ker ηt′′ |x, t ∈ R2.

Proposition. Let {ηt}t∈R2 be Kronecker and let t′ ∈ R2, t′ 6= 0. Then {f, g}ηt = 0 for any
f, g ∈ Ct′(M), t ∈ R2.

Proof Fix x ∈ U . Let t(n) ∈ R2 be such that t(n) is linearly independent with t′ and t(n)
n→∞−→ t′.

The kernel of the map ηt|x : T ∗
xM → TxM continuously depend on t ∈ R2 \ {0} and is of constant

dimension. Consequently we can find a sequence of covectors αn ∈ ker ηt(n)|x such that αn
n→∞−→ dxg.

We get ηt|x(dxf, αn) = 0 and by continuity we conclude that ηt|x(dxf, dxg) = 0. In other words,
{f, g}ηt(x) = 0 for any x ∈ U . Since U is dense, using again the continuity argument we get the
proof. ¤

Summarizing, we get the following result.
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Proposition. Let Θ = {ηt}t∈R2 be a Kronecker Poisson pencil and let

CΘ(M) := Span{
⋃

t∈R2\{0}
Ct(M)}.

Then CΘ(M) is a family of functions in involution with respect to any Poisson bivector ηt.

Completeness of Casimir functions for Kronecker Poisson pencils: Let (M, η) be a Poisson
structure. We say that an open set W ⊂ M is correct for η if the set W ′ := W \ (W ∩ Sing η)
is nonempty and the common level sets of the functions from Cη(W ′) coincide with the symplectic
foliation of η on the set W ′. In other words, the set W is correct if the Poisson structure does
not have regular symplectic leaves dense in W . Equivalent definition: W is correct if {dxf | f ∈
Cη(W )} = ker ηx for any x ∈ W ′. Note that in analytic category any sufficiently small open set is
correct.

Proposition. Let Θ = {ηt}t∈R2 be a Kronecker Poisson pencil. Assume W ⊂ M is an open set
that is correct for ηt for a countable set {t(1), t(2), . . .} of pairwise linearly independent values of the
parameter t and the set W ′ := W \⋃∞

i=1 Sing ηt(i) is nonempty. Then the set of functions in involution
CΘ(W ′) is complete with respect to any ηt, t 6= 0.

Proof Fix x ∈ U ∩W ′. Let us first prove that the set Cx := {dxf | f ∈ CΘ(W ′)} ⊂ T ∗
xM coincides

with the set Lx := Span{⋃t∈R2\{0} ker ηt
x}. Indeed, the vector space Lx is finite-dimensional, hence

is generated by a finite number of kernels ker ηt
x = {dxf | f ∈ Ct(W )}. Hence Lx ⊂ Cx. The same

considerations show that Cx ⊂ Lx.

It is easy to see that the set Lx is of dimension (1/2)rank ηt
x + dim M − rank ηt

x. Assume for a
moment that the Jordan–Kronecker decomposition of the pair η1|x, η2|x consists of one Kronecker
block k2km+1. The kernel of the matrix λK1,km +K2,km is 1-dimensional and is spanned by the vector
[0, . . . , 0, 1,−λ, . . . , (−λ)km ]. Taking km + 1 different values of λ we get km + 1 = (1/2)rank ηt

x +
dim M − rank ηt

x linearly independent vectors (recall the Vandermonde determinant) spanning the
set Lx. In the case of several Kronecker blocks you repeat these considerations for each block. ¤

Remark: In fact it is sufficient to require that W is correct for a finite number of ηt. However, this
number depends on the number and dimension of the Kronecker blocks, so we make a bit stronger
assumption (which in practice is always satisfied).

Example (method of the argument translation): Let M := g∗, η1 := ηg, η2 := ηg(a), where
a ∈ g∗ \ Sing ηg. Assume that codim Sing ηg > 2 (if g is semisimple it is known that codim Sing ηg >
3). Note that Sing ηg is an algebraic set, i.e. it is defined by a finite number of algebraic equations
f1(x) = 0, . . . , fm(x) = 0 on g∗. Any algebraic set in a neighbourhood of its generic point is
diffeomorphic to a manifold, hence its dimension is correctly defined.

If e1, . . . , en is a basis of g and the corresponding structure constants are defined by [ei, ej] =
ck
ijek, the polynomials f1, . . . , fm are the r × r-minors of the matrix cij(x) = ck

ijxk, where r =
maxx rank [cij(x)]. Here x1 = e1, . . . , xn = en are the corresponding coordinates on g∗.

In order to check the condition of Kroneckerity we need to consider the complexification gC of the
initial Lie algebra. It can be regarded as a vector space SpanC{e1, . . . , en} ∼= Cn with the Lie bracket
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defined by the same structure constants. The set S := {(z1, . . . , zn) ∈ (gC)∗ ∼= Cn | rank ck
ijzk <

maxz∈Cn rank ck
ijzk} is a complex algebraic set defined by the equations f1(z) = 0, . . . , fm(z) =

0, where f1, . . . , fm are the same polynomials as above. In particular, the set S is of complex
codimension at least 2.

We know that t1η1|x + t2η2|x = ck
ij(t1xk + t2ak), t1, t2 ∈ C. Thus rank (t1η1|x + t2η2|x) is maximal

(over t) and independent of t ∈ C2 \ {0} if and only if t1x + t2a ∈ (gC)∗ \ S if and only if x 6∈ a, S,
where a, S := {z ∈ (gC)∗ | ∃(t1, t2) ∈ C2 \ {0}: t1z + t2a ∈ S}.

Note that the set S is homogeneous (stable under rescaling). Passing to the projectivization
the set a, S becomes a cone in CPn−1 over the projectivization of S. This shows that the set a, S
is also algebraic (by the standard arguments from algebraic geometry) and, moreover, dimC a, S =
dimC S + 1. In particular codim Ca, S > 1 and we can put U := g∗ \ (g∗ ∩ a, S) = g∗ \ (a, Sing ηg).
Here a, Sing ηg := {x ∈ g∗ | ∃(t1, t2) ∈ R2 \ {0}: t1x + t2a ∈ Sing ηg} and codim Ra, Sing ηg > 1. The
set U is an open dense set in g∗ such that {ηt} is Kronecker at any x ∈ U .

Finally assume that g is semisimple. Then ηg has enough global Casimir functions and the whole
space g∗ is a corrrect set for ηg. In particular, the assumptions of the proposition above are satisfied
and we get a complete set CΘ(g∗) of functions in involution (with respect to any ηt). This set is
generated by the ”translations” f(x + λa), λ ∈ R, of the Casimir functions f of ηg.
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