Zakład Spektroskopii Jądrowej IFD UW

Marek Pfützner pfutzner@mimuw.edu.pl

> Krzysztof Miernik Zenon Janas Agnieszka Korgul Jan Kurcewicz

ul. Pasteura 7 tel.: (022) 823 18 96 http://zsjlin.igf.fuw.edu.pl/

Wszystkie nuklidy

Trzeci wymiar świata nuklidów

Zadanie spektroskopii : poznać strukturę jąder badając przemiany zachodzące między ich stanami

Jądro atomu to obiekt kwantowy

-V

V(r)Potencjał sił jądrowych (silnych) i kulombowskich (dla protonów) r Nukleony (protony i neutrony) mogą zajmować stany w studni potencjału, które można wyznaczyć przy pomocy równania Schrödingera.

> Nukleony są fermionami, więc obowiązuje je zakaz Pauliego (w jednym stanie tylko jedna cząstka)!

Jak zachodzi emisja α ?

Struktura powłokowa jąder i liczby magiczne

Z

z

Liczby magiczne

Procesy nukleosyntezy

Nuklidy egzotyczne

W warunkach ziemskich niezwykle trudne do wytworzenia i bardzo nietrwałe.

Przykłady :

- Izotopy o wielkim niedoborze lub nadmiarze neutronów, czyli nuklidy bardzo dalekie od ścieżki trwałości.
- Jony o wielkim ładunku elektrycznym, np. jądra ciężkich pierwiastków całkowicie odarte z elektronów atomowych.

Od niedawna wytwarzane i badane w laboratoriach dzięki ciągłemu postępowi w technice eksperymentalnej.

Jak dobrać się do nuklidów na skraju mapy ?

Schemat typowego eksperymentu

Przykład: GSI Darmstadt

Laboratorium GSI w Darmstadt

Separator magnetyczny

Fragment pierścienia ESR

Detektory, kable, elektronika...

Wytwarzanie pierwiastków superciężkich

Identyfikacja rozpadu ²⁷⁷112

Krzemowy detektor paskowy

SHE Synthesis – Status September 2004

G 55 1

Kamienie milowe

Promieniotwórczość dwuprotonowa

Czy możliwy jest proces, w którym jądro emituje dwa protony jednocześnie?

Jądra w obszarze ⁴⁸Ni

Kandydaci do rozpadu 2p

Badanie ⁴⁵Fe w GSI i w GANIL

Wyzwanie: korelacje między protonami

• emisja ²He

Q: What did the Nuclear Physicist have for lunch? A: Fission Chips.

Q: What happens when electrons lose their energy? A: They get Bohr'ed. Jak zarejestrować tory obydwu protonów?

mgr Krzysztof Miernik

Optical Time Projection Chamber

Komora dryfowa z odczytem optycznym

Optical Time Projection Chamber

Optical Time Projection Chamber

Kamera CCD 2/3"

- 1000x1000 pix
- 12-bitów
- wzmacniacz obrazu (x2000)

Fotopowielacz 5"

Rekonstrukcja zdarzeń

Rekonstrukcja zdarzeń

Rekonstrukcja zdarzeń

Protony z rozpadu ¹³O

Protony z rozpadu ¹³O

Rozpad 3α jądra ¹²C

Rozpad 2α jądra ⁸Be

Nasz detektor może też dać mały wkład do ... wielkiego eksperymentu

dr hab. Zenon Janas

Pytania o naturę neutrin

- jaką masę mają neutrina ?
- jaka jest hierarchia mas ?
- czy neutrino = antyneutrino ?

