Contents

1	Ger	neral		2	
	1.1	Lie gro	oups and algebras	2	
1.2 Some classical groups		classical groups	3		
		1.2.1	O(N)	3	
		1.2.2	U(N)	3	
		1.2.3	SO(3) vs SU(2)	3	
1.3 Lorentz -		Lorentz	z - O(3,1)	4	
		1.3.1	POINCARE GROUP		
2 R 2	Rep	Representations			
	2.1	Finite dim. reps			
		2.1.1	Adjoint irreps	5	
		2.1.2	Conjugate irrep	6	

1 General

Group G is a set G and a map \circ , such that: (1) \circ is associative; (2) $g_1, g_2 \in G \Rightarrow g_1 \circ g_2 \in G$; (3)there exists a unity element e, such that $e \circ g = g \circ e = g$; (4) for every g there exists a unique g^{-1} such that $g \circ g^{-1} = g^{-1} \circ g = e$

Action of a group on a vector space V. To any group element g we associate an operator $T_g : V \to V$. If T_g is linear and such that $T_g(T_h) = T_{g \circ h}$ then it is called a **representation** of the group G. dim(V) is called the dimension of the representation. If $dim(V) < \infty$ than in most cases (!) T_g can be represented as a matrix.

Discrete groups are groups having finite number of elements e.g. $Z_n = (0, 1, 2, ..., n - 1, + \text{mod}(n)).$

1.1 Lie groups and algebras

are (1) differentiable manifolds and (2) \circ and $g \to g^{-1}$ are smooth (infinitely differentiable) maps. This allows to choose coordinates on G.

Lie algebras. Lie group around unity element can be represented as

$$g = e^{i\omega_a T^a}, \quad a = 1, ..dim(G).$$
 (1.1)

 T^a are constant matrices which form the basis of the Lie algebra of G. Lie a. of G will be denoted by \underline{G} . Thus \underline{G} is a vector space over real numbers R with the basis $\{T^a\}$. Moreover \underline{G} must be closed under commutator i.e.

$$[T^a, T^b] = i f^{ab}_{\ c} T^c \tag{1.2}$$

The matrices T^a are also called **generators** of the Lie group. **Metric** on Lie algebra: $g^{ab} = \text{tr}\{T^aT^b\}$. For compact Lie groups the metric can be taken to be unity $g^{ab} = \delta^{ab}$, thus we shall not distinguish position of group indices in this (most common in this lecture) case.

Carten subalgebra is maximal albelian subalgebra of \underline{G} .

1.2 Some classical groups

1.2.1 O(N)

leaves invariant scalar the product in \mathbb{R}^n i.e. let $v \in \mathbb{R}^n$, $O \in O(n)$ and v' = Ov than $v'^T v' = v^T v$. This yields

$$O^T O = 1 \tag{1.3}$$

From above we get that Lie a. is set of imaginary, antisymmetric matrices:

$$(T^a)^T = -T^a \tag{1.4}$$

O(n) has two disconnected components characterized by $det(O) = \pm 1$. **SO(n)** is subset of O(n) characterized by det(O) = 1. It is connected. O(n) leaves invariant scalar the product in \mathbb{R}^n i.e. let $v \in \mathbb{R}^n$, $O \in O(n)$ and v' = Ov than $v'^T v' = v^T v$.

1.2.2 U(N)

$$U^{\dagger}U = 1 \tag{1.5}$$

From above we get that Lie a. is set of hermitian matrices:

$$(T^a)^\dagger = T^a \tag{1.6}$$

SU(n) is subset of U(n) characterized by det(U) = 1. It is connected. U(n) leaves invariant the scalar product in C^n i.e. let $v \in C^n$, $U \in U(n)$ and v' = Uv than $v'^{\dagger}v' = v^{\dagger}v$.

1.2.3 SO(3) VS SU(2)

The group SO(3) has the same algebra as SU(2) but on the group level $SO(3) = SU(2)/Z_2$. The identified element is

$$\exp\{i2\pi\sigma^{3}/2\} = -1, \quad SU(2)$$
$$\exp\{i2\pi L_{3}\} = 1, \quad SO(3) \tag{1.7}$$

Thus reps for which (1.7) acts nontrivially are ot reps of SU(2) but they are reps of SO(3).

1.3 Lorentz - O(3, 1)

Def. through representation: (Lorentz group) leaves invariant the scalar product in R^4 with metric $\eta_{\mu\nu}$ (Minkowski space). Let $v \in R^4$, $\Lambda \in O(3, 1)$ and v' = Ov than $v'^T \eta v' = v^T \eta v$. Thus

$$\Lambda^T \eta \Lambda = \eta \quad \text{i.e.} \quad \eta_{\mu\nu} \Lambda^{\mu}{}_{\rho} \Lambda^{\nu}{}_{\sigma} = \eta_{\rho\sigma} \tag{1.8}$$

O(3,1) has four disconnected components characterized by $det(O) = \pm 1$, $sign(\Lambda_0^0) = \pm 1$. The **proper** Lorentz group is characterized by det(O) = 1 and $sign(\Lambda_0^0) = 1$. It is connected.

