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Chapter 1

Introduction

In 1827 one of the greatest English botanists Robert Brown discovered that sufficiently
small particles immersed in a fluid display an irregular motion. The understanding of
physical processes which cause the minute particles to dance under the microscope’s eye
came only in the beginning of the XXth century with the works of Einstein [1, 2] and
Smoluchowski [3], who have shown that the Brownian movement is caused by the thermal
motion of fluid particles and their collisions with suspended bodies. They stated that
on the macroscopic timescale the motion of a solitary Brownian particle is of a diffusive
character with the diffusion coefficient Do given by

Do =
kBT

ζo

, (1.1)

where ζo is the friction coefficient, which for a spherical particle of radius a moving in a
fluid of viscosity η is given by the Stokes formula [4]

ζo = 6πηa. (1.2)

The relation (1.1) shows that the two ways in which fluid affects the motion of the
particle: the deterministic friction and the stochastic fluctuations are closely connected.
In fact (1.1) is one of the manifestations of the fluctuation-dissipation theorem [5].

The renewed interest towards the Brownian motion came with the advent of the dy-
namic light scattering (DLS) techniques [6,7] as the mean to study the colloidal suspensions.
It has namely turned out that on the timescale characteristic of the DLS experiments the
best physical model of the broad class of suspensions is the system of Brownian particles.
Everyday examples of colloids include a broad variety of substances from milk to inks and
paints. Their technical applications are innumerable: from ceramic precursors, optical
filters, porous sieves to liposome technology, not to mention rapidly growing biotechnol-
ogy applications. Colloidal suspensions show a multitude of fascinating physico-chemical
phenomena such as the crystallization into variety of structures, glass transition, elec-
trokinetic phenomena, self and collective diffusion, shear melting, sedimentation and many
others [8–11].

5
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1.1 General characteristics of colloidal suspensions

Colloidal suspensions, commonly referred to simply as colloids are composed of small par-
ticles that are 10-1000 nm in diameter and dispersed in a solvent. The lower limit in the
particle size comes from the requirement that they should be much larger than the fluid
molecules, whereas the upper limit ensures that the Brownian motion would play a sig-
nificant role in the dynamics in comparison with other processes such as sedimentation or
convection.

Save for the case of extremely diluted suspensions, colloidal particles always inter-
act with each other. These interactions may arise from direct interparticle forces (e.g.
Coulomb) or - in a more indirect way - from the motion of the fluid disturbed by the
particles. In the latter case we talk about hydrodynamic interactions, which are present
in any suspension, even if direct interparticle forces vanish.

As in the present work we are going to concentrate on the effects of hydrodynamic
interactions on the diffusion of colloidal suspension, it is no wonder that of the special
interest for us here would be colloidal particles which behave effectively as hard spheres ( as
they interact with hydrodynamic interactions only). Although a century ago a suspension
of hard spheres could be considered only as the physicist’s dream, today the development
of technology made it possible to produce such systems. Examples of these include the
neutral suspensions like polymethylmethacrylate (PMMA) spheres and silica spheres in
organic solvents, aqueous suspensions of polystyrene spheres as well as charged suspensions
in which added electrolyte concentration is so high that the Debye-sphere of counter-ions
is collapsed to a very thin layer.

1.2 Time scales involved in the dynamics of interact-

ing Brownian particles

The system of mesoscopic particles suspended in a fluid, however simple it may seem, has a
very rich dynamics revealing a myriad of interesting phenomena. Moreover, the character of
dynamics is changing dramatically depending on the timescales and associated lengthscales
of interest. Let us therefore start with specifying the timescales characterizing the motion
of spherical particles of radius a and density ρ suspended in a solvent of density ρs. These
include:

τc =
a

c
sound propagation time (1.3)

(the time in which a sound wave propagates on a distance equal to the radius of a particle)

τη = a2 ρs

η
the viscous relaxation time (1.4)

(characteristic lifetime of a viscous shear wave created by the unsteady motion of a particle)
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τB =
M

ζo
=

2a2ρp

9η
=

2

9

ρ

ρs
τη the momentum relaxation time (1.5)

(relaxation time of the particle velocity due to the solvent friction)

τR =
a2

Do
the structural relaxation time (1.6)

(time needed by the Brownian particle to diffuse over a distance equal to the radius)

In the above equations M = 4πρa3/3 stands for the mass of the particle. Numerical
values of characteristic times of typical suspensions are given in Table 1.1. Additionally
the characteristic velocity of such a particle calculated from the equipartition law

MU2

2
=

3

2
kBT, (1.7)

and the values of the Reynolds number Re

Re =
aUρ

η
, (1.8)

which measures the ratio of inertial to viscous forces in the motion of the fluid around the
suspended spheres. We see that for a typical suspension Re is very small, so that one can
neglect the fluid inertia term ρv · ∇v in the Navier-Stokes equations.

In this work we would be interested in such domains in the suspension dynamics in which
the Brownian motion plays a central role. In order to assure it not only the timescale of
interest t should fulfil the condition t ≥ τR, but also the displacements of the particles
associated with the Brownian motion should be larger than the displacements caused by
other phenomena, such as the external force or the nonzero shear flow in which the sus-
pension is immersed. The quantities that measure the relative importance of these effects
are the Peclet numbers Pe. For example the convective Peclet number

Peconv = γτR =
a2γ

Do
(1.9)

measures the relative strength of the Brownian effects in comparison to those induced by
the shear flow, while

PeF =

F

ζo
a

τR

=
Fa

kBT
(1.10)

compares Brownian motion with the effects of the external force F . If all the Peclet
numbers are small, then we may say that we are in the ”Brownian” domain of system
dynamics.
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a [nm]

10 100 1000

τc [s] 6.76 · 10−12 6.76 · 10−11 6.76 · 10−10

τB [s] 2.2 · 10−11 2.2 · 10−9 2.2 · 10−7

U [cm/s] 170 5.4 0.17

Re 1.7 · 10−4 5.4 · 10−5 1.7 · 10−5

τR[s] 4.7 · 10−6 4.7 · 10−3 4.7

τη [s] 1 · 10−10 2.2 · 10−8 2.2 · 10−6

Table 1.1: Various parameters as a function of the Brownian particle radius a: the mo-
mentum relaxation time τB, the characteristic velocity of the particles U , the Reynolds
number Re, the structural relaxation time τR, viscous relaxation time τη and the sound
propagation time τc. The following values were used in the calculations: particle and fluid
density ρp ≈ ρs = 1g/cm3; viscosity η = 10−2poise; temperature T = 293K, fluid sound
velocity c = 1.5 · 105cm/s. These parameters are typical for the aqueous suspension of
polystyrene spheres. The table is partially reproduced from Pusey [8] and Nägele [9] (the
latter contains many errors which were corrected in the present one)
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Moreover from Table 1.1 one concludes that the larger the particles the longer τR is
and, what follows, less important the Brownian motion is in their dynamics. For the large
particles (a > 10µm) it gets more difficult to prepare a suspension with small Pe, as even
for such a small shear rate as 1s−1 the Peclet number (in water) is of the order of 300.

Now we turn to the analysis of the time scales associated with the motion of the fluid.
From inspecting Table 1.1 one can draw a conclusion that for the typical suspensions the
timescales corresponding to τc, τη and τR are widely separated in a sense that

τc � τη � τR. (1.11)

Therefore if we are interested in processes with characteristic timescale t ≥ τR then the
description of the suspending medium (fluid) can be simplified by assuming that

1. the fluid can be treated as effectively incompressible (as t� τc)

2. the flow can be treated as stationary:
∂v

∂t
= 0 (a consequence of the fact that t� τη)

This, together with the assumption that the Reynolds number Re � 1, allows us to
describe the fluid by means of the steady Stokes equations

η∇2v −∇p + f(r) = 0, ∇ · v = 0, (1.12)

where f(r) is the force density exerted on the fluid.
It is important to note that the absence of the term ∂v/∂t in the Stokes equations does

not mean that velocity is independent of time - it only means that we assume the terms
related to time dependence to be negligible. Nevertheless the geometric configuration of
the fluid boundaries (including the surfaces of the spheres) or the force f acting on the
fluid may change in time, which causes v to change as well. However, due to the separation
of the timescales the flow follows instantaneously the motion of the particles. Therefore
time remains in Eq. (2.3) as an implicit parameter.

From the observation that the flow follows instantaneously the motion of the particles
we conclude that the communication between the particles via the “hydrodynamic interac-
tions” can be also treated as effectively instantaneous: the motion of each particle creates
the flow pattern, which instantaneously affects the motion of other particles.

1.3 Hydrodynamic interactions

If a fluid is sufficiently viscous, a particle - sufficiently small and its motion - not too fast
- then under the influence of an external force the particle would almost immediately (in
comparison with the structural relaxation time) attain a terminal velocity. The reason for
it is the appearance of the viscous drag force proportional to the velocity of a particle.
This drag force is dependent on the shape of the particle, presence of other particles etc:
for an isolated small sphere of radius a moving with velocity U through the fluid it is given
by the Stokes law [4]
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F = 6πηaU = ζoU , (1.13)

where ζo is called the translational friction coefficient.
In the terminal state the hydrodynamic drag force exactly balances the external force

so that the Stokes formula can be used to calculate the particle velocity induced by the
external force.

In the general case when there are many particles in a suspension subject to given forces
as well as torques, the relation (1.13) should be replaced by [12, 13]

F̃ = ζ · Ũ . (1.14)

Here F̃ = (F , T ) is the 6N-dimensional vector comprising the forces and torques
acting on the each of N particles: (F , T ) = (F 1, F 2, ..., F N , T 1, ..., T N ) whereas Ũ =
(U ,Ω) is the vector built from the translational and rotational velocities of the particles
Ũ = (U 1, ..., UN ,Ω1, ...,ΩN).

The tensor ζ defined above, which has replaced the friction coefficient in (1.13) is called
the friction matrix.

The relation reciprocal to (1.14)

Ũ = µ · F̃ , (1.15)

gives the velocities of the particles in terms of the applied forces and torques. The mobility
matrix defined here is the inverse of the friction matrix ζ

µ = ζ−1. (1.16)

Strictly speaking (1.14) and (1.15) hold only if the fluid is quiescent, i.e. such that if we
remove the particles from the fluid it would come to rest. Otherwise there should appear
in (1.14) and (1.15) terms connected with vo - the flow in the absence of the particles. The
general expressions for this case will be given in Chapter 2.

1.4 Generalized Smoluchowski Equation

The separation of timescales between the structural relaxation time τR and the momentum
relaxation time τB allows us to adopt the description of the dynamic of the system in terms
of equilibration of the particle configurations only. For non- interacting Brownian particles
the evolution of the probability density P (R, t) of finding at time t a particle at position
R is given by the diffusion equation

∂P (R, t)

∂t
= Do

N∑

i=1

∂

∂Ri
· ∂

∂Ri
P (R, t). (1.17)

A generalization of this equation to the case of N interacting particles is the Generalized
Smoluchowski Equation [14], given by
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∂

∂t
P (X, t) =

N∑

i,j=1

∂

∂Ri

·Dij(X) ·
[

∂

∂Rj

− βF j

]
P (X, t), (1.18)

where X = (R1, R2 . . . , RN) and the absence of torques is assumed. The tensor Dij is
the diffusion matrix connected with the mobility matrix by relation

Dij = kBTµtt
ij, (1.19)

where µtt is the part of µ linking the forces F to the translational velocities U .
The relation (1.19) is a generalization of the Einstein relation (1.1) to the case of

N interacting particles. The phenomenological derivation of the Smoluchowski equation
together with its generalization to the case of hard sphere systems is presented in Chapter
3.

1.5 Static and dynamic properties of the suspended

particles

The Brownian domain of the system’s dynamics, corresponding to timescales t ≥ τR can be
assessed by means of light scattering experiments. Light scattering gives us direct informa-
tion on spatial and temporal correlations between fluctuations of local concentration of the
Brownian particles such as the static structure factor describing the average distribution
of the interparticle separations in a suspension

S(k) = lim
∞

1

N
<

N∑

i=1

N∑

j=1

eik·(Ri−Rj) >, (1.20)

which can be assessed by static scattering experiments and its dynamic analogue, the
dynamic structure factor (known also as intermediate scattering function)

F (k, t) = lim
∞

1

N
<

N∑

i=1

N∑

j=1

eik·(Ri(0)−Rj(t)) >, (1.21)

for the determination of which the dynamic light scattering (DLS) is needed. In the above
formulae Ri(t) is the position of i-th particle, brackets denote an ensemble average and k

is the wavevector. Finally lim∞ stands for the thermodynamic limit in which one lets
the size of the sample go to infinity while keeping the densities of the extensive parameters
constant. Moreover, it should be assumed that the system as a whole does not move, i.e
we keep the walls in which the system is contained immobile.

The light scattering experiments probe a broad range of wave vectors, starting from
k � 2π

a
up to k ≥ 2π

a
. The large k vectors probe the density fluctuations on scale of the

order of the radius of the particle a, determined by the single-particle dynamics, whereas the
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small k vectors correspond to the hydrodynamic domain, when one observes the collective
motion of the particles.

It is convenient to work with the Laplace transform of the intermediate scattering
function defined as

F (k, z) =

∫ ∞

0

e−ztF (k, t)dt. (1.22)

In frames of the Zwanzig-Mori projection operator formalism [15,16] ( which is described
in Chapter 4 of the Thesis) one writes F (k, z) in the following form

F (k, z) =
S(k)

z + D(k, z)k2
, (1.23)

which defines the generalized diffusion function D(k, z).
The hydrodynamic (small z and small k) limit of D(k, z) is called the collective dif-

fusion coefficient Dc

lim
k→0

lim
z→0

D(k, z) = Dc. (1.24)

In the Zwanzig-Mori formalism one gets the following expression for the generalized
diffusion function

D(k, z) =
1

k2
Ω(k)(1−M(k, z)), (1.25)

where the z-dependent term M(k, z) is called the memory function, whereas the z-
independent term - frequency function

The reason for such a name of M(k, t) can be understood by looking at the expression
(1.23) with (1.25) inserted in the time domain

∂

∂t
F (k, t) = −Ω(k)F (k, t) + Ω(k)

∫ t

0

dτM(k, τ)F (k, t− τ), (1.26)

which shows that the decay rate of F depends on its values at earlier times and the details
of this dependence are described by M(k, t). On the other hand Ω(k) gives the contribution
of the instantaneous value of F (k, t) to the decay rate. One of the important characteristics
of the memory effects is the mean memory time τM

τM(k) = M(k, t = 0)−1

∫ ∞

0

M(k, τ)dτ, (1.27)

which gives the timescale over which the memory in the system is lost.
If one is interested in the evolution of F (k, t) on the timescale much longer than τM then

only the overall memory effect given by the integral of the memory function is important
and the Eq. (1.26) may be replaced by

∂

∂t
F (k, t) = −Ω(k)

[
1−

∫ ∞

0

dτM(k, τ)
]
F (k, t), (1.28)
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Therefore one sees that the collective diffusion coefficient (1.24) describes the decay of the
dynamic structure factor on the timescale t� τM for small wavevectors. Note that Dc can
be also written as

Dc = lim
k→0

Ω(k)

k2

[
1−∆(k)

]
, (1.29)

with [17]

∆(k) =

∫ ∞

0

dτM(k, τ). (1.30)

On the other hand, if one neglects the memory effects in (1.28) and considers only the
instantaneous response described by the function Ω(k) then one gets

F (k, t) = S(k)e−k2Ds
c t, (1.31)

with

Ds
c = lim

k→0

Ω(k)

k2
(1.32)

standing for the short-time diffusion coefficient in contradistinction to Dc which is
sometimes called the long-time diffusion coefficient and to avoid confusion from here
on will be denoted by Dl

c. From (1.29) and (1.32) one obtains

Dl
c = Ds

c(1−∆). (1.33)

where

∆ = lim
k→0

∆(k) (1.34)

is the small k and small z limit of the memory function.
One may ask, however, why Dl

c defined above by means of the dynamic structure factor
is called the diffusion coefficient? Usually, when talking about diffusion phenomena, one
thinks about the Fick’s law, which gives the macroscopic current induced in the system by
the small density gradient

Jd = −D∇n. (1.35)

Here n is the macroscopic number density of the particles given by

n(r, t) =<

N∑

i=1

δ(r −Ri(t)) >, (1.36)

and the diffusion current Jd is defined as the particle current with respect to the velocity
of a suspension as a whole. Finally D is the gradient diffusion coefficient. The thorough
derivation of the diffusion law (1.35) from the nonequilibrium thermodynamics formalism
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applied to the suspension treated as the two-phase (particles + fluid) system together with
the exact definition of the diffusion current is presented in Chapter 5.

