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0.1 Intro

Principles

1. Lorentz invariance: determines (uniquely) group structure of the theory

2. gauge symmetry: necessary ingredient of the construction of Lagrangians – removes negative

norm states from non-trivial Lorentz oscilators

3. free particles corresponds to oscilator (Heisenberg) algebra = Lagrangians quadratic in fields

4. part. and anti-part. are necesssary for (Wick rot.) ...???

5. interaction: perturbation of the free propagation

6. the interesting physics follows from the detailed analysis of the above principles.

d̃k ≡ d-3k/2ωk, ωk =
√
~k2 +m2, kx ≡ k0x

0 − ~k~x ,
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Chapter 1

Classical Fields

1.1 General properties

1.1.1 Lorentz tensors

https://en.wikipedia.org/wiki/Lorentz_transformation

ΛR = exp{i/2ωµνT µνR } (1.1.1)

1. scalar: φ′ = φ.

2. vector: v′µ = Λµ
νv

ν , v′µ = vν(Λ
−1)νµ

3. second rank tensor: t′µν = Λµ
ρΛ

ν
σt
ρσ

4. scalars: vνvµ, tρσtρσ

WARNING. Position xµ is not a Lorentz tensor. It transforms under full Poincare group as follows:

x′µ = Λµ
νx

ν + aµ. According to (1.1.1) the metric η does not transform under Lorentz group i.e. it is a

scalar.

With the help of the metric η we can define quantities with the lower indices e.g. co-vectors: vµ ≡
ηµνv

ν . Transformation properties of these quantities are according to the above definition.

So: v′µ = ηµνv
′ν = ηµνΛ

ν
ρη
ρσvσ = vρ(Λ

−1)ρµ.
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1.1.2 Fields

Scalar field has the same value in two coordinate systems related by x′ = Λx

φ′(x′) = φ(x),→ φ′(x) = φ(Λ−1x) [= exp{i/2ωµνT µν∞ }φ(x)]

Vector, rep. R fields

(V ′)µ(x′) = Λµ
νV

ν(x) (1.1.2)

(V ′)µ(x′) = (ηΛ)µνV
ν(x) = (ηΛη−1)µ

νVν (1.1.3)

Ψ′R(x′) = exp{ i2 ωµνT
µν
R }ΨR(x) (1.1.4)

1.1.3 Variational principle

We mimic class. mechanics

1.1.3.1 ACTION AND VARIATIONAL PRINCIPLE are maps from spacetime M = V × [ti, tf ] to a

space of fields i.e. φ : x→ φ(x).

Action is a functional of fields represented as integral of Lagrangian density L .

S[φ] =

∫ tf

ti

L[φ] =

∫
MV

d4x L(φ, ∂µφ, x) (1.1.5)

The volume M = V × [ti, tf ] where V is the space-like manifold.

Variation of S.

δS[φ] ≡ S[φ+ δφ]− S[φ] = O((δφ)2) for φ = φcl (1.1.6)

The variations of fields are such that δφ(ti) = δφ(tf ) = 0.

Under this circumstances (1.1.6) is equivalent to classical equations of motion (Euler-Lagrange

equations). 1

∂µ
∂L

∂(∂µφa)
− ∂L
∂φa

= 0 (1.1.7)

with some boundary conditions and initial-final conditions φ(t0, ~x ) = φ0(~x ), φ(tf , ~x ) = φf (~x ) .

1 The index a shows different species of fields φ. We shall usually suppress this index.

5



1.1.3.2 S MUST BE ... In particle physics applications S must respect certain requirements:

1. S =
∫
M4 d

4x L(φ(x), ∂µφ(x))

2. real S∗ = S

3. S is Poincare inv.

(a) no external sources i.e. ∂µL = 0

(b) relativistic theories we require L (as a function of φ, ∂µφ ) to be Lorentz invariant: L′ ≡
L(φ′(x), ..) = L(φ(y), ...), where y = Λ−1x.

(c) No boundaries

4. By quantum theory (renormalizability, unutarity):

(a) contains canonical kinetic terms e.g. (∂µφ)2

(b) only spin 0, 1/2, 1 fields

(c) polynomials in fields

(d) up dim. 4 "operators".

S can be invariant under actions of some groups farther on called symmetry groups of the model

given by L .

L = 1
2 (∂µφ

T∂µφ−m2φTφ), φ ∈ Rn, G = O(n) (1.1.8)

L = (∂µφ
+∂µφ−m2φ+φ), φ ∈ Cn, G = U(n) −→ Ge = O(2n) (1.1.9)
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1.2 Free fields

1.2.1 Scalars

Free real scalar: L = 1
2 [(∂µφ)2 −m2φ2]→ (∂µ∂

µ +m2)φ = 0

φ(x) =
∫
d-4k φke

−ikx is solution iff (κ2 −m2)φk = 0→ φk = 2πδ(k2 −m2)φ̃k.

k2 = m2 – is the dispersion relation as for particle of the mass m,→ k0 = ±ωk, ωk =
√
~k2 +m2.

φ(x) =

∫
d-4k 2πδ(k2 −m2)φ̃ke

−ikx=

∫
d̃k [φ̃ke

−ikx|k0=ωk + φ̃ke
−ikx|k0=−ωk ]

=

∫
d̃k [a(~k)e−ikx + a∗(~k)eikx]|k0=ωk (1.2.1)

Free complex scalar:

L = ∂µφ
∗∂µφ−m2φ∗φ→ (∂µ∂

µ +m2)φ = 0→ φ(x) =

∫
d̃k [a(~k)e−ikx + b∗(~k)eikx]|k0=ωk (1.2.2)

Both terms depends on kx ≡ k0x
0 − ~k~x i.e. represent waves going along ~k i.e. have momentum ~k.

1.2.2 Teoria Maxwella – Vector fields

1.2.2.1 MAXWELL EQUATIONS

∇ ~B = 0, ∇× ~E = −∂
~B

∂t
(1.2.3)

∇ ~E = ρ, ∇× ~B = ~J +
∂ ~E

∂t
(1.2.4)

1.2.2.2 POTENTIALS, GAUGE INVARIANCE, FIELD-STRENTH TENSOR Eq.(1.2.3) implies existence

of the vector potential ~A such that ~B = ∇× ~A so ~E = −∂ ~B
∂t

is ∇× ( ~E + ∂ ~A
∂t

) = 0, what implies exis-

tence of the scalar potential A0 (sometimes denoted by ϕ) such that ~E + ∂ ~A
∂t

= −∇A0. We introduce the

4-potential Aµ = (A0,− ~A). The potentials Aµ are called gauge fields.

1.2.2.3 GAUGE INVARIANCE Under substitution:

Aµ → Aµ + iU∂µU
−1, U = eiχ. (1.2.5)

the field-strengths ~E, ~B do not change. If χ is well defined (see monopole) then: Aµ → Aµ + ∂µχ i.e.
~A→ ~A−∇χ, A0 → A0 + ∂tχ.
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1.2.2.4 TENSOR F AND ITS DUAL

Fµν = ∂µAν − ∂νAµ. (1.2.6)

so F0i = Ei, Fij = F ij = −εijkBk. Notice that εµνρσ∂µFνρ = 0.

F is the fild-strength tensor, such that F0i = Ei, Fij = −εijkBk.

Lorentz: (F ′)µν(x′) = Λµ
ρΛ

µ
σ F

ρσ(x) (1.2.7)

e.g. motionless charge produces (E 6= 0, B = 0) while in rationing frame we here both (E 6= 0, B 6= 0).

L = −1

4
F 2 − AµJµ (1.2.8)

The Euler-Lagrange eqs. for this L leads to Maxwell eqs. (1.2.9) with Jν = (ρ, ~J).

∂µF
µν = Jν , (1.2.9)

e.g. ν = 0, ∂iF i0 = ρ,→ ∂iE
i = ρ

1.2.2.5 GENERAL FREE FIELD In the Lorentz gauge ∂µAµ = 0 Maxwell eq. are ∂2Aµ = jµ.

General solution for free eq. is:

Aµ(x) =

∫
d̃k

3∑
s=1

[εsµ(k)as(k)e−ikx + h.c.] (1.2.10)

where {εsµ(k)} are fixed three orthonormal (εs(k) · εr(k) = δrs) 4-vectors in M4 such that kµεsµ(k) = 0.

Residual gauge freedom δAµ = ∂µχ with ∂2χ = 0 says that we have freedom to remove one more

polarization along kµ: δ
∑
εsµ(k)as(k) = kµχ(k).

Aµ(x) =

∫
d̃k

2∑
s=1

[εsµ(k)as(k)e−ikx + h.c.] (1.2.11)

1.2.3 Massive electrodynamics : Static potential

L = −1/4 F 2 − jA+ 1
2 m

2A2
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e.o.m.

∂µF
µν +m2Aν = jν

imply ∂µAµ = 0 thus eom is (∂2 +m2)Aν = jν . Free sol. are (1.2.10).

Potential of static point-like charge j0 = q δ(3)(~x− ~y):

(−∆ +m2)A0(~x− ~y) = q δ(3)(~x− ~y)⇒ (~k2 +m2)A0(k) = q ⇒ A0(~x− ~y) = q

∫
d-3k

e−i
~k~r

~k2 +m2

~r = ~x − ~y, k = |~k|, d3k = k2 dkdΩ2
2,

∫
dΩ2

2 =
∫ 2π

0
δϕ
∫ π

0
sin(θ)dθ =

∫ 2π

0
δϕ
∫ 1

−1
d(ξ = cos(θ)),

~k~r = kr cos(θ),
∫ 1

−1
dξe−ikr ξ = 1

−ikr (e
−ikr − eikr)

A0(~x−~y) = q (2π)−3·2π·1
r
i (1

2

∫ ∞
−∞
dk)

k(e−ikr − eikr)
k2 +m2

=
q

2(2π)2r
(− d

dr

∫
eikr + e−ikr

k2 +m2
) =

q
4π

e−mr

r

2 Potential of static particle: see Sec.1.2.3.

2 ∫∞
−∞dk

k

k2 +m2︸ ︷︷ ︸
poles at k=±im

( e−ikr︸ ︷︷ ︸
=(k)<0

− eikr︸︷︷︸
=(k)>0

) can be really done due to Jordan’s lemma.

