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1 General

Group G is a set G and a map ◦, such that: (1)◦ is associative; (2)g1, g2 ∈ G ⇒ g1 ◦ g2 ∈ G; (3)there

exists a unity element e, such that e ◦ g = g ◦ e = g; (4) for every g there exists a unique g−1 such that

g ◦ g−1 = g−1 ◦ g = e

Action of a group on a vector space V . To any group element g we associate an operator Tg :

V → V . If Tg is linear and such that Tg(Th) = Tg◦h then it is called a representation of the group G.

dim(V ) is called the dimension of the representation. If dim(V ) < ∞ than in most cases (!) Tg can be

represented as a matrix.

Discrete groups are groups having finite number of elements e.g.

Zn = (0, 1, 2, ..., n− 1,+ mod(n)).

1.1 Lie groups and algebras

are (1) differentiable manifolds and (2) ◦ and g → g−1 are smooth (infinitely differentiable) maps. This

allows to choose coordinates on G.

Lie algebras. Lie group around unity element can be represented as

g = eiωaTa

, a = 1, ..dim(G). (1.1)

T a are constant matrices which form the basis of the Lie algebra of G. Lie a. of G will be denoted by G.

Thus G is a vector space over real numbers R with the basis {T a}. Moreover G must be closed under

commutator i.e.

[T a, T b] = ifab c T
c (1.2)

The matrices T a are also called generators of the Lie group. Metric on Lie algebra: gab = tr{T aT b}.
For compact Lie groups the metric can be taken to be unity gab = δab, thus we shall not distinguish

position of group indices in this (most common in this lecture) case.

Carten subalgebra is maximal albelian subalgebra of G.
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1.2 Some classical groups

1.2.1 O(N)

leaves invariant scalar the product in Rn i.e. let v ∈ Rn, O ∈ O(n) and v′ = Ov than v′Tv′ = vTv. This

yields

OTO = 1 (1.3)

From above we get that Lie a. is set of imaginary, antisymmetric matrices:

(T a)T = −T a (1.4)

O(n) has two disconnected components characterized by det(O) = ±1. SO(n) is subset of O(n) charac-

terized by det(O) = 1. It is connected. O(n) leaves invariant scalar the product in Rn i.e. let v ∈ Rn,

O ∈ O(n) and v′ = Ov than v′Tv′ = vTv.

1.2.2 U(N)

U †U = 1 (1.5)

From above we get that Lie a. is set of hermitian matrices:

(T a)† = T a (1.6)

SU(n) is subset of U(n) characterized by det(U) = 1. It is connected. U(n) leaves invariant the scalar

product in Cn i.e. let v ∈ Cn, U ∈ U(n) and v′ = Uv than v′†v′ = v†v.

1.2.3 SO(3) VS SU(2)

The group SO(3) has the same algebra as SU(2) but on the group level SO(3) = SU(2)/Z2. The

identified element is

exp{i2πσ3/2} = −1, SU(2)

exp{i2πL3} = 1, SO(3) (1.7)

Thus reps for which (1.7) acts nontrivially are ot reps of SU(2) but they are reps of SO(3).
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1.3 Lorentz - O(3, 1)

Def. througth representation: (Lorentz group) leaves invariant the scalar product in R4 with metric ηµν
(Minkowski space) . Let v ∈ R4, Λ ∈ O(3, 1) and v′ = Ov than v′Tηv′ = vTηv. Thus 1

ΛTηΛ = η i.e. ηµνΛ
µ
ρΛ

ν
σ = ηρσ (1.8)

O(3,1) has four disconnected components characterized by det(O) = ±1, sign(Λ0
0) = ±1. The proper

Lorentz group is characterized by det(O) = 1 and sign(Λ0
0) = 1. It is connected.

Algebra
From the above we get that Lie a. is a set of imaginary matrices such that:

(ηT a)T = −ηT a (1.9)

i.e. ηT a form o(n+ 1) lie algebra.

We define (see below)

Li± = i(M0i ± i

2
εijkM jk)← (?) (1.10)

these form so(3) × so(3) ∼ sl(2) × sl(2) algebras. We can take its 2d reps and exponentate it and get

4d general Lorentz transformation.

1. scalar: φ′ = φ.

2. vector: v′µ = Λµ
νv

ν , v′µ = vν(Λ
−1)νµ

3. second rank tensor: t′µν = Λµ
ρΛ

ν
σt
ρσ

WARNING. Position xµ is not a tensor. It transforms under full Poincare group as follows: x′µ =

Λµ
νx

ν + aµ. According to (1.8) the metric η does not transform under Lorentz group i.e. it is a scalar.

With the help of the metric η we can define quantities with the lower indices e.g. co-vectors: vµ ≡
ηµνv

ν . Transformation properties of these quantities are according to the above definition. So: v′µ =

ηµνv
′ν = ηµνΛ

ν
ρη
ρσvσ = vν(Λ

−1)νµ.

From spinors

ψ′(x′) = Uψ(x), ψ
′
= ψ U−1, U−1γµU = Λµ

νγ
ν

ψ
′
ψ′ = ψ ψ, ψ

′
γ5ψ

′ = ψ γ5ψ (1.11)

ψ
′
γµψ′ = Λµ

νψ γ
νψ, ψ

′
γ5γ

µψ′ = Λµ
νψ γ5γ

νψ (1.12)

1 Notes on indices
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1.3.1 POINCARE GROUP

is semidirect product of the Lorentz group and the translation group in R4. Elements (Λ, a). Multiplica-

tion (Λ1, a1)(Λ2, a2) = (Λ1Λ2,Λ1a2 + a).

2 Representations

A rep R of group G is a linear map R : G→ End(V ) where V is a vector space, respecting

R(g1)R(g2) = R(g1g2), g1, g2 ∈ G (2.1)

For Lie algebra we have

[R(t1), R(t2)] = R([t1, t2]) (2.2)

dim(V ) is called dimension of rep.

Because R(t) is a linear map it can be represented as matrix (for dim(V ) <∞).

Cartan subalgebra of Lie algebra: maximal set of commuting T ’s denoted by Hi.

2.1 Finite dim. reps.

HWIR Highest weight irreducible representations.

2.1.1 ADJOINT IRREPS

Adjoint action of group V → g V g−1 ∈ V so V = vaT
a, va ∈ R

Adjoint action of algebra

δaV → i[T a, V ] = −vbfabcT c ≡ vb i(T
a
adj)c

b T c −→ (T aadj)c
b = ifabc (2.3)

Do [T aadj, T
b
adj] = ifabj T

j
adj hold ? i.e ifajd(if

be
j)− (if bjd)(if

ae
j) = ifabj(if

je
d)

From the Jacobi identity

[[T a, T b], T e] + cycl = 0 i.e. 0 = fabjf jed + f bejf jad + f eajf jbd (2.4)

i.e. Adjoint actions define adjoint irreps (with dim=dim of group).
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2.1.2 CONJUGATE IRREP

If T a is an irrep then −(T a)T and −(T a)∗ also. For unitary irrep −(T a)T = −(T a)∗.

These reps can be equivalent to the original one i.e.

−(T a)T = ST aS−1 (2.5)

For unitary reps they are called real if T a can be choose to be antisymmetric (also purely imaginary) so

S = 1 or pseudo-real if it is impossible so S 6= 1. (see Weiberg: QFT II, p.384)
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