The Fourier transform of the diffusion law (1.35) together with the continuity equation

∂n(r, t)

∂t
+∇ · Jd(r, t) = 0 (1.37)

leads to the diffusion equation for the particle density of the form

∂n(r, t)

∂t
−D∇2n(r, t) = 0. (1.38)

The gradient diffusion coefficient D can be linked with the Dl
c defined above if one

assumes that the equations (1.35) and (1.38) hold also for the fluctuations of the density
of the particles. This line of reasoning is due to Onsager [18, 19] (see also Forster [20]).
Then one gets for the dynamic structure factor

F (k, z) =
S(k)

z + Dk2
, (1.39)

which is exactly of the form (1.23).
Then, when one remembers that the hydrodynamic equations like (1.35) hold only if

the fields vary sufficiently slowly in space and time (which corresponds to the limit of small
k and z), by comparing (1.23) with (1.39) one can identify D with Dl

c.
Calculation of the collective diffusion coefficients Ds

c and Dl
c from Eqs. (1.32) and (1.24)

is cumbersome because of the limit k → 0 involved. Even for the simplest approximations of
hydrodynamic interactions, when only two- and three- body contributions to the diffusion
matrix are taken into account, the calculations involving small k limit are quite elaborate
(cf the calculations in [21–24]). The problem would be much more easy to tackle if,
instead of performing the limit k → 0, one could simply calculate the value of D(k, 0)
at k = 0. However, if there are long-range interactions in the system (and such is the
case for colloidal suspensions because of the presence of hydrodynamic interactions) then
generally limk→0 A(k) 6= A(k = 0) [20].

In order to overcome this problem we are going to study yet another way of calculating
the collective diffusion coefficient. We start with the relation (1.35) and then, after Einstein
[1,25,26] note that the mean particle current down a small fluctuation gradient due to the
diffusion is the same as if each of the particles is acted by a force of the magnitude

F = − 1

1− φ

(
∂µ

∂n

)

p,T

∇n, (1.40)

with the additional assumption that the suspending fluid is force-free. Therefore the
diffusion coefficient can be found by studying the current induced in the system by the
external force applied to the particles, which can be done with use of the linear reaction
theory. It turns out that if it is done carefully, then one is able to obtain a well-defined,
explicit expression for Dc which does not contain the cumbersome k → 0 limit. To clarify
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what we mean by “carefully” in this case, let us look more closely at the response problems
for heterogeneous media.

1.6 Response properties of the heterogeneous media

The suspension of Brownian particles is an example of heterogeneous system, as it con-
sists of two phases of different physical nature: the solvent and the particles. Naturally we
mean the microscopic heterogeneity here (in contradistinction to macroscopically hetero-
geneous materials such as cement enveloping gravel). Another example of the microscop-
ically heterogeneous system is the extensively studied Kirkwood-Yvon model of nonpolar
dielectric [27,28], in which one considers polarizable inclusions dispersed in nonpolarizable
medium. For the excellent review of heterogeneous media theory including a historical
outline we refer to the paper by R. Landauer [29].

One of the main goals of a scientist studying such a system is to derive the effec-
tive macroscopic properties from the information on its structure and dynamics on the
microscale. The above-mentioned macroscopic properties may include such quantities as
dielectric constant or polarizability in case of dielectrics, elastic properties of solid compos-
ites or - in our case - the diffusion coefficients, viscosity or thermal conductivity of colloidal
suspension.

By the microstructure of a nonhomogeneous material we understand the information
on the boundaries of all the phases building up the material. For a suspension of identical
spheres of a given radius, this information is reduced just to the set of positions of the
spheres’ centers. Usually the information that we have on the microstructure is of statistical
character only: i.e. instead of the exact positions of all the spheres in a suspension at time
t we are given the distribution function P (R1, . . . , RN ; t).

Such a statistical information is nevertheless sufficient to determine the properties of a
macroscopic sample of a material, because for such a sample one can identify the macro-
scopic value of a given quantity a with the average

amac(r, t) =

∫
a(r, t, Γ)P (Γ, t)dt, (1.41)

where Γ is the set of variables determining the microstructure and a(r, t, Γ) stands for the
value of a for the given microstructure Γ.

A very important class of macroscopic properties of a given material are these which
describe the response of the material to the external or internal disturbances like the
electric or gravitational field or temperature gradient. The response of the system is
usually described by the equations of the form

J (r) =

∫
L(r, r′)F(r′)dr′, (1.42)

where F is the disturbance whereas J describes system’s response (heat flux, diffusion cur-
rent, polarization and so on). The function L(r, r′) is the response kernel determining the
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way the system responds to the perturbations. One can divide L in two big classes: these
describing the static response, called susceptibilites such as the polarizability, dielectric
constant etc. and those describing the dynamic response called transport coefficients,
The latter include all kinds of diffusion coefficients, conductivities, resistivities and others.
In general J and F may be multidimensional vectors comprising many different quanti-
ties. In this case L(r, r′) becomes multidimensional matrix. Moreover, both sides of (1.42)
can be the functions of time as well.

In the bulk of macroscopically homogeneous suspension the kernel L(r, r′) becomes
translationally invariant, i.e.

L(r, r′) = L(r − r′). (1.43)

This means that the Fourier transform of the kernels, defined as

L(k, k′) =

∫ ∫
e−ik·r L(r, r′) eik′·r′

drdr′ (1.44)

in the homogeneous bulk would simplify to

L(k, k′) = 8π3L(k)δ(k − k′), (1.45)

with

L(k) =

∫
L(r)e−ik·rdr. (1.46)

When one introduces also the Fourier transform of J

J (k) =
1

8π3

∫
J (r)e−ik·rdr (1.47)

and similarly for F(k), one can write the response equation (1.42) as

J (k) = L(k)F(k). (1.48)

The limit k→ 0 of the above equation describes the system’s response to a homogeneous
disturbance, with the long wavelength limit of the response kernel

lim
k→0

L(k) = L (1.49)

which for the isotropic system can be usually written as L = L1 (with 1 standing for the
identity operator), giving the respective macroscopic response coefficient L.

The most interesting from the physical point of view are those kernels L(r, r′) which
describe the local properties of the material itself and are independent of the global prop-
erties like the size and the shape of the sample (provided that it is of macroscopic dimen-
sions). The local kernels L(r, r′) have finite range, i.e. they decay faster than |r′ − r|3 as
|r′ − r| → ∞. Therefore such kernels do not cause any trouble when the limit k → 0 of
their Fourier transform is calculated, as in this case
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lim
k→0

L(k) = L(k = 0) =

∫
L(r)dr, (1.50)

is a perfectly well defined quantity. Therefore in order to get the response coefficients
one does not have to change to Fourier space and perform k → 0 limit. Instead, one
just calculates the integral (1.50) in the real space. Moreover, as the local kernels are not
sensitive to the conditions on the boundaries of the system, while calculating them we are
free to choose any shape and size of the sample we want (provided it stays macroscopic).
In particular in such a case there are no problems with applying the usual thermodynamic
limit, in which one lets the size of the sample go to infinity while keeping the densities
of the extensive parameters constant. Therefore in this case one avoids a whole lot of
problems encountered usually while trying to apply the statistical mechanics concepts to
the systems with long-range forces [30–38].

It is important to note that the possibility of applying thermodynamic limit holds only
for the kernels L (provided that L is short-ranged) and not for the response J , as it would
generally depend on the size and shape of the sample, which stems from the long range
of the forces. To quote Tsallis [37]: “The amount of calories to be provided to a table in
order to increase its temperature in one degree only depends on its weight and material
(iron, wood), whereas the amount of Coulombs we must provide to a capacitor to generate
a one Volt potential difference at its ends also depends on its shape!”

The crucial thing is that the locality or non-locality of the kernels depends in a fun-
damental way on the choice of the forces F and response J in the equation (1.42). The
strategy to adopt here is to try to embed all the information about the macroscopic bound-
ary conditions, shape and size of the sample into the force F . The exact tactics however
depends on the specific problem.

Let us illustrate these ideas with the example of the Kirkwood-Yvon dielectric, in which
the kernel connecting the polarization P with the externally imposed electric field turns
out to be non-local in contradistinction to the kernel connecting P with the local electric
field in the sample.

From a molecular point of view, the sample of Kirkwood-Yvon dielectric consists of N
molecules - identical polarizable dipoles. Such system is immersed in the external field Eo.

The dipole moment pi of molecule i is given by

pi = α(Eo(Ri) +
∑

j 6=i

T̂ ij · pj), (1.51)

where α is the molecular polarizability and T̂ stands for the dipole-dipole interaction tensor
given by

T̂ ij = T̂ (Ri −Rj),

T̂ (r) = ∇∇1

r
= − 1

r3
+

3r̂r̂

r3
.

(1.52)
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The above equation can be solved by iteration to yield pi in form of the following series

pi = α(Eo(Ri) +
∑

j 6=i

T̂ ij · pj) =

= αEo(Ri) + α2
∑

j 6=i

T̂ ij ·Eo(Rj) + α3
∑

j 6=i

∑

k 6=j

T̂ ijT̂ jk ·Eo(Rk) + . . .
(1.53)

From here on we are going to consider only the first two terms (up to the second power
of polarizability) in the above series, as they are enough to show the above-mentioned
problems with the long-range kernels which diverge in thermodynamic limit.

The macroscopic polarization is given by

P (r) =<
∑

i

piδ(r −Ri) >= αn1(r)Eo(r)+

+α2

∫
n2(r, r′)T̂ (r − r′) ·Eo(r

′)dr′ + ...,

(1.54)

where n1(r) and n2(r, r′) are 1- and 2-particle distribution functions respectively. For a
homogeneous system

n1(r) = n (1.55)

and

n2(r, r′) = n2(|r − r′|). (1.56)

Therefore we obtain the response equation of the form (1.42)

P (r) =

∫
L(r − r′) ·Eo(r

′)dr′, (1.57)

with the response kernel L given by

L(r) = αnδ(r) + α2n2(r)T̂ (r), (1.58)

which, due to (1.52) is clearly of a long range. The integral of the second term of the above
equation over r

α2

∫
n2(r)

(
− 1

r3
+

3r̂r̂

r3

)
dr, (1.59)

is conditionally convergent, its value of depending on the way the integration is done.
For example if the integration over polar angles (θ, φ) is performed first, then the integral
vanishes, whereas the integration over r for given θ and φ leads to divergences.

The reason for such a behavior of P is connected with the fact that the polarization is
not a local quantity in a sense elucidated above. The value of P in a given place r inside
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the dielectric depends not only on the local properties of the material such as the density
of inclusions n(r) but also on the conditions imposed on the boundaries of the sample no
matter how far from r they are. To see it, consider a macroscopically homogeneous and
isotropic dielectric slab cut from our dielectric and inserted between two parallel plates
of a condenser. It is therefore subjected to a constant and homogeneous electric field Eo

produced by the surface charge density σ on the condenser plates (Fig. 1.1). The field
induces the nonzero charge density σ′ on the dielectric surface, which gives rise to the
additional field E′, so that the total field E inside a dielectric is given by Eo + E′. The
polarization of the dielectric is given by

P = χE, (1.60)

where χ stands for the polarizability, whereas the dielectric displacement D = E + 4πP

can be written as

D = εE, (1.61)

which defines the dielectric constant ε. (In general ε and χ are the tensor functions of r

but in the case under consideration they are just scalar constants).
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Figure 1.1: The dielectric slab immersed into an external electric field Eo. The field of the
induced dipoles inside the slab is denoted by E ′, whereas E denotes the total field inside
the sample. While changing the orientation of the slab the direction and value of E and
P would change, but the relation between them remains the same.

If we now rotate the slab, the value and the orientation of E ′, E, P and D will change,
as E′ must be always perpendicular to the surface of the slab. Polarization therefore is not
a local function of Eo, as the value of P depends not only on Eo but also on the shape and
the orientation of the sample. And so it is no wonder that the coefficient of proportionality
between P and Eo calculated in (1.54) is given by a conditionally convergent integral -
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to get the right value of P one needs additional information concerning the shape and
orientation of the sample as a whole no matter how large it is.

However the situation would change dramatically if on studies the polarization as the
function of the internal field E instead of Eo. The functional dependence is now given by
(1.60) in which a coefficient of proportionality χ is a local quantity, as all the boundary
effects are already taken into account in E.

To see it, let us calculate the polarization as a function of E following the algorithm
presented in the paper by Felderhof, Ford and Cohen [39] based on the ideas of Finkel’berg
[40].

First one expresses the internal field E by means of the external field Eo

E(r) = Eo(r) + α

∫
T̂ (r − r′)n1(r

′)Eo(r
′)dr′ + ... (1.62)

Then this relation is inverted to yield Eo as a function of E

Eo(r) = E(r)− α

∫
T̂ (r − r′)n1(r

′)E(r′)dr′ + . . . (1.63)

Finally the above results is inserted in (1.54) yielding to the second order in α

P (r) = αn1(r)E(r)+

+ α2

∫
T̂ (r − r′)[n2(r, r′)− n1(r)n1(r′)]E(r′)dr′ + ...

(1.64)

The main difference between expressions (1.64) and (1.54) is that the two body dis-
tribution function n2(r, r′) in (1.54) is replaced by the correlation function h2(r, r′) =
n2(r, r′)−n(r)n(r′) which decays rapidly on the lengthscale of mean distance between the
inclusions, which makes the integral in (1.64) convergent.

Naturally the above considerations could not serve as a proof that χ is a local quantity,
as we have restricted ourselves only to the first two terms in expansion in α. The general
proof where the whole series is taken into account has been obtained by Felderhof, Ford
and Cohen in [39]. It is amazing that the statement that polarizability (and similarly the
dielectric constant) are well-defined and independent of the shape of the sample in the
limit of a large system has waited so long to be proved.