9



1.2.4 Spinors for fermions

Electron has spin. Stern-Gerlach. su(2) vs. so(3)

1.2.4.1 LORENTZ VS. SL(2,C) we define

SL(2,C) = {U ∈Mat(2× 2,C), det(U) = 1} (1.2.12)

SL(2,C) is double cover of SO↑+(1, 3): U = ±1→ Λ = 1.

One can show that (see below) (σµ = (1, ~σ))

U+ σµ U = Λµ
νσ

ν , Λ ∈ SO↑+(1, 3) (1.2.13)

Taking U = eα, α = αiσ
i, αi ∈ C we get relation between Lie algebras

α+σµ + σµα = iT µνσ
ν (1.2.14)

1.2.4.2 TWO EMBEDDING OF M4 → HERMITIAN MAT(2× 2,C)

xµ → X = xµσµ, σµ = (1,−~σ) = σ µ (1.2.15)

xµ → X = xµσ µ, σ µ = (1, ~σ) = σµ, (1.2.16)

σ µ = σ2σ∗µσ
2 (1.2.17)

space-time distance hermiticity

det(X2) = det(X 2) = (xµ)2, X+ = X, X + = X (1.2.18)

Transformations preserving space-time distance and hermiticity. Let UL, UR ∈ SL(2,C).

X = U+
R X

′ UR ⇒ det(X2) = det(X ′2)⇒ |detUR| = 1 (1.2.19)

X = U+
LX

′UL

Relation to Lorentz: X = U+
R X

′ UR ↔ σµx
µ = (U+

R σµ UR) Λµ
νx

ν

⇒ (U+
R σ

µ UR) = Λµ
νσ

ν , (U+
L σ

µ UL) = Λµ
νσ

ν , (1.2.20)

⇒ UL = σ2U∗Rσ
2, UL U

+
R = 1 (1.2.21)

UR, UL are two inequivalent (but conjugate) reps of SL(2,C).
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1.2.4.3 WEYL SPINORS

• Space of left-spinors SL = {ψ′L(x′) = ULψL}, right-spinors SR = {ψ′R(x′) = URψR},

• Conjugate spinor : (ψL)C ≡ iσ2ψ∗L ∈ SR, (ψR)C ≡ −iσ2ψ∗R ∈ SL

• the relative sign sets→ see charge conjugation

1.2.4.4 DIRAC EQ. (∂ ≡ σ µ∂µ): ∂ ψL ∈ SR, ∂ψR ∈ SL

i∂ ψL −mχR = 0

i∂χR −mψL = 0

Eq. for 2 independent spinors - is has U(1) in-

variance: ψL → eiαψL, χR → e−iαχR

1.2.4.5 DIRAC-MAJORANA EQ.

i∂ ψL −mχR −m1(ψL)C = 0

i∂χR −mψL −m2(ψR)C = 0 (1.2.22)

1.2.4.6 γ-AMMAS Minkowski metric (1,−1,−1,−1)

.{γµ, γν} = 2ηµν , (γi)† = −γi , (γ0)† = γ0 (1.2.23)

γµ =
(

0 σµ

σ µ 0

)
= (iσ2 ⊗ 1, σ1 ⊗ σi), γ5 = iγ0γ1γ2γ3 =

(−1 0
0 1

)
σµν = (σµν) β

α =
i

4
(σµσ ν − σνσ µ), σ µν = (σ µν)α̇

β̇
=
i

4
(σ µσν − σ νσµ)

Lorentz

Mµν
S =

i

4
[γµ, γν ] =

(
σµν 0
0 σ µν

)
, [Mµν

S , γρ] = −(Mµν
V )ρσγ

σ

(γ0U+γ0)γµU = Λµ
νγ

ν , U = ei/2ωµνM
µν
S =

(
UL 0
0 UR

)
, Λ = ei/2ωµνM

µν
V

1.2.4.7 DIRAC FIELD

ψ =
(ψL
χR

)
, ψL = 1

2 (1− γ5)ψ (1.2.24)

ψ′(x′) = Uψ(x), ∂′µγ
µψ′ = U∂µγ

µψ, ψ ≡ ψ†γ0, ψ
′
(x′) = ψ U−1
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(i∂/−m)ψ = 0, Dirac eq., ψ(x) =

∫
d̃k [bskus(k) e−ikx + (dsk)

†vs(k)eikx]|k0=ωk (1.2.25)

(p/−m)us(p) = 0, (p/+m)vs(p) = 0, s = 1, 2 (1.2.26)

ūs(p)ur(p) = 2mδsr, v̄s(p)vr(p) = −2mδsr, ūs(p)vr(p) = 0,∑
s usūs = p/+m ≡ 2mΛ+,

∑
s vsv̄s = p/−m ≡ −2mΛ−

I/Z 2.2.1. [] 3 General solution 4

1.2.4.8 LORENTZ TENSORS ψ γµν...ψ.

1.2.4.9 RIGHT– AND LEFT– HANDED FERMIONS

It is convenient to define the helicity projectors:

PL ≡
1

2
(1− γ5) , PR ≡

1

2
(1 + γ5) , (1.2.27)

which satisfy the usual properties of projection operators,

PL + PR = 1 , , PR PL = PL PR = 0 , , P 2
L = PL , , P 2

R = PR .

For the conjugate spinors we have,

ψ̄L = (PLψ)†γ0 = ψ†P †Lγ0 = ψ†PLγ0 = ψ†γ0PR = ψ̄PR

ψ̄R = ψ̄PL .

Let us make some general remarks. First of all, we should notice that fermion mass term mixes right–

and left–handed fermion components,

ψ̄ψ = ψ̄RψL + ψ̄LψR . (1.2.28)

On the other hand, the electromagnetic (vector) current, does not mix those components, i.e.

ψ̄γµψ = ψ̄Rγ
µψR + ψ̄Lγ

µψL . (1.2.29)

Finally, the (V − A) fermionic weak current can be written in terms of the helicity states as,

ψ̄Lγ
µψL = ψ̄PRγ

µPLψ = ψ̄γµP 2
Lψ = ψ̄γµPLψ =

1

2
ψ̄γµ(1− γ5)ψ , (1.2.30)

what shows that only left–handed fermions play a rôle in weak interactions.

3 (p/−m)Λ+ = 0→ Λ+ = a0(p/+m)+a5(p/+m)γ5, Λ+(p/−m) = 0→ Λ+ = a0(p/+m), Λ2
+ = Λ+ → a0 = 1/(2m).

4 With the above normalization of spinors we get CCR for b, d operators as in Itzyskon/Zuber 3.3.
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Chapter 2

Quanta

2.1 Free Quantum Fields

2.1.1 Basics of quanta

Formalizm kanoniczny mech.klasycznej

p =
∂L(q, q̇)

∂q̇
, {q, p}PB = 1, H(q, p) = pq̇ − L, eq.m. ḟ(q, p) = {f,H} (2.1.1)

de Broigle λ = h
p
→ ,free particle is e−iEt+~p~x, E = E(k)- zwiazek dyspersyjny.

Formalizm kanoniczny mech.kwantowej

p =
∂L(q, q̇)

∂q̇
, [q, p] = i, iȮ = [O, H] → O(t) = eiHtO(0)e−iHt

q, p,H, ... are operators on a Hilbert spaceH.

〈ψ|O(t)|ψ′〉 = 〈ψ(t)|O(0)|ψ′(t)〉 (2.1.2)

where Schrodinger eq. i∂t|ψ(t)〉 = H(p, q)|ψ(t)〉 i.e. |ψ(t)〉 = e−iHt|ψ(0)〉.

2.1.2 Free scalar field – can.quant.

Heisenberg,Dirac→ quantized field is someting completely different then classical field (relation A.2.1.3)

Φ = Φcl+φq particle interpretation comes form the dispertion relation ( we shall operate with completely
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unlocalized waves)

2.1.2.1 REAL FIELD

• Plane waves. Czastki i antyczastki (r.Kleina-Gordona)

L0 = 1
2 [(∂µφ)2 −m2φ2] E.o.m. (∂2 +m2)φ = 0. (2.1.3)

Eq.m. solves (see (1.2.1))

φ(x)=

∫
d̃k [a(~k)e−ikx + a∗(~k)eikx]|k0=ωk , d̃k ≡ d-3k/2ωk (2.1.4)

• Canonical momentum:

π(x)
df
=

∂L
∂(∂tφ)

= ∂tφ (2.1.5)

• Canonical commutation relation:

[φ(~x ′, t), π(~x, t)] = iδ(3)(~x ′ − ~x) (2.1.6)

• Rep. φ(~x , t) = δ
δφ(~x ,t)

.→ Schrodinger eq. (see A.2.1.2)→ not GOOD.

• Creation, annihilation operators

φ(x)=

∫
d̃k [a(~k)e−ikx + a†(~k)eikx]|k0=ωk , a(~k) = eiωkt

∫
d3x (iπ(x) + ωkφ(x))e−i

~k~x

[a(~k), a†(~k ′)] = δ̃(k − k′), [a, a] = 0, δ̃(k − k′) ≡ 2ωk (2π)3δ(3)(~k − ~k ′) (2.1.7)

• Hamiltonian: classical

Tµν =

∫
d3x (∂µφ∂νφ− ηµνL) , ∂µT

µν = 0 (2.1.8)

conserved charges Pµ =

∫
d3x (π∂µφ− η0µL)

H =

∫
d3x (π∂0φ− L) =

∫
d3x1

2 [π2 +m2φ2 + (∇φ)2] (2.1.9)

? ∂tH0 = 0 []. Quantum

H0 = 1
2

∫
d̃k ωk[a

†(k)a(k) + a(k)a†(k)] (2.1.10)

Momentum operator: ~P =
∫
d̃k ~k a†(k)a(k) and the particle number operator: N =

∫
d̃k a†(k)a(k)

so that a†(k)a(k) is the density of states.
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• Interpertation.

