Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 2

2. Preliminaries on manifolds

A chart on a topological space M: A pair (U,v), here U C M is an open set, ¢ : U — R" is
a homeomorphism onto its image. Two charts (Uy, 1), (Us, 12) are compatible if ¢y o 1/12_1|im(UmU2) :
im(U; NU;) — R™ is smooth (analytical) mapping. The components of the vector ¢ = (11, ...,1,)
are called [ocal coordinates on M.

An atlas on a topological space M: A collection of pairwise compatible charts A := {(U,, ¥a) }aca
such that M = J,.4 Ua. Two atlases are equivalent or compatible if ...

A manifold: A topological space endowed with a class of equivalent atlases.
Example: The sphere S? with two stereographic projections (from the north and south poles).

A vector bundle £ — M over a manifold M: A surjective map m : £ — M, here F is a
topological space, such that here is a structure of a vector space on each fiber £, := 7~ !(x),z € M,
and there is an atlas A := {(U,,¥a)}aca on M and homeomorphisms ¥, : 771(U,) — U, x R™ with
the properties:

1. the following diagram is commutative

Vo

7N U,) — U, xR™
I Lm
Ua = Ua

2. the map \AI//aﬁx := W,|g, is a linear isomorphism of the vector spaces E, and R™;

3. the collection {(77*(U,), ¥4)}aca is an atlas on E, in particular ¥, o \Ilgl(x,y) = (2,V,, 0

\Tlgi(y)), r € U,NUs,y € R™, and the functions \Tla@x = \T/(m o \TIE; are linear isomorphisms
of R™ which smoothly depend on x € M.

The functions W,s, are called transition functions of the vector bundle. Given the base M and the
collection of transition functions, one can reconstruct the initial vector bundle (up to an isomor-
phism).

A section of a vector bundle £ — M: A mapping s : M — E such that 7(s(z)) = z for any
x € M. The space of sections will be denoted by I'(E).



Example 1, the tangent bundle TM 5% M: Let M be a manifold with an atlas A :=
{(Uay¥a) taca. Put {Ivfaﬁ,x = 8%‘% here 1,5 = 1, © w;l : R" — R". Below we give an
explicit description of T'M.
A tangent vector at x to M: A curvein M is a mapping ¢ : R — M. Two curves ¢y, co such that
c1(0) = c2(0) = x are equivalent at z if the derivatives of the functions f(ci(t)) and f(ca(t)) coincide
at 0 for any f € E(M) (E(M) is C>°(M) or the space of analytic functions on M depending on the
category). Note that ¢, ¢o are equivalent at z if and only if < |,_o(¢" 0 ¢1)(t) = L=V’ 0 ¢2)(t),i =
1,...,n, for some (consequently for any) chart (U, ) with z € U.

A class v = [c], of equivalence of curves at z is called a tangent vector at x. We say that
v is tangent to ¢ (and to any other representative of the class) at x. A tangent vector in local
coordinates (¢!,...,¢") is represented by the n-tuple (4|, _o(¥' o c)(t),..., %|,—o(¢¥™ 0 ¢)(t)), here ¢
is any representative of the class. Since we can add such n-tuples and multiply them by scalars, the
set of tangent vectors inherits a structure of vector space (which is independent of the choice of local
coordinates). Given two local coordinate systems 1,13 the corresponding n-tuples are related by

Oas(0s(x)) d

d i _ J
E|t:0(¢a oc)(t) = 8(,0% Ehzowﬂ o c)(?).

Tangent vectors as differentiations: A differentiation of the ring £(M) at z is a linear mapping
[ : (M) — R such that I(fg) = I(f)g(z) + f(z)l(g), f,g € E(M). Given a tangent vector v at x
which is represented by a curve ¢, we construct a differentiation o by 9(f) := <% |i—o(f o ¢)(t). It does
not depend on the choice of representative.

Let ¢ = (¢!,...,¢"™) : U — R" be local coordinates on M such that ¢(z) = 0. Then ¢ := 1 (L?),
where L' is the i-th coordinate line in R", gives (a local) curve with ¢(0) = z. The corresponding
vector is denoted 8‘11. The vectors (differentiations) 86_W’ t=1,...,n, form a basis of the vector space
T.M.

A vector field on M: A section of the tangent bundle T'M, i.e. a tangent vector v(x) € T, M
(Smoothly7 analytically) depending on z € M. In a local chart (U, ) can be expressed as v(z) =
vi(z)2 Hg7> here v (x) are functions.

Any vector field v is a differentiation of the ring £(M), i.e. a linear endomorphism of £(M) such

that v(fg) = v(f)g + fv(g), f,g € E(M). In local coordinates (vf)(z) = vz(x)%(x)

The space I'(T'M) of vector fields is a vector field over R and a module over the ring £(M)
The commutator of vector fields on M: Given two differentiations vy, vy of the ring £(M),
the commutator [v1,vs] 1= v1v9 — Vv is again a differentiation: viva(fg) = v1((vaf)g + f(v2)g) =
(viv2f)g + (v2f)(v1g) + (v1f)(v2g) + f(vivag), so [v1,v2](fg) = ([vi,v2]f)g — f([v1,v2]g). In local

coordinates [vy, vs](x) = U{(I)ag%p(f) - v%(w)a?—ﬁ.

A bivector field on M: A section 7 of the second exterior power of the tangent bundle /\2 TM.

- o) 0
Locally n = n"(2) 55 N 55-
Example 2, the cotangent bundle T*M ZM, M: The bundle dual to TM The transition
functions: \II;B .- We denote by dip!, ... dy™ the basis of T M dual to the basis 31/)1’ e 8‘2}—71.

A covector field on M (differentlal 1-form): A section v of the bundle T*M. Locally v =
vi(x)dy'.



A differential 2-form on M: A section w of the second exterior power of the cotangent bundle
N T*M. Locally w = wi;(z)di’ A dy.

A morphism of vector bundles F; I M, Ey =5 M over M: A map u : Fy — F such that
the following diagram is commutative
E, s E,

ml lm

M __— M
and the induced mappings p, : Fy, — Es, are linear for any x € M.

Differential k-forms as morphisms ®k TM — M x R: any differential k-form o can be inter-
preted as such a morphism which is skew-symmetric. In other words, ¢ is a map form I'(T'M) x
<o x I'(TM) — E(M) which is multilinear over the ring £(M) and skew-symmetric.

The exterior derivative d : I'(\"T*M) — I'(A*"' T*M): The Cartan formula gives (dv)(X,Y) =
XA(Y)=Y5(X)=1([X, Y]}, X,Y & [(TM) fory € (TM) and (dw)(X, Y, Z) = 3., yy.y Xer Y, 7)—
w([X,Y], Z).

Bivector fields and 2-forms as morphisms: Let € I'(A>TM) and v € I'(T*M). The
contraction yan =: n(y) (in the first index) is a vector field defined by v = vj(x)%,vj(x) =
vi(x)n¥ (x). Since this operation is pointwise it defines a morphism of bundles n* : T*M — TM.
Note that it is skew-symmetric, i.e. (nf)* = —nf. Conversely, given such a morphism, we can
construct a bivector field.

Analogously, a differential 2-form w defines a skew-symmetric morphism «” : TM — T*M.