1.7 Long-range interactions and divergence problems

for colloidal suspensions

The mesoscopic particles suspended in a fluid must be regarded as a system with long-
range interactions even if the potential of direct interparticle forces is hard-sphere like.
The source of this behavior is the long range of the hydrodynamic interactions, what can
be seen even in the simplest problem of a sphere sedimenting in a quiescent fluid under the
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influence of a constant force F . As it was already mentioned the velocity of such a sphere
is given by the Stokes law

U o =
F

6πηa
. (1.65)

The flow disturbance caused by the presence of a sphere, first derived also by Stokes [4],
reads

v(R1 + r) = U o(
3a

4r
+

a3

4r3
) + r

r ·U o

r2
(
3a

4r
− 3a3

4r3
), (1.66)

where r measures the distance from the center of a sphere located at R1. Note that this
disturbance is of a very long range: it decays as r−1. Let us now add one more sphere at
the position R2 sufficiently distant from R1 so that |R1 − R2| = R12 � a. Then from
(1.66) to the first order in a/R12 sphere 1 feels the flow caused by sphere 2 of the following
strength

U 12 =
3a

4R12
(1 + R̂12R̂12) ·

F

6πηa
+ . . . (1.67)

Therefore the velocity of the sphere 2 is now diminished with respect to the single-sphere
sedimentation velocity and reads

U 1 =
F

6πηa
− 3a

4R12
(1 + R̂12R̂12) · F

6πηa
+ . . . (1.68)

Now if the same reasoning is applied to the sedimentation of the dilute cloud of N
identical spheres then, to the first order in the inverse of interparticle distance one gets

U i =
F

6πηa
−

∑

j

3a

4Rij
(1 + R̂ijR̂ij) ·

F

6πηa
+ . . . (1.69)

The macroscopic particle current, given in terms of U i by

J(r) =<
∑

i

U iδ(r −Ri) >, (1.70)

reads therefore (for the bit more general case of the space-dependent field F (r))

J(r) =
F (r)

6πηa
n1(r)−

∫

V

3a

4|r − r′|(1 + ̂(r − r′) ̂(r − r′)) · F (r′)

6πηa
n2(r, r′)dr′ + . . . , (1.71)

where n1(r) and n2(r, r′) are 1- and 2-particle distribution functions respectively. We
again recognize the structure of the response equation (1.42) this time with

L(r) =
n1

6πηa
δ(r)− 3a

4r
(1 + r̂r̂)

1

6πηa
n2(r) + . . . , (1.72)
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where the homogeneity of the system was assumed. We see here the problem analogous to
that encountered previously while studying the polarization as a function of an external
field (1.54): the integral of the kernel L over the volume V

∫

V

L(r)dr (1.73)

is divergent as V →∞. This fact was noticed for the first time by Smoluchowski in 1912
[41]. As it was already remarked, such a behavior of the response kernels is a manifestation
of the fact that the relation between J(r) and F is not local: depends not only on the
microstructure of the material in vicinity of r but also on the global properties like the
shape or size of the sample. In case of the dielectric the problem was resolved by studying
the response of the system to the internal field E rather than the external Eo. For the
internal field E one gets the macroscopic equations in which the shape and size of the
sample enter through the boundary conditions. We are going to show in Chapters 6 and
7 that the appropriate local equations for the response of the suspension to the external
force acting on particles are given by

J(r) =

∫
L1(r − r′) · F (r′)dr′ +

∫
L2(r − r′)· < v(r′) > dr′, (1.74)

where v(r) is the velocity field of the suspension as a whole (equal to the fluid velocity, if
the point r belongs to the fluid domain or to the particle velocity whenever r is inside one
of the particles). This time the kernels L1 and L2 are short ranged. In the case considered
above these kernels reduce to

L1(r) =
n1

6πηa
δ(r)− 3a

4r
(1 + r̂r̂)

1

6πηa
h2(r) + . . . , (1.75)

L2(r) = nδ(r)1 + . . . , (1.76)

where again as in (1.64) the two-particle correlation function h2(r) appeared instead of
the distribution function n2(r) in (1.72). The presence of h(r) makes the integral (1.76)
convergent with the well-defined limit as V →∞. Again, the kernels L1 and L2 are much
more complicated when all the hydrodynamic interactions are taken into account and not
only the two-body, asymptotic terms like in Eq. (1.71). Nevertheless one can prove that
always

lim
k→0

L2(k) = L2(k = 0) = n1. (1.77)

Therefore one sees that there appears in the natural way in our equations the diffusion
current Jd = J − n < v >, as in the limit k → 0 the response equation (1.74) takes form

Jd(k) = L1(k)F (k) (1.78)

The realization of the fact that one should look for the response equations in form (1.74)
rather than (1.71) came surprisingly late: it was presented in papers by Nozières [42],
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Felderhof [43] and Noetinger [23] in late eighties. Earlier, the calculations of Dc were
performed by means of integrating the long-range response kernel and the problems with
divergences encountered there were coped with by a number of ”tips and tricks”. The first
who performed this kind of calculations was Burgers [44–47]. As Batchelor [48] comments:
”Burgers tried a variety of ways of overcoming the difficulty presented by the lack of
absolute convergence of the sum of the separate effects of an indefinitely large number
of falling spheres on a given sphere (...) and his sequence of papers is remarkable for
the number of different answers provided”. Batchelor himself dealt with the divergent
integrals in a very clever way. First he subtracted from the long-range diffusion kernel
the quantities the value of which could be found exactly and which share the same long-
range behaviour as the kernel. Then the remaining part could be expressed in terms of an
absolutely convergent integral. In this way Batchelor succeeded in estimating the result
for the collective diffusion coefficient to the first order in the volume fraction φ [48, 49]

Ds
c = Do(1 + 1.45φ + . . . ). (1.79)

1.8 Goal of the Thesis and the means of reaching it

The goal of this work is to determine whether the memory contribution to the long time
diffusion coefficient ∆ vanishes or not. Ackerson [50, 51] in his paper from 1978 proved
that the memory term vanishes in the suspensions in which the hydrodynamic interactions
can be neglected. He shows also that the above statement remains true for the hydrody-
namically interacting suspensions which are so dilute that only two-body hydrodynamic
interactions are important. Finally Ackerson conjectures that for concentrated suspensions
∆ should be different from zero. In the Thesis we would give this statement a more firm
basis. First we are bound to cope with the long-range character of the kernels which de-
scribe the part of the system’s response connected with the memory effects. Finding the
short-range kernels in this case is quite formidable, as the operator Dij governing the evo-
lution of the system is long- ranged itself! When the correct short-range kernels are found,
the next step is to estimate ∆ and then the last step is the comparison of the results with
the experimental data. It is surprising that since the Ackerson papers in late seventies,
there was practically no progress in assessing the memory contribution to the collective
diffusion in the small wavevector limit (corresponding to the limk→0 ∆(k)). Much more
attention was devoted to the problem of calculating ∆(k) for finite k, mainly in frames
of the mode-mode coupling theory. The papers of Nägele and co-workers [9, 52–54], Ver-
berg, de Schepper and Cohen [55, 56] and Felderhof and Vogel [57] should be mentioned
in this connection. However in all these papers the hydrodynamic interactions are either
neglected or assumed to be pairwise additive which, as it was shown by Ackerson leads to
limk→0 ∆(k) = 0.



24 MEMORY FUNCTION FOR COLLECTIVE DIFFUSION

1.9 The outline of the Thesis

The Thesis is organized as follows. Chapter 2 is devoted to the hydrodynamic formalism,
which allows one to obtain the velocities of the suspended particles and the velocity field
of the suspending fluid, once the positions of the particles and the forces acting on the
suspension are known. Chapter 3 deals with the question of statistical description of sus-
pended particles; here the Smoluchowski equation is presented. Then, in Chapter 4 the
dynamic structure factor is analyzed by means of the Zwanzig-Mori formalism and the key
concepts for this work, such as the memory function and collective diffusion coefficient, are
introduced. Finally, the expression for the long-time collective diffusion coefficient for the
system of interacting Brownian particles is obtained. In the next Chapter the problem of
collective diffusion is approached in a different way. By use of the nonequilibrium thermo-
dynamics formalism the phenomenological equation for Dc is obtained and it is shown that
instead of considering the system response to the density gradient one can obtain Dc by
studying response of the suspension to the external force applied to each particle. This is
the ground for the derivation of the expression for Dc for interacting Brownian particles in
frame of linear response theory, which is presented in the second part of the Chapter. Un-
fortunately, this way of calculating the collective diffusion coefficient requires performing
the small k limit of long-ranged kernels, which, although correct, is not entirely satisfying,
as one would like to have the local equations describing system’s response, independent of
the boundary conditions. The derivation of such equations is presented in Chapters 6 and
7. Chapter 6 deals with the instantaneous response described by the short-time diffusion
coefficient. This is really a re-derivation of the results obtained by Nozières [42], Felder-
hof [43] and Noetinger [23] but our point here is to introduce the novel, diagrammatic
representation of the kernels which greatly facilitates all the derivations. This method is
used in Chapter 7 to cope with the part of system’s response connected with the memory
effects. This is the main theoretical part of the Thesis and the results obtained here are
original. Next two Chapters are devoted to numerical estimation of ∆ with use of both the
equilibrium Monte Carlo averaging and Brownian Dynamics simulations. Finally, in the
last Chapter, the comparison of obtained results with the experimental data is performed.



Chapter 2

Hydrodynamics of suspensions

In this Chapter a general formalism is presented by means of which the problem of finding
the friction and mobility matrices defined by (1.14) and (1.15) for a given configuration of
particles in a suspension can be solved. This formalism was developed by Bedeaux, Mazur
and van Saarlos [58, 59] and Cichocki, Felderhof and Schmitz [60–70]. Here we follow the
notation of the latter group.

2.1 Hydrodynamic equations

We model the colloidal suspension as a system of N identical spherical particles with radius
a and position vectors Ri immersed in a suspending fluid of shear viscosity η contained
in the volume V . It is argued in the Introduction that, in the timescales of interest, the
velocity and pressure of the suspending fluid can be described by the stationary Stokes
equations of the form

η∇2v −∇p + f o(r) = 0, ∇ · v = 0. (2.1)

In the above equation f o(r) represents the external force density exerted on the fluid
(for example gravity or the centrifugal force).

The equation should be supplemented with appropriate boundary conditions on the
fluid boundaries - i.e. on the surfaces of the spheres and the external boundary ∂V . For
the stick boundary conditions on the surface of each sphere we have

v(r) = ui(r) ≡ U i + Ωi × (r −Ri) for |r −Ri| = a, (2.2)

where U i(t) and Ωi(t) are the translational and rotational velocities of the i-th sphere
situated at Ri(t). The field ui describes therefore the rigid motion of the particle i.

It was shown by Mazur and Bedeaux [58] that if the particles are impenetrable to the
flow and the stick boundary conditions at their surfaces are assumed, then the validity of
Eq. (2.1) may be formally extended inside the particles:

25
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η∇2v −∇p + f o(r) + f(r) = 0,

∇ · v = 0,

v(r) = ui(r) = U i + Ωi × (r −Ri) for |r −Ri| ≤ a,

p(r) = 0 for |r −Ri| ≤ a, (2.3)

with the additional force density f(r) localized on the surfaces of the spheres

f(r) =
∑

i

f(r; i) (2.4)

f(r; i) 6= 0 only if |r −Ri| = a. (2.5)

From now on we restrict ourselves to the particles impenetrable to the flow, although
the generalization to the case of the particles permeable to the flow is possible.

We introduce also the notion of the ambient flow ṽo - i.e. the flow which would satisfy
Eqs. (2.1) in the absence of the particles and the external forces (the boundary conditions
on the external boundary ∂V remain the same). Therefore ṽo satisfies

η∇2ṽo −∇po = 0, ∇ · ṽo = 0. (2.6)

together with the boundary conditions on the outer boundary ∂V , which remain the same
as in the case when spheres are present.

2.2 Hydrodynamic Green function

To introduce the hydrodynamic Green function we seek the solution
(
v(r), p(r)

)
of Eq.

(2.1) with the delta point force

η∇2v −∇p + fδ(r − ro) = 0, ∇ · v = 0. (2.7)

We write the solution in the form

v(r) = G(r, ro) · f p(r) = P (r, ro) · f (2.8)

and hereby define the Green tensor G(r, ro) and its associated pressure vector P (r, ro).
In case when the fluid fills the whole space (i.e. ∂V → ∞) the hydrodynamic Green

function is given by the Oseen tensor Go

G(r, r′) = Go(r − r′),

Go(r) ≡ 1

8πη

1 + r̂r̂

r
, (2.9)
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whereas its pressure field reads

P (r, r′) = Po(r − r′),

Po(r) =
r

4πr2
. (2.10)

The Green function can be used to write the solution of (2.3) as

v(r) = vo(r) +

∫
G(r, r′) · f(r′)dr′, (2.11)

where vo(r) is the flow in the absence of the particles given by

vo(r) = ṽo(r) +

∫
G(r, r′) · f o(r

′)dr′. (2.12)

From the linearity of equations (2.3) we infer that the relation between f and v − vo

should also be linear, i.e. there exists an operator Z(r, r′) called “friction kernel”, such
that

f(r) =

∫
Z(r, r′) · (v(r′)− vo(r

′))dr′, (2.13)

where the operator Z is localized on the surfaces of the spheres.
To keep the formulae as simple as possible we are going to use sometimes the compact

notation, in which the dependence of the quantities on the space variables as well as
integration over these variables is suppressed. According to this notation Eq. (2.13) is
written as

f = Z(v − vo). (2.14)

Let us consider now some point on the surface of i-th sphere r ∈ Si. The expression
(2.11) for the flow velocity v(r), which in this case must be equal to ui(r), can be written
as a sum of the following terms

v(r) = ui(r) = vo(r) +

∫
G(r, r′) · f(r′; i)dr′+

+
∑

j 6=i

∫
G(r, r′) · f(r′; j)dr′ r ∈ Si, i = 1, . . . , N,

(2.15)

where the contributions to ui(r) from the force density on the particle i and on the
particles j 6= i have been singled out. The first of these terms can be written using the
one-particle friction operator Zo(i) (defined by (2.13) for a single sphere) as

[Z−1
o (i)f(i)](r) =

∫
G(r, r′) · f(r′; i)dr′ r ∈ Si. (2.16)
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whereas the second one is used to define the Green operator G(ij) [71]

[G(ij)f(j)](r) ≡
∫

G(r, r′) · f(r′; j)dr′ i 6= j r ∈ Si. (2.17)

The operator Zo can be derived by solving the relatively simple problem of one sphere
moving in a given flow field. The important thing is that changing of the boundary con-
ditions in our problem (for example choosing slip instead of stick boundary conditions at
the surfaces of the spheres in (2.2)) results only in change of Zo - the form of all the other
operators remain the same. For the explicit form of Zo for variety of boundary conditions
we refer the reader to the paper [67].

The equation (2.15) can be rewritten in a compact way as

ui − vo = (G + Z−1
o )ijf j (2.18)

where

Zoij = Zo(i)δij Gij = G(ij)(1− δij) (2.19)

are the NxN operator matrices in the particle indexes. We adopt here (as well as further
on in the Thesis) the following convention with regard to the notation: the script letters
(G, Z, F̃ , ...) would denote multidimensional (to be exact: more than three dimensional)
vectors and matrices. On the other hand usual block letters (E, F , U ...) stand for the
three dimensional objects.