[P µ, a(k)] = −kµ a(k), [P µ, a†(k)] = kµ a†(k), k0 = ωk (2.1.11)

thus if H0|ψ〉 = E|ψ〉 then a(k)|ψ〉 has energy (E − ωk), and a†(k)|ψ〉 has energy (E + ωk). We

say that the state a(k)|ψ〉 has one particle of momentum kµ less than |ψ〉 and the state a†(k)|ψ〉
has one particle of momentum kµ more than |ψ〉.

The requirement that H0 is bounded from below implies that there exists a (unique) state of the least

energy (ground state, vacuum state: |0〉) which does not contain any particle so it is annihilated by a(k):

a(k)|0〉. We assign to it null energy: H0|0〉 = 0. In order be in agreement with (2.1.10) we have to

redefineH0: we normal order it. The procedure applied to any operator amounts to flip positions of a, a†

in such a way that a† will stand in the leftmost position. Normal ordering is denoted by double dots e.g.

: A :. Thus the normal ordered Hamiltonian is

: H0 : =

∫
d̃k ωk a

†(k)a(k) (2.1.12)

In fact : H0 : differs from H0 by an infinite constant which originates from (2.1.6).

2.1.3 Time indep. states - Fock space.

The eigenstates of : H0 : are:

• vacuum state: |0〉,

• one particle states of momentum ~k :|k >= a†(k)|0〉. These are normalized as follows: 〈k′|k〉 =

δ̃(~k ′ − ~k) i.e. the normalization is different than in non-relativistic quantum mechanics (!!!) - the

r.h.s. of the last formula is Lorentz invariant.

• two particle states: |k1, k2 >= 1
2 a
†(k2)a†(k1)|0〉, (1

2 due to two identical particles)

• etc.

2.1.3.1 COMPLEX FIELD .

L0 = |∂µφ|2 −m2|φ|2 (2.1.13)

φ(x) =

∫
d̃k [a(~k) e−ikx + b† (~k)eikx]|k0=ωk (2.1.14)

P µ =

∫
d̃k kµ[a†a+ b†b] (2.1.15)
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Notice that the 4-momentum of the state b† is k and not −k what naively could be inferred from the

wave-function standing by b† in (2.1.14).

2.1.3.2 CHARGE.??? The Hamiltonian for charged particles H0 = a†iai + b†ibi has an extra sl2
symmetry algebra: J0 = a†iai − b†ibi , J+ = a†ibi, J

− = b†iai. J
0 is the charge ! For free theory the

charge, and exchange of particle for anti-particle does not change the results! If this would be exact

symmetry of the theory and we could work with finite reps. of the algebra we would have quantized

charge (by reps of sl2). For interaction theory we must work with infinite rep. of this algebra so there is

no bound on possible charges.

2.1.4 Fermions

[A,BC]#BC = [A,B]#BC + (−1)#BB[A,C]#C

2.1.4.1 DIRAC

ψ(x) =
2∑
s=1

∫
d̃k
[
us(k)bs(k)e−ikx + vs(k)ds+(k)eikx

]
(2.1.16)

{bs(k), br+(k′)} = δrsδ̃(k − k′), ...etc. (2.1.17)

{bs(k)+, ψ(x)} = us(k)e−ikx, {bs(k), ψ(x)} = 0 (2.1.18)

{ds(k)+, ψ(x)} = 0, {ds(k), ψ(x)} = vs(k)eikx (2.1.19)

propagator 〈0|Tψ(x)ψ (y)|0〉 =

∫
i( /k +m)

k2 −m2 + iε
e−ik(x−y) (2.1.20)

2.1.4.2 WEYL, MASSLESS LEFT NEUTRINO As above but m→ 0, spin s = 1 only. Propagator has

an extra PL = (1− γ5)/2.

2.1.5 Gauge fields

Quantum field

Aµ(x) =
∑
s

∫
d̃k [εsµ a

s(k)e−ikx + εi∗µ a
s+(k)eikx], (2.1.21)
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[as+A (k), Aµ(x)] = εsA,µ(k)e−ikx , photon, Z

[as+W (k),W+
µ (x)] = εsW,µ(k)e−ikx, [asW (k),W+

µ (x)] = 0

[bsW (k)+,W−
µ (x)] = εs∗W,µ(k)eikx , [bs+W (k),W+

µ (x)] = 0

〈0|TAµ(x)Aν(y)|0〉 =
∫
d-4k
−i(ηµν − kµkν/k2)

k2
e−ik(x−y) massless ∂µAµ = 0

〈0|TAµ(x)Aν(y)|0〉 =
∫
d-4k
−i(ηµν − kµkν/M2)

k2 −M2
e−ik(x−y) massive, unitary gauge = no GB

(2.1.22)
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2.2 Interacting QF – Feynman diagams

2.2.1 Evolution operator

We are interested in the evolution of the physical states in the interacting theory:

H = H0 +HI

Hamiltonian is time-independent for all isolated systems of intererst here.

Schroedinger eq. i∂t|ψ(t)〉 = H|ψ(t)〉 implies that the evoluton operator U(t, t′)

state |ψ(t)〉 = U(t, t′)|ψ(t′)〉, U(t, t) = 1

operator O(t) = U(t, t′)O(t′)U(t, t′)+

i∂tU(t, t′) = H U(t, t′) U(t, t′) = e−iH(t−t′) = U(t)U+(t′) (2.2.1)

H is time independent so e.g. for the scalar theory is given by (2.1.9) with φ = φ(0, ~x ).

2.2.1.1 SCATTERING MATRIX We scatter some particles in full, interacting theory. We assume that

at t′ → −∞ (the incomeing state) evolves as free state of interest U0(t′)|ψi〉 (see Sec.2.1.3):

|ψ(t′)〉 t′→ −∞−→ |ψi(t′)〉 = U0(t′)|ψi〉. (2.2.2)

Fot t > t′ if evolves as: |ψ(t)〉i = U(t, t′)|ψ(t′)〉. Now we send t → ∞ and ask about the transition

amplitude |ψi〉 → |ψf〉 (also called scattering amplitude):

lim
t→∞

< ψf (t)|ψ(t)〉i = lim
−t′, t→∞

〈ψf |U+
0 (t)U(t, t′)U0(t′)|ψi〉 (2.2.3)

The quantity U+
0 (t)U(t, t′)U0(t′) ≡ UI(t, t

′) is called evolution operator in the interacting picture (index

I). It respects

i∂tUI(t, t
′) = H

(I)
I (t) UI(t, t

′) (2.2.4)

where H(I)
I (t)

df
= U+

0 (t) HI U0(t). Notice that for HI = 0, UI = 1, UI(t, t) = 1.

IMPORTANT: Although H is time independent H(I)
I (t) depends on time throught all fields which

are subject to FREE evolution by U0(t) i.e. they are free fields !!!

U+
0 (t)φ(x, 0)U0(t) = φ(x, t).
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? Do U+
0 (t)φ(x, 0)U0(t) = φ(x, t). Be careful: U0(t) = e−itH0 not : e−itH0 :. The latter does not give the

correct evolution of states. []

♣ CCR for free fields are invariant under any evolution φ(t) = Uany φ(0)U−1
any: the a, a+ are time independent.

S is not normal ordered: i.e. 〈0|S|0〉 is non trivial. ♣

2.2.1.2 PERTURBATIVE SOLUTION Formally we can integrate (2.2.4)

UI(t, t
′) = 1− ig

∫ t

t′
dt H

(I)
I (t1)U(t1, t

′) (2.2.5)

Perturbation series

U
(0)
I (t, t′) = 1

U
(1)
I (t, t′) = 1− i

∫ t

t′
dt1 H

(I)
I (t1)

U
(2)
I (t, t′) = 1− i

∫ t

t′
dtH

(I)
I (t1)[1− i

∫ t1

t′
dt2 H

(I)
I (t2)︸ ︷︷ ︸∫ t

t′ dt2 H
(I)
I (t2)θ(t1−t2)

] (2.2.6)

If we denote U(t, t′) = 1 +
∑

n=1 u
(n) then

u(n) = (−i)n
∫ t

t′
dt1

∫ t

t′
dt2 . . .

∫ t

t′
dtn θ(t1 − t2)θ(t2 − t3) . . . θ(tn−1 − tn)H

(I)
I (t1) . . . H

(I)
I (tn)

(2.2.7)

=
(−i)n

n!
(
n∏
k=1

∫ t

t′
dtk)T (H

(I)
I (t1) . . . H

(I)
I (tn)) (2.2.8)

e.g. u(2) = (−ig)2
2

∫
dt1dt2[θ(t1 − t2)H

(I)
I (t1)H

(I)
I (t2) + θ(t2 − t1)H

(I)
I (t2)H

(I)
I (t1)] changing 1↔ 2 the

second term eqauls the first one thus we get (2.2.7).

Because we calculate momenta from the free theory then HI = −LI .

u(n) =
in

n!
(
n∏
k=1

∫
d4xk)T (LI(x1) . . .LI(xn)) (2.2.9)

We are interested in evolution from t′ = −∞ to t =∞ then

U(t, t′)→ S = TeiSI [φ] (2.2.10)

♣ No normal ordering of HI ♣

Si→ f = 〈f |Te iSI [φ] |i〉 (2.2.11)
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2.2.1.3 PROBLEMS OF (2.2.11) (a) Haag’s theorem. Expression (2.2.11) assumes that non-interacting

multi-particle states at asymptotic times can be unitarily related to interacting states at finite times. This

is problematic by Haag’s theorem, which states that, under reasonable assumptions, the Hilbert spaces

for interacting and non-interacting theory belong to unitarily inequivalent representations of the canoni-

cal (anti-)commutation relations. Thus a unitary S-matrix operator that transforms non-interacting states

into interacting states does not exist (Duncan 2012, pp. 359–370).

