
Zadania (07.11.2025)

1 Zakres zmiennych

Co zwróci poniższy kod? Dlaczego? Co się zmieni, gdy zakomentujemy w funkcji linię count =1 oraz
zastąpimy linię count += 1 przez continue?

count = 5

def modify_count():
count = 1
for i in range(3):
count +=1

print("Wewnątrz funkcji:", count*i)

modify_count()
print("Poza funkcją:",count)

2 Suma ważona

Napisz funkcję (wraz z wykorzystującym ją programem), która będzie przyjmowała następujące argu-
menty:

1. wartość początkową,

2. dowolnie wiele dodatkowych liczb.

Dodatkowe liczby mają zostać przemnożone przez ich pozycję na liście argumentów (pierwsza przez 1,
druga przez 2 itd.) i dodane do wartości początkowej, po czym zwrócone przez funkcję.

3 Adresy IP

Adres IP(v4) zwyczajowo przedstawiany jest jako czwórka liczb całkowitych dodatnich z zakresu 8-
bitowego, tzn. z przedziału [0, 255], oddzielonych kropkami (np. 192.168.0.1). Szczególne znaczenie mają
wymienione poniżej zakresy IP, gdyż rezerwuje się je do użytku w sieci lokalnej:

• 10.0.0.0 – 10.255.255.255
• 172.16.0.0 – 172.31.255.255
• 192.168.0.0 – 192.168.255.255

Napisz funkcję (wraz z wykorzystującym ją programem), która będzie przyjmowała jako argument listę
lub krotkę z adresami IP (np. tę niżej), po czym zwróci jako wynik krotkę zawierającą jedynie adresy
lokalne.

1



ips = [
"192.168.0.7",
"198.23.12.9",
"13.8.32.1",
"10.11.2.37",
"11.11.3.123",
"199.231.1.0",
"61.221.34.59",
"48.54.206.145",
"21.181.83.183",
"172.30.27.219",
"123.170.108.177",
"216.227.101.121",
"51.126.7.165",
"23.96.221.226",
"208.212.144.77",
"192.152.96.133",
"37.13.232.193",
"211.121.69.142",
"16.122.66.255",
"118.57.180.250",
"228.65.59.248",
"172.175.159.72",
"10.195.34.158",

]

4 Trójkąt Pascala

Wygeneruj tzw. trójkąt Pascala, czyli taki, na którego bokach stoją jedynki, a każda inna liczba jest
sumą dwóch leżących bezpośrednio ponad nią. Innymi słowy, liczby stojące w n-tym wierszu to kolejne
współczynniki dwumianu Newtona:

(
n
k

)
= n!

k!(n−k)! (w szczególności
(
n
0

)
=

(
n
n

)
= 1).

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

5 Częstość występowania znaków

Napisz program, który będzie przyjmował jako argument wywołania nazwę pliku tekstowego, po czym
policzy częstość znaków, które w nim występują. Niech zwraca wynik w postaci histogramu podobnego
do tego niżej:

2



Rozkład dla pliku: nevergonnagiveyouup.txt:
: #################### 288
e : ############ 181
n : ########## 153
o : ########## 150
a : ####### 105
r : ###### 87
u : ##### 76
t : #### 69
g : #### 66
y : #### 64
\n: ### 54
d : ### 49
v : ### 45
l : ## 43
s : ## 36
N : ## 36
i : ## 31
h : ## 30
w : # 26
m : # 20
’ : # 20
k : # 17
b : # 15
c : 11
f : 9
I : 9
p : 8
W : 5
Y : 4
, : 4
j : 2
G : 2
A : 2
D : 1
------------------------------

6 Zadanie domowe: Sito Eratostenesa

Sito Eratostenesa to dość sprytny sposób na znalezienie wszystkich liczb pierwszych –podzielnych tylko
przez siebie i 1 (choć 1, o ironio, nie jest liczbą pierwszą), mniejszych od zadanego n. Polega ono na:

1. uworzeniu tablicy liczb naturalnych mniejszych niż n

2. przejściu przez kolejne dotychczas nie wykreślone liczby (nazwijmy je i)

3. skreślaniu (możemy to zrealizować przez przypisanie wartości False) wszystkich liczb będących
wielokrotnościami i

Te liczby, które przetrwają powyższą procedurę, niechybnie muszą być pierwsze.
Wskazówki (nie są niezbędne, ale nieco przyspieszają działanie programu):

1. Nie musimy sprawdzać wszystkich liczb aż do n, bo jeśli jakaś liczba się wyraża przez l = a · b, to
jedno z {a, b} zawsze będzie mniejsze niż

√
n. Wystarczy więc iterować i tylko do

√
n.

3



2. Wykreślamy wielokrotności kolejnych liczb. Należałoby więc teoretycznie zacząć od 2 · i. Jednakże
jeżeli dla wcześniej sprawdzanych liczb mniejszych niż i·i istniała jakaś liczba złożona (nie-pierwsza),
to musiała już mieć czynniki mniejsze niż

√
i2 = i, więc została już wykreślona. Np. dla i = 3 nie

musimy sprawdzać 6 = 2 · 3, bo zostało już wykreślone przy i = 2: 6 = 3 · 2. Sprawdzanie możemy
zatem zaczynać od i2.

4