By comparison of the relation (2.13) with the equation (2.18) we get

Z =
1

G + Z−1
o

= Zo(1 + GZo)
−1, (2.20)

2.3 Construction of the hydrodynamic matrices

Now that we have the friction kernel Z we can construct the friction matrix ζ (1.14) which
relates the forces and torques acting on the particles to their translational and rotational
velocities in absence of the ambient flow

F̃ = ζ · Ũ , (2.21)

with F̃ = (F , T ) and Ũ = (U ,Ω).
Sometimes instead of one big 6Nx6N matrix ζ the four smaller matrices ζ tt, ζtr, ζrt, ζrr

are used:




F

T


 =




ζtt ζtr

ζrt ζrr







U

Ω


 . (2.22)
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So the matrix ζtr connects the translational (t) part of the velocities (U) with the
rotational (r) part of forces (T ) etc.

The force F i and the torque T i acting on i-th particle can be obtained from the force
density f by the following operations

F i =

∫
f(r)θi(r)dr (2.23)

T i =

∫
(r −Ri)× f(r)θi(r)dr,

where

θi(r) = θ(a− |r −Ri|) (2.24)

is the characteristic function for the particle.
The above relations can be written in the operator language as

F̃ = Pf , (2.25)

where the tensor projection operator P = (P t, Pr) is given by

P t(r; i) = θi(r)1

Pr(r; i) = θi(r)εαβγ(r −Ri)γ. (2.26)

With the use of P the relation between the friction matrix and the friction kernel can
be written as

ζ = PZP. (2.27)

For example ζtt
12 is given by

ζtt
12 =

∫ ∫
drdr′θ1(r)Z(r, r′)θ2(r

′) = P tZP t. (2.28)

When the ambient flow is present, from (2.14) together with (2.21) one gets for the
forces F̃ as functions of Ũ and vo

F̃ = ζ · Ũ −PZvo. (2.29)

Let us now consider a task of finding Ũ for given F̃ and vo. Such a problem is
quite common in experiments, when we can control the forces acting on the particles (for
example by putting them into a gravitational field) as well as the ambient flow (for example
by putting the suspension into a shear flow) and seek the velocities that the suspended
particles acquire.

From the relation (2.29) together with (2.14) one gets
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Ũ = ζ−1F̃ + ζ−1PZvo ≡ µF̃ + Cvo, (2.30)

which defines the mobility matrix µ

µ = ζ−1 (2.31)

together with the convection kernel C

C = µPZ. (2.32)

In the analogous way as it was done for the friction matrix (2.22) one can introduce
the 3Nx3N matrices µtt, µtr, µrt and µrr.

It is worth to note that the transpose of the C operator

C̃ = ZPµ (2.33)

can be used to solve the problem of finding the force density f when F̃ 6= 0 is given and
the ambient flow vanishes. From (2.29) and (2.14) we get in this case

f = ZPµF̃ . (2.34)

2.4 Scattering expansion

When we expand the operator (1 + GZo)
−1 in (2.20) in a series we get the following

expression for the friction matrix

ζ(1..N)ij = PZo(i)Pδij −PZo(i)G(ij)Zo(j)P +

(−1)l+1
∞∑

l=1

PZo(i)
∑′

[
l∏

k=1

G(mk−1mk)Zo(mk)]G(mlj)Zo(j)P, (2.35)

where m0 = i and the sum
∑′

is over all sequences (m1, m2, . . . , ml) of l labels with the

condition that no label should be repeated in succession and moreover m1 6= i as well as
ml 6= j. Such a series is called a multiple scattering expansion: the flow velocity around
the particle j gives rise to the force density on this particle f(j) = Zo(j)v, which in turn
generates flow patterns around the particle ml: v = G(ml, j)f(j) which contributes to
f(ml) etc.

The similar multiple scattering expansion can be derived for the mobility operator µ.
In the Appendix A we show that

µ = µo + µoPZo
1

1 + GẐo

GZoPµo = µo +

∞∑

k=0

µoPZo(−GẐo)kGZoPµo, (2.36)
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where

µo = ζ−1
o (2.37)

is the one particle mobility matrix, and Ẑo - the convective extended friction matrix [64]
defined as

Ẑo = Zo −ZoPµoPZo. (2.38)

Note that

ẐoP = ZoP −ZoPµoPZoP = 0, (2.39)

where we have used the relation (2.37) and (2.14).
In order to simplify the notation we introduce after Felderhof the convective friction

kernel

Ẑ = Ẑo(1 + GẐo)−1 =
∞∑

k=0

Ẑo(−GẐo)k. (2.40)

Now (2.36) takes form

µ = µo + µoPZoGZoPµo − µoPZoGẐGZoPµo. (2.41)

The similar scattering expansions can be also found for the kernels C and C̃ introduced
in the preceding Chapter. In Appendix A we show that

C̃ = ZoPµo − ẐGZoPµo =

∞∑

k=0

(−ẐoG)kZoPµo. (2.42)

The respective expansion of C̃ is the transpose of the above, i.e.

C = µoPZo − µoPZoGẐ =

∞∑

k=0

µoPZo(−GẐo)k. (2.43)

The most efficient way to calculate Z, ζ and µ in practice is to use the multipole
expansion. This method is presented in the next section.

2.5 Multipole expansion

To find the friction kernel Z =
1

G + Z−1
o

one must solve the integral equation (2.18). The

most efficient way of doing it is to decompose [ui(r) − vo(r)]r∈Si
on the multipoles. In

this way G and Zo become (infinite-dimensional) matrices and the problem of finding Z

reduces to inverting the appropriate matrix. To be more precise, the velocity on the surface
of i-th sphere can be written as
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[ui(r)− vo(r)]r∈Si
=

∞∑

l=1

cl(i)(r −Ri)
l, (2.44)

where the multipole tensors cl(i) are given by

c(l+1)(i) =
1

l!
∇l[ui(r)− vo(r)]r=Ri

. (2.45)

Here ∇l is the l fold direct product of ∇. We construct also the force multipole tensors
f (l+1)(l = 0, 1, 2...) for the sphere i

f (l+1)(i) =
1

l!

∫
f(r; i)(r −Ri)

ldr. (2.46)

It is convenient to express the multipole moments as a sum of their irreducible parts
with respect to the group O(3). Such sets of irreducible multipoles {f σl} and {cσl} [72]
are given explicitly in Appendix B. Here the subscript l takes integer values l = 1, 2 . . . ,
whereas σ takes the three values 0, 1, 2. For given l and σ both {f σl} and {cσl} have 2l + 1
independent components.

The first irreducible force multipole

f0,1(i) =

∫
f(r, i)dr = F i (2.47)

is just the total force acting i-th particle whereas the multipole f 1,1 is equal to the half of
the total torque T i. For the velocity field the vector

c0,1 = U i − vo(Ri) (2.48)

gives the difference between the translational velocity of a sphere and the value of vo in
the center of the sphere while c1,1 gives the analogous difference of rotational velocities.

In the multipole notation, the operators Z, Zo and G become matrices, which are given
explicitly in [71] and in Appendix C of this work. Here we only mention the fact that the
matrix element Gσ,l;σ′,l′(Ri −Rj) describing the influence of the force multipole (σ′, l′) on
the i-th sphere on the velocity multipole (σ, l) on the j-th sphere for the case of infinite
space decays with R = Ri −Rj as R−(l+l′+σ+σ′−1). One concludes that the interactions
between low multipoles are of infinite range, as they decay as R−1, R−2 or R−3.

The friction matrix relates the two lowest velocity multipoles c0,1 and c1,1 to the two
lowest force multipoles f 0,1 and f 1,1. Therefore it can be obtained from the multipole
matrix Z by the projection on subspace σ = (0, 1); l = 1. So in the multipole language
the projection operator defined in (2.26) corresponds to the projection on subspace σ =
(0, 1); l = 1. In the multipole notation the operator Ẑo defined by (2.38)

Ẑo = Zo −ZoPµoPZo (2.49)

differs from Zo only in the l = 1 subspace. Moreover, from the fact that
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ẐoP = 0 (2.50)

we infer that all the components of Ẑo(l = 1, σ; l′ = 1, σ′) except for the Ẑo(l = 1, σ =
2; l′ = 1, σ′ = 2) vanish.

2.6 The numerical calculations of the friction and mo-

bility matrices

The above-described multipole expansion is a good starting for numerical calculations of
the hydrodynamic matrices µ and ζ. In the numerical implementation the infinite matrices
G, Z and Zo are truncated to the finite ones in such a way that only the elements with
l ≤ L are taken into account (this corresponds to working with nL = 3L(L + 2) multipoles
per particle). In this way one obtains the truncated matrices µL and ζL. Cichocki et al.
have shown in [70] that in order to obtain the accurate approximation for the hydrodynamic
matrices, the scheme with L ≥ 3 must be applied. The discrepancy between ζ3 and the
real ζ was estimated to be less than 1% [70]. The further increase of L is not reasonable
from the numerical point of view, as the computational time grows rapidly with L. On the
other hand taking L < 3 leads to incorrect results, as then some of the contributions to G

with infinite range (i.e. decaying as 1/Rγ with γ ≤ 3) are not taken into account.
There is one more problem with which every numerical package calculating the hy-

drodynamic matrixes have to cope with. Namely, when the distance between two given
particles becomes small, the force required to push them together diverges as the inverse
of the spacing between the particles [13, 73]. To describe accurately these so-called lubri-
cation forces one would have to use a very large number of multipoles, which is extremely
expensive numerically. Here we present the way of dealing with this problem developed
by Durlofsky et al. [74] and then improved by Cichocki et al. [75]. It is based on the
observation that the lubrication effects are well described by the following two-body object

s =
∑

i<j

s(i, j) ≡
∑

i<j

qT · ζ(i, j) · q, (2.51)

where q is a 12x12 matrix, which projects the collective motion of a given pair of particles,
leaving only the relative motion. The explicit form of q can be found in [75]. The two-body
friction matrices ζ(i, j) are known with a very high accuracy [13, 73]. Then, the results of
the multipole expansion and the lubrication contributions are combined and the friction
matrix corrected for the lubrication effects is given by

ζcorrected
L = ζL + s− sL, (2.52)

with

sL =
∑

i<j

sL(i, j), (2.53)
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where in turn sL(i, j) is the s(i, j) matrix in which only the multipoles with l ≤ L are
included.

It should be noted that such a throughout treatment of hydrodynamic interactions is
not very common in the literature on the subject. In particular, in numerical computations
of the mobility matrix µ, which is the crucial object for the problem considered in this
paper, quite severe approximations are frequently made. The most crude of them is the so-
called Oseen tensor approximation, which in the multipole language corresponds to taking
into account only the multipole (l = 1, σ = 0) and neglecting all the other multipoles. The
mobility matrix reads in this case

µij = δijµo + (1− δij)
1

8πη

1 + R̂ijR̂ij

Rij
. (2.54)

In another approximation µij is approximated by the so called Rote-Pragner tensor
that reads

µij = δijµo + (1− δij)
1

8πηRij

(
1 + R̂ijR̂ij +

2a2

5R2
ij

(1− R̂ijR̂ij)
)
. (2.55)

This corresponds to truncating the mobility matrix scattering expansion (2.41) to

µo + µoZoGZoµo (2.56)

and taking only those multipoles in G, which have a long range-behavior in the sense
elucidated above (i.e. decay as R−γ with γ ≤ 3).

Therefore the advantage of the Rote-Pragner tensor over the Oseen tensor is that it
takes into account all the infinite range terms in the two-body hydrodynamic interactions.
Nevertheless it is still a very crude approximation, as the many-body terms (some of them
of long range) are completely neglected. In particular, as it is shown in Chapter 7.9, in the
Rote- Pragner approximation ∆ = 0.

The general many-body treatment of the hydrodynamic interactions similar to the one
presented above is used in the numerical calculations of Ladd [76–78] and Brady and co-
workers [74, 79–81]. Ladd’s approach is generally analogous to the one presented above,
the main difference is that he uses only partially reduced multipole moments. Therefore in
his truncation schemes more multipoles must be included if one wants to take into account
all the long-range terms. Brady, on the other hand, does not take into account all the
long-range multipoles contributing to G. It was shown by Cichocki et al. [70, 71] that the
discrepancy between the result obtained with such a scheme and the real one can be quite
considerable (in some cases even up to 30% of the value) The above-cited paper should
be referred for the more information on various truncation schemes and comparison of
different algorithms.

Based on the above scheme for calculating the mobility and friction matrices in the
L multipole approximation the numerical algorithm was developed by Cichocki et. al.
[70]. The algorithm was implemented numerically by E. Wajnryb in form of a package
in FORTRAN capable of calculating µ and ζ for a given configuration of spheres both in
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infinite space and in periodic boundary conditions. This package will be used extensively
in various numerical calculations in this Thesis. We are going to refer to it subsequently
as CFW (Cichocki-Felderhof-Wajnryb) package.
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Chapter 3

Interacting Brownian particles:
Evolution of the distribution function

In this Chapter the statistical description of a system of interacting Brownian particles is
presented. The Generalized Smoluchowski Equation, which governs the evolution of the
probability distribution of the particles on timescales (t ≥ τR � τB) is derived. Finally
the particular case of hard sphere systems is considered and the problems arising from the
singular nature of the interparticle potential in that case are discussed.

3.1 Generalized Smoluchowski Equation

The statistics of a suspension is described by a distribution function P (R1, ..., RN), such
that P (R1, ..., RN)dR1...dRN is the probability of finding a configuration in which the
particle i is centered in volume dRi about Ri. We omit the velocity dependence in P as on
the timescales of interest (t ≥ τR � τB) the relaxation of particle velocities can be taken
as instantaneous (see Introduction).

Provided the particles are sufficiently small, the significant role in the evolution of
P (R1, ..., RN) is played by the Brownian motion caused by the thermal agitation of the
suspension medium. The appropriate description of such a stochastic process can be ob-
tained by means of the N-particle Fokker-Planck equation [5], the general form of which
reads

∂

∂t
P (X, t) =

[
− ∂

∂X
·A(X) +

∂

∂X

∂

∂X
: D(X)

]
P (X, t), (3.1)

where ∂
∂X

is the 3N-dimensional vector

∂

∂X
= (

∂

∂R1x
,

∂

∂R1y
, ...,

∂

∂RNz
). (3.2)

The Fokker-Planck equation (3.1) has a form of the balance equation for the probability

37
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∂

∂t
P (X, t) = − ∂

∂X
J (X, t), (3.3)

where the probability current J (X , t) is given by

J (X, t) = [A(X)− ∂

∂X
·D(X)]P (X, t). (3.4)

First we consider a case of an isolated system of Brownian particles without external
forces or imposed flow (E = vo = 0). The equilibrium distribution for such a system is
given by

Peq(X) =
e−βΦ(X)

Q
, (3.5)

where Q is the normalization constant and Φ(X) – the potential of particle interactions.
In the equilibrium the probability current vanishes, so

[A(X)− ∂

∂X
·D(X)]Peq(X, t) = 0. (3.6)

After substituting (3.5) into (3.6) we get the following relation between A and D

A(X) =
∂

∂X
·D(X)− βD(X) · ∂Φ(X)

∂X
(3.7)

and the current J (X, t) takes form

J (X, t) = D(X) ·
[

∂

∂X
− βF(X)

]
P (X, t), (3.8)

where the interparticle force F is given by

F = −∂Φ(X)

∂X
. (3.9)

In this case the evolution equation (3.1) becomes

∂

∂t
P (X, t) =

∂

∂X
·D(X) ·

[
∂

∂X
− βF(X)

]
P (X, t) ≡ D(X, t)P (X, t), (3.10)

The evolution operator D(X, t) in Eq. (3.10) is called the Smoluchowski operator
whereas the equation (3.10) - the generalized N-body Smoluchowski equation. It is
worthwhile to notice here that when one analyzes the dynamics on the timescale of the
order of τB (1.5) (which is much shorter than the timescales of interest here) then the non-
Markovian effects become important. This stems from the fact that there is no separation
of timescales between the momentum relaxation time τB and the viscous relaxation time
τη, so that the inertia of particles is linked to the solvent inertia and one should treat
them both on the same level. Because of these effects the description of a system by a
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Fokker-Planck equation (this time in full phase space, including momenta and positions)
on this timescale is not correct. For the rigorous results concerning the dynamics on this
timescale one should refer to the papers of Piasecki, Bocquet and Hansen [82–84].