→ This can be repaired pragmatically by introducing renormalization constants for incomeing (i)

and outgoing states (f), e.g. instead of (2.2.2)

|ψ(t′)〉 t′→ −∞−→ Zi|ψi(t′)〉. (2.2.12)

(b) UV (ultra-violet) Problem. For many of the types of interacting QFTs of interest, the terms in the

power series (1) diverge. UV vs. IR divergences. → Renormalization needed.

(c) Convergence Problem. For the types of interacting QFTs of interest, there is a consensus that the

power series (1) does not converge. → Non-perturbative contributions→ ?
∫
e−x

2−λx4 [].
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2.2.2 Feynman rules

2.2.2.1 SCALAR THEORY We would like to calculate scattering 1 + 1→ 1 + 1

〈k1, k2|TeiSI |p1, p2〉 = 〈0|a(k1)a(k2)(1 + iSI +
i2

2
T (SI)

2 + . . .)a†(p1)a†(p2)|0〉 (2.2.13)

in e.g. L = (∂µφ∂
µφ∗ −m2φφ∗)− λ

4
(φφ∗)2 → LI = −λ

4
(φφ∗)2.

We need to commute a(k), ... to the other side of the expression. We write 〈0| a(k2) E|0〉 = 〈0|[a(k2), E ] |0〉.
Then we use the fact that the commutator defines differentation

[A,BCD...] = [A,B]CD...+B[A,C]D...+

(and similarly for [BCD..., A] = [B,A]CD...+) thus ak act on each term of the E as diff. according to

(2.2.14).

Free the field φ(x) =
∫
d̃k[a(k)e−ikx + b†(k)eikx] we need

[ak, φ
†(x)] = eikx = [bk, φ(x)], [ak, φ(x)] = 0 = [b+, φ(x)], (2.2.14)

[ak, a
†
p] = δ̃kp and the same for b, b†. δ̃kp means that k = q i.e. this particle does not interact: we dismiss

these contributions.

←(?)they factorize into I⊗ ...

The firs non-trivial contribution comes from

〈0|a(k1)a(k2)

(
i
λ

4

∫
d4xφ2(φ†)2(x)

)
a†(k1)a†(k2)|0〉 (2.2.15)

The only diagram which takes into account interaction between particles is 2 . It gives

iλ

∫
d4xeix(k3+k4−k1−k2) = (2π)4δ(4)(k1 + k2 − k3 − k4) iλ (2.2.16)
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Example: φ3 theory.

LI =
λ

2
[(φ∗1)2φ2 + (φ1)2φ∗2]

1 + 1→ 1 + 1 is easy because there is only two diagrams with propagator.

〈k1, k2|TeiSI |p1, p2〉 = 〈0|a(k1)a(k2)(1 + iSI +
i2

2
T (SI)

2 + . . .)a†(p1)a†(p2)|0〉 (2.2.17)
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2.2.2.2 FEYNMAN PROPAGATOR

〈0|Tφ(x)φ†(y)|0〉 =

∫
d̃k d̃q〈0| aka†q e−ikx+iqyθ(x0 − y0) + bqb

†
k e
−iqy+ikxθ(y0 − x0)|0〉

=

∫
d̃k (e−ik(x−y)θ(x0 − y0) + eik(x−y)θ(y0 − x0)) =

∫
d-4k

i

k2 −m2 + iε
e−ik(x−y) (2.2.18)

? Show that

(∂2
x +m2)G(x− y) = δ(4)(x− y), where G(x− y) ≡ i〈0|Tφ(x)φ†(y)|0〉 (2.2.19)

by simple differentiation !!! (see also ??) [] Time-dependent Green’s functions: [2].

Propagators: Description of different Greens functions: Greiner, Field quantization,4.4-6, 9.2. Bo-

golubov, Shirkov, sec.16.
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Chapter 3

Standard model and beyond

3.1 A Chronology of the Weak Interactions

We will present in this section the main steps given towards a unified description of the electromag-

netic and weak interactions. In order to give a historical flavor to the presentation, we will mention some

parallel achievements in Particle Physics in this century, from theoretical developments and predictions

to experimental confirmation and surprises. The topics closely related to the evolution and construction

of the model will be worked with more details.

The chronology of the developments and discoveries in Particle Physics can be found in the books of

Cahn and Goldhaber [?] and the annotated bibliography from COMPAS and Particle Data Groups [?].

An extensive selection of original papers on Quantum Electrodynamics can be found in the book edited

by Schwinger [?]. Original papers on gauge theory of weak and electromagnetic interactions appear in

Ref. [?].

1896 Becquerel: evidence for spontaneous radioactivity effect in uranium decay, using photographic

film.

1897 ? Thomson: discovery of the electron in cathode rays.

1900 ? Planck: start of the quantum era.

1905 Einstein: photoelectric effect – quanta of light – photons

1911 ? Millikan: measurement of the electron charge.
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1911 Rutherford: evidence for the atomic nucleus.

1913 ? Bohr: invention of the quantum theory of atomic spectra.

1914 Chadwick: first observation that the β spectrum is continuous. Indirect evidence on the existence

of neutral penetrating particles.

1919 Rutherford: discovery of the proton, constituent of the nucleus.

1923 ? Compton: experimental confirmation that the photon is an elementary particle in γ + C →
γ + C.

1923 ? de Broglie: corpuscular–wave dualism for electrons.

1925 ? Pauli: discovery of the exclusion principle.

1925 ? Heisenberg: foundation of quantum mechanics.

1926 ? Schrödinger: creation of wave quantum mechanics.

1927 Ellis and Wooster: confirmation that the β spectrum is continuous.

1927 Dirac: foundations of Quantum Electrodynamics (QED).

1928 ? Dirac: discovery of the relativistic wave equation for electrons; prediction of the magnetic

moment of the electron.

1929 Skobelzyn: observation of cosmic ray showers produced by energetic electrons in a cloud cham-

ber.

1930 Pauli : first proposal, in an open letter, of the existence of a light, neutral and feebly interacting

particle emitted in β decay.

1930 Oppenheimer: self–energy of the electron: the first ultraviolet divergence in QED.

1931 Dirac: prediction of the positron and anti–proton.

1932 ? Anderson: first evidence for the positron.

1932 ? Chadwick: first evidence for the neutron in α +Be→ C + n.

1932 Heisenberg: suggestion that nuclei are composed of protons and neutrons.

1934 Pauli : explanation of continuous electron spectrum of β decay — proposal for the neutrino.

n→ p+ e− + ν̄e .

1934 Fermi: field theory for β decay, assuming the existence of the neutrino. In analogy to “the theory

of radiation that describes the emission of a quantum of light from an excited atom”, eJµAµ, Fermi
25



proposed a current–current Lagrangian to describe the β decay:

Lweak =
GF√

2

(
ψ̄p γµ ψn

) (
ψ̄e γ

µ ψν
)
.

1936 Gamow and Teller: proposed an extension of the Fermi theory to describe also transitions with

∆Jnuc 6= 0. The vector currents proposed by Fermi are generalized to:

Lweak =
GF√

2

∑
i

Ci
(
ψ̄p Γi ψn

) (
ψ̄e Γi ψν

)
,

with the scalar, pseudo–scalar, vector, axial and tensor structures:

ΓS = 1 , ΓP = γ5 , ΓVµ = γµ , ΓAµ = γµγ5 , ΓTµν = σµν .

Nuclear transitions with ∆J = 0 are described by the interactions S.S and/or V.V , while ∆J =

0,±1 (0 6→ 0) transitions can be taken into account by A.A and/or T.T interactions (ΓP → 0 in the

non–relativistic limit). However, interference between them are proportional to me/Ee and should in-

crease the emission of low energy electrons. Since this behavior was not observed, the weak Lagrangian

should contain,

S.S or V.V and A.A or T.T .

1937 Neddermeyer and Anderson: first evidence for the muon.

1937 Majorana: Majorana neutrino theory.

1937 Bloch and Nordsieck: treatment of infrared divergences.

1940 Williams and Roberts: first observation of muon decay

µ− → e− + (ν̄e + νµ) .

1943 Heisenberg: invention of the S–matrix formalism.

1943 ? Tomonaga: creation of the covariant quantum electrodynamic theory.

1947 Pontecorvo : first idea about the universality of the Fermi weak interactions i.e. decay and capture

processes have the same origin.

1947 Bethe : first theoretical calculation of the Lamb shift in non–relativistic QED.

1947 ? Kusch and Foley: first measurement of ge − 2 for the electron using the Zeeman effect: ge =

2(1 + 1.19× 10−3).
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1947 ? Lattes, Occhialini and Powell: confirmation of the π− and first evidence for pion decay π± →
µ± + (νµ).

1947 Rochester and Butler: first evidence for V events (strange particles).

1948 Schwinger: first theoretical calculation of ge − 2 for the electron: ge = 2(1 + α/2π) = 2(1 +

1.16 × 10−3). The high–precision measurement of the anomalous magnetic moment of the electron is

the most stringent QED test. The present theoretical and experimental value of ae = (ge − 2)/2, are ,

athr
e = (115 965 215.4± 2.4)× 10−11 ,

aexp
e = (115 965 219.3± 1.0)× 10−11 ,

where we notice the impressive agreement at the 9 digit level!

1948 ? Feynman ; Schwinger ; Tati and Tomonaga : creation of the covariant theory of QED.

