
Algebraic and geometric aspects of modern theory of
integrable systems

Lectures 5-6

1 Lie–Poisson structures

Definition I: Let (g, [, ]) be a finite-dimensional Lie algebra, g∗ its dual space (space of linear
functionals on g). Given f, g ∈ E(g∗) define {f, g}g(x) := 〈x, [df |x, dg|x]〉, x ∈ g∗. Here we identify
T ∗

xg∗ with g, 〈, 〉 stands for the canonical pairing between vectors and covectors.

Digression: Let M be a manifold, {, } : E(M) × E(M) → E(M) a bilinear operation being a
differentiation with respect to each argument: {fg, h} = f{g, h} + g{f, h}, {f, gh} = {f, g}h +
{f, h}g. Then it can be shown that there is a tensor η ∈ Γ (

⊗2 TM) such that {f, g} = η(df, dg).
Let us show this in the case when {, } is skew-symmetric.

Indeed, since {f, ·}, {g, ·} are differentiations they are vector fields, say Xf , Xg. Let f ∈ E(M)
be such that df |x = 0 for some x ∈ M . Then 〈Xf |x, dg|x〉 = (Xfg)(x) = {f, g}(x) = −{g, f}(x) =
−(Xgf)(x) = −〈Xg|x, df |x〉 = 0. Here g ∈ E(M) is arbitrary, hence Xf |x = 0. Thus the map
df |x → Xf |x depends only on the value of df at x, i.e. is given by a morphism T ∗M → TM .

Definition II: Let (g, [, ]) be a finite-dimensional Lie algebra, e1, . . . , en ∈ g its basis, x1 = e1, . . . , xn =
en these vectors regarded as linear functions on g∗ (in particular x1, . . . , xn are linear coordinates on
g∗). Let [ei, ej] = ck

ijek (ck
ij are called the structure constants corresponding to the basis e1, . . . , en).

Put ηg := ck
ijxk

∂
∂xi
∧ ∂

∂xj
.

Fact. The bivector corresponding to the bracket {, }g coincides with ηg.

Proof Let η = ηij(x) ∂
∂xi

∧ ∂
∂xj

be the bivector corresponding to {, }g. Take f := xi, g := xj, then

{f, g}(x) = ηij(x). On the other hand, by Definition I, {f, g}(x) = 〈x, [xi, xj]〉 = ck
ijxk. ¤

Exercise: 1) Let η ∈ Γ (
∧2 TM), in local coordinates η = ηij(x) ∂

∂xi
∧ ∂

∂xj
. Show that the JI for

{, }, {f, g} = ηij(x) ∂f
∂xi

∂g
∂xj

holds if and only if the expression

[η, η]ijkS :=
∑

c.p. i,j,k

ηir(x)
∂

∂xr
ηjk(x)

vanishes for all i, j, k ∈ {1, . . . , n}. 2) Show that, given η, ζ ∈ Γ (
∧2 TM), η = ηij(x) ∂

∂xi
∧ ∂

∂xj
, ζ =

ζ ij(x) ∂
∂xi
∧ ∂

∂xj
, the expression

[η, ζ]ijkS :=
1

2

∑

c.p. i,j,k

ηir(x)
∂

∂xr
ζjk(x) + ζ ir(x)

∂

∂xr
ηjk(x)
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is a local representation of a trivector on M (called the Schouten bracket of η and ζ). 3) If η =
v1 ∧ v2, ζ = w1 ∧ w2, vi, wi ∈ Γ (TM), then

[η, ζ]S ∼ [v1, w1] ∧ v2 ∧ w2 + v1 ∧ [v2, w1] ∧ w2 + v2 ∧ [v1, w2] ∧ w1 + v1 ∧ w1 ∧ [v2, w2].

Here ∼ means equality up to a constant.

Proof of the Jacobi identity for the Lie–Poisson structure: [ηg, ηg]
ijk
S =

∑
c.p. i,j,k cl

irxlc
r
jk.

The last expression vanishes for all i, j, k if and only if
∑

c.p. i,j,k cl
irc

r
jk = 0 for all l, i, j, k, which is

equivalent to the JI for [, ]. ¤

2 Actions of Lie algebras and symplectic foliations of Lie–

Poisson structures

An action of a Lie algebra g on a manifold: A homomorphism of Lie algebras ρ : (g, [, ]) →
(Γ (TM), [, ]) (in the target space [, ] stands for the commutator of vector fields) is called a (right)
action of g on M .

Orbits of an action ρ : (g, [, ]) → (Γ (TM), [, ]): Put Dx := {ρ(v)|x | v ∈ g}, x ∈ M .

Fact. Let g be finite-dimensional. Then the generalized distribution D := {Dx}x∈M is integrable.

Proof The distribution D is involutive: [ρ(v), ρ(w)] = ρ([v, w]). Thus in the analytic category the
proof follows from the generalized Frobenius theorem (note that in fact the same argument works
for infinite-dimensional g as well). We skip the proof in the smooth case (roughly it consists in
integrating the action of the Lie algebra to a local action of the corresponding Lie group). ¤

The leaves of the corresponding generalized foliation are called the orbits of the action ρ. If the
Lie algebra g is finite-dimensional, the action can be ”integrated” to a local action of a Lie group G
such that g is its Lie algebra. Then the orbits of the Lie algebra action and of the Lie group action
coincide.

Linear representations and actions: Let V be a vector space and A ∈ End(V ) a linear operator.
It induces a uniquely defined vector field Ã on V given by x 7→ (x,Ax) : V → V × V ∼= TV . If
e1, . . . , en is a basis of V , x1, . . . , xn the dual basis of V ∗ and Aei = Ajiej, we have Ã = Ajix

i ∂
∂xj .