Nevertheless, it turns out that when one studies the dynamics on the timescale of the
order of the structural relaxation time τR, which is much longer than both τη and τB, the
process of spatial relaxation is Markovian [85,86] and therefore the description of dynamics
in terms of the Fokker-Planck equation in configuration space (3.10), as presented here, is
correct in this regime.

The D operator can be found by remembering that the macroscopic velocities of the
particles U are linearly related to the forces F by the relation

U = µtt ·F . (3.11)

This motion contributes to J , so that we expect to find the term

µtt(X) ·FP (X, t) (3.12)

in the expression for J . By comparison with (3.8) one sees that the only possibility for
this to hold is that

D = β−1µtt (3.13)

From now on we are going to denote µtt simply by µ, as only µtt would appear in
the subsequent considerations. Analogous convention is to be adopted when writing other
hydrodynamic operators like C and C̃. Here we would also be concerned only with their

translational parts, but we are not going to denote them by C̃
t

and Ct in order to keep the
notation as simple as possible.

In case where an external force acting on the particles E and an imposed flow vo are
different from zero, the deterministic contribution to the current reads

UP (X, t) = (µF + µE + Cvo)P (X, t). (3.14)

In order to satisfy it, one has to replace the relation (3.7) by

A(X) =
∂

∂X
·D(X)− βD(X) · ∂Φ(X)

∂X
− βD(X) · E − Cvo. (3.15)

So the general form of the Fokker-Planck equation which describes the evolution of the
configuration space distribution P (X, t) is

∂

∂t
P (X, t) =

∂

∂X
·
[
D(X) · ( ∂

∂X
− βF − βE)− Cvo

]
P (X, t). (3.16)

Such an equation is called the extended Smoluchowski equation.
As the averaging over the probability distributions P will be used extensively in this

work, it is the right place here to introduce some important notation
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– the symbol < >t will stand for the average over the time dependent, nonequilibrium
probability distribution P (X, t)

– for the equilibrium average of the function y over Peq(X) we are going to use simply
< y >

Moreover, as the expression under averaging may contain operators, one needs to adopt
some convention as to where the distribution function Peq is placed in < >. To this end it
is convenient to adopt the following bra and ket notation

< A| =
∫

dXPeq(X)A(X) (3.17)

and

|B >= B∗(X), (3.18)

i.e. the distribution function is placed always on the left hand side of the integrand. The
star ∗ denotes here the complex conjugation. For example

< f | ∂

∂X
| g >=

∫
dXPeq(X)f

∂g∗

∂X
. (3.19)

For the later use we also introduce the operator L

L = [
∂

∂X
+ βF ] ·D(X) · ∂

∂X
= [β−1 ∂

∂X
+ F ] · µ(X) · ∂

∂X
. (3.20)

The operators D and L are adjoint in a sense that for any two operators A and B the
following equality holds

∫
A(X)DB(X)dX =

∫
[LA(X)]B(X)dX. (3.21)

In particular using L we can write down the evolution equation for the mean value of a
given quantity y in the absence of external perturbations (E = vo = 0) as

<
dy

dt
>t=

∫
y
∂P (X, t)

∂t
dX =

∫
yDP (X, t)dX =

∫
[Ly]P (X, t)dX =< Ly >t .

(3.22)
Moreover, as it can be checked, for arbitrary operator A(X) the following holds

DPeq(X)A(X) = Peq(X)LA(X). (3.23)

In the case where there is a nonzero external perturbation (either E or vo 6= 0) instead
of L one should use in (3.22) the extended operator Lext

Lext =

{
[

∂

∂X
+ βF + βE] ·D(X) + Cvo

}
· ∂

∂X
. (3.24)
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3.2 Smoluchowski equation for hard spheres

In case of the hard sphere particles, the interparticle forces become singular and the above-
derived Smoluchowski equation cannot be directly applied. One way of dealing with this
problem is to supply (3.10) with the boundary conditions of the form [87]

Rij · (J i −J j)|Rij=d+ = 0 i 6= j, (3.25)

where
d+ = d + ε ε→ 0. (3.26)

Unfortunately working with the Smoluchowski equation supplied with the boundary
conditions is very inconvenient. One would like to incorporate somehow the boundary
conditions into the equation instead of treating them separately.

Such a program was fulfilled by Cichocki in [87], who has shown that the Smoluchowski
equation for the hard spheres can be written as

∂

∂t
P (X, t) =

∂

∂X
·D(X) ·

[
∂

∂X
− T

]
P (X, t) ≡ D(X, t)P (X, t), (3.27)

where T is a 3N dimensional vector with components given by

T i =
∑

i6=j

T ij, T ij = R̂ijδ(Rij − d+). (3.28)

The sign (+) in the above equation indicates that the product of the delta function δ(Rij−d)
with functions that have discontinuity at the surface Rij = d should be taken in the limit
(3.26). It can be proved that if one takes as the initial condition in (3.27) the distribution
with the property that P (X, t = 0) = 0 for all overlapping configurations, then this
property propagates in time and one would never end up with the nonzero probability of
overlaps.
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Chapter 4

The memory function

In this section the problem of collective diffusion coefficient for interacting Brownian parti-
cle system will be approached by means of the powerful general theoretical scheme for the
calculation of time-correlation functions known as Zwanzig-Mori formalism [15, 16]. The
expressions for the memory function, generalized diffusion function as well as the diffusion
coefficients are derived in frames of this formalism.

4.1 Projection operators and memory function

As we are going to study the evolution of the configuration of the Brownian particles the
main object of interest for us is the microscopic number density

nmic(r, t) =

N∑

i=1

δ(r −Ri), (4.1)

with the following Fourier transform

C(k, t) =
∑

i

eik·Ri(t). (4.2)

Let us denote the deviations of C(k) from its equilibrium value by

c(k, t) >= C(k, t) > − < C(k, t) > . (4.3)

The dynamic structure factor (1.21) is the density correlation function in the Fourier space

F (k, t) = lim
∞

1

N
< c(k, 0)c(−k, t) >= lim

∞

1

N
< c(k, 0)|eLt|c(k, 0) >, (4.4)

where the bra and ket notation introduced in Chapter 3 has been used.
From now on we denote c(k) = c(k, 0). After the Laplace transform of Eq. (4.4) one gets

F (k, z) = lim
∞

1

N
< c(k)| 1

z −L
|c(k) > . (4.5)

43
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From here on we are going to omit the thermodynamic limit lim∞ sign in the equations
and assume it understood without being explicitly present.

We notice that in order to calculate F (k, t) one does not have to know c(k, t) in full
detail. All we really need is its projection on c(k, 0). Therefore let us introduce the
projection operator:

P =
|c(k) >< c(k)|

S(k)
. (4.6)

In terms of P the dynamic structure factor can be written as

F (k, t) = lim
∞

1

N
< c(k)|P |c(k, t) > . (4.7)

We introduce also the operator Q

Q = 1− P. (4.8)

In further calculations we make use of the following operator identity

1

X + Y
=

1

X
− 1

X
Y

1

X + Y
. (4.9)

Using (4.9) in (4.5) one obtains

F (k, z) =
1

N
< c(k)| 1

z −L
|c(k) >=

1

N
< c(k)| 1

z −LQ−LP
|c(k) >=

=
1

N
< c(k)| 1

z −LQ
+

1

z −LQ
LP

1

z −L
|c(k) > . (4.10)

But

P
1

z −LQ
P =

1

z
, (4.11)

which can be proved by expanding
1

z −LQ
in powers of LQ. From Eqs. (4.6), (4.10) and

(4.11) one gets

F (k, z) =
S(k)

z
+

1

N
< c(k)| 1

z −LQ
L|c(k) >

F (k, z)

S(k)
(4.12)

Using (4.9) the term in brackets can be rewritten in the form

< c(k)| 1

z −LQ
L|c(k) >=

1

z
< c(k)|(1 + LQ

1

z −LQ
)L|c(k) > . (4.13)

We arrive therefore at the following expression for F (k, z)

F (k, z) =
S(k)

z + Ω(k)(1−M(k, z))
, (4.14)
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where

Ω(k) = − 1

NS(k)
< c(k)|L|c(k) > (4.15)

and the memory function M(k, z) is given by:

M(k, z) =
1

NS(k)Ω(k)
< c(k)|LQ

1

z −LQ
L|c(k) > . (4.16)

We can write the above formula in a slightly different manner if we use once more the
identity (4.9). Namely:

1

z −LQ
=

1

z −QLQ− PLQ
=

1

z − L̂
+

1

z − L̂
PLQ

1

z −LQ
, (4.17)

where L̂ is the orthogonal part of the operator L :

L̂ = QLQ. (4.18)

But, similarly to (4.11)

Q
1

z −LQ
P = 0. (4.19)

So finally one gets for the memory function

M(k, z) =
1

S(k)Ω(k)
< c(k)|LQ

1

z − L̂
QL|c(k) >=

k2

S(k)Ω(k)
< ĵ(k)| 1

z − L̂
|ĵ(k) >,

(4.20)
where the orthogonal microscopic current ĵ(k) is given by

k|ĵ(k) >= QL|c(k) > . (4.21)

We can also define the generalized diffusion function

D(k, z) =
1

k2
Ω(k)(1−M(k, z)). (4.22)

In the limit of small k and z the function D(k, z) gives the long-time diffusion coefficient

Dl
c = lim

k→0
lim
z→0

D(k, z), (4.23)

which describes the rate of exponential decay of the dynamic structure factor on the
timescale long compared with the mean memory time τM (1.27)

F (k, t) = S(k)e−k2Dl
ct (4.24)

in the small wavevector limit.
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On the other hand, one sees from (4.20) that the asymptotic behavior of M(k, z) is

M(k, z) ∼ < ĵ(k)|ĵ(k) >

z
, z →∞ (4.25)

so that in this limit the memory function vanishes. The respective limit of the generalized
diffusion function defines the short time collective diffusion coefficient

lim
k→0

lim
z→∞

D(k, z) = lim
k→0

1

k2
Ω(k) ≡ Ds

c, (4.26)

which gives the rate of decay of F (k, t) for small k in the absence of memory effects.
All the formalism presented so far holds in principle for any operator L governing the

evolution of the phase-space variables. In the next section we obtain the explicit formulae
for Ω(k) and M(k, z) for the case of interacting Brownian particles.

4.2 Memory function for interacting Brownian parti-

cles

Let us turn to the specific case of interacting Brownian particles with the dynamics deter-
mined by the operator L given by (3.20). To calculate the function Ω(k) in this case let us
notice first that if f1 and f2 are arbitrary functions of the configuration variables, we get

< f1Lf2 >=

∫
dXPeqf1[βF +

∂

∂X
] ·D · ∂

∂X
f ∗2 =

= − <
∂f1

∂X
· |D| · ∂f2

∂X
>, (4.27)

where we used integration by parts together with the fact that

∂Peq

∂X
= −βFPeq. (4.28)

The above formula allows us to write Ω(k) as

Ω(k) =
1

S(k)N
<

∂c(k)

∂X
· |D| · ∂c(k)

∂X
>=

= k2

N∑

i,j=1

1

S(k)N
< k̂ ·Dij · k̂eik(Ri−Rj) > . (4.29)

So that the expression (4.26) for the short-time diffusion coefficient takes form

Ds
c = lim

k→0

1

S(k)N

N∑

i,j=1

< k̂ ·Dij · k̂eik(Ri−Rj) >≡ lim
k→0

DoH(k)

S(k)
(4.30)

where we have introduced the so-called hydrodynamic factor [8]
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H(k) =
1

DoN

N∑

i,j=1

< k̂ ·Dij · k̂eik(Ri−Rj) >, (4.31)

which is the measure of the influence of hydrodynamic interactions on the system’s dy-
namics. If hydrodynamic interactions are negligible, then H(k) = 1.

4.3 Small k limit of the memory function

Because of the presence of the reduced evolution operator L̂ the expression (4.20) for the
memory function is quite cumbersome for practical calculations. Fortunately in the limit
k → 0 the memory function can be related to the unreduced correlation function of the
form

Mu(k, z) =
1

S(k)Ω(k)
< c(k)|LQ

1

z −L
QL|c(k) > . (4.32)

We have namely [16]

M(k, z) = Mu(k, z)
[
1 +

Mu(k, z)

zS(k) + k2Ω(k)
]. (4.33)

However

L|c(k) >= |k ·
N∑

i,j,m=1

[
∇j + βF mj

]
·Dije

ikRi − k2
∑

i

Diie
ikRi >, (4.34)

< c(k)|L =< k ·
N∑

i,j=1

∇j ·Dije
ikRi − k2

∑

i

Diie
ikRi |,

which behaves in the following way as k → 0

L|c(k) >= |k ·
N∑

i,j,m=1

[
∇j + βF mj

]
·Dij > +O(k2), (4.35)

< c(k)|L =< k ·
N∑

i,j=1

∇j ·Dij|+O(k2). (4.36)

At the same time

PL|c(k) >= Ω(k)S(k)N |c(k) >, (4.37)

which due to (4.29) is at least of the order k2. This means that in the limit k → 0 both
L|c(k) > and QL|c(k) > share the same asymptotic form (4.35). Therefore memory
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function is at least of the order k2 as k → 0 and the same holds for Mu(k). But then from
(4.33) one concludes that M(k, z) approaches M u(k, z) in the limit k → 0. Note that we
have actually proved more, namely that

lim
k→0

M(k, z) = lim
k→0

1

S(k)Ω(k)
< c(k)|L 1

z −L
L|c(k) > . (4.38)

Hence in the limit k → 0 we can cross out all the projections operators Q from the
expression for the memory function M(k, z).

Now we are ready to calculate small z and small k limit of the generalized diffusion
function D(k, z). From Eqs. (4.22), (4.29) and (4.38) we get

Dl
c = lim

k→0
lim
z→0

D(k, z) =
1

S(0)N
lim
k→0

(∑

i

∑

j

< k̂ ·Dij · k̂eik(Ri−Rj) >

−
∫ ∞

0

dt < k̂ · c(k)|LeLtL|c(k) · k̂ >
)
, (4.39)

In the next Chapter another approach to the diffusion phenomena is presented: first by
means of the nonequilibrium thermodynamics and then - linear reaction theory. The reason
for it is expounded in the Introduction - we are looking for an expression for Dc which
would be well-defined at k = 0. The above expression is not defined at k = 0, because of
the long-range terms present in Dij. On the other hand, using the linear reaction theory
we have a freedom of choice of the thermodynamic forces and fluxes and we can manipulate
them in an appropriate way to obtain the short-range kernels with well defined value in
k = 0.

We end up this Chapter with a comment concerning the order of the limits in the
expressions for the diffusion coefficient like (4.23) or (4.39). In fact for the Hamiltonian
systems there is a problem here: the expressions are sensitive to whether one performs first
k → 0 limit and then z → 0 or vice versa (see eg. [20] or [88]). However, the dynamics
described by the Smoluchowski equation is not a Hamiltonian one (in fact one can prove
the H-theorem for Smoluchowski dynamics [5]) and does not lead to this kind of problems:
the z and k limits may be taken in any order with the same result.