1949 Dyson : covariant QED and equivalence of Tomonaga, Schwinger and Feynman methods.

1949 Wheeler and Tiomno; Lee, Rosenbluth and Yang: proposal of the universality of the Fermi weak

interactions. Different processes like,

β − decay : n→ p+ e− + ν̄e ,

µ− decay : µ− → e− + ν̄e + νµ ,

µ− capture : µ− + p→ νµ + n ,

must have the same nature and should share the same coupling constant,

GF =
1.03× 10−5

M2
p

,

the so–called Fermi constant.

50’s A large number of new particles where discovered in the 50’s: π0, K±, Λ, K0, ∆++, Ξ−, Σ±, ν̄e,

p̄, KL,S , n̄, Σ0, Λ̄, Ξ0, · · ·

1950 Ward: Ward identity in QED.

1953 Stückelberg; Gell–Mann: invention and exploration of renormalization group.

1954 Yang and Mills: introduction of local gauge isotopic invariance in quantum field theory. This was

one of the key theoretical developments that lead to the invention of non–abelian gauge theories.

1955 Alvarez and Goldhaber; Birge et al. : θ − τ puzzle: The “two” particles seem to be a single state

since they have the same width (Γθ = Γτ ), and the same mass (Mθ = Mτ ). However the observation of
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different decay modes, into states with opposite parity:

θ+ → π+ + π0 , JP = 0+ ,

τ+ → π+ + π+ + π− , JP = 0− ,

suggested that parity could be violated in weak transitions.

1955 Lehmann, Symanzik and Zimmermann: beginnings of the axiomatic field theory of the S–matrix.

1955 Nishijima: classification of strange particles and prediction of Σ0 and Ξ0.

1956 ? Lee and Yang: proposals to test spatial parity conservation in weak interactions.

1957 Wu et.al.: obtained the first evidence for parity nonconservation in weak decays. They measured

the angular distribution of the electrons in β decay,

60Co (polarized)→ 60Ni + e− + ν̄e ,

and observed that the decay rate depend on the pseudo–scalar quantity: < ~Jnuc > . ~pe.

1957 Garwin, Lederman and Weinrich; Friedman and Telegdi : confirmation of parity violation in

weak decays. They make the measurement of the electron asymmetry (muon polarization) in the decay

chain,

π+ → µ+ + νµ

↪→ e+ + νe + ν̄µ .

1957 Frauenfelder et.al. : further confirmation of parity nonconservation in weak decays. The mea-

surement of the longitudinal polarization of the electron (~σe.~pe) emitted in β decay,

60Co→ e− (long. polar.) + ν̄e +X ,

showed that the electrons emitted in weak transitions are mostly left–handed.

The confirmation of the parity violation by the weak interaction showed that it is necessary to have a

term containing a γ5 in the weak current:

Lweak →
GF√

2

∑
i

Ci
(
ψ̄p Γi ψn

) [
ψ̄e Γi (1± γ5)ψν

]
.

Note that CP remains conserved since C is also violated.
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1957 Salam ; Lee and Yang ; Landau: two–component theory of neutrino. This requires that the

neutrino is either right or left–handed.

Since it was known that electrons (positrons) involved in weak decays are left (right) handed, the

leptonic current should be written as:

J ilept ≡
[
ψ̄e Γi (1± γ5)ψν

]
→
[
ψ̄e

(1 + γ5)

2
Γi (1± γ5)ψν

]
.

Therefore the measurement of the neutrino helicity is crucial to determine the structure of the weak

current. If Γi = V or A then {γ5,Γ
i} = 0 and the neutrino should be left–handed, otherwise the current

is zero. On the other hand, if Γi = S or T , then [γ5,Γ
i] = 0, and the neutrino should be right–handed.

1957 Schwinger ; Lee and Yang: development of the idea of the intermediate vector boson in weak

interaction. The four–fermion Fermi interaction is “point–like” i.e. a s–wave interaction. Partial wave

unitarity requires that such interaction must give rise to a cross section that is bound by σ < 4π/p2
cm.

However, since GF has dimension of M−2, the cross section for the Fermi weak interaction should go

like σ ∼ G2
Fp

2
cm. Therefore the Fermi theory violates unitarity for pcm ' 300 GeV.

This violation can be delayed by imposing that the interaction is transmitted by a intermediate vector

boson (IVB) in analogy, once again, with the quantum electrodynamics. Here, the IVB should have quite

different characteristics, due to the properties of the weak interaction. The IVB should be charged since

the β decay requires charge–changing currents. They should also be very massive to account for short

range of the weak interaction and they should not have a definite parity to allow, for instance, a V − A
structure for the weak current.

With the introduction of the IVB, the Fermi Lagrangian for leptons,

Lweak =
GF√

2

[
Jα(`)J†α(`′) + h.c.

]
,

where Jα(`) = ψ̄ν`Γ
αψ`, becomes:

LWweak = gW
(
JαW+

α + J†αW−
α

)
, (3.1.1)

with a new coupling constant gW .

Let us compare the invariant amplitude for µ–decay, in the low–energy limit in both cases. For the

Fermi Lagrangian, we have,

Mweak = i
GF√

2
Jα(µ)Jα(e) . (3.1.2)
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On the other hand, when we take into account the exchange of the IVB, the invariant amplitude

should include the vector boson propagator,

MW
weak = [i gWJ

α(µ)]

[
−i

k2 −M2
W

(
gαβ −

kαkβ
M2

W

)] [
i gWJ

β(e)
]
.

At low energies, i.e. for k2 �M2
W ,

MW
weak −→ i

g2
W

M2
W

Jα(µ)Jα(e) , (3.1.3)

and, comparing (3.1.3) with (3.1.2) we obtain the relation

g2
W =

M2
WGF√

2
, (3.1.4)

1958 Feynman and Gell–Mann ; Marshak and Sudarshan ; Sakurai : universal V −Aweak interactions.

J+ µ
lept =

[
ψ̄e γ

µ(1− γ5)ψν
]
. (3.1.5)

1958 Leite Lopes : hypothesis of neutral vector mesons exchanged in weak interaction. Prediction of

its mass of ∼ 60 mproton.

1958 Goldhaber, Grodzins and Sunyar : first evidence for the negative νe helicity. As mentioned before,

this result requires that the structure of the weak interaction is V − A.

1959 ? Reines and Cowan: confirmation of the detection of the ν̄e in ν̄e + p→ e+ + n.

1961 Goldstone : prediction of unavoidable massless bosons if global symmetry of the Lagrangian is

spontaneously broken.

1961 Salam and Ward : invention of the gauge principle as basis to construct quantum field theories of

interacting fundamental fields.

1961 ? Glashow: first introduction of the neutral intermediate weak boson (Z0).

1962 ? Danby et al.: first evidence of νµ from π± → µ± + (ν/ν̄).

1963 SU(3) flavour Symmetry (Gell-Mann, George Zweig and independently Ne’eman, in 1961).

Quarks (u,d,s).

1963 Cabibbo : introduction of the Cabibbo angle and hadronic weak currents.

It was observed experimentally that weak decays with change of strangeness (∆s = 1) are strongly

suppressed in nature. For instance, the width of the neutron is much larger than the Λ’s,

Γ∆s=0 (nudd → puud eν̄)� Γ∆s=1 (Λuds → puud eν̄) ,
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which yield a branching ratio of 100% in the case of neutron and just ∼ 8× 10−4 for the Λ.

The hadronic current, in analogy with leptonic current (3.1.5), can be written in terms of the u, d,

and s quarks,

JHµ = d̄γµ(1− γ5)u+ s̄γµ(1− γ5)u , (3.1.6)

where the first term is responsible for the ∆s = 0 transitions while the latter one gives rise to the ∆s = 1

processes. In order to make the hadronic current also universal, with a common coupling constant GF ,

Cabibbo introduced a mixing angle to give the right weight to the ∆s = 0 and ∆s = 1 parts of the

hadronic current, (
d′

s′

)
=

(
cos θC sin θC

− sin θC cos θC

)(
d

s

)
, (3.1.7)

where d′, s′ (d, s) are interaction (mass) eigenstates. Now the transition d̄ ↔ u is proportional to

GF cos θC ' 0.97 GF and the s̄↔ u goes like GF sin θC ' 0.24 GF .

The hadronic current should now be given in terms of the new interaction eigenstates,

JHµ = d̄′γµ(1− γ5)u

= cos θC d̄γµ(1− γ5)u+ sin θC s̄γµ(1− γ5)u . (3.1.8)

1964 Bjorken and Glashow : proposal for the existence of a charmed fundamental fermion (c).

1964 Higgs ; Englert and Brout ; Guralnik, Hagen and Kibble: example of a field theory with sponta-

neous symmetry breakdown, no massless Goldstone boson, and massive vector boson.

1964 ? Christenson, Cronin, Fitch and Turlay : first evidence of CP violation in the decay of K0

mesons.

1964 ? Salam and Ward : Lagrangian for the electroweak synthesis, estimation of the W mass.

1964 ? Gell–Mann; Zweig: introduction of quarks as fundamental building blocks for hadrons.

1964 Greenberg; Han and Nambu: introduction of color quantum number and colored quarks and

gluons.

1967 Kibble : extension of the Higgs mechanism of mass generation for non–abelian gauge field

theories.

1967 ? Weinberg : Lagrangian for the electroweak synthesis and estimation of W and Z masses.

1967 Faddeev and Popov: method for construction of Feynman rules for Yang–Mills gauge theories.
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1968 ? Salam: Lagrangian for the electroweak synthesis.

1969 Bjorken: invention of the Bjorken scaling behavior.

1969 Feynman: birth of the partonic picture of hadron collisions.

1970 Glashow, Iliopoulos and Maiani: introduction of lepton– quark symmetry and the proposal of

charmed quark (GIM mechanism).

