
Algebraic and geometric aspects of modern theory of
integrable systems

Lecture 2

2. Preliminaries on manifolds

A chart on a topological space M : A pair (U, ψ), here U ⊂ M is an open set, ψ : U → Rn is
a homeomorphism onto its image. Two charts (U1, ψ1), (U2, ψ2) are compatible if ψ1 ◦ ψ−1

2 |im(U1∩U2) :
im(U1 ∩ U2) → Rn is smooth (analytical) mapping. The components of the vector ψ = (ψ1, . . . , ψn)
are called local coordinates on M .

An atlas on a topological spaceM : A collection of pairwise compatible chartsA := {(Uα, ψα)}α∈A
such that M =

⋃
α∈A Uα. Two atlases are equivalent or compatible if . . .

A manifold: A topological space endowed with a class of equivalent atlases.

Example: The sphere S2 with two stereographic projections (from the north and south poles).

A vector bundle E → M over a manifold M : A surjective map π : E → M , here E is a
topological space, such that here is a structure of a vector space on each fiber Ex := π−1(x), x ∈M ,
and there is an atlas A := {(Uα, ψα)}α∈A on M and homeomorphisms Ψα : π−1(Uα) → Uα×Rm with
the properties:

1. the following diagram is commutative

π−1(Uα)
Ψα−→ Uα × Rm

↓ π ↓ π1

Uα = Uα

;

2. the map Ψ̃α,x := Ψα|Ex is a linear isomorphism of the vector spaces Ex and Rm;

3. the collection {(π−1(Uα),Ψα)}α∈A is an atlas on E, in particular Ψα ◦ Ψ−1
β (x, y) = (x, Ψ̃α,x ◦

Ψ̃−1
β,x(y)), x ∈ Uα ∩ Uβ, y ∈ Rm, and the functions Ψ̃αβ,x := Ψ̃α,x ◦ Ψ̃−1

β,x are linear isomorphisms
of Rm which smoothly depend on x ∈M .

The functions Ψ̃αβ,x are called transition functions of the vector bundle. Given the base M and the
collection of transition functions, one can reconstruct the initial vector bundle (up to an isomor-
phism).

A section of a vector bundle E → M : A mapping s : M → E such that π(s(x)) = x for any
x ∈M . The space of sections will be denoted by Γ (E).
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Example 1, the tangent bundle TM
τM−→ M : Let M be a manifold with an atlas A :=

{(Uα, ψα)}α∈A. Put Ψ̃αβ,x :=
∂ψαβ(ϕβ(x))

∂ϕβ
, here ψαβ := ψα ◦ ψ−1

β : Rn → Rn. Below we give an

explicit description of TM .

A tangent vector at x to M : A curve in M is a mapping c : R→M . Two curves c1, c2 such that
c1(0) = c2(0) = x are equivalent at x if the derivatives of the functions f(c1(t)) and f(c2(t)) coincide
at 0 for any f ∈ E(M) (E(M) is C∞(M) or the space of analytic functions on M depending on the
category). Note that c1, c2 are equivalent at x if and only if d

dt
|t=0(ψ

i ◦ c1)(t) = d
dt
|t=0(ψ

i ◦ c2)(t), i =
1, . . . , n, for some (consequently for any) chart (U, ψ) with x ∈ U .

A class v = [c]x of equivalence of curves at x is called a tangent vector at x. We say that
v is tangent to c (and to any other representative of the class) at x. A tangent vector in local
coordinates (ψ1, . . . , ψn) is represented by the n-tuple ( d

dt
|t=0(ψ

1 ◦ c)(t), . . . , d
dt
|t=0(ψ

n ◦ c)(t)), here c
is any representative of the class. Since we can add such n-tuples and multiply them by scalars, the
set of tangent vectors inherits a structure of vector space (which is independent of the choice of local
coordinates). Given two local coordinate systems ψα, ψβ the corresponding n-tuples are related by

d

dt
|t=0(ψ

i
α ◦ c)(t) =

∂ψiαβ(ϕβ(x))

∂ϕjβ

d

dt
|t=0(ψ

j
β ◦ c)(t).