Chapter 5

Collective diffusion coefficient

In this section the collective diffusion phenomenon is analyzed from the point of view of
phenomenological theory of nonequilibrium thermodynamics. It is shown, in frames of
this theory, that the diffusion coefficient can be assessed by studying the response of a
system to an external force. To this end we adopt the linear reaction theory and end up
with an expression for collective diffusion coefficient, which is shown to be equivalent with
the previous expression for Dc derived in Chapter 4 from the memory function theory.
Nevertheless, the reformulation of the problem in language of the linear response theory
is important for us, because by manipulating of the response kernels we would be able to
arrive at an explicit expression for Dc, which does not involve the troublesome limit k → 0.
This program will be fulfilled in the next two Chapters.

5.1 Diffusion constant: the phenomenological theory

A suspension is a two component system, in which one of the components is discrete
(particles) whereas the other one is continuous (fluid). In frames of nonequilibrium ther-
modynamics [89] one shows that the entropy source strength for the two-component system
reads

σ =
1

T

2∑

i=1

Ja
i (F i − ( gradµi)T ), (5.1)

where we have assumed that the temperature of the suspension remains constant. In the
above formula F i stands for the external force (per unit mass) acting on a component i, µ
is its chemical potential and Ja

i - the diffusion flow

Ja
i = ρi(vi − va), (5.2)

with respect to some reference velocity va. In the above expression ρi stands for the density
of the i-th component. In our case the natural choice for the reference velocity va is the
velocity of a suspension as a whole

49
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vs = φ1v1 + φ2v2, (5.3)

which can be interpreted as the total flux of volume of a material (either fluid or solid).
Here φi is the volume fraction of the component i, i.e. the fraction of the total volume
occupied by the component i. Naturally

φ1 + φ2 = 1. (5.4)

The diffusion currents J 1 and J2 are not independent as

φ1

ρ1

J1 +
φ2

ρ2

J2 = 0. (5.5)

The Gibbs-Duhem relation allows us to connect the gradients of µ1 and µ2

ρ1 gradµ1 + ρ2 gradµ2 = 0. (5.6)

Using (5.5) and (5.6) we in (5.1) we get

σ =
1

T
J1(F 1 −

φ1

φ2

ρ2

ρ1

F 2 −
1

1− φ1

gradµ1). (5.7)

The above expression, like all the expressions for the entropy source strength, has the
form of a product of the thermodynamic flux (J 1) with the corresponding thermodynamic
force

1

T
(F 1 −

φ1

φ2

ρ2

ρ1

F 2 −
1

1− φ1

gradµ1).

If the thermodynamic forces are small, the nonequilibrium thermodynamics [89] gives us
the linear relation between the fluxes and the forces, which in our case reads

J1 = L
1

T
(F 1 −

φ1

φ2

ρ2

ρ1
F 2 −

1

1− φ1
gradµ1), (5.8)

where L is a phenomenological coefficient.
On the other hand, starting from the formula (5.7) in the absence of external forces

(F 1 = F 2 = 0) and expressing the chemical potential gradient as

gradµ1 =

(
∂µ1

∂n1

)

p,T

gradρ1 (5.9)

we get

σ =
1

T
J1

1

1− φ1

(
∂µ1

∂n1

)

p,T

gradρ1. (5.10)

If we now treat gradρ1 as a thermodynamic force and write down the linear relation
between this force and the diffusion current J 1 we get the Fick’s law
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J1 = −Dc gradρ1, (5.11)

where the phenomenological constant is called the collective diffusion coefficient. Compar-
ing (5.11) with (5.8) we get the following relation between L and Dc

Dc = − 1

T

1

1− φ1

(
∂µ1

∂ρ1

)

p,T

L. (5.12)

The chemical potential gradient
(

∂µ1

∂n1

)
p,T

is connected with the long-wavelength limit

of the static structure factor 1.20 by [8, 90]

(
∂µ1

∂ρ1

)

p,T

= kBT
1− φ1

ρ1S(0)
, (5.13)

which stems from the fluctuation theorem. Using (5.13) one can rewrite the expression for
Dc as

Dc = − L

Tρ1S(0)
. (5.14)

If we now consider the case when there is a nonzero external force acting on the particles
(F 1 6= 0) in the absence of the concentration gradient ( gradρ1 = 0) we get from (5.8) and
(5.14) the following expression for the diffusion current

J1 =
ρ1S(0)

kBT
DcF 1. (5.15)

Hence we see that the diffusion constant can be obtained by studying the flow induced
by the external force acting on the particles. The classical example of such an experiment
is sedimentation of a suspension, where the particles flow down under the influence of
the gravitational force. The main characteristic of this process is so-called sedimentation
coefficient K [48] defined by the relation between the force and the velocity of the particles

J1 = ρ1KF 1. (5.16)

From (5.15) we get immediately

Dc =
kBT

S(0)
K, (5.17)

which shows that the collective diffusion coefficient can be assessed by the sedimentation
measurements.

Let us end this section with a few remarks concerning notation. First of all it would be
a bit more convenient to work with the number density of particles n1 instead of the mass
density ρ1. Therefore, instead of J 1 we are going to use the current

Jd = n1(v1 − vs), (5.18)
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which we are going to call subsequently ”diffusion current”. We would use also the “naked”
particle current, defined with respect to the laboratory frame (va = 0 in (5.2)) denoted
simply by J

J = n1v1. (5.19)

Finally we are going to drop the subscript “1” in the particle density n1 and call it
simply n, as the fluid density will not appear in the remaining part of the Thesis.

5.2 Microscopic expression for the diffusion current

Our goal now is to construct a microscopic theory which would give an explicit expression
for the collective diffusion coefficient Dc. First step would be to find the microscopic
counterpart of the diffusion current J introduced above. Next, we would relate this current
to the external force acting on the particles and finally arrive again at Eq. (5.15), but this
time with the explicit expression for Dc.

In frames of the Smoluchowski dynamics on timescale t ≥ τR the particle ”velocity”
can be defined by the relation

<
dRi

dt
>t=< U I

i >t (5.20)

with < >t defined as in Chapter 3. Using Eq. (3.22) and Eq. (3.24) one gets for U I
i

U I
i =

{[
(β−1 ∂

∂X
+ F + E) · µ(X) + C(X)vo

]
· ∂

∂X
X

}

i

=

=

{
(β−1 ∂

∂X
+ F + E) · µ(X) + C(X)vo

}

i

. (5.21)

This “Smoluchowski velocity” U I , however, should not be identified with the real ve-
locity of the particle. The average of the former measures the mean displacement of the
particle in the unit time on the structural relaxation time scale τR, in which the latter has
undergone millions of fluctuations (see the discussion in Introduction). As it was already
pointed out by Felderhof [91] U I has only a statistical meaning and must be understood
as a property of the ensemble.
The microscopic expression for the current corresponding to the Smoluchowski velocity
reads

j(r, X) =
∑

i

U I
i δ(r −Ri). (5.22)

while its average gives the macroscopic particle current J

J(r, t) =< j(r, X) >t, (5.23)
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In a similar way one can express the hydrodynamic velocity of a suspension as a whole
vs in terms of the microscopic velocity v(r, X). The velocity v(r) is linked with the force
density f(r) by the G operator

v = G(f o + f) = vo + Gf . (5.24)

The force density in turn can be expressed as [92]

f(r, X) = (β−1 ∂

∂X
+ E + F) · C(X)− Ẑ(X)vo. (5.25)

So eventually for the suspension velocity we get

v(r, X) = vo −GẐ(X)vo + G(β−1 ∂

∂X
+ E + F) · C(X) (5.26)

and the microscopic counterpart of the diffusion current is given by

jd(r, X) = j(r, X)− nv(r, X). (5.27)

Analogously to (5.23) the corresponding macroscopic quantities are connected with the
microscopic ones by

vs(r, t) =< v(r, X) >t (5.28)

Jd(r, t) =< jd(r, X) >t (5.29)

5.3 The linear reaction for Smoluchowski dynamics

The goal of this section is to calculate the particle current J in a situation, when the
system is disturbed out of the equilibrium by the external force E and the imposed flow
vo = ṽo +Gfo. The disturbances are assumed to be sufficiently small for the linear theory
to hold. It must be stressed, though, that the linear reaction is only the mean for getting the
explicit expression for the memory factor ∆ which does not involve the cumbersome k → 0
limit. It turns out that the expression for ∆ obtained in frames of the memory function
formalism can be re-derived using the linear reaction theory. However, in the linear reaction
we have a freedom of choice of the disturbances and quantities characterizing response. By
means of such operations we would be able to arrive at the wanted expression for ∆ which
would not involve any limiting procedures. Therefore we are not concerned here with a
whole lot of problems concerning the range of applicability of the linear reaction theory
etc. - it would only serve us as the way to analyze the expression for ∆. In deriving the
linear reaction formulae for the system of Brownian particles the line of reasoning due to
Felderhof and Jones [92, 93] is adopted. We assume that the particles were at equilibrium
in the infinite past, so that the distribution function P (X, t → −∞) is given by the
equilibrium distribution
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Peq(X) = e−βφ(X)/Q. (5.30)

Then we turn on the fields E and vo and look what effect it would have on the distri-
bution in linear approximation. We write

P (X, t) = Peq(X) + δP (X, t). (5.31)

Inserting such a form of P into the extended Smoluchowski equation (3.16) one finds that
to the linear order δP (X, t) satisfies the equation

∂δP (X, t)

∂t
−DδP = − ∂

∂X
· [(µE(t) + Cvo(t))Peq] . (5.32)

The solution with initial condition δP = 0 for t = −∞ is given by

δP (X, t) = −
∫ t

−∞

eD(t−t′) ∂

∂X
· [(µE(t′) + Cvo(t

′))Peq] dt′. (5.33)

The equilibrium distribution can be dragged out of the divergence

∂

∂X
· [(µE(t′) + Cvo(t

′))Peq] = Peq(
∂

∂X
+ βF) · [µE(t′) + Cvo(t

′)] . (5.34)

Then, using the operator L we can write δP as

δP (X, t) = −Peq

∫ t

−∞

dt′eL(t−t′)(
∂

∂X
+ βF) · [µE(t′) + Cvo(t

′)]. (5.35)

Hence the nonequilibrium average of a given observable A(X) obeys

< A >t=< A > −
∫ t

−∞

dt′
∫

dXA(X)eL(t−t′)(
∂

∂X
+ βF) · [µE(t′) + Cvo(t

′)]. (5.36)

Now we can write down such formulae for the particle flow j and the force density f .
They read

< j >t=< j > −
∫ t

−∞

dt′
∫

dX j(X) Peqe
L(t−t′)(

∂

∂X
+ βF) · (µE(t′) + Cvo(t

′)] ≡ J ins + J ret,

< f >t=< f > −
∫ t

−∞

dt′
∫

dX f(X) Peqe
L(t−t′)(

∂

∂X
+ βF) · (µE(t′) + Cvo(t

′)] ≡ f ins + f ret,

(5.37)

where we have singled out the instantaneous and retarded parts of the system response.
The former appears immediately after E or f o is turned on and “follows” the change of
the external perturbation, while the latter describes memory effects due to the change of
the distribution function induced by the external forces.
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The instantaneous response terms are just the equilibrium averages of j and f respec-
tively. But, using Eqs. (5.22) and (5.25)

J ins(r) =<
∑

i

[(β−1 ∂

∂X
+ F + E) ·µ(X) + Cvo]iδ(r −Ri) >,

f ins =< −Ẑvo + (β−1 ∂

∂X
+ F + E) · C > . (5.38)

However, by integrating by parts and using the identity

∂

∂X
Peq(X) = βFPeq(X), (5.39)

one proves that

< (β−1 ∂

∂X
+ F) · µ(X)δ(r −Ri) >= 0 (5.40)

and similarly

< (β
∂

∂X
+ F) · C >= 0, (5.41)

so that

J ins(r) =<
∑

i

[(µE + Cvo)]iδ(r −Ri) >,

f ins =< −Ẑvo + C̃E > . (5.42)

Now we turn to the retarded response terms. Inserting (5.22) and (5.25) into the
expressions for J ret and f ret, dragging Peq to the left side of the integrand with use of
relation (5.39) and keeping only the linear terms in E and f o one gets

J ret(r, t) = −β−1 <

∫ t

−∞

dt′
∑

i

[µ·
←

∇]iδ(r −Ri)e
L(t−t′)(

→

∇ +βF) · [µE(t′) + Cvo(t
′)] >,

f ret(t) = −β−1 <

∫ t

−∞

dt′C̃·
←

∇ eL(t−t′)(
→

∇ +βF) · [µE(t′) + Cvo(t
′)] >, (5.43)

where we have introduced the symbols
→

∇ and
←

∇ to show which part of the expression is
under differentiation.

Finally the expression (5.37) for the current and force density induced in a system as
a response to the external perturbations takes form
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< j >t= J ins + J ret =

∫
(Y jE(r, r′)E(r′, t) + Y jv(r, r′)vo(r

′, t))dr′+

+

∫
dr′

∫ t

−∞

dt′(XjE(r, r′, t− t′)E(r′, t′) + Xjv(r, r′, t− t′)vo(r
′, t′)),

(5.44)

< f >t= f ins + f ret =

∫
(Y fE(r, r′)E(r′, t) + Y fv(r, r′)vo(r

′, t))dr′+

∫
dr′

∫ t

−∞

dt′(XfE(r, r′, t− t′)E(r′, t′) + Xfv(r, r′, t− t′)vo(r
′, t′)),

(5.45)

where the kernels Y ab with a = {j, f} and b = {e, v} describe the instantaneous response
while the analogous kernels Xab describe the retarded response of the system. Instanta-
neous response kernels read

Y jE(r, r′) =<
N∑

i,j=1

δ(r −Ri)µijδ(r′ −Rj) >,

Y jv(r, r′) =<

N∑

i=1

δ(r −Ri)[C(r′)]i >,

Y fE(r, r′) =<

N∑

j=1

[C̃(r)]jδ(r′ −Rj) >,

Y fv(r, r′) =< −Ẑ(r, r′) >, (5.46)

whereas the time-dependent response kernels X are given by

XjE(r, r′, t) = −β−1 <
N∑

i,j=1

δ(r −Ri)[µ·
←

∇]ie
Lt[(

→

∇ +βF) ·µ]jδ(r′ −Rj) >,

Xjv(r, r′, t) = −β−1 <
N∑

i=1

δ(r −Ri)[µ·
←

∇]ie
Lt(
→

∇ +βF) · C(r′) >,

XfE(r, r′, t) = −β−1 < C̃(r)·
←

∇ eLt

N∑

j=1

[(
→

∇ +βF) ·µ]jδ(r′ −Rj) >,

Xfv(r, r′, t) = −β−1 < C̃(r)·
←

∇ eLt(
→

∇ +βF) · C(r′) > . (5.47)
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Additionally, in writing (5.45) we have introduced an auxiliary field E(r, t), such that the
forces Ei(t) are given by the value of E(r, t) in the center of the i-th sphere

Ei(t) =

∫
δ(r −Ri)E(r, t)dr. (5.48)

Let us notice that the equation (5.44) for the particle current in the absence of the
external flow can be written in the Fourier space as

J(k, t) =< j(k) >t= Y jE(k)E(k, t) +

∫ t

−∞

dt′XjE(k, t− t′)E(k, t′), (5.49)

where the Fourier transforms of all the objects are defined according to Eqs. (1.43)-
(1.47).