Algebra

From the above we get that Lie a. is a set of imaginary matrices such that:

$$(\eta T^a)^T = -\eta T^a \tag{1.9}$$

i.e. ηT^a form o(n+1) lie algebra.

We define (see below)

$$L^{i}_{\pm} = i(M^{0i} \pm \frac{\imath}{2} \epsilon^{ijk} M^{jk}) \leftarrow (?)$$

$$(1.10)$$

these form $so(3) \times so(3) \sim sl(2) \times sl(2)$ algebras. We can take its 2d reps and exponentate it and get 4d general Lorentz transformation.

1. scalar: $\phi' = \phi$.

2. vector:
$$v'^{\mu} = \Lambda^{\mu}{}_{\nu}v^{\nu}, v'_{\mu} = v_{\nu}(\Lambda^{-1})^{\nu}{}_{\mu}$$

3. second rank tensor: $t'^{\mu\nu} = \Lambda^{\mu}_{\ \rho} \Lambda^{\nu}_{\ \sigma} t^{\rho\sigma}$

WARNING. Position x^{μ} is not a tensor. It transforms under full Poincare group as follows: $x'^{\mu} = \Lambda^{\mu}_{\nu}x^{\nu} + a^{\mu}$. According to (1.8) the metric η does not transform under Lorentz group i.e. it is a scalar.

With the help of the metric η we can define quantities with the lower indices e.g. co-vectors: $v_{\mu} \equiv \eta_{\mu\nu}v^{\nu}$. Transformation properties of these quantities are according to the above definition. So: $v'_{\mu} = \eta_{\mu\nu}v'^{\nu} = \eta_{\mu\nu}\Lambda^{\nu}{}_{\rho}\eta^{\rho\sigma}v_{\sigma} = v_{\nu}(\Lambda^{-1})^{\nu}{}_{\mu}$.

From spinors

$$\psi'(x') = U\psi(x), \quad \overline{\psi}' = \overline{\psi} U^{-1}, \quad U^{-1}\gamma^{\mu}U = \Lambda^{\mu}{}_{\nu}\gamma^{\nu}$$
$$\overline{\psi}'\psi' = \overline{\psi}\psi, \quad \overline{\psi}'\gamma_{5}\psi' = \overline{\psi}\gamma_{5}\psi$$
(1.11)

$$\overline{\psi}'\gamma^{\mu}\psi' = \Lambda^{\mu}{}_{\nu}\overline{\psi}\gamma^{\nu}\psi, \ \overline{\psi}'\gamma_{5}\gamma^{\mu}\psi' = \Lambda^{\mu}{}_{\nu}\overline{\psi}\gamma_{5}\gamma^{\nu}\psi$$
(1.12)

1 Notes on indices

1.3.1 POINCARE GROUP

is semidirect product of the Lorentz group and the translation group in R^4 . Elements (Λ, a) . Multiplication $(\Lambda_1, a_1)(\Lambda_2, a_2) = (\Lambda_1\Lambda_2, \Lambda_1a_2 + a)$.

2 Representations

A rep R of group G is a linear map $R: G \to End(V)$ where V is a vector space, respecting

$$R(g_1)R(g_2) = R(g_1g_2), g_1, g_2 \in G$$
(2.1)

For Lie algebra we have

$$[R(t_1), R(t_2)] = R([t_1, t_2])$$
(2.2)

 $\dim(V)$ is called dimension of rep.

Because R(t) is a linear map it can be represented as matrix (for dim $(V) < \infty$).

Cartan subalgebra of Lie algebra: maximal set of commuting T's denoted by H_i .

2.1 Finite dim. reps.

HWIR Highest weight irreducible representations.

2.1.1 ADJOINT IRREPS

Adjoint action of group $V \to g V g^{-1} \in V$ so $V = v_a T^a, v_a \in \mathbb{R}$ Adjoint action of algebra

$$\delta_a V \to i[T^a, V] = -v_b f^{ab}{}_c T^c \equiv v_b i(T^a_{adj})_c{}^b T^c \longrightarrow (T^a_{adj})_c{}^b = i f^{ab}{}_c$$
(2.3)

Do $[T_{adj}^a, T_{adj}^b] = if^{ab}_{\ j} T_{adj}^j$ hold ? i.e $if^{aj}_{\ d}(if^{be}_{\ j}) - (if^{bj}_{\ d})(if^{ae}_{\ j}) = if^{ab}_{\ j}(if^{je}_{\ d})$ From the Jacobi identity

$$[[T^{a}, T^{b}], T^{e}] + cycl = 0 \quad \text{i.e. } 0 = f^{abj}f^{jed} + f^{bej}f^{jad} + f^{eaj}f^{jbd}$$
(2.4)

i.e. Adjoint actions define adjoint irreps (with dim=dim of group).

2.1.2 CONJUGATE IRREP

If T^a is an irrep then $-(T^a)^T$ and $-(T^a)^*$ also. For unitary irrep $-(T^a)^T = -(T^a)^*$. These reps can be equivalent to the original one i.e.

$$-(T^a)^T = ST^a S^{-1} (2.5)$$

For unitary reps they are called real if T^a can be choose to be antisymmetric (also purely imaginary) so S = 1 or pseudo-real if it is impossible so $S \neq 1$. (see Weiberg: QFT II, p.384)