Charged-particle spectroscopy with the Optical TPC

Marek Pfützner

Nuclear Physics Division
University of Warsaw

Carpathian Summer School of Physics 2014, July 13-26, Sinaia, Romania
Outline

- Nuclei at the proton drip-line and beyond
 - Two-proton radioactivity
- Optical TPC
- Decay study of ^{45}Fe (and ^{43}Cr)
- Decay study of ^{48}Ni (and ^{46}Fe, ^{44}Cr)
- Beta-delayed 3p emission from ^{31}Ar
- Rare decay of ^{6}He
- Beta decay of ^{8}He
- New TPC for ELI-NP
Beyond the proton drip-line

The β^+ decay

Probability of transition:

$$\lambda \sim Q^5$$

Decay energy may be large, but the weak interaction is really weak

$$T_{1/2} > 1 \text{ ms}$$

The emission of particles

There is a potential barrier which hampers emission of an unbound proton (α, 2p, 14C,..)

$$\lambda \sim \exp \left\{ -\frac{2}{\hbar} \int_{r_{in}}^{r_{out}} \sqrt{2\mu[V(r) - Q_p]} \cdot dr \right\}$$

To find where the drip-line actually is and to predict which decay will happen, precise estimates of atomic masses are required!

To study particle radioactivity fast techniques are needed!
When the β decay energy is large, many exotic channels are available.
The limit of „existence” beyond the proton drip-line is determined by emission of protons.

Visually, the emissions are categorized as:
- **Simultaneous (2p)**: Where both protons are emitted simultaneously, denoted by \(Q_p < 0, Q_{2p} > 0 \), indicated by the label „true” simultaneous.

- **Sequential (pp)**: Where the protons are emitted one after the other, denoted by \(Q_p > 0, Q_{2p} > 0 \), indicated by the label sequential.

Graphs illustrate the separation energy [MeV] as a function of the neutron number for different proton numbers (Z).

V.I. Goldanskii, Nucl. Phys. 19 (60) 482

Carpathian Summer School of Physics 2014, July 13-26, Sinaia, Romania
Global prediction based on EDF theory with 6 Skyrme forces and simple models of 2p emission

New terra incognita

Model averaged path of 2p/pp emission

OLSEN ET AL., PRL 110 (2013) 222501; PRL 111 (2013) 139903 (E)
TPC detector

Time projection chamber with optical readout (OTPC)

- Combination of the CCD image with the PMT waveform allows to fully reconstruct the track in three dimensions
Raw data and ion ID

CCD

ID data

Experimental data
Slope fit
TAC fit
Zero point

ΔE
TOF

PMT

Ion implantation
Decay

PMT voltage [mV]

Time [ms]

Number of events

ΔE [V]
TOF [V]
A track is reconstructed by comparing the data with the SRIM simulation.

\[E_p = 1393 (50)(6) \text{ keV} \]
\[\Theta = 28 (4)(1) \text{°} \]

Pomorski et al., PRC 90 (14) 014311
Study of 45Fe

- NSCL/MSU, February 2007: 58Ni at 161 MeV/u + natNi \rightarrow 45Fe

![Diagram of experimental setup]

![Energy loss vs. time-of-flight plot]

2p decay of 45Fe

Carpathian Summer School of Physics 2014, July 13-26, Sinaia, Romania

12
p-p momentum correlations for 45Fe

Proton-proton momentum correlations measured for 45Fe are complex and indicate a genuine 3-body phenomenon.

Good agreement with the 3-body model of Grigorenko et al.