1971 ? ’t Hooft: rigorous proof of renormalizability of the massless and massive Yang– Mills quantum

field theory with spontaneously broken gauge invariance.

1973 Kobayashi and Maskawa : CP violation is accommodated in the Standard Model with six favours.

1973 : first experimental indication of the existence of weak neutral currents.

ν̄µ + e− → ν̄µ + e− , νµ +N → νµ +X .

This was a dramatic prediction of the Standard Model and its discovery was a major success for the

model. They also measured the ratio of neutral–current to charged–current events giving a estimate for

the Weinberg angle sin2 θW in the range 0.3 to 0.4.

1973 Gross and Wilczek; Politzer: discovery of asymptotic freedom property of interacting Yang–Mills

field theories.

1973 Fritzsch, Gell–Mann and Leutwyler: invention of the QCD Lagrangian.

1974 : confirmation of the existence of weak neutral currents in the reaction

νµ +N → νµ +X .

1974 ? Aubert et al. (Brookhaven); Augustin et al. (SLAC): evidence for the J/ψ (cc̄).

1975 ? Perl et al. (SLAC): first indication of the τ lepton.

1977 Herb et al. (Fermilab): first evidence of Υ (bb̄).

1979 Barber et al. (MARK J Collab.); Brandelik et al. (TASSO Collab.); Berger et al. (PLUTO Col-

lab.); W. Bartel (JADE Collab.): evidence for the gluon jet in e+e− → 3 jet.

1983 ? Arnison et al. (UA1 Collab.) ; Banner et al. (UA2 Collab.): evidence for the charged interme-

diate bosons W± in the reactions

p+ p̄→ W (→ `+ ν) +X .
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They were able to estimate the W boson mass (MW = 81± 5 GeV) in good agreement with the predic-

tions of the Standard Model.

1983 ? Arnison et al. (UA1 Collab.) ; Bagnaia et al. (UA2 Collab.): evidence for the neutral interme-

diate boson Z0 in the reaction

p+ p̄→ Z(→ `+ + `−) +X .

This was another important confirmation of the electroweak theory.

1986 ? Van Dyck, Schwinberg and Dehmelt : high precision measurement of the electron ge− 2 factor.

1987 Albrecht et al. (ARGUS Collab.) : first evidence of B0 − B̄0 mixing.

1989 Abrams et al. (MARK-II Collab.): first evidence that the number of light neutrinos is 3.

1992 : precise determination of the Z0 parameters.

1995 : observation of the top quark.

2012 Discovery of the Higgs particle of mass 125 GeV

3.2 Model standardowy

SM = SU(3)c × SU(2)L × U(1)Y

(3, 2, 1
6)L (3, 1, 2

3)R (3, 1,−1
3)R (1, 2,−1

2)L (1, 1,−1)R (1, 2, 1
2)R

QL uR dR L eR Φ

Quarks Leptons Higgs

L = Lgauge(3.2.4) + Lfermions(3.2.8) + LHiggs(3.2.9) + LY ukawa(3.3.1) + Lneutrinos(??) (3.2.1)

3.2.1 Constructing the Model

In fact, there were several attempts to construct a gauge theory for the (electro)weak interaction. In 1957,

Schwinger [?] suggested a model based on the group O(3) with a triplet gauge fields (V +, V −, V 0). The
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charged gauge bosons were associated to weak bosons and the neutral V 0 was identified with the photon.

This model was proposed before the structure V −A of the weak currents have been established [?, ?, ?].

The first attempt to incorporate the V − A structure in a gauge theory for the weak interactions was

made by Bludman [?] in 1958. His model, based on the SU(2) weak isospin group, also required three

vector bosons. However in this case the neutral gauge boson was associated to a new massive vector

boson that was responsible for weak interactions without exchange of charge (neutral currents). The

hypothesis of a neutral vector boson exchanged in weak interaction was also suggested independently

by Leite Lopes [?] in the same year. This kind of process was observed experimentally for the first time

in 1973 at the CERN neutrino experiment [?].

Glashow [?] in 1961 noticed that in order to accommodate both weak and electromagnetic interac-

tions we should go beyond the SU(2) isospin structure. He suggested the gauge group SU(2) ⊗ U(1),

where the U(1) was associated to the leptonic hypercharge (Y ) that is related to the weak isospin (T ) and

the electric charge through the analogous of the Gell-Mann–Nishijima formula (Q = T3 + Y/2). The

theory now requires four gauge bosons: a triplet (A1, A2, A3) associated to the generators of SU(2) and

a neutral field (B) related to U(1). The charged weak bosons appear as a linear combination of A1 and

A2, while the photon and a neutral weak boson Z0 are both given by a mixture of A3 and B. A similar

model was proposed by Salam and Ward [?] in 1964.

3.2.2 Choosing the gauge group

Let us investigate which gauge group would be able to unify the electromagnetic and weak interac-

tions. We start with the charged weak current for leptons. Since electron–type and muon–type lepton

numbers are separately conserved, they must form separate representations of the gauge group. There-

fore, we refer as ` any lepton flavor (` = e, µ, τ ), and the final Lagrangian will be given by a sum over

all these flavors.

From Eq. (1.2.30), we see that the weak current (3.1.5), for a generic lepton `, is given by,

J+
µ = ¯̀γµ(1− γ5)ν = 2 ¯̀

LγµνL . (3.2.2)

We introduce the left–handed isospin doublet,

L ≡

(
ν

`

)
L

=

(
Lν

L `

)
=

(
νL

`L

)
, (3.2.3)
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We have just chosen the candidate for the gauge group,

SU(2)L ⊗ U(1)Y .

The next step is to introduce gauge fields corresponding to each generator, that is,

SU(2)L −→ A1
µ , A2

µ , A3
µ ,

U(1)Y −→ Bµ .

Defining the strength tensors for the gauge fields according to (??) and (??),

W i
µν ≡ ∂µA

i
ν − ∂νAiµ + g εijk AjµA

k
ν ,

Bµν ≡ ∂µBν − ∂νBµ ,

we can write the free Lagrangian for the gauge fields following the results (??) and (??),

Lgauge = −1

4
W i
µνW

i µν +
1

4
BµνB

µν + LQCD . (3.2.4)

3.2.2.1 COVARIANT DERIVATIVES ,

Dµ = ∂µ − i
g

2
σa Aaµ − i g′ Y Bµ , (3.2.5)

Dµ = ∂µ − i g′ Y Bµ , (3.2.6)

where g and g′ are the coupling constant associated to the groups SU(2)L and U(1)Y respectively. Their

values are

g ≈ 0.65, g′ ≈ 0.35, sin2(θw) ≈ 0.23. (3.2.7)

The fermion Lagrangian becomes

Lfermions = L̄iγµDµL+ Q̄Liγ
µDµQL + d̄Riγ

µDµdR + ūRiγ
µDµuR (3.2.8)

The Higgs doublet Lagrangian is

Lscalar = (DµΦ)† DµΦ− λ
(

Φ†Φ− v2

2

)2

, (3.2.9)

Physical

λ ≈ 0.13, v ≈ 245 GeV (3.2.10)
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3.2.3 Higgs, W and Z masses

After SSB+BEH the scalar Lagrangian can be as

Lscalar =

∣∣∣∣∣
(
∂µ − ig

σi

2
Aiµ − i

g′

2
Y Bµ

)
(v +H)√

2

(
0

1

)∣∣∣∣∣
2

−µ2 (v +H)2

2
− λ (v +H)4

4
. (3.2.11)

The second term of (3.2.11) gives rise to terms involving exclusively the scalar field H , namely,

−1

2
(−2µ2)H2 +

1

4
µ2v2

(
4

v3
H3 +

1

v4
H4 − 1

)
. (3.2.12)

In (3.2.12) we can also identify the Higgs boson mass term with

M2
H = 2λv2 , (3.2.13)

and the self–interactions of the H field. In spite of predicting the existence of the Higgs boson, the

Standard Model does not give a hint on the value of its mass since µ2 is a priori unknown.

The charged gauge bosons are

W±
µ =

1√
2

(A1
µ ∓ A2

µ) , (3.2.14)

Neutral gauge bosons are (
Aµ

Zµ

)
=

(
cos θW sin θW

− sin θW cos θW

)(
Bµ

A3
µ

)
, (3.2.15)

where θW is called the Weinberg angle.

sin θW =
g′√

g2 + g′2
cos θW =

g√
g2 + g′2

. (3.2.16)

The quadratic terms in the vector fields, are,

g2v2

4
W+
µ W

− µ +
g2v2

8 cos2 θW
ZµZ

µ , (3.2.17)

When compared with the usual mass terms for a charged and neutral vector bosons, M2
WW

+
µ W

− µ +
1
2
M2

ZZµZ
µ , and we can easily identify

MW =
gv

2
MZ =

gv

2cW
=
MW

cW
. (3.2.18)
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We can see from that no quadratic term in Aµ appears, and therefore, the photon remains massless, as

we could expect since the U(1)em remains as a symmetry of the theory.

Taking into account the low–energy phenomenology via the relation (??), we obtain for the vacuum

expectation value

v =
(√

2GF

)1/2 ' 246 GeV , (3.2.19)

and the Standard Model predictions for the W and Z masses are

M2
W =

e2

4s2
W

v2 =
πα

s2
W

v2 '
(

37.2

sW
GeV

)2

∼ (80 GeV)2 ,

M2
Z '

(
37.2

sW cW
GeV

)2

∼ (90 GeV)2 ,

where we assumed a experimental value for s2
W ≡ sin2 θW ∼ 0.22.

3.3 Fermion Masses and VCKM

VCKM is called the Cabibbo–Kobayashi–Maskawa matrix.

