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1 General

Group G is a set G and a map o, such that: (1)o is associative; (2)g;, g2 € G = g1 0 go € G; (3)there

exists a unity element e, such that e o g = g o e = g; (4) for every ¢ there exists a unique g~ * such that
1 1

gog =g og=e

Action of a group on a vector space V. To any group element g we associate an operator T :
V — V. If T, is linear and such that T,(7},) = T, then it is called a representation of the group G.
dim(V') is called the dimension of the representation. If dim (V') < oo than in most cases (!) 7, can be
represented as a matrix.

Discrete groups are groups having finite number of elements e.g.

Zn=1(0,1,2,...,n — 1,4+ mod(n)).

1.1 Lie groups and algebras

are (1) differentiable manifolds and (2) o and g — ¢~ ' are smooth (infinitely differentiable) maps. This

allows to choose coordinates on G.

Lie algebras. Lie group around unity element can be represented as
g=e“T"  a=1,.dim(G). (1.1)

T'* are constant matrices which form the basis of the Lie algebra of GG. Lie a. of GG will be denoted by G'.
Thus G is a vector space over real numbers R with the basis {7*}. Moreover G must be closed under
commutator i.e.

[T T =if® T¢ (1.2)
The matrices T are also called generators of the Lie group. Metric on Lie algebra: g% = tr{T%7T"}.
For compact Lie groups the metric can be taken to be unity ¢g** = §%, thus we shall not distinguish

position of group indices in this (most common in this lecture) case.

Carten subalgebra is maximal albelian subalgebra of G.



1.2 Some classical groups

121 O(N)

leaves invariant scalar the product in R" i.e. letv € R", O € O(n) and v' = Ov than v'"v' = vTv. This
yields
0'o =1 (1.3)

From above we get that Lie a. is set of imaginary, antisymmetric matrices:
(T)" = —T1° (1.4)
O(n) has two disconnected components characterized by det(O) = +1. SO(n) is subset of O(n) charac-
terized by det(O) = 1. It is connected. O(n) leaves invariant scalar the product in R" i.e. letv € R",
O € O(n) and v' = Ov than v'Tv' = v,
1.2.2 U(N)
Utv =1 (1.5)
From above we get that Lie a. is set of hermitian matrices:
(T =1° (1.6)
SU(n) is subset of U(n) characterized by det(U) = 1. It is connected. U(n) leaves invariant the scalar
product in C" i.e. letv € C", U € U(n) and v' = Uv than v'Tv’ = vTv.
1.2.3 SO(3) vs SU(2)

The group SO(3) has the same algebra as SU(2) but on the group level SO(3) = SU(2)/Zs. The

identified element is

exp{i2no®/2} = —1, SU(2)
exp{i2r L3} = 1, SO(3) (1.7)

Thus reps for which (1.7) acts nontrivially are ot reps of SU(2) but they are reps of SO(3).



1.3 Lorentz-O(3,1)

Def. througth representation: (Lorentz group) leaves invariant the scalar product in R* with metric 7,,,
(Minkowski space) . Letv € R*, A € O(3,1) and v' = Ov than v'Tnv’ = v . Thus !

ATpA =1 e NN A 5 = 1o (1.8)

0O(3,1) has four disconnected components characterized by det(O) = +1, sign(A%;) = +1. The proper
Lorentz group is characterized by det(O) = 1 and sign(A°;) = 1. It is connected.
Algebra

From the above we get that Lie a. is a set of imaginary matrices such that:
(nT*)" = —nT* (1.9)

i.e. nT* form o(n + 1) lie algebra.
We define (see below) '
Li = i(M% + %eijijk)e (?) (1.10)
these form so(3) x so(3) ~ sl(2) x sl(2) algebras. We can take its 2d reps and exponentate it and get

4d general Lorentz transformation.

1. scalar: ¢/ = ¢.

RN TR v /o —1\v
2. vector: v = A* 07, vl = v, (A7),

3. second rank tensor: ¢ = A AY 77

WARNING. Position z* is not a tensor. It transforms under full Poincare group as follows: z/* =
A x¥ + a*. According to (1.8) the metric 1 does not transform under Lorentz group i.e. it is a scalar.

With the help of the metric 7 we can define quantities with the lower indices e.g. co-vectors: v, =
Nuwv”. Transformation properties of these quantities are according to the above definition. So: v, =
NV = NN 170 = v, (A1) .

From spinors

V(@) = Udle), 9 =0U", U WU =My
— — — —

v = Yy s =Yy (1.11)
—1/ —_ p— J—
VY = ALY, sy = A sy (1.12)

Notes on indices



1.3.1 POINCARE GROUP

is semidirect product of the Lorentz group and the translation group in R*. Elements (A, ). Multiplica-
tion (Al, CL1>(A2, ag) = (AlAQ, AI(ZQ -+ CL).

2 Representations

A rep R of group G is a linear map R : G — FEnd(V') where V' is a vector space, respecting

R(g1)R(g2) = R(g192), 91,92 € G (2.1)

For Lie algebra we have
[R(t1), R(t2)] = R([t1,12]) (2.2)

dim(V') is called dimension of rep.
Because R(t) is a linear map it can be represented as matrix (for dim(V') < 00).

Cartan subalgebra of Lie algebra: maximal set of commuting 7”s denoted by H;.

2.1 Finite dim. reps.

HWIR Highest weight irreducible representations.

2.1.1 ADJOINT IRREPS

Adjoint action of group V — gVg e VsoV =v,T% v, €R

Adjoint action of algebra

6V — i[T V] = —up f.T¢ = vy i(T2

e T — (Toy) = if e (2.3)

Do [T, Tt =if®; T2, hold 2 ie if (if';) — (if*)(if*;) = ife;(ify)
From the Jacobi identity

[[Ta’TbLTe] + CyCl =0 ie. 0= fabjfjed + fbejfjad + feajfjbd (24)

i.e. Adjoint actions define adjoint irreps (with dim=dim of group).



2.1.2 CONJUGATE IRREP

If T is an irrep then —(7*)” and —(7*)* also. For unitary irrep —(7%)" = —(T")*.

These reps can be equivalent to the original one i.e.
—(T*)" = 815~ (2.5)

For unitary reps they are called real if 7 can be choose to be antisymmetric (also purely imaginary) so
S = 1 or pseudo-real if it is impossible so S # 1. (see Weiberg: QFT II, p.384)
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