To study the long time collective diffusion one considers the dynamics on the timescale
t much longer than the relaxation time of X jE. On this timescale we get namely

J(k, t) =
(
Y jE(k) +

∫ ∞

0

dt′XjE(k, t′)
)
E(k, t). (5.50)

Let us now perform the limit k → 0, which corresponds to the case of homogeneous E

and J , such as it was considered in section 5.1. For the isotropic system the kernels Y jE

and Xjv in the k → 0 limit are proportional to unit matrices and J is parallel to the field
E.

Therefore the long time collective diffusion coefficient can be identified with

Dl
c = lim

k→0
lim
∞

kBT

nS(0)

1

3
Tr

[
Y jE(k) +

∫ ∞

0

dt′XjE(k, t′)
]
, (5.51)

which, taking into account the analytical form of the response kernels Y jE(k) (5.46)
and XjE(k, t′) (5.47), is equivalent to the expression for Dl

c derived in frames of the
Zwanzig-Mori formalism (4.39).

Note that in the above definition Dc is expressed in terms of the kernel linking E with
the particle current J and not the diffusion current J d as it stands in the original definition
(5.15). One should remember however that before the limit k → 0 is performed one should
first apply the thermodynamic limit, which should be supplied by the condition that the
system as a whole does not move (it is called sometimes “the rigid wall condition” [94], as
it corresponds to the statement that the container in which the suspension is enclosed does
not move). Such a thermodynamic limit assures that limk→0 vs(k) = 0, which in turn,
guarantees that the two above-mentioned transport kernels approach the same limiting
value as k→ 0.

As far as short time diffusion coefficient is concerned, it can be obtained from (5.51)
by neglecting the memory term, i.e.

Ds
c = lim

k→0

kBT

3nS(0)
TrY jE(k). (5.52)
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It is important to stress here once more the fact that one cannot just put k = 0 in the
above expressions, as the kernels Y jE and XjE are long-ranged, which was indicated in the
Introduction and will be proved in Chapters 6 and 7. Our goal in these Chapters will be to
find the local equations for the diffusion current in the sense elucidated in the Introduction.
By means of the short-range kernels appearing in such equations the collective diffusion
coefficient could be assessed without the cumbersome k → 0 limit.



Chapter 6

Cluster expansion for the
instantaneous response

The instantaneous response kernels Y defined by Eq. (5.46) are non-local, what leads
to divergences. The goal of this Chapter is to find the description of the instantaneous
response of the system in terms of local kernels. It will turn out that the local equations
describing the system’s response are of the form

J ins = Y irr
jEE + Y irr

jv vins (6.1)

instead of

J ins = Y jEE + Y jvvo (6.2)

The instantaneous suspension velocity vins that have appeared in (6.1) is defined as
(cf. (2.11))

vins = vo + Gf ins (6.3)

We are going to prove that, in contradistinction to nonlocal kernels Y jE and Y jv

in (6.2), the kernels Y irr
jE and Y irr

jv in (6.1) are short-ranged and therefore local. These
kernels will allow us to find the the explicit expression for Ds

c , which does not involve the
troublesome limit k → 0.

In the next Chapter similar in idea (although much more complicated in practice)
operations will be performed on the retarded part of the system’s response (5.45).

6.1 Cluster structure

While calculating the kernels Y and X defined in (5.46) and (5.47) we have to deal with
the integrals of the form

I =

∫
A(X, r, r′)Peq(X)dX, (6.4)

59
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where A is some operator such as
∑N

i,j=1 δ(r −Ri)µijδ(r′ −Rj) or Ẑ(r, r′).
The operator A can be written in the form of the scattering sequence (cf. 2.36,2.40,2.42,2.43)

and therefore can be represented as

A =
∑

i

A(i) +
1

2!

∑

i6=j

A(i, j) +
1

3!

∑

i6=j 6=k

A(i, j, k) + ..., (6.5)

where A(i1, ..., is) comprises all these terms in the scattering sequence of A which depend
on the positions of exactly s particles {i1, i2...is}. For example the sequence

µo(1)P(1)Zo(1)G12Ẑo(2)G21Ẑo(1)δ(r −R1)

is the part of A(1, 2) (as well as A(2, 1)) whereas

µo(1)P(1)Zo(1)G12Ẑo(2)G23Ẑo(3)δ(r −R1)

is the part of A(1, 2, 3) (in both cases A =
∑N

j=1[C(r)]jδ(r′ − Rj)).
Hence we get for I

I =
∑

i

∫
A(i)Peq(X)dX +

1

2!

∑

i6=j

∫
A(i, j)Peq(X)dX+

1

3!

∑

i6=j 6=k

∫
A(i, j, k)Peq(X)dX + ... (6.6)

Or, summing up the equivalent terms

I =
N∑

s=1

N !

(N − s)!s!

∫
A(1, 2..., s)Peq(R1...RN)dR1...dRN =

=

N∑

s=1

1

s!

∫
A(1, 2..., s)n(R1, R2..., Rs)dR1...dRs, (6.7)

where n(1, 2..., s) is the s-particle partial distribution function

n(1, 2, ..., s) =
N !

(N − s)!

∫
Peq(R1...RN)dRs+1...dRN . (6.8)

Note that the s-particle partial distribution function can be also written as

n(r1, r2, ...rs) =<
′∑

i1,i2,...,is

δ(r1 −Ri1)δ(r2 −Ri2)...δ(rs −Ris) >, (6.9)

which in a shorthand notation will be also denoted as < 1 2 ... s >. The sum
∑′ in the

above expression is supplied with the condition that all ik, k = 1, . . . , s are different each
from the other.
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Next we assume that the correlations between the two groups of particles vanish as the
distance between them goes to infinity. This means that the partial distribution function
should have the group property, i.e.

n(1, 2..., r, r + 1, .., s)→ n(1, 2..., r)n(r + 1, ..., s), (6.10)

as the distance between the particles {1, 2...r} and {r + 1, ..., s} goes to infinity.
This property of the partial distribution function allows us to decompose n(1, 2...s)

as [95]

n(1) = h(1),

n(1, 2) = n(1)n(2) + h(1, 2),

n(1, 2, 3) = n(1)n(2)n(3) + n(1)h(2, 3) + n(2)h(1, 3) + n(3)h(1, 2) + h(1, 2, 3),

..., (6.11)

where the s-particle correlation function h(1, 2...s) goes to zero as one drags any subset of
particles ⊂ {1, 2...s} away from the rest.

For the later use we introduce after Michels [96] the ”uncorrelating operator”

Punc =><, (6.12)

which has the property of statistically uncorrelating the variables at its left from those at
its right, i.e

< APuncB >=< A >< B > . (6.13)

The orthogonal complement of Punc is

Qunc = 1− >< . (6.14)

So, using the notation of Eq. (6.9), we get for example

< 1 Qunc 2 >=< 1 2 > − < 1 >< 2 >= n(1, 2)− n(1)n(2) = h(1, 2). (6.15)

Using the decomposition (6.11) together with the cluster expansion (6.5) we get the
representation the kernels Y jE, Y jv, Y fE , Y vv as sums of many-body terms from scattering
sequence multiplied by the respective correlation functions. To deal effectively with such
a complicated structure we are going to introduce the diagrammatic representation.

6.2 Diagrammatic representation

We introduce the diagrammatic representation of the scattering (S) and correlation (C)
structure of the Y kernels from Eq. (5.42). Such SC diagrams consist of the following
elements
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1. the horizontal line - - - - represents a given particle (we call it particle line)

2. the symbol 3 stands for the operator −Ẑo(i)

3. the symbol ⊃ stands for the operator Zo(i)P(i)µo(i)δ(r′ −Ri)

4. the symbol⊂ stands for the operator δ(r −Ri)µo(i)P(i)Zo(i)

5. the vertical line | stands for the G - bond

6. double vertical line ‖ represents the correlation function h (we call it h-bond)

Moreover we assume that the positions of all the particles in the diagrams are integrated
over. Hence, for example the diagram

⊂
3

3

3

⊃
◦

◦

- - - - - - - - - - - - -

- - - - - - - - - - -

- - - - - - - - - - - - - - -

3

1

2

Fig. 6.1.

represents the expression

−
∫

d1d2d3 h13δ(r −R1)µo(1)P(1)Zo(1)G(12)Ẑo(2)G(23)Ẑo(3)G(31)

Ẑo(1)G(12)Zo(2)P(2)µo(2)δ(r′ −R2), (6.16)

which is the part of the kernel Y jE. Note that the diagrams should be read from left to
right.

The diagram with n G-bonds would be called ”n-linked” diagram.

6.3 Reducibility

The G bond is called a connection line if the removal of this G-bond causes the diagram to
become disconnected. Diagrams with one or more connection lines will be called reducible.

For example the diagram
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⊂
3

3

3

3

3

⊃
- - - - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - -

2

1

3

4

◦

◦

◦

◦

Fig. 6.2.

is reducible and can be cut into two pieces by breaking the G - bond between particles
2 and 3. The connection line which is most to the left will be called articulation line.
Note that the sub-diagram on the left of the articulation line is irreducible.

In the analogous way we can define the reducibility for the S-structure of the diagrams
(S-reducibility). First of all nodal line is defined as a G-bond which would be a connection
line if there were no h − bonds in a diagram. Diagrams with one or more nodal lines are
called S-reducible.

Hence in the following diagram

⊂
3

3

3

3

3

⊃
- - - - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - - - - - - - - - -

2

1

3

4

◦

◦

◦

Fig. 6.3.

the G bond between particles 2 and 3 is the nodal line but not the connection line and the
diagram is S-reducible (although it is irreducible with respect to its SC-structure).

6.4 The nodal structure

The nodal lines decompose the particles in a given diagram on the set of nodal blocks Ci:
C1 denotes the set of particles on the left of the first nodal line, C2 - the particles between
the first and the second nodal line and so on. Note that the definition of the nodal line
assures that Ci ∩ Cj = ∅ if only i 6= j. For example the diagram
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⊂
3

3

⊃
3

2

1

Fig. 6.4.

has the nodal structure of the form

2,3

1

3

2

1

Fig. 6.5.

or simply 1|23.
The object on Fig. 6.5 is called the nodal structure graph (NSG). The vertices of

such a graph are nodal blocks, whereas the bonds in this graph are created by nodal lines.

6.5 The block distribution function

Consider all the irreducible diagrams of the kernel Y which have the same scattering
structure and differ only in correlation structure. The task of summing all of these diagrams
boils down to finding the sum of all their correlation functions.

To start with, the irreducibility requires that if there is a nodal line in the diagram
then particles on the left of it cannot be totally uncorrelated from particles on its right.
This means that the correlation function that we are looking for is given by



CHAPTER 6. INSTANTANEOUS RESPONSE 65

b(C1|C2|...|Ck) =< C1(1− Punc)C2(1− Punc)...(1− Punc)Ck > . (6.17)

Here C1|C2|...|Ck describes the nodal structure of the diagram, whereas the operator Punc

is the ”uncorrelating operator” introduced in (6.12). The function b(C1|C2|...|Ck) defined
in (6.17) is called the block distribution function [39]. Note that if there are no nodal
lines in the scattering structure of a given s-particle diagram, than b would be just the full
s-particle partial distribution function n(1, 2, ..., s).

To get a better grip of b(C1|...|Ck) let us evaluate it for a few simple scattering sequences.
For the sequence presented in Fig. 6.4 the block distribution reads:

b(1|23) =< 1(1− Punc)23 >=< 123 > − < 1 >< 23 >= n(1, 2, 3)− n(1)n(23). (6.18)

We see that b(1|23) goes quickly to zero when we drag particle 1 apart from the particles
2 and 3, as in this case

n(1, 2, 3)→ n(1)n(23). (6.19)

Let us consider now the scattering sequence of the form

⊂
3

3

3

⊃

2,3

4,5

3

2

1

4

5

Fig. 6.6.

where
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i1, i2 . . . ik

Fig. 6.7.

stands for any scattering sequence that involves the particles i1, i2 . . . ik.
The above scattering sequence has the nodal structure (1|23|45). Therefore its block

distribution function reads

b(1|23|45) =< 1(1− Punc)23(1− Punc)45 >= (6.20)

=< 12345 > − < 1 >< 2345 > − < 123 >< 45 > + < 1 >< 23 >< 45 >=

= n(1, 2, 3, 4, 5)− n(1)n(2, 3, 4, 5)− n(1, 2, 3)n(4, 5) + n(1)n(2, 3)n(4, 5),

which, as can be easily proved, vanishes whenever the particle {1} or the group {4, 5} is
dragged away from the rest of the particles.

6.6 Long-range character of the kernels

Note that the kernels Y (r, r′) in (5.46) are of a very long range: they fall off as slowly as
|r − r′|−k with k ≤ 3. It is caused by the presence of reducible diagrams in the expansion
of Y (r, r′). In such a diagram we have at least one connection line: let it be G(ij) joining
the particles i and j. Looking at the scattering expansions (2.36,2.42,2.43) we recognize
the three possibilities

1. The connection line G joins two Ẑo operators: Ẑo(i) and Ẑo(j). But, as we have
mentioned in Chapter 2, in the multipole language all the components of Ẑo(l =
1, m, σ; l′ = 1, m′, σ′) except for Ẑo(l = 1, m, σ = 2; l′ = 1, m′, σ′ = 2) vanish. This,
together with the fact that Gσ,l;σ′,l′(R) decays as R−(l+l′+σ+σ′−1), leads us to the
conclusion that the leading term in the connection line behaves as R−3 (for l = l′ = 2
and σ = σ′ = 0).

2. The connection line joins the Zo operator with Ẑo. Then, from the form of the Zo

operator quoted in Appendix C follows that the leading term in the connection line
behaves as R−2 (for l = 1; l′ = 2 and σ = 0; σ′ = 0). Here the prime variables refer
to the Ẑo operator.

3. The connection line joins two Zo operators. Then the leading term behaves as R−1

(for l = l′ = 1 and σ = σ′ = 0). It is worth noting that such a situation can happen
only in case of the diagrams representing Y jE (as only this kernel has more than one
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Zo operator in its scattering sequence). As there are exactly two Zo operators in
diagrams of Y jE, one at the beginning and one at the end of the diagram, the only
scattering structure that allows for R−1 connector is the two-particle diagram of the
form

⊂

⊃
R−1

2

1

Fig. 6.8.

Such an asymptotic behavior of the connection lines may lead to the serious divergence
problems. Consider for example the integral

∫
Y jE(r, r′)dr′, (6.21)

which one encounters while calculating the system’s response to the spatially uniform
disturbance (E(r′) = const.). Using (5.46) we can rewrite it as

N∑

s=1

∫
µ11(1, 2..., s)δ(r −R1)n(R1, R2..., Rs)dR1...dRs+

+
N∑

s=2

∫
µ12(1, 2..., s)δ(r −R1)n(R1, R2..., Rs)dR1...dRs, (6.22)

where µ(1, 2, ..., s) are the terms in the cluster expansion of µ. Now the first term in (6.22)
does not cause any problems, because there cannot be any connection lines in diagrammatic
expansion of µ11(1, 2..., s)n(R1, R2..., Rs) as each diagram have to begin and end on the
same particle (number 1). However the expansion of µ12(1, 2..., s)n(R1, R2..., Rs) contains
the reducible diagrams. The integration over the particle at the end of the connection line
in such a diagram leads to the integrals of the following kind

∫
1

rk
dr k = 1, 2, 3, (6.23)

which are clearly divergent.
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It should be stressed that the long-range terms are absent in the irreducible diagrams.
To see it, suppose that we came across a long-range bond linking particles i and j in an
irreducible diagram K. As the diagram is irreducible, one of the following should hold

1. particles i and j are connected by a correlation function. In this case the long-range
connector between i and j causes no trouble, as the correlation function decays very
quickly as i wanders away from j.