Note that the explicit mass term for fermions i forbidden by gauge invariance e.g.

m`
¯̀ ` = m` (¯̀

R `L + ¯̀
L `R) ,

mixes L and R components and breaks gauge invariance. A way to give mass in a gauge invariant way

is via the Yukawa coupling of fermions with the Higgs field (??),

LYukawa = −LiΦ y`ij`
j
R −Q

i
LΦ ydijd

j
R −Q

i
LΦc y

u
iju

j
R + .c.c. (i, j = 1, 2, 3) (3.3.1)

where Φc = i σ2 Φ∗ =

(
φ0∗

−φ−

)
. After SSB+BEH

Lyuk = (−¯̀i
Ly

`
ij`

j
R − d̄

i
L y

d
ijd

j
R − ū

i
L y

u
iju

j
R + .c.c.)

1√
2

(v +H) (3.3.2)

All Yukawa couplings y`ij, y
d
ij, y

u
ij can be diagonalized with two rotations yielding

= − 1√
2

(v +H)(y`i
¯̀i`i + ydi d̄

idi + yui ū
iui) . (3.3.3)
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Thus, we can identify the fermion masses,

mi =
yi v√

2
. (3.3.4)

The only side effect of the diagonalization is the CKM matrix in charges currents couplings of L

quarks
g√
2
ūiL γ

µV ij
CKM djLW

+
µ + c.c. (3.3.5)

Using unitarity constraints and assuming only three generations the experimental value for the elements

of the matrix VCKM , with 90% of C.L., can be extract from weak quark decays and from deep inelastic

neutrino scattering [?]. Absolute values of the VCKM are
0.9742− 0.9757 0.219− 0226 0.002− 0.005

0.219− 0.225 0.9734− 09749 0.037− 0.043

0.004− 0.014 0.035− 0.043 0.9990− 0.9993

 .

The Cabibbo–Kobayashi–Maskawa matrix can be parameterized as

VCKM =


c12c13 s12c13 s13 e

−iδ13

−s12c23 − c12s23s13 e
iδ13 c12c23 − s12s23s13 e

iδ13 s23c13

s12s23 − c12c23s13 e
iδ13 −c12s23 − s12c23s13 e

iδ13 c23c13

 ,

where sij, cij) ≡ sin θij, cos θij . Notice that, in the limit of θ23 = θ13 → 0, we associate θ12 → θC ,

the Cabibbo angle (3.1.7). We should notice that, for three generations there appears complex phase δ,

and therefore the weak interaction can violate CP thus also T .

3.4 Weak decays of hadrons
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Appendix A

Appendices

A.1 Classical fields

A.1.1 *** Helicity-NOT READY

I/Z 2.2.1

Angular momentum operator

Wµ = −1
2 εµνρσJ

νρP σ (A.1.1)

W 2 is Casimir of Poincare algebra. We enumerate states (of momentum k) by stating value of

W · n = −1
2 γ5n/k/, n2 = −1, k · n = 0 (A.1.2)

then: 1
2 γ5n/u

α = αuα, 1
2 γ5n/v

α = −αvα←(?). One defines projection

P (n) = 1
2 (1 + γ5n/) (A.1.3)

[Λ±, P (n)] = 0, Λ+(k)P (n) + Λ−(k)P (n) + Λ+(k)P (−n) + Λ−(k)P (−n)+ = 1.

For n = nk = (|~k|, k0
~k/|~k|)/m polarizaton states are called HELICITY.

P (nk)Λ±(k) −→ 1
2 (1± hk)Λ±(k), hk =

2 ~J ~k

k

s=1/2
=

~Σ~k

k
(A.1.4)

FOR MASSLESS FERMION HELICITY STATES ARE CHIRAL STATES

γ5ψ = hkψ

. (γ0k − γ · k)ψ = 0→ (1− γ0~γ
~k
k
)ψ = 0. Use γ0γi = γ5Σi gives (1− γ5

~Σ
~k
k
)ψ = 0→ γ5ψ = hkψ.
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A.1.2 Charge conjugation

bispinor φc = Cψ
T
, C−1γµC = −(γµ)T (A.1.5)

for C = −iγ0γ2 = σ3 ⊗ iσ2, Cγ0 T = iγ2

(ψc)L = (ψR)c = iσ2ψ∗R, (ψc)R = (ψL)c = −iσ2ψ∗L (A.1.6)

ψ+
LψR

C→ ψ+
RψL

A.1.3 Yang-Mills

A.1.3.1 LAGRANGIAN AND EQ.M.

L =
1

4 g2
tr(F 2) + Ja µAaµ (A.1.7)

DµF a µν = −Ja µ

The fastest way of deriving (??) is to writeLgauge = 1
4 g2 tr(F 2) = 1

4 g2 tr([Dµ, Dν ]2). Variation is δL = 1
g2 tr([δAµ, Dν ][Dµ, Dν ]) =

1
g2 tr([Dν , [Dµ, Dν ]]δAµ). This gives

δLgauge
δAν

=
1

g2
[Dµ, [Dµ, Dν ]] =

−i
g
DµF a µνT a

Also

• The external current (independent on A) must be covariantly conserved 1 i.e.

DµJa µ = 0. (A.1.8)

• Bianchi identities: DµF̃ a µν = 0. ? []

• Hamiltonian

H ∼
∫
V

[F 2
0i + 1

2 F
2
ij] (A.1.9)

Finite energy solutions F0i, Fij
|x|→ ∞−→ 0. Pure Y-M system ((??) with J = 0) does not have static

solutions except F = 0.

1 due to an identity 0 = DνDµF a µν lhs ≡ [Dν , [Dµ, [D
µ, Dν ]]]

Jacobi
= [Dµ, [Dν , [D

µ, Dν ]]]− [[Dµ, Dν ], [Dν , Dµ]]. On

the rhs the second term is 0, the first = − lhs thus lhs=0, which together with eq.m. leads to the conclusion.
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• For topologically trivial spaces:

F = 0 ⇔ A = U−1∂µU (A.1.10)

Let U → 1 for |~x | → ∞ then the space R3 is compactified to S3. Moreover π3(G) = Z ?

[] for most of the non-abelian groups. We get Z distinct ground states of the Y-M theory. The

topological number corresponds to elements of π3(G) and it is given by

n =
1

24π2

∫
S3

tr((U−1dU)3) (A.1.11)

For G = SU(2) one can explicitly calculate n in terms of the degree of the map S3 → S3.

U = φµσµ, where |φ| = 1, σµ = (1, iσi), σ(µσ ν) = σ (µσν) = δµν . ? []

A.1.4 *** Massive U(1) gauge boson: Stuckelberg

We introduce an extra scalar real field φ:

L = −1

4
F 2 + 1

2 (∂µφ−mAµ)2 (A.1.12)

This has gauge symmetry δAµ = ∂µχ, δφ = mχ. We can fix it choosing φ = 0 and get

L = −1

4
F 2 + 1

2 m
2(Aµ)2 (A.1.13)

E.o.m. leads to

∂µFµν = −m2Aν ⇒ 0 = ∂ν∂µFµν = −m2∂νAν (A.1.14)

i.e. ∂νAν = 0. Free field solutions are as (1.2.10) but s = 1, 2, 3 due to lack of the residual gauge

symmetry.

A.1.5 BEH (Higgs) mechanism – Massive gauge bosons

We consider a theory possessing (see figure below):

1. global, continuous, inner symmetry G

2. local, inner symmetry Gloc ⊆ G

3. ground state 〈φ〉 invariant under H ⊆ G
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BEH mechanism. Goldsotne bosons corresponding to X ∩Gloc vanish from the theory

and the appropriate gauge fields get masses.

Proof of the above result. The Lagrangain density is:

L = |Dµφ|2 − V (φ) (A.1.15)

We consider the Goldstone bosons π = πα(x) Xα and the ground state part of φ: φπ = eiπ〈φ〉. We

have V (φπ) = V (〈φ〉) and

Dµ(A)φπ = Dµ(A) eiπ〈φ〉 (A.1.16)

By {Xα} we denoted the basis of X . It splits into {Xa
l } = X ∩Gloc and the rest {Xa

G} (see the figure).

We can write:

eiπ = eiπ̃
aXa

l eiπ̃
βXβ

G (A.1.17)

with π̃ being some combinations of π, then (A.1.16) is:

Dµ(A)φπ = Dµ(A)eiπ̃
aXa

l eiπ̃
αXα

G〈φ〉 (A.1.18)

If we make the gauge transformation by e−iπ̃aXa
l on φ and A then the dependence on π̃a ( do not mix

with π̃α) will vanish everywhere. In other words e−iπ̃aXa
l is a part of gauge transformation so L does not

depend on it. This ends the proof.

From (A.1.15) after substitution φ→ 〈φ〉 one gets mass matrix of the gauge bosons.

Mab =
1

2
〈φ〉†(t†atb + t†bta)〈φ〉 (A.1.19)

where ta’s are generators of Gl. Gloc splits into (Gloc ∩H)∪ (Gloc ∩X). Elements of Gloc ∩X denoted

by Xa
l does not annihilate the ground state 〈φ〉. They correspond to non-null eigenvalues of (A.1.19).

The other gauge bosons stay massless.

A.2 Quanta

A.2.1 *** Gauge bosons, currents

A.2.1.1 (N)INTERACTION ENERGY Plugging back to the interaction Lagrangain we get energy of

interaction then force ( Darwin....)

