Fizyka we współczesnym świecie

Nuklidy egzotyczne

Marek Pfützner Zakład Spektroskopii Jądrowej Instytut Fizyki Doświadczalnej UW

e-mail: pfutzner@mimuw.edu.pl

"Poziomy" materii

Nuklidy

Nuklid (elektrycznie obojętny atom) : Z protonów + N neutronów + Z elektronów

Liczba Z decyduje o własnościach chemicznych → pierwiastki chemiczne

Różne liczby N \rightarrow izotopy

 $m_p = 1.672 \times 10^{-27} \text{ kg}$ = 938.3 MeV/c² $m_p = 1.674 \times 10^{-27} \text{ kg}$

= 939.6 MeV/c²

Nuklidy trwałe

Nuklidy promieniotwórcze

Przemiana β – oddziaływania słabe

Przemiany β jąder

Zbiór nuklidów o tej samej liczbie nukleonów (izobary)

 $M(^{45}V) > M(^{45}Ti)$ → W przemianie $^{45}V \rightarrow ^{45}Ti$ może wydzielić się energia: $E = \Delta M \times c^2$

Teoria względności w działaniu!

Promieniowanie γ – oddziaływanie elektromagnetyczne

Jądro jest układem wielu cząstek, które poruszają się względem siebie, a zatem może mieć stany wzbudzone o dyskretnych energiach (tak jak atom). Przejściom między tymi stanami towarzyszy emisja promieniowania e-m (γ)

Przemiana α – oddziaływanie silne

Cząstka α to jądro helu: $\alpha = {}_{2}^{4}\text{He}_{2}$

 $M_{\alpha} = 3728.4 \text{ MeV/c}^2 \rightarrow 2 \times m_n + 2 \times m_p - M_{\alpha} = 27.4 \text{ MeV/c}^2$ (energia wiązania!)

 $E_{\alpha} \approx \Delta M \times C^2$

 $E_{\alpha} = 5 \text{ MeV} \rightarrow \text{prędkość v} = 0.05 \text{ c} = 15000 \text{ km/s}!$

Zagadka okresów półrozpadu α

²³⁸U :
$$E_{\alpha}$$
 = 4.2 MeV, $T_{1/2}$ = 4.5 mld lat

²²²Rn : E_{α} = 5.5 MeV, $T_{1/2}$ = 3.8 dni

²¹⁴Po : E_{α} = 7.7 MeV, $T_{1/2}$ = 164 µs

Dlaczego okresy półrozpadu tak bardzo się różnią?

Zrozumienie zależności półokresu rozpadu od energii wymaga zastosowania innego wielkiego odkrycia fizyki XX w. : mechaniki kwantowej.

Jądro atomu to obiekt kwantowy

jedna cząstka)!

Jak zachodzi emisja α ?

α

Ruch ładunku w polu elektrycznym można zobrazować toczeniem się kulki po nierównej powierzchni.

5.5 MeV

Kulka wtacza się na wysokość odpowiadającą początkowej energii kinetycznej.

Staczając się z tej wysokości uzyskuje tę samą energię na końcu.

Prawo Geigera-Nutalla

Prawo Geigera-Nutalla (1912)
$$\log T = a + \frac{b}{\sqrt{E_{\alpha}}}$$

Wyjaśnienie kwantowe G. Gamov, 1928

Wszystkie nuklidy

Spektroskopia jądrowa

Zadanie spektroskopii : poznać strukturę jąder badając przemiany zachodzące między ich stanami

Znaczenie fizyki jądrowej

- W przemianach jądrowych odgrywają rolę oddziaływania słabe, elektromagnetyczne i silne.
- Do opisu procesów jądrowych konieczna jest mechanika kwantowa. Potrzebna bywa też szczególna teoria względności. Istotne są prawa dotyczące układów wielu ciał.
- Dzięki wielkiemu bogactwu zjawisk, w jakich jądra atomowe biorą udział, są one ważnym obiektem badań podstawowych. Pełnią też istotną rolę w innych dziedzinach nauki i w zastosowaniach (fizyka materii skondensowanej, biologia, medycyna, technika...)

...i warto znać angielski 🙂

Q: What did the Nuclear Physicist have for lunch?