Podwójny rozpad beta

Rodzaje rozpadów $\beta\beta$:

• $2\nu\beta\beta$ (A, Z) \rightarrow (A, Z+2) + 2e⁻ + 2 $\overline{\nu}_{e}$

$$\Delta L = 0$$

 $\Delta L = 2$

0νββ

$$(A, Z) \rightarrow (A, Z+2) + 2e^{-}$$

Widmo sumy energii elektronów emitowanych w rozpadzie $\beta\beta$

Neutrino Ettore Majorana Observatory

podziemne (1780 m) laboratorium w tunelu Fréjus

Sektor detektora NEMO-3

R. Arnold et al., NIM A536 (2005) 79

Typowe zdarzenie $\beta\beta$

Rozpad $2\nu\beta\beta$ ¹⁰⁰Mo

widmo sumy energii elektronów

Rozpad $0\nu\beta\beta$ ¹⁰⁰Mo

2.8 - 3.2 MeV range	
N _{observed} = 7 events	
bgnd	= 8.1 ± 1.3

R. Arnold et al., PRL 95 (2005) 182302

2005 : namiot otaczający detektor + system oczyszczania powietrza

stężenie radonu 25 mBq/m³ \rightarrow 3 mBq/m³

© S. Julian, LAL

Detekcja radonu w OTPC

Czułość ~0.1 mBq/m³

Wracamy do klasycznej spektroskopii bardzo egzotycznych nuklidów

dr Agnieszka Korgul

Obserwacja cząstek α z ¹⁰⁹Xe i ¹⁰⁵Te

Przykładowe koincydencje α - α zmierzone w eksperymencie

Wynik

Po 25 latach udało się zaobserwować łańcuch rozpadów α

"Particles, particles, particles."

Czy możemy coś odkryć przy warszawskim cyklotronie?

mgr (prawie dr) Jan Kurcewicz

Cyklotron warszawski

Separator masowy - WIGISOL

WIGISOL

Symulacje przepływu gazu przez źródło jonów

Komputerowy model komory hamującej jony

Wynik symulacji: obraz linii prądu helu przepływającego przez komorę

Numeryczne symulacje przepływu gazu. Optymalizacja parametrów źródła jonów

Spektroskopia alfa

reakcja : ¹⁴N (80 MeV) + ²⁰⁹Bi \rightarrow ²²⁰Ac + 1p + 2n obserwowany rozpad: ²²⁰Ac \rightarrow ²¹⁶Fr \rightarrow ²¹²At \rightarrow ²⁰⁸Bi α_1 α_2 α_3 α_3

Elektronika cyfrowa

Podsumowanie (I)

W naszych badaniach staramy się:

- dotrzeć do granic stabilności jądrowej,
- zrozumieć procesy nukleosyntezy,
- poznać strukturę powłokową jąder dalekich od trwałości,
- opisać szczegółowo przemiany jądrowe,
- wyjaśnić mechanizmy reakcji jądrowych,
- szukać nowych zjawisk jądrowych.

Badania prowadzimy we współpracy z ośrodkami:

- GSI Darmstadt (Niemcy)
- GANIL Caen (Francja)
- ILL Grenoble (Francja)
- ORNL, Oak Ridge (USA)
- MSU/NSCL East Lansing (USA)
- CERN/Isolde, Genewa (Szwajcaria)
- Uniwersytet w Jyväskylä (Finlandia)

Podsumowanie (II)

Warto podkreślić:

- interdyscyplinarność spektroskopia jądrowa korzysta z osiągnięć innych dyscyplin i ma zastosowanie w bardzo wielu dziedzinach nauki (cz. elementarne, astrofizyka, f. atomowa, f. ciała stałego, biologia, medycyna, ...)
- praca w stosunkowo małych zespołach możliwość aktywnego udziału w projekcie na wszystkich etapach i we wszystkich aspektach.
- perspektywy naukowe znakomite! W Europie, USA, Japonii i Chinach powstają nowe, duże ośrodki fizyki jądrowej, w których nuklidy egzotyczne będą jednym z głównych obiektów badań.

Projekt rozbudowy GSI

Planowana rozbudowa GSI

Projekt zatwierdzony do realizacji → http://www.gsi.de

Radioactivity - it's as easy as alpha, beta, gamma...

Zapraszamy !!!

ul. Pasteura 7 tel.: (022) 823 18 96 http://zsjlin.igf.fuw.edu.pl/

kierownik: prof. Andrzej Płochocki plohocki@mimuw.edu.pl