Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 15

1 Introduction to the KdV equation and infinite-dimensional
argument translation method

The Gelfand—Fuchs cocycle: Let g := I'(T'S') be the Lie algebra of vector fields on a circle.
Elements of g can be viewed as v(z)d,, where v is a function on S' and z is a coordinate. The
bracket will be expressed as [v(x)0,, w(2)0,] = (—vw, + wv,)(x)0,.

PROPOSITION. The ezpression ¢(v0,, wd,) := fsl VWyeedT 18 G cocycle on g.

Proof ¢([v0y, w0y, udy) = [g (—VWe+WVy ) Ugaedr = [ (—VWe+WwV,)dUy, = [integration by parts] =
_ fSl Uz (—VW, + WO, ) pdr = — fsl Uz (—Vp Wy + WUy — VppW + Wy dr = fsl Uz (VW — W) dx.
Summing the last expression over cyclic permutations of v, w,u gives zero. FEzercise: Prove the
skew-symmetry. []

The Virasoro Lie algebra: The central extension g’ := g@&R of g with respect to the Gelfand—Fuchs
cocycle: [(v(x)dy,a), (w(x)0y, )] := ((—vwy + wv,)(2)0y, c(VOy, WA,)).

The "H éﬁ—energy” on g': The quadratic form

((v(2)0y,a), (w(x)0y4, b)) := / (cvvw + fu,w,)dx + ab.

sl

If o =1,8 =0 we get the L? scalar product, if & = 1,3 = 1, this is the Sobolev one.

The Virasoro group: This is a central extension G’ := G x R of the group G := Dif f(S') of
diffeomorphisms of a circle by means of the Bott cocycle

B(u.p) 1= [ log((vo o))dlog(i.)
S
The group operation on G’ is given by

(¥(x),a) o (p(x),b) := (o @) (x),a+ b+ B, ¢)).
Remark: 1f a # 0 the H, Ollﬁ—energy can be extended to a right-invariant metric on G.
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The dual space g*: It can be naturally identified with the space of quadratic differentials {u(x)(dx)?}
on the circle. The pairing is given by the formula:

(u(z)(dz)?, v(x)0,) = /S1 u(z)v(x)de.

The coadjoint orbits coincide with the orbits of the action of diffeomorphisms on quadratic differen-
tials:

Ady s u(dr)? = u(p) - 93 (dx)* = ulp)(dp)*.
Remark: If u(x) > 0 for any z € S*, the square root \/u(z)(dz)? transforms as a 1-form. In particular,

®(u(z)(dz)?) := [4 v/u(z)dz is a Casimir function: the value of ® is stable under the diffeomorphism
action. The corresponding orbit has codimension one: a diffeomorphism action sends the quadratic
differential u(x)(dz)* to the constant quadratic differential C(dx)?, where C := (1/27) [¢ /u(z)dz.

If u changes sign, the integral fab Vu(x)dx between two consecutive zeroes a,b of u is invariant.
Thus the codimension of the orbit is greater than 1 in this case.

The dual space (g')*: It can be naturally identified with the space of pairs {(u(z)(dx)? a)} with
the natural pairing
((u(e)(d ), (0(2)08)) = [ ala)oo)de + ab
S’l
Generic coadjoint orbits are of codimension 2 (they are contained in the hyperplanes a = const).

Digression on the Euler equations: Recall: Let g be a Lie algebra with a positively defined
scalar product b. Extend b to the right invariant contravariant metric b, : T*G X T*G — R, denote
by B : T — R the corresponding quadratic form. The hamiltonian equation on 7T*G with the
hamiltonian H := B is right invariant, hence can be reduced to a hamiltonian equation on g*.

The last is called the Euler equation and is given by a vector field ng(b(v,v)). Let A: g — g* be
defined by (v, A(w)) = b(v,w). Call A the inertia operator. It turns out (Ezercise: prove this) that

this equation is of the form
dx

pr —ady-1,7, 2 € g".

The Euler equation related to the ” H iﬂ-energy”:

THEOREM. (Khesin-Misiotek) The Euler equation on x := (v(x)(dz)? a) corresponding to the
”Hiﬁ "-scalar product with o # 0 has the form

a(vy + 3vv,) — B(Vgat + 202V + VVgpe) — bUzee = 0,04 = 0.

Remark: By choosing a = 1, 8 = 0 one obtains the Korteweg—de Vries equation. For a« = 3 = 1 one
recovers the Camassa—Holm equation.



Proof Let us calculate the ad® operator. We have

(adfya, b (u(dz)?, ), (WOy, c)) = ((u(dz)?, a), [(v0s,0), (WOy, c)]') =

/ u(—vw, + wu,)dz +a/ VWgprdT :/ uwvdr —/ uvdw — a/ WVgprdT =
s1 51 51 51 st
/ uwvydr + / w(uyv + uv, )de — a/ WV dT = / w(2uvy + UV — AUy )d.
st st st st

Hence ad{,, 4 (u(dz)?, a) = ((2uvy 4 upv — Qs ) (d)?,0).

Now let us look at the inertia operator A : g" — (g')* given by ((v0,,b), A(w0y, a))) = [4 (@vw+
Bu,wy)dz +ba = | o1 VAwdz + ba, where A @ o — (30?2 is a second order differential operator. We have
A((wd,,a)) = ((Aw)(dz)?, a). This operator is nondegenerate for a # 0.

The corresponding Euler equation is

d . *
%(u(d:v)2, a’) = _adAfl(u(dz)Q,a) (u(d$)27 a) = _ad((Aflu)(dJJ)Q,a) (U(d.CB)Q, (1),

or, using the formula for ad*

d
a(u(d:ﬁ)Q, a) = —((2uA" u, + up A — aA_luxm)(dx)z, 0).

Putting v := A~'u we get
d
E(AU) = —2(Av)vy — (Avg)v + avzgy, ar = 0.

Substituting A = a — 3% we get the proof. [J

Bihamiltonian property of the KdV and C—H equations:

THEOREM. (Khesin-Misiotek) The Euler equation corresponding to the ”Hiﬁ "-scalar product with
a # 0 is bihamiltonian: it is hamiltonian with respect to the Lie-Poisson structure ng on (g')* (this

is standard fact) and it is also hamiltonian with respect to the constant Poisson structure obtained
by freezing” of ng at the point ((o/2)(dx)?, 3).

Remark: We leave this theorem without proof. The last but not least remark: one can apply the
general Magri-Lenard scheme to obtain an infinite sequence of "first integrals” of the («, 3)-Euler
equation (in fact Magri invented his scheme having in mind the KdV equation).



