
Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 15

1 Introduction to the KdV equation and infinite-dimensional

argument translation method

The Gelfand–Fuchs cocycle: Let g := Γ (TS1) be the Lie algebra of vector fields on a circle.
Elements of g can be viewed as v(x)∂x, where v is a function on S1 and x is a coordinate. The
bracket will be expressed as [v(x)∂x, w(x)∂x] = (−vwx + wvx)(x)∂x.

Proposition. The expression c(v∂x, w∂x) :=
∫

S1 vwxxxdx is a cocycle on g.

Proof c([v∂x, w∂x], u∂x) =
∫

S1(−vwx+wvx)uxxxdx =
∫

S1(−vwx+wvx)duxx = [integration by parts] =
− ∫

S1 uxx(−vwx + wvx)xdx = − ∫
S1 uxx(−vxwx + wxvx − vxxw + wxxv)dx =

∫
S1 uxx(vxxw − wxxv)dx.

Summing the last expression over cyclic permutations of v, w, u gives zero. Exercise: Prove the
skew-symmetry. ¤

The Virasoro Lie algebra: The central extension g′ := g⊕R of g with respect to the Gelfand–Fuchs
cocycle: [(v(x)∂x, a), (w(x)∂x, b)]

′ := ((−vwx + wvx)(x)∂x, c(v∂x, w∂x)).

The ”H1
αβ-energy” on g′: The quadratic form

〈(v(x)∂x, a), (w(x)∂x, b)〉 :=

∫

S1

(αvw + βvxwx)dx+ ab.

If α = 1, β = 0 we get the L2 scalar product, if α = 1, β = 1, this is the Sobolev one.

The Virasoro group: This is a central extension G′ := G × R of the group G := Diff(S1) of
diffeomorphisms of a circle by means of the Bott cocycle

B(ψ, ϕ) :=

∫

S1

log((ψ ◦ ϕ)x)d log(ϕx).

The group operation on G′ is given by

(ψ(x), a) ◦ (ϕ(x), b) := ((ψ ◦ ϕ)(x), a+ b+B(ψ, ϕ)).

Remark: If α 6= 0 the H1
αβ-energy can be extended to a right-invariant metric on G.
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The dual space g∗: It can be naturally identified with the space of quadratic differentials {u(x)(dx)2}
on the circle. The pairing is given by the formula:

〈u(x)(dx)2, v(x)∂x〉 :=

∫

S1

u(x)v(x)dx.

The coadjoint orbits coincide with the orbits of the action of diffeomorphisms on quadratic differen-
tials:

Ad∗ϕ : u(dx)2 7→ u(ϕ) · ϕ2
x(dx)

2 = u(ϕ)(dϕ)2.

Remark: If u(x) > 0 for any x ∈ S1, the square root
√
u(x)(dx)2 transforms as a 1-form. In particular,

Φ(u(x)(dx)2) :=
∫

S1

√
u(x)dx is a Casimir function: the value of Φ is stable under the diffeomorphism

action. The corresponding orbit has codimension one: a diffeomorphism action sends the quadratic
differential u(x)(dx)2 to the constant quadratic differential C(dx)2, where C := (1/2π)

∫
S1

√
u(x)dx.

If u changes sign, the integral
∫ b

a

√
u(x)dx between two consecutive zeroes a, b of u is invariant.

Thus the codimension of the orbit is greater than 1 in this case.

The dual space (g′)∗: It can be naturally identified with the space of pairs {(u(x)(dx)2, a)} with
the natural pairing

〈(u(x)(dx)2, a), (v(x)∂x, b)〉 :=

∫

S1

u(x)v(x)dx+ ab.

Generic coadjoint orbits are of codimension 2 (they are contained in the hyperplanes a = const).

Digression on the Euler equations: Recall: Let g be a Lie algebra with a positively defined
scalar product b. Extend b to the right invariant contravariant metric br : T ∗G×G T

∗G→ R, denote
by B : TG → R the corresponding quadratic form. The hamiltonian equation on T ∗G with the
hamiltonian H := B is right invariant, hence can be reduced to a hamiltonian equation on g∗.

The last is called the Euler equation and is given by a vector field ηg(b(v, v)). Let A : g → g∗ be
defined by 〈v, A(w)〉 = b(v, w). Call A the inertia operator. It turns out (Exercise: prove this) that
this equation is of the form

dx

dt
= −ad∗A−1xx, x ∈ g∗.

The Euler equation related to the ”H1
αβ-energy”:

Theorem. (Khesin–MisioÃlek) The Euler equation on x := (v(x)(dx)2, a) corresponding to the
”H1

αβ”-scalar product with α 6= 0 has the form

α(vt + 3vvx)− β(vxxt + 2vxvxx + vvxxx)− bvxxx = 0, at = 0.

Remark: By choosing α = 1, β = 0 one obtains the Korteweg–de Vries equation. For α = β = 1 one
recovers the Camassa–Holm equation.
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Proof Let us calculate the ad∗ operator. We have

〈ad∗(v∂x,b)(u(dx)
2, a), (w∂x, c)〉 = 〈(u(dx)2, a), [(v∂x, b), (w∂x, c)]

′〉 =∫

S1

u(−vwx + wvx)dx+ a

∫

S1

vwxxxdx =

∫

S1

uwvxdx−
∫

S1

uvdw − a

∫

S1

wvxxxdx =
∫

S1

uwvxdx+

∫

S1

w(uxv + uvx)dx− a

∫

S1

wvxxxdx =

∫

S1

w(2uvx + uxv − avxxx)dx.

Hence ad∗(v∂x,b)(u(dx)
2, a) = ((2uvx + uxv − avxxx)(dx)

2, 0).

Now let us look at the inertia operator A : g′ → (g′)∗ given by 〈(v∂x, b), A((w∂x, a))〉 =
∫

S1(αvw+
βvxwx)dx+ ba =

∫
S1 vΛwdx+ ba, where Λ : α− β∂2

x is a second order differential operator. We have
A((w∂x, a)) = ((Λw)(dx)2, a). This operator is nondegenerate for α 6= 0.

The corresponding Euler equation is

d

dt
(u(dx)2, a) = −ad∗A−1(u(dx)2,a)(u(dx)

2, a) = −ad∗((Λ−1u)(dx)2,a)(u(dx)
2, a),

or, using the formula for ad∗

d

dt
(u(dx)2, a) = −((2uΛ−1ux + uxΛ

−1u− aΛ−1uxxx)(dx)
2, 0).

Putting v := Λ−1u we get

d

dt
(Λv) = −2(Λv)vx − (Λvx)v + avxxx, at = 0.

Substituting Λ = α− β∂2
x we get the proof. ¤

Bihamiltonian property of the KdV and C–H equations:

Theorem. (Khesin–MisioÃlek) The Euler equation corresponding to the ”H1
αβ”-scalar product with

α 6= 0 is bihamiltonian: it is hamiltonian with respect to the Lie-Poisson structure ηg′ on (g′)∗ (this
is standard fact) and it is also hamiltonian with respect to the constant Poisson structure obtained
by ”freezing” of ηg′ at the point ((α/2)(dx)2, β).

Remark: We leave this theorem without proof. The last but not least remark: one can apply the
general Magri–Lenard scheme to obtain an infinite sequence of ”first integrals” of the (α, β)-Euler
equation (in fact Magri invented his scheme having in mind the KdV equation).
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