Algebraic and geometric aspects of modern theory of
integrable systems

Lectures 5-6

1 Lie—Poisson structures

Definition I: Let (g,[,]) be a finite-dimensional Lie algebra, g* its dual space (space of linear
functionals on g). Given f,g € £(g*) define {f, g}4(z) := (x, [df|s,dg|s]), x € g*. Here we identify
Trg* with g, (,) stands for the canonical pairing between vectors and covectors.

Digression: Let M be a manifold, {,} : £(M) x E(M) — &£(M) a bilinear operation being a
differentiation with respect to each argument: {fg,h} = f{g,h} + g{f,h},{f,gh} = {f,9}h +
{f,h}g. Then it can be shown that there is a tensor n € I'(®*TM) such that {f, g} = n(df,dg).
Let us show this in the case when {, } is skew-symmetric.

Indeed, since {f,-},{g,-} are differentiations they are vector fields, say X, X,. Let f € £(M)
be such that df|, = 0 for some x € M. Then (X¢|,,dgl.) = (Xrg)(x) = {f,9}(x) = {9, f}(z) =
—(Xyf)(x) = —(Xyls,df]s) = 0. Here g € £(M) is arbitrary, hence Xy|, = 0. Thus the map
df|, — Xy, depends only on the value of df at x, i.e. is given by a morphism 7*M — TM.

Definition II: Let (g, [,]) be a finite-dimensional Lie algebra, e, . .., e, € gitsbasis, z1 = eq,..., 2z, =
e, these vectors regarded as linear functions on g* (in particular xy, ..., x, are linear coordinates on
g"). Let [e;, e;] = cfjek (cfj are called the structure constants corresponding to the basis ey, ..., e,).
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FacT. The bivector corresponding to the bracket {, }4 coincides with n,.

Proof Let n = n"(z)2 A £ be the bivector corresponding to {, }4. Take f := x;,g := z;, then
{f,g}(z) = n(z). On the other hand, by Definition I, {f, g}(x) = (z, [z;, ,]) = c}jzr. O
Exercise: 1) Let n € I'(A\*TM), in local coordinates = 7% ()2 A 2-. Show that the JI for

LY Af, 9 =n" (x)g—ai% holds if and only if the expression
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vanishes for all 7,7,k € {1,...,n}. 2) Show that, given 1,{ € I'(\°TM),n = 17”'(35)38& A —

Cij((p)% A %, the expression
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is a local representation of a trivector on M (called the Schouten bracket of n and (). 3) If n =
v A vg, ¢ = wy A we, vy, w; € I'(TM), then

[7], C]S ~ [vl,wl] VAN V2 /\UJQ “+ v N [Ug,wl] N Wo + Vo A\ [Ul,’wg] /\w1 —+ v N w1 VAN [UQ,UJQ].

Here ~ means equality up to a constant.
Proof of the Jacobi identity for the Lie-Poisson structure: [ng,7,]%" = D epiik iy

l»rc;k = 0 for all [,4, 5, k, which is

The last expression vanishes for all 7, j, k if and only if Zc.p.i kG

equivalent to the JI for [,]. O

2 Actions of Lie algebras and symplectic foliations of Lie—
Poisson structures

An action of a Lie algebra g on a manifold: A homomorphism of Lie algebras p : (g,[,]) —
(I'(TM),[,]) (in the target space [,] stands for the commutator of vector fields) is called a (right)
action of g on M.

Orbits of an action p: (g,[,]) — (I'(TM),[,]): Put D, :={p(v)|. |v € g}l,x e M.
FacT. Let g be finite-dimensional. Then the generalized distribution D := {D, }.ep is integrable.

Proof The distribution D is involutive: [p(v), p(w)] = p([v,w]). Thus in the analytic category the
proof follows from the generalized Frobenius theorem (note that in fact the same argument works
for infinite-dimensional g as well). We skip the proof in the smooth case (roughly it consists in
integrating the action of the Lie algebra to a local action of the corresponding Lie group). O

The leaves of the corresponding generalized foliation are called the orbits of the action p. If the
Lie algebra g is finite-dimensional, the action can be ”integrated” to a local action of a Lie group G
such that g is its Lie algebra. Then the orbits of the Lie algebra action and of the Lie group action
coincide.

Linear representations and actions: Let V' be a vector space and A € End(V) a linear operator.
It induces a uniquely defined vector field A on V' given by z +— (z,A4z) : V — V x V = TV. If

e1,...,6, 1s a basis of V, 2, ... 2" the dual basis of V* and Ae; = Aj;e;, we have A = Ajix"%.

Ezercise: The map A — A : End(V) — I'(TV) is an action of the Lie algebra End(V) on V.

Let L:(g,[,]) — (End(V),[,]) be a representation of a Lie algebra g in a vector space V. Then
the map L : g — I'(TM), L(z) := L(x) is an action of g on the manifold V.