Miernik et al., PRL 99 (07) 192501 Grigorenko et al., PLB 677 (2009) 30 MP, Karny, Grigorenko, Riisager, RMP 84 (12) 567
Decays of 45Fe and 43Cr

45Fe and 43Cr

$Q_{EC} = 18.7$ MeV

$T_{1/2} = 7$ ms

$\beta^+ + \beta^+ + \beta^2 p$

45Mn$+ p$

45Fe

$\beta^2 p$

$\beta^3 p$

44Mn$+ p$

NSCL/MSU, 2007

$\beta^3 p$

0.08%

$\beta^2 p$

11%

β^p

$\approx 70\%$

$\approx 30\%$

\approx 70%

\approx 30%

40Ca$+ 3p$

41Sc$+ 2p$

42Ti$+ p$

43V

45Mn

44Cr$+ p$

44Cr$+ 2p$

43V$+ 2p$

42Ti$+ 3p$

41Sc$+ 4p$

Pomorski et al., Phys. Rev. 83 (2011) 014306

Miernik et al., PRL 99 (07) 192501

Carpathian Summer School of Physics 2014, July 13-26, Sinaia, Romania
Study of ^{48}Ni

- NSCL/MSU, March 2011: ^{58}Ni at 160 MeV/u + $^{\text{nat}}\text{Ni}$ → ^{48}Ni

10 events of ^{48}Ni in 10 days

Cross section: $\sigma = 150(50)$ fb!

Pomorski et al., PRC 90 (14) 014311
2p decay of 48Ni

Four 2p events of 48Ni

$Q_{2p} = 1.29 (4) \text{ MeV}$

Pomorski et al., PRC 90 (14) 014311
\[\beta\text{-delayed protons from }^{44}\text{Cr} \]

5542 identified ions of \(^{44}\text{Cr}\)
4098 properly stopped
183 decays observed
\[b_p = 10(1)\% \]
Dossat: \[b_p = 14.0(9)\% \]

A clear new line at 740(20) keV
\[I_p = 0.6(2)\% \]

Pomorski et al., PRC 90 (14) 014311
β-delayed protons from 46Fe

471 identified ions of 46Fe
269 properly stopped
148 decays observed

$\Rightarrow b_p = 66(4)\%$
Dossat: $b_p = 79(4)\%$

19 reconstructed protons

Carpathian Summer School of Physics 2014, July 13-26, Sinaia, Romania

Pomorski et al., PRC 90 (14) 014311
β2p channel in 46Fe

One good event!

![CCD Image](Image)

![PMT Image](Image)

![Energy-Time Spectrum](Image)

![Energy-TOF Spectrum](Image)
Both protons escaped the detector. From the length of tracks we know only that:

\[E_1 > 1.96 \text{ MeV} \]
\[E_2 > 1.67 \text{ MeV} \]
\[E_1 + E_2 > 3.63 \text{ MeV} \]

This cannot go through the IAS!
Decay scheme of ^{48}Ni

$Q_{2p} = 1.29 (4) \text{ MeV}$

$T_{1/2} = 2.1^{+1.4}_{-0.6} \text{ ms}$
β3p in 31Ar

Decay modes of 31Ar and first observation of β-delayed three-proton radioactivity

D. Bazin,* R. Del Moral, J. P. Dufour, A. Fleury, F. Hubert, and M. S. Pravikoff

Centre d’Etudes Nucléaires de Bordeaux – Gradignan, Le Haut Vigneau 33175 Gradignan CEDEX, France

31Ar examined: New limit on the β-delayed three-proton branch

H. O. U. Fynbo,1 L. Axelsson,2 J. Åystö,3 M. J. G. Borge,4 L. M. Fraile,4 A. Honk4 A. Jokinen,3 B. Jonson,1 I. Martel,3,7 I. Mukha,1,2 T. Nilsson,5,8 G. Nyman,2 M. Oinio4 M. H. Smedberg,2 O. Tengblad,4 F. Wenander,2 and the ISOLDE
\[\beta 3p \text{ in } ^{31}\text{Ar} \]

- Experiment at FRS, August 2012

Confirmed at ISOLDE

Lis et al., to be published

Koldste et al., PRC 89 (2014) 064315
Decay of ^6He into $\alpha + d$

- ^6He has a very weak decay branch to $\alpha + d$

Due to β-background, it was not possible to determine the spectrum below $E_{\text{CM}} \approx 400$ keV!

No model has succeeded in satisfactory description of both the shape and the intensity of the $\alpha+d$ spectrum!

Due to β-background, it was not possible to determine the spectrum below $E_{\text{CM}} \approx 400$ keV!