Exercise: The map A 7→ Ã : End(V ) → Γ (TV ) is an action of the Lie algebra End(V ) on V .

Let L : (g, [, ]) → (End(V ), [, ]) be a representation of a Lie algebra g in a vector space V . Then

the map L̃ : g → Γ (TM), L̃(x) := L̃(x) is an action of g on the manifold V .

The adjoint and coadjoint actions: Let (g, [, ]) be a Lie algebra. The homomorphism v 7→ adv :
g → End(g), where advw := [v, w], gives the adjoint representation (of g on g). The corresponding

action x 7→ ãdx : g → Γ (Tg) is also called adjoint. The homomorphism v 7→ ad∗v : g → End(g∗),
where ad∗v is the transposed operator to adv, and the corresponding action x 7→ ãd∗x : g → Γ (Tg∗)
are called the coadjoint representation and action, respectively.

The symplectic leaves of the Lie-Poisson structure ηg on g∗ coincide with the orbits of
the coadjoint action : Indeed, the tangent spaces to symplectic leaves are spanned by the vector
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fields ηg(xi) = ck
ijxk

∂
∂xj

, i = 1, . . . , n. Since advei = vjck
jiek, where v = vjej, the matrix Aki of the

operator adv of the adjoint representation is given by Aki = vjck
ji and that of the coadjoint one by

Aki = vjci
jk. Hence the tangent spaces to the orbits of the coadjoint action are spanned by the vector

fields ci
jkxi

∂
∂xk

, j = 1, . . . , n. ¤
An invariant symmetric bilinear form on (g, [, ]): A symmetric bilinear form (, ) : g × g → R
satisfying the equality (adxy, z) = −(y, adxz) for any x, y, z ∈ g.

Fact. Let (, ) be a nondegenerate invariant symmetric bilinear form on g. Identify g with g∗ by
means of the map v 7→ (v, ·). Then the adjoint orbits become coadjoint ones under this identification.

Proof Indeed, if A : g → g is a linear operator the transposed operator A∗ : g∗ → g∗ becomes the
adjoint one under this identification: (A∗y, z) = (y, Az) for any y, z ∈ g. Thus ad∗x becomes −adx.
¤
Notations (for the Lie algebras): gl(n,R) := {n × n − matrices with real entries}, sl(n,R) :=
{x ∈ gl(n,R) | Tr(x) = 0}, so(n,R) := {x ∈ gl(n,R) | x = −xT}, sp(n,R) := {x ∈ gl(2n,R) |
xJ + JxT = 0}, here J =

[
0 In

−In 0

]
, In being the identity n × n-matrix. It is easy to see that

x ∈ sp(n,R) if and only if x =

[
a b
c −aT

]
, here a, b, c,∈ gl(n,R), b = bT , c = cT .

The sets above are Lie algebras with respect to the commutator of matrices.

Notations (for the Lie Groups): GL(n,R) := {X ∈ gl(n,R) | det X 6= 0}, SL(n,R) := {X ∈
gl(n,R) | det X = 1}, SO(n,R) := {X ∈ gl(n,R) | XXT = In}, SP (n,R) := {X ∈ gl(2n,R) |
XJXT = J}. All these sets are groups with respect to the matrix multiplication. It is easy to see
that if x ∈ g, where g is one of the Lie algebras above, then exp(x) ∈ G, where G is the corresponding
Lie group. Also g = TIG.

The Lie algebras from Examples 1-5, below, have an invariant nondegenerate symmetric form
(x, y) = Tr(xy) by means of which we can make an identification g ∼= g∗. The coadjoint orbits are
identified with the adjoint ones, which can be described as the orbits of the corresponding Lie group
with respect to the conjugation of matrices: {XxX−1 | X ∈ G}, x ∈ g.
Example 1: g := gl(n,R), Cηg(g) = Fun(Tr(x), Tr(x2), . . . , Tr(xn)).

Example 2: g := sl(n,R), Cηg(g) = Fun(Tr(x2), . . . , Tr(xn)). In particular, for n = 2 we have
a basis e1 := e11 − e22, e2 := e12, e2 := e21 and the commutation relations [e1, e2] = 2e2, [e1, e3] =
−2e3, [e2, e3] = e1. Hence ηg = x1

∂
∂x2

∧ ∂
∂x3

+ 2x2
∂
∂x1

∧ ∂
∂x2

− 2x3
∂
∂x1

∧ ∂
∂x3

. The Casimir function

Tr(x2) reads as x2
1/2 + 2x2x3. The symplectic leaves are the 1-sheet hyperboloids, sheets of 2-sheet

hyperboloids, two sheets of the cone (without zero) and the point 0.

Example 3: g := so(2n,R), Cηg(g) = Fun(Tr(x2), Tr(x4) . . . , Tr(x2n−2), Pf(x)).

Example 4: g := so(2n + 1,R), Cηg(g) = Fun(Tr(x2), Tr(x4) . . . , Tr(x2n)).

Example 5: g := sp(n,R), Cηg(g) = Fun(Tr(x2), Tr(x4) . . . , Tr(x2n)).

Example 6 (the Heisenberg algebra): g := R3, [e1, e2] = e3, here e1, e2, e3 is the standard basis
of R3. We have ηg = x3

∂
∂x1

∧ ∂
∂x2

, Cηg(g) = Fun(x3), so the coadjoint orbits consist of the planes
{x3 = c}, c 6= 0 and of the points of the plane {x3 = 0}. The adjoint orbits are generated by the
vector fields ck

ijx
i ∂
∂xk , where {xi} is the basis dual to {xi}, i. e. by x1 ∂

∂x3 , x
2 ∂

∂x3 , so they are the lines
parallel to the x3-axis and the points of this axis.
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