S =

∫
−1

2 (∂µAν)
2 − jµAµ = −1

2

∫
jµAµ = −1

2

∫
dxdy jµ(x)G(x− y)jµ(y) (A.2.1)
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Let j = j1 + j2

Sint = −
∫
dxdy jµ1 (x)jµ2 (y)G(x− y) + (samooddzialywanie→ 0) (A.2.2)

(see jackson for the explicit formulae p. 585, prawo Biota-Savarta p.178-180, Lagrangian Darwina

p.570)

Localized current (moving charge,....) from relat. interaction of point particle with a background

jµ(x) = e c

∫
C

dτδ(4)(x− z(τ))∂τz
µ (A.2.3)

If currents are fixed we can solve (??) for Aµ

Aµ =

∫
G(x− x′)dx′jµ(x′), G(x) =

∫
d-k e−ikx

1

k2
(A.2.4)

GF rozwiazuje problem modelu samooddzialywanie czastki rozciaglej (Abrahamaa-Lorentza) - see Feyn-

man course II/2 p.142

A.2.1.2 VACUUM STATE IN POSITION REPRESENTATION We express a(p) by φ and π. Take π(~x ) =

−i δ
δφ(~x )

2 , then

∀~p, a(p)|0〉 = 0, → |0〉 = exp
{
−1

2

∫
d3xφ(~x )

√
m2 −∇2

y φ(~y)

}
(A.2.5)

It is time independent state because H0|0〉 = 0. If one suppressed x-dependence then it is like ordinary

harmonic oscylator.

2 we can suppress time dependence here because H0|0〉 = 0.
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A.2.1.3 (N)RELATION TO CLASSICAL FIELDS We define coherent states 3

a(k)|koh〉f = f(k)|koh〉f ,→ |koh(k)〉f = e−f
∗(k)a(k)ef(k)a†(k)|0〉 (A.2.6)

then

|koh〉f =
∏
k

|koh(k)〉f ∼ e−
∫
d3kf∗(k)a(k)e

∫
d3kf(k)a†(k)|0〉 (A.2.7)

f〈koh|φ̂(x)|koh〉f = f(x) ∈ C∞(M) (A.2.8)

f(x) respect classical eq. of motion.

What about charge ?←(?)

A.2.2 *** Born approx.

U
(1)
I (t, t′) = 1− ig

∫ t

t′
dt1 HI(t1),→ |ψ(t)〉 = e−iH0(t−t′)|ψ(t′)〉 − ig

∫ t

t′
dt1 e

−iH0(t−t1)HIe
−iH0(t1−t′)|ψ(t′)〉

interact. → ig

∫ t

t′
dt1 e

−iH0(t−t1)HIe
−iEk(t1−t′)|k〉

In position rep we get for t→ ∞ and free outgoing wave (only forward propagation so we insert extra

θ(t− t1) so t > t′)

ψ(~x , t) = e−iEk(t−t′)ψk(~x ) − ig

∫
dt1 d~x 1 θ(t− t1) < x|e−iH0(t−t1)HI(t1)|x1 > e−iEk(t1−t′)ψk(~x 1)

interact. → −ige−iEk(t−t′)
∫
dt1 dx1 θ(t− t1) < x|e−i(H0−Ek)(t−t1)HI(t1)|x1 > ψk(~x 1)

Next we assume (locality) HI(t1)|x1 >= |x1 > HI(~x 1, t1). For time indep. HI we can ntegrate over

time getting (see below)

eiEk(t−t′)ψ(~x , t) = ψk(~x ) + g

∫
dx1 G(x, x1)HI(x1)ψk(~x 1)

the formula obtained previously.

We have

(i∂t −H0) < x|e−iH0t|x1 >= 0, < x|e−iH0t|t=0|x1 >= δ(~x − ~x 1) (A.2.9)

3 Derivation: aO = Oa+ fO, O−1aO = a+ f, → O = efa
†+c, c commuts with a i.e. ∼ a. If |koh〉 is normalized to

1 then efa
†+c is unitary so c = −f∗a.
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thus

(i∂t −H0)
(
−iθ(t− t1) < x|e−iH0(t−t1)|x1 >

)
= δ(4)(x− x1) (A.2.10)

For time-independent HI we have can integrate over time.

G(~x , ~x 1)
df
= −i

∫
dt1 θ(t− t1) < x|e−i(H0−Ek)(t−t1)|x1 >

Notice that∫
R

dt eiEk(t−t1)(i∂t −H0)
(
−iθ(t− t1) < x|e−iH0(t−t1)|x1 >

)
= δ(3)(x− x1) (A.2.11)

i.e. (Ek −H0)G(x, x1) = δ(3)(x− x1). 4

Feynman rules:
propagator i

k2−m2 , V = iλ
4

, + zachowania 4-pedu.

A.2.3 Wick’s theorem

〈0|Tφ1(x1) . . . φn(xn)|0〉 =
∑

{all choices}

∏
{all pairs}

〈0|Tφi(xi)φj(xj)|0〉, even n (A.2.12)

e.g. 〈0|Tφ(x1)φ†(x2)φ(x3)φ†(x2)|0〉 = 〈0|Tφ(x1)φ†(x2)|0〉〈0|φ(x3)φ†(x2)|0〉+ (1↔ 3).

In our case 〈0|T (φ(x)φ†(x))2|0〉 = 2〈0|Tφ(x)φ†(x)|0〉2

Second order: overal (iλ)2

42·2!∫
dxdy ei(k1+k2)xe−i(kp1+p2)y〈0|Tφφ†(x)φφ†(y)|0〉

4 Equivalently

(Ek − H0)G(~x ) = −i
∫
dt1 θ(t − t1)(i∂t1) < x|e−i(H0−Ek)(t−t1)|x1 >=

∫
dt1 δ(t − t1) < x|e−i(H0−Ek)(t−t1)|x1 >=

δ(3)(~x − ~x ′)
Problems:

1. Calculate: < x|e−iH0t|x′ > by (a) QM method, (b) Fourier transform, and check (A.2.10)

2. Calculate G(x, x′) by (a) solving spherical symmetric diff. eq. (E −H0)G(x, x′) = δ(3)(x− x′) (b) Fourier transfor

as for Yukawa
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=

∫
dxdy ei(k1+k2)xe−i(kp1+p2)y2〈0|Tφ(x)φ†(y)|0〉〈0|Tφ†(x)φ(y)|0〉

= 2

∫
d-4kd-4q

∫
dxdy ei(k1+k2)xe−i(p1+p2)ye−i(k+q)(x−y) i

k2 −m2

i

q2 −m2

= 2

∫
d-4kd-4q(2π)8δ(4)(k1 + k2 − k − q)δ(4)(p1 + p2 + k + q)

i

k2 −m2

i

q2 −m2

= (2π)4δ(4)(k1 + k2 − p1 − p2)2

∫
d-4k

(i)2

(k2 −m2)((k − k1 − k2)2 −m2)
(A.2.13)

A.2.4 Scalar QED: L = |Dµφ|2 − 1
4 F

2
muν

L = −1

4
F 2
µν + (∂µ − igAµ)φ(∂µ + igAµ)φ∗

= −1

2
(∂µAν)

2 + ∂µφ∂
µφ∗ + (igAµ(φ∗∂µφ− φ∂µφ∗) + g2A2

µφφ
∗) (A.2.14)

Quantum photon field

Aµ(x) =

∫
d̃k
∑
i

[
εiµ a

i(k)eikx + h.c.
]
, (A.2.15)

〈0|TAµ(x)Aν(y)|0〉 =

∫
d-4k
−i(ηµν − kµkν/k2)

k2
e−ik(x−y) (A.2.16)

LI ⊃ (igAµ(φ∗∂µφ− φ∂µφ∗) + g2A2
µφφ

∗) → V1 = ig(k + p)µ, V2 = i g2ηµν (A.2.17)

We read off the Feynman rules (gauge ∂µAµ = 0)
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A.3 SM

A.3.1 VCKM

A.3.1.1 DIAGONALIZATION OF YUKAWA COUPLINGS The weak eigenstates (q′) are linear super-

position of the mass eigenstates (q) given by the unitary transformations:

V u
L,R


u′

c′

t′


L,R

=


u

c

t


L,R

, V d
L,R


d′

s′

b′


L,R

=


d

s

b


L,R

,

where U(D)L,R are unitary matrices to preserve the form of the kinetic terms of the quarks (??). These

matrices diagonalize the mass matrices, i.e.,

V u+
L yuV u

R =


mu 0 0

0 mc 0

0 0 mt

 , V d+ydV d
R =


md 0 0

0 ms 0

0 0 mb

 .

V is the Cabibbo–Kobayashi–Maskawa matrix [?, ?], that can be parametrized as

V = R1(θ23)R2(θ13, δ13)R3(θ12) ,

where Ri(θjk) are rotation matrices around the axis i, the angle θjk describes the mixing of the genera-

tions j and k and δ13 is a phase.
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∂2
xG(x, x′) = δ(4)(x− x′) (A.3.1)

G(x) =

∫
d-4k

1

k2 −m2
e−ikx =

∫
d-3k ei

~k~x d-k0
e−ik0x0

k2
0 − (~k2 +m2)

(A.3.2)

(A.3.3)

Different contour of integration = different boundary conditions (below ω ≡
√
~k2 +m2)

d-k0 →


opozniony : 1

2ω
(−i)Θ(x0)(e−iωx0 − eiωx0)

przedwczesna : 1
2ω

(+i)Θ(−x0)(e−iωx0 − eiωx0)
Feynmanowski : 1

2ω
((−i)Θ(x0)e−iωx0 + (+i)Θ(−x0)eiωx0)

(A.3.4)

As above we can interato over θ:

G(~x− ~y) = (2π)−3 · 2π · 1

r
i (1

2

∫ ∞
−∞

)dk k(e−ikr − eikr)“above′′ (A.3.5)

Massless – we use
∫
dke−ikx = 2πδ(x) and 1

2ω
(e−iωx0 − eiωx0) = 1

2k
(e−ikx0 − eikx0)

opozniony : Gret(x) = − 1
4π

Θ(x0) δ(x0−|~x|)
r

przedwczesna : Gadv(x) = − 1
4π

Θ(−x0) δ(x0+|~x|)
r

Feynmanowski : GF (x) = − 1
4π

(....)

(A.3.6)

(....) is a bit more complicated because in this case (??) is not even under ω → −ω.

PICTURE: propagation of particles forwad in time and anti-particles backward in time.
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