A bunch of $\approx 10^3$-10^4 ^6He ions, accelerated to 3 MeV/u by REX-Isolde, is implanted into the OTPC. The difference in the depth of implantation corresponds to the energy loss of ^6He in a layer of 5 μm of Cu + 2 μm of Au.

Data are taken for 650 ms exposure. Light from many beta decays is seen as a smeared cloud around the implantation points.

The difference in the depth of implantation corresponds to the energy loss of ^6He in a layer of 5 μm of Cu + 2 μm of Au.
Decay of ^6He with OTPC at ISOLDE

CCD image, 650 ms exposure

PMT slow sampling, 1 MHz (rough history of what happened)

PMT fast sampling, 100 MHz (fine details of events)

Bunch of 10^3-10^4 ^6He ions

> Practically no background in the PMT traces
Event reconstruction

Horizontal length: 23 mm
Vertical length: 62 mm
Total length = 66 mm
Angle = 69°
Energy = 1000 ± 30 keV
Event reconstruction

Horizontal length: 3 mm
Vertical length: 16 mm
Total length = 16 mm
Angle = 80°
Energy = 150 ± 10 keV
The spectrum

317 events collected in 12 h

Full statistics should be up to 6 times larger
The previous experiment on 8He β decay:

ISOLDE (1992)
M. Borge et al., NP A 560 (1993) 664

- Observation of strong β-delayed triton channel

$$^8\text{He} \rightarrow ^8\text{Li}^* \rightarrow \alpha + t + n$$

The branching: $(8.0 \pm 0.5) \times 10^{-3}$

$B_{GT} \geq 5.2$, $\log ft = 2.9$!

Essentially, this is the tetra-neutron decay to a triton and a neutron! (If the clustering approximation is the good one).
Decays to particle bound states of 8Li

Dubna, Acculinna, 2009/2012
Final-state continuum in 8Li $\rightarrow 2\alpha$ decay

Mianowski, PhD thesis
Bhattacharya et al. PRC73(2006) 055802

Carpathian Summer School of Physics 2014, July 13-26, Sinaia, Romania
Reconstruction of α-t-n decay event

$Q = 4.3$ MeV

$E_a = 1150$ keV
$E_t = 2570$ keV
$E_n = 610$ keV

We see about 400 triton events. The branching for the βt is 0.9%
Feeding of α-t-n decaying states

E_n (MeV)

^{8}He

^{8}Li

B_{GT} evaluation is in progress

Mianowski, Janas, to be published
Mianowski, PhD thesis
Understanding the $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ reaction is still one of the key open questions in nuclear astrophysics. It determines the carbon/oxygen ration which determines the fate of massive stars and the light curve of SN Ia ("standard candles").
The proposed solution is to measure the reverse reaction: \(\gamma + ^{16}\text{O} \rightarrow ^{12}\text{C} + \alpha \) using photon beams at ELI-NP.

Advantages: very clean signal, no background issues, angular correlations allows E1/E2 decomposition

To have the full freedom of gas selection, a new detector with electronic readout is developed at University of Warsaw

Other reactions planned:
\(^{19}\text{F}(\gamma, p)^{18}\text{O} , \quad ^{22}\text{Ne}(\gamma, \alpha)^{18}\text{O} , \)
\(^{24}\text{Mg}(\gamma, \alpha)^{20}\text{Ne} , \ldots \)

See a talk by Jan Bihałowicz on Thursday!
The OTPC detector is a very efficient tool to search for very rare multiparticle decays or to investigate particle decays obscured by beta background.

Can provide precise branching ratios for β-delayed particle channels. Although the energy resolution is worse than for Si detectors, yields complementary data for low-energy particles.

Non-trivial 3-body character of 2p decay of 45Fe discovered. 2p decay of 48Ni discovered.

New decay channels, like β3p (45Fe, 43Cr, 31Ar), observed for the first time. β2p emission discovered in 46Fe based on one atom decay!

Low-energy part of d-spectrum will shed light on the halo structure of 6He

Strong β-delayed triton emission confirmed for 8He. Will provide the B_{GT} strength for the t-emitting states.

A new TPC with electronic read-out being developed for ELI-NP to solve the helium burning problem.
Thank you!