Tangent vectors as differentiations: A differentiation of the ring E(M) at x is a linear mapping
l : E(M) → R such that l(fg) = l(f)g(x) + f(x)l(g), f, g ∈ E(M). Given a tangent vector v at x
which is represented by a curve c, we construct a differentiation ṽ by ṽ(f) := d

dt
|t=0(f ◦ c)(t). It does

not depend on the choice of representative.
Let ψ = (ψ1, . . . , ψn) : U → Rn be local coordinates onM such that ψ(x) = 0. Then c := ψ−1(Li),

where Li is the i-th coordinate line in Rn, gives (a local) curve with c(0) = x. The corresponding
vector is denoted ∂

∂ψi . The vectors (differentiations) ∂
∂ψi , i = 1, . . . , n, form a basis of the vector space

TxM .

A vector field on M : A section of the tangent bundle TM , i.e. a tangent vector v(x) ∈ TxM
(smoothly, analytically) depending on x ∈ M . In a local chart (U, ψ) can be expressed as v(x) =
vi(x) ∂

∂ψi , here vi(x) are functions.

Any vector field v is a differentiation of the ring E(M), i.e. a linear endomorphism of E(M) such
that v(fg) = v(f)g + fv(g), f, g ∈ E(M). In local coordinates (vf)(x) = vi(x) ∂f

∂ψi (x).

The space Γ (TM) of vector fields is a vector field over R and a module over the ring E(M).

The commutator of vector fields on M : Given two differentiations v1, v2 of the ring E(M),
the commutator [v1, v2] := v1v2 − v2v1 is again a differentiation: v1v2(fg) = v1((v2f)g + f(v2)g) =
(v1v2f)g + (v2f)(v1g) + (v1f)(v2g) + f(v1v2g), so [v1, v2](fg) = ([v1, v2]f)g − f([v1, v2]g). In local

coordinates [v1, v2]
i(x) = vj1(x)

∂vi
2(x)

∂ψj − vj2(x)
∂vi

1(x)

∂ψj .

A bivector field on M : A section η of the second exterior power of the tangent bundle
∧2 TM .

Locally η = ηij(x) ∂
∂ψi ∧ ∂

∂ψj .

Example 2, the cotangent bundle T ∗M
πM−→ M : The bundle dual to TM . The transition

functions: Ψ̃−1
αβ,x. We denote by dψ1, . . . , dψn the basis of T ∗xM dual to the basis ∂

∂ψ1 , . . . ,
∂
∂ψn .

A covector field on M (differential 1-form): A section γ of the bundle T ∗M . Locally γ =
γi(x)dψ

i.
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A differential 2-form on M : A section ω of the second exterior power of the cotangent bundle∧2 T ∗M . Locally ω = ωij(x)dψ
i ∧ dψj.

A morphism of vector bundles E1
π1−→ M,E2

π2−→ M over M : A map µ : E1 → E2 such that
the following diagram is commutative

E1
µ−−−→ E2

π1

y
yπ2

M M

and the induced mappings µx : E1,x → E2,x are linear for any x ∈M .

Differential k-forms as morphisms
⊗k TM → M × R: any differential k-form σ can be inter-

preted as such a morphism which is skew-symmetric. In other words, σ is a map form Γ (TM) ×
· · · × Γ (TM) → E(M) which is multilinear over the ring E(M) and skew-symmetric.

The exterior derivative d : Γ (
∧k T ∗M) → Γ (

∧k+1 T ∗M): The Cartan formula gives (dγ)(X,Y ) =
Xγ(Y )−Y γ(X)−γ([X, Y ]), X, Y ∈ Γ (TM) for γ ∈ Γ (TM) and (dω)(X,Y, Z) =

∑
c.p.X,Y,Z Xω(Y, Z)−

ω([X,Y ], Z).

Bivector fields and 2-forms as morphisms: Let η ∈ Γ (
∧2 TM) and γ ∈ Γ (T ∗M). The

contraction γy η =: η(γ) (in the first index) is a vector field defined by v = vj(x) ∂
∂ψj , v

j(x) :=

γi(x)η
ij(x). Since this operation is pointwise it defines a morphism of bundles η] : T ∗M → TM .

Note that it is skew-symmetric, i.e. (η])∗ = −η]. Conversely, given such a morphism, we can
construct a bivector field.

Analogously, a differential 2-form ω defines a skew-symmetric morphism ω[ : TM → T ∗M .
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