A: Fission Chips.

Egzotyczne nuklidy (na skraju mapy)

Promieniotwórczość dwuprotonowa

W 1960 r. przewidziano możliwość przemiany, w której z jądra wyrzucane są jednocześnie dwa protony → szukać w bardzo neutrono-deficytowych nuklidach o parzystej liczbie Z, w których emisja jednego protonu jest energetycznie niemożliwa.

Przy pomocy obliczeń teoretycznych wytypowano najlepszych kandydatów : ⁴⁵Fe, ⁴⁸Ni, ⁵⁴Zn.

Promieniotwórczość dwuprotonowa

Mapa w okolicy ⁴⁵Fe

Schemat współczesnego eksperymentu

Laboratorium GSI w Darmstadt

Laboratorium GSI Darmstadt

Pierwsze badania ⁴⁵Fe

Prawdziwe wyzwanie

Udowodnić, że wylatują dwa protony! Zarejestrować je oddzielnie, najlepiej ich tory Zmierzyć ich energie oraz kąt między kierunkami ich emisji

Przewidywany kąt między pędami obydwu protonów z ⁴⁵Fe

Symulacja 200 zdarzeń

Rozwiązanie: czarna skrzynka

Komora dryfowa z odczytem optycznym (OTPC – optical time projection chamber)

Zasada działania OTPC

Mieszanka gazowa: 66% He + 32% Ar + 1% N_2 + 1% CH_4

Pełny układ

- Kamera CCD 2/3"
- $1000 \times 1000 \text{ pix}$
- 12-bitów
- wzmacniacz obrazu (x2000)
- ➔ Obraz rzutu na płaszczyznę
- Fotopowielacz 5"
- Zapis intensywności światła w funkcji czasu (informacja o położeniu w kierunku prostopadłym do obrazu)

Pierwsze zdjęcia

Promieniotwórczość naturalna z seregu uranowo-radowego!

tory wychodzą z tego samego miejsca,

ich długość zgadza się z energiami cząstek α ²²²Rn and ²¹⁸Po

Rekonstrukcja toru cząstki

Rekonstrukcja toru cząstki

Rekonstrukcja toru cząstki

Jony z cyklotronu warszawskiego

Jony ¹²C zatrzymują się w detektorze OTPC. Ekran komputera filmowany był zwykłym aparatem cyfrowym.

Test w Dubnej

Przemiana β ¹³O czasem prowadzi do stanu wzbudzonego, z którego emitowany jest proton.

Rozpad 3α wzbudzonego ¹²C

12**C**

Przemiana β ¹²N prowadzi do stanów wzbudzonych ¹²C, które rozpadają się na 3 cząstki α !

Eksperyment w NSCL/MSU

Reakcja: ⁵⁸Ni at 161 MeV/u + ^{nat}Ni \rightarrow ⁴⁵Fe

Identyfikacja jonów w locie przez pomiar ΔE + TOF

Ready to go!

February 2007

Elektronika pomiarowa

Rozpad 2p ⁴⁵Fe

rozpad 0.53 ms after implantation

Galeria przypadków 2p

Czasem zachodzi przemiana β⁺

Przemiana β^{+ 45}Fe prowadzi do stanów wzbudzonych ⁴⁵Mn, z których wyrzucane są protony o dużej energii, najczęściej jeden, czasem dwa, a nawet trzy!

Schemat rozpadu ⁴⁵Fe

Rekonstrukcja przestrzenna

Kąt między torami protonów

Następne kroki

- Wiadomo, że ⁵⁴Zn ulega przemianie 2p.
- ⁴⁸Ni jest o to bardzo podejrzany.
- Chcemy zbadać te przypadki, a także szukać przemiany 2p wśród jąder cięższych.

Nowa metoda obserwacji i rejestracji rozpadów jądrowych otworzyła nowe pole do badań. Będziemy je eksplorować. Niespodzianki są możliwe ©

Ekscytująca perspektywa

Projekt rozbudowy GSI → http://www.gsi.de

Zapraszamy do współpracy!

Q: What happens when electrons lose their energy?

A: They get Bohr'ed.

e-mail: pfutzner@mimuw.edu.pl