2. particles i and j are connected by some other bond or the group of bonds coming
through other particles. But then the diagram contains more than two bonds and
therefore it is not a diagram from Fig. 6.8. This in turn implies that each of the
two bonds between i and j decays at least as R−2, so that the analytic expression
corresponding to our diagram would contain the term decaying as R−4 or faster,
which assures convergence.

The presence of long-ranged, reducible diagrams in the kernels under considerations is
caused by the fact that the particle current J , as well as the suspension velocity vins depend
not only on the external disturbances vo and E but also on the boundary conditions - i.e.
the dimensions and the shape of the sample. Therefore the kernels Y jE, Y jv, Y fE and
Y fv are not local. We will prove subsequently that the right local equations describing the
response of the system in our case read (in a compact notation)

J = Y irr
jEE + Y irr

jv vins (6.24)

with the kernels Y irr
jE and Y irr

jv which are irreducible and therefore short-ranged. The
reason why the kernels in (6.24) are local whereas kernels in (5.46) not, is that in (6.24)
the boundary effects are accounted for by introducing the velocity vins, which itself depends
on the shape and dimensions of the sample. Analogous equation with local kernels will be
found for the force density f . The next part of this Chapter will be devoted to finding
such irreducible, local kernels.

6.7 The reduction of the long-range kernels

In the following we are going to concentrate on the analysis of the diagrams of the kernel
Y jE, the scattering structure of which is given by Eq. (2.36).

First, let us divide all the diagrams which make up Y jE into two groups: reducible and
irreducible ones. Then we rewrite each reducible diagram in form of a product:

BjE(r, r′) =

∫
IjE(r, r′′)G(r′′, r′′′)RjE(r′′′, r′)dr′dr′′′, (6.25)

where BjE stands for the diagram under consideration, IjE is its part on the left of the
articulation line and RjE is the part on the right of the articulation line. Note that IjE

must be an irreducible diagram. For example the diagram from figure 6.2 is divided in a
following way
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⊂
3

3

3

3

3

⊃- - - - - - -

- - - - -

- - - - - - - - - - - -

- - - - - - - - - -

2

1

3

4

◦

◦

◦

◦

Fig. 6.9.

Here IjE is given by the diagram

⊂
3

3

3- - - - - - - - - - - -

- - - - - - - - - -

2

1

◦

◦

Fig. 6.10.

whereas RjE is given by

3

3

⊃- - - - - - -

- - - - -

3

4

◦

◦

Fig. 6.11.

The n-linked diagrams of IjE have the following scattering structure

Scatt(IjE) = µoPZo(−GẐo)n n = 0, 1, . . . , (6.26)

whereas the correlation function which multiplies the sum of all IjE diagrams with the
same scattering structure is the block correlation function b(C1|...|Ck) defined in (6.17).

Now we turn to RjE diagrams. Here the scattering structure of the n-linked diagram
reads

Scatt(RjE) = (−ẐoG)nZoPµo, (6.27)
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whereas the correlation structure is simple: the sum of all diagrams with the same scat-
tering structure is multiplied simply by the function n(i1..ik) where {i1, . . . , ik} is the set
of all the particles in the diagram. The reason for it is lack of restrictions with respect to
the reducibility: diagrams of RjE may be reducible or not.

The scattering structure of RjE given by (6.27) is just the same as the scattering
structure of the diagrams of the kernel Y fE (cf. Eqs. 5.46 and 2.42). Therefore in the
thermodynamic limit the sum of all RjE diagrams equals Y fE(r, r′).

Similarly, the scattering structure of IjE is the same as that of the kernel Y jv (cf.
Eqs. 5.46 and 2.43), hence in the limit N → ∞ the sum of all IjE equals the sum of all
irreducible diagrams making up Y jv: we are going to denote it by Y irr

jv .
Hence in the thermodynamic limit

∫
Y jE(r, r′)E(r′)dr′ = (6.28)

∫
Y irr

jE(r, r′)E(r′)dr′ +

∫
Y irr

jv (r, r′′)G(r′′, r′′′)Y fE(r′′′, r′)E(r′)dr′dr′′dr′′′.

The similar reduction can be performed on the kernel Y jv. Writing down the decom-
positions analogous to Eq. (6.25) we obtain the diagrams Ijv and Rjv with the following
scattering structure for n-linked diagrams

Scatt(Ijv) = µoPZo(−GẐo)n = Scatt(IjE),

Scatt(Rjv) = −(−ẐoG)nẐo. (6.29)

In the limit of the macroscopic system the sum of all Rjv diagrams is equal to Y fv (cf.
Eqs. 5.46 and 2.40). Therefore in this limit the following holds

∫
Y jv(r, r′)vo(r

′) = (6.30)
∫

Y irr
jv (r, r′)vo(r

′)dr′ +

∫
Y irr

jv (r, r′′)G(r′′, r′′′)Y fv(r′′′, r′)vo(r
′)dr′′dr′.

Summing up (6.28) and (6.30) we obtain

< j(r) >=

∫
(Y jE(r, r′)E(r′) + Y jv(r, r′)vo(r

′))dr′ =

=

∫
(Y irr

jE(r, r′)E(r′) + Y irr
jv (r, r′)vo(r

′))dr′+ (6.31)

+

∫
dr′′dr′′′Y irr

jv (r, r′′)G(r′′, r′′′)

(∫
dr′Y fE(r′′′, r′)E(r′) + Y fv(r′′′, r′)vo(r

′)

)
.
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But form Eq. (5.45) the expression in brackets is just the instantaneous force density
f ins(r). Hence, using the fact that the instantaneous velocity can be expressed by the
force density as (2.11)

vins(r) = vo(r) +

∫
dr′G(r, r′)f ins(r′) (6.32)

we can rewrite Eq. (6.31) as

J ins =< j >= Y irr
jEE + Y irr

jv vins, (6.33)

where again the compact notation has been used.

Note that the kernels in the above equation are short-ranged, as all their diagrams are
irreducible and therefore deployed of all solitary G connectors.

6.8 The force density

Let us now perform similar renormalization procedure on the force density kernels Y fE

and Y fv defined by the relation

< f(r) >=

∫
(Y fE(r, r′)E(r′) + Y fv(r, r′)vo(r

′))dr′. (6.34)

Just as before, we take the reducible diagrams of Y fE and Y fv and decompose them

BfE(r, r′) =

∫
IfE(r, r′′)G(r′′, r′′′)RfE(r′′′, r′)dr′′dr′′′,

Bfv(r, r′) =

∫
Ifv(r, r′′)G(r′′, r′′′)Rfv(r′′′, r′)dr′′dr′′′, (6.35)

with the notation analogous to that introduced in section 6.7.

The scattering structure of the n-linked diagrams IfE and Ifv is the same and reads

Scatt(IfE) = Scatt(Ifv) = Ẑo(−GẐo)n, (6.36)

which is the same as the scattering structure of Y fv. The scattering structures of the
respective R diagrams are identical to those encountered in the previous section

Scatt(RfE) = (−ẐoG)nZoPµo = Scatt(RjE),

Scatt(Rfv) = (−ẐoG)nẐo = Scatt(Rjv). (6.37)

Therefore in the limit of the macroscopic system we can write
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f ins(r) =< f(r) >=

∫
(Y fE(r, r′)E(r′) + Y fv(r, r′)vo(r

′))dr′ =

=

∫
Y irr

fE(r, r′)E(r′)dr′+

+

∫
Y irr

fv (r, r′)

(
vo(r

′) +

∫
G(r′, r′′′) [Y fE(r′′′, r′′)E(r′′) + Y fv(r′′′, r′′)vo(r

′′)] dr′′dr′′′
)

dr′

But the expression in brackets on the right hand side of Eq. (6.38) is the instantaneous
suspension velocity, so eventually

f ins = Y irr
fEE + Y irr

fv vins. (6.38)

6.9 The short-time diffusion coefficient

We have succeeded in deriving the equations (6.33) and (6.38) for the particle current J ins

and the instantaneous force density f ins given by the short-range kernels Y irr acting on
the external field E and suspension velocity vins. Because of their short range, as it was
argued in the Introduction, the kernels Y irr are independent of the shape and size of the
sample provided that it is macroscopic. But if it is so, then one can assume that the sample
is infinite. It would not affect the kernels Y irr(r, r′), but greatly facilitate the calculations,
as then the hydrodynamic Green function for an infinite system given by (2.9) can be used.

Now we change to the k space to calculate the values of the response kernels at k = 0
and thereby get the diffusion coefficient. The Fourier transforms of the kernels and fields
are performed according to expressions (1.44)-(1.47). In this way we obtain that the Fourier
transform of the equation (6.33) for the particle current reads (in case of the homogeneous
system)

J ins(k) = Y irr
jE(k)E(k) + Y irr

jv (k)vins(k), (6.39)

In the long wavelength limit (k → 0) the tensor Y irr
jv takes a particularly simple form.

We have namely from Eqs. (5.46) and (2.43)

Y irr
jv (k = 0) =

∫
<

N∑

i=1

δ(Ri)[µoPZo + µoPZoG(1 + ẐoG)−1Ẑo]i(r
′) >irr dr′. (6.40)

But Ẑo(i)(r, r′) 6= 0 only if θi(r
′) 6= 0 so we can write (6.40) equivalently as

Y irr
jv (k = 0) =<

N∑

i=1

δ(Ri)[µoPZoP
t + µoPZoG(1 + ẐoG)−1ẐoP

t]i(r
′) >irr . (6.41)
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But, as we have proved in Chapter 2

ẐoP
t = 0 (6.42)

thus

Y irr
jv (k = 0) =<

N∑

i=1

δ(Ri)µo(i)P(i)Zo(i)P
t(i) >irr=<

N∑

i=1

δ(Ri) > 1 = n(0)1 = n1,

(6.43)
where in the last equality we have used once again the homogeneity of the system.

We see therefore that in the limit of small wavevectors there have appeared in a natural
way in our equations the (instantaneous) diffusion current J ins

d = J −nvins. In fact in the
k → 0 limit the equation (6.39) takes form (for the isotropic system)

J ins
d = Y irr

jE(k = 0)E, (6.44)

where we use the fact that, because of the local character of irreducible kernels,
limk→0 Y irr

jE(k) = Y irr
jE(k = 0). In the isotropic system this tensor is proportional to the

unit matrix, i.e.

Y irr
jE(k = 0) = yjE1. (6.45)

This allows us to identify the collective diffusion coefficient with

Ds
c =

kBT

3nS(0)
TrY irr

jE(k = 0) =
kBT

nS(0)
yjE. (6.46)

The diffusion coefficient described by this formula is a short-time one because Y irr
jE(k =

0) is the proportionality factor between the instantaneous diffusion current and the external
field. To calculate the long time collective diffusion coefficient we have to take into account
the memory effects hidden in the retarded response part of the diffusion current.

The comparison of the above expression for Ds
c with the one obtained from the Mori-

Zwanzig formalism (4.30) shows that one can extend the hydrodynamic factor H(k) to
k = 0 by defining its value in k = 0 as

H(0) =
kBT

nDo
yjE =

1

3Nµo
Tr <

∑

i,j

µij >irr, (6.47)

which is equal to the limit k → 0 of the function H(k) defined in (4.31). Therefore the
short-time diffusion coefficient can be written by analogy to (4.30) as

Ds
c =

DoH(0)

S(0)
. (6.48)
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6.10 The small k limit of the equations for instanta-

neous velocity and diffusion current

In the expansion of Y jv(k) in k around k = 0 for the homogeneous system the linear term
(∼ k) vanishes because of the isotropy so that

Y irr
jv (k) = n1 + k2yjv + ..., (6.49)

where the tensor yjv because of the isotropy must have the form

yjv = yl
jvk̂k̂ + yt

jv(1− k̂k̂), (6.50)

where yl
jv and yt

jv are scalars. On account of the incompressibility condition

k · vins = 0 (6.51)

the first term in (6.50) does not contribute to equation (6.39). Hence in the small k limit
this equation can be rewritten as

J ins
d (k) = yjE(k)E(k) + k2yt

jvv
ins(k). (6.52)

Let us now turn to the equations of the fluid motion. The Fourier transform of the
hydrodynamic Green function for an infinite space reads

G(k) =
1

ηk2
(1− k̂k̂), (6.53)

so that the velocity in this case may be written as

k2vins(k) =
1

η
(1− k̂k̂)(f ins(k) + f o(k)). (6.54)

Now the instantaneous force density f ins can be found by the Fourier transform of
(6.38) and the velocity takes form

k2vins(k) =
1

η
(1− k̂k̂)(f o(k) + Y irr

fE(k)E(k) + Y irr
fv (k)vins(k)). (6.55)

First let us investigate the lowest order (O(1)) term in k of the operators Y irr
fE(k) and

Y irr
fv (k) around k = 0. For Y irr

fE the answer can be given immediately, as this operator is

adjoint to Y irr
jv , so from (6.43) we get

Y fE(k = 0) = Y jv(k = 0) = n1. (6.56)

To find out the k = 0 value for Y irr
fv (k) we recall its scattering structure. From (5.46)

and (2.40)

Y irr
fv (k = 0) = −

∫
< Ẑo(1 + GẐo)−1(r = 0, r′) >irr dr′. (6.57)
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Here the scattering sequence ends on Ẑo operator, so the same reasoning as that after
Eq.(6.40) leads us to the conclusion that

Y irr
fv (k = 0) = 0. (6.58)

Therefore the small k limit of operators Y fE and Y fv reads

Y irr
fE(k) = n1 + k2yfE + ...,

Y irr
fv (k) = −k2yfv + ... (6.59)

The tensors yfv and yfE can be similarly to yjv decomposed on the longitudinal and
transverse parts and the equation (6.55) takes form

−k2(η + yt
fv)vins(k) = (1− k̂k̂)(f o(k) + nE(k) + k2yt

fEE(k)), (6.60)

where we have used the fact that, due to the incompressibility condition

(1− k̂k̂)v(k) = v(k). (6.61)

Due to the symmetry between the operators Y jv and Y fE the coefficient yt
fE is equal to

yt
jv introduced earlier. This is in fact the manifestation of the Onsager symmetry guessed

by Nozières [42].

We see that in above equation there appeared in a natural way the total external force
(per unit volume) exerted on the suspension

F tot = f o + nE, (6.62)

which is the sum of the force f o exerted on the whole suspension and the force E which
acts only in the particles (hence the factor n in front of E).

Now the equation (6.60) takes form

k2(η + yt
fv)vins(k) = (1− k̂k̂)(F tot(k) + k2yt

fEE(k)). (6.63)

6.11 Analysis of the equations for suspension velocity

and diffusion current

Let us take a closer look at the macroscopic equations for the suspension velocity (6.63)
and diffusion current (6.52) derived in the previous section. To this end we are going to
rewrite them in a slightly different manner, correct to the order k2. Namely
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J ins
d (k) = yjEE(k) + k2yt

jvