
Zadania (05.12.2025)

Jeszcze kilka zadań do poćwiczenia działania na plikach i listach, a także zbiorach (które omawialiśmy
bardzo pobieżnie). Podpunkty z gwiazdką rozbudowują odpowiednie zadania i wymagają nieco większego
nakładu pracy.

1 Adresy IP – Reaktywacja
Na trzech serwerach zbierano listy adresów IP, z których następował nietypowy ruch przychodzący. Napisz
program, który je przefiltruje i wypisze:

1. adresy zarejestrowane na poszczególnych serwerach, ale bez powtórzeń – np. adres 124.194.117.151
pojawia się na serwerze nr 1 dwukrotnie, nie chcemy tego,

2. adresy powtarzające się w każdym z zestawów i ile razy,
3. adresy, które są w logach wszystkich serwerów jednocześnie,
4. całą pulę zebranych adresów – czyli te, które pojawiły się gdziekolwiek,
5. adresy, które pojawiły się wyłącznie na jednym z serwerów i nigdzie indziej (wypisz to dla każdego

z trzech serwerów).
ip_serwer1 = ["124.194.117.151",

"102.26.179.4",
"124.194.117.151",
"228.50.34.103",
"72.64.203.50",
"156.71.102.245",
"67.33.135.75",
"240.58.59.186",
"75.245.64.35",
"42.107.64.123"]

ip_serwer2 = ["87.60.211.200",
"124.194.117.151",
"39.50.47.1",
"35.104.29.70",
"75.245.64.35",
"233.152.75.71",
"196.40.247.11",
"110.84.193.208",
"60.69.233.205",
"113.164.109.228"]

ip_serwer3 = ["69.24.218.219",
"30.186.239.61",
"215.131.155.192",
"234.125.132.67",
"75.245.64.35",
"75.245.64.35",
"167.13.89.15",
"9.238.14.91",
"127.97.147.85",
"67.33.135.75",
"129.21.227.118"]

Uwagi:

1. Zadanie stanie się bardzo proste jeśli posłużymy się zbiorami (sets), przydać się może także metoda
.count(...) dla list.

2. Tak naprawdę adresy wygenerowałem losowo, więc proszę ich nie traktować jako IP faktycznych
złoczyńców.

1



2 Szyfr „książkowy”
Szyfr książkowy (https://pl.wikipedia.org/wiki/Szyfr_Ottendorfa) jest to szyfr, w którym wiado-
mość zaszyfrowana jest w postaci zestawu liczb oznaczających lokalizację jej kolejnych liter bądź słów
(zależnie od wariantu) w określonym tekście. Jedynie jednocześnie wiedząc, o który tekst chodzi i posia-
dając szyfr, odbiorca może odkodować przekazywaną informację.

Napisz funkcję, która będzie implementowała pewien rodzaj tego szyfru (i używający jej program). Niech
przyjmuje jako argumenty nazwy dwóch plików – z tekstem i z szyfrem, po czym niech wypisuje na ekran
rozszyfrowaną wiadomość. Niech plik z szyfrem w każdej linii zawiera instrukcję do odszyfrowania kolejnej
litery wiadomości: trzy liczby, odpowiadające kolejno linii, wyrazowi i literze.

*A teraz w drugą stronę

Napisz drugą funkcję, która znów pobierać będzie jako argumenty nazwy plików – z tekstem oraz plik, do
którego zapisany zostanie zaszyfrowana wiadomość, a także string z wiadomością do zaszyfrowania. Niech
wykonuje ona operację przeciwną niż poprzednia – wyszukuje w pliku z tekstem wystąpienia kolejnych
liter szyfrowanej wiadomości i wpisuje ich położenia do pliku z szyfrem. W przypadku niepowodzenia
niech wypisuje, których znaków nie udało się znaleźć w tekście.

3 Archiwa .tar
Na jednych z poprzednich zajęć przesłałem Państwu materiały w formacie archiwum tar. Jest to dość
stara metoda przechowywania wielu plików w jednej paczce – na tyle stara, że jej nazwa to akronim Tape
ARchive, czyli Archiwum Taśmowe! To dość prosty format – polega on na sklejeniu archiwizowanych
plików ze sobą. Każdy plik poprzedzony jest nagłówkiem oraz dopełniony do najbliższej wielokrotności
512 bajtów zerami. Dokładniejsze informacje są powszechnie dostępne w sieci, np.:

• https://en.wikipedia.org/wiki/Tar_%28computing%29
• https://wiki.osdev.org/USTAR

W szczególności interesują nas w nagłówku bajty:

• 0-99: nazwa pliku, dopełniona znakami ASCII NUL ('\x00')
• 124-134: długość pliku, niestety ze względów historycznych w postaci liczby w formacie ósemkowym,

której cyfry zapisane są jako ciąg ASCII

Po 512 bajtach nagłówka zaczyna się właściwa treść pliku, która jest następnie – jak wspomniano –
dopełniana zerami do najbliższej wielokrotności 512 bajtów, po czym ewentualnie zaczyna się nagłówek
kolejnego pliku.

Celem niniejszego zadania jest napisanie programu w Pythonie, który będzie w stanie wyodrębniać z
podanego archiwum .tar. Dla uproszczenia ignorujemy pozostałe informacje zawarte w nagłówku (np.
uprawnienia dostępu do pliku i jego właściciel) oraz zakładamy, że archiwum zawiera tylko i wyłącznie
zwyczajne pliki (nie ma katalogów ani linków).

Wskazówki:

1. Chcemy operować na plikach w trybie binarnym, więc musimy dodać 'b' do trybu otwierania.
2. Do zamiany danych binarnych na string może służyć metoda .decode(), zaś do usuwania niepo-

trzebnych znaków na końcu stringu – metoda .rstrip(znak).
3. Do zamiany danych binarnych na liczbę całkowitą w formacie ósemkowym może służyć funkcja

int(dane_binarne,8).

2



*Sprawdzanie czy wyodrębniane pliki istnieją

Ulepsz napisany program w taki sposób, by przed wyodrębnieniem pliku sprawdzał czy dany plik już
nie istnieje. Jeżeli istnieje, niech spyta użytkownika czy go nadpisać. W kolejnym kroku dodaj możliwość
wywołania programu z argumentem (np. --overwrite), który spowoduje automatyczne nadpisywanie,
bez pytania. Możesz także dodać drugi (np. --keep-old-files), który zadziała przeciwnie – wyodrębni
tylko te pliki, które nie istnieją.

Wskazówki:

1. Tryb otwierania pliku w Pythonie 'w' automatycznie nadpisuje plik, podczas gdy 'x' zwraca błąd
(FileExistsError) gdy plik istnieje.

2. Błąd ten można oczywiście przechwycić za pomocą konstrukcji try–except.

3