The adjoint and coadjoint actions: Let (g, [,]) be a Lie algebra. The homomorphism v — ad, :
g — End(g), where ad,w := [v, w], gives the adjoint representation (of g on g). The corresponding

action z +— ad, : g — I'(Tg) is also called adjoint. The homomorphism v — ad} : g — End(g*),

where ad), is the transposed operator to ad,, and the corresponding action z — ad} : g — I'(T'g*)
are called the coadjoint representation and action, respectively.

The symplectic leaves of the Lie-Poisson structure 7, on g* coincide with the orbits of
the coadjoint action : Indeed, the tangent spaces to symplectic leaves are spanned by the vector
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fields ng(z;) = cfjxk%,i =1,...,n. Since ad,e; = vjck .ex, where v = v’e;, the matrix Ay; of the
operator ad of the adjoint representation is given by Ay = v/ c and that of the coadjoint one by
A = vict cjy,- Hence the tangent spaces to the orbits of the coadJ01nt action are spanned by the vector
fields Cé‘kxiaaTkvj =1,...,n. O

An invariant symmetric bilinear form on (g,[,|): A symmetric bilinear form (,) : g x g — R
satisfying the equality (ad,y, z) = —(y,ad,2) for any z,y, 2z € g.

Fact. Let (,) be a nondegenerate invariant symmetric bilinear form on g. Identify g with g* by
means of the map v — (v, ). Then the adjoint orbits become coadjoint ones under this identification.

Proof Indeed, if A : g — g is a linear operator the transposed operator A* : g* — g* becomes the
adjoint one under this identification: (A*y, z) = (y, Az) for any y,z € g. Thus ad], becomes —ad,.
O

Notations (for the Lie algebras): gl(n,R) := {n x n — matrices with real entries}, sl(n,R) :=
{r € gi(n,R) | Te(z) = 0},50(n,R) = {z € gi(n,R) | = = —2"},5p(m,R) = {x € gi(2n, ) |
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, I, being the identity n X n-matrix. It is easy to see that

x € sp(n,R) if and only if z = , here a,b, c, € gl(n,R),b=b" c=cl.

The sets above are Lie algebras with respect to the commutator of matrices.

Notations (for the Lie Groups): GL(n,R) := {X € gl(n,R) | det X # 0},SL(n,R) :={X €
gl(n,R) | det X = 1},S0(n,R) := {X € gl(n,R) | XX = [,},SP(n,R) := {X € gl(2n,R) |
XJXT = J}. All these sets are groups with respect to the matrix multiplication. It is easy to see
that if z € g, where g is one of the Lie algebras above, then exp(z) € GG, where G is the corresponding
Lie group. Also g = T;G.

The Lie algebras from Examples 1-5, below, have an invariant nondegenerate symmetric form
(x,y) = Tr(zy) by means of which we can make an identification g = g*. The coadjoint orbits are
identified with the adjoint ones, which can be described as the orbits of the corresponding Lie group
with respect to the conjugation of matrices: {XxX ' | X € G},z € g.

Example 1: g := gl(n,R),C,, (9) = Fun(Tr(z), Tr(z?),..., Tr(z")).

Example 2: g := sl(n,R),C,,(9) = Fun(Tr(z?),...,Tr(z")). In particular, for n = 2 we have
a basis e; := e1] — €99, €3 1= €19,69 := €91 and the commutation relations [e1, es] = 2ey, [e1, €3] =
—2es, [e2, €3] = e;. Hence ny = xlaa—m A aa—m + 29326871 A 88 2:1:3% A 4 8 . The Casimir function
Tr(x?) reads as x%/2 + 2xox3. The symplectic leaves are the 1-sheet hyperboloids, sheets of 2-sheet
hyperboloids, two sheets of the cone (without zero) and the point 0.

Example 3: g :=s0(2n,R),C, (g9) = Fun(Tr(z?), Tr(z?) ... Tr(2*""2), Pf(x)).
Example 4: g :=s0(2n+ 1,R),C, (g) = Fun(Tr(2?), Tr(z?) ..., Tr(z*")).
Example 5: g :=sp(n,R),C, (g) = Fun(Tr(2?), Tr(z?) ..., Tr(z)).

Example 6 (the Heisenberg algebra): g := R3 [e1, es] = e3, here ey, €9, €3 is the standard basis

of R®. We have n, = 32 8:61 A (%2 Cy, (9) = Fun(xs), so the coadjoint orbits consist of the planes
{z3 = c},c # 0 and of the points of the plane {z3 = 0}. The adjoint orbits are generated by the
vector fields ¢f; Zaak, where {2’} is the basis dual to {z;}, i. e. by ' 25, 22.2; so they are the lines

parallel to the x3-axis and the points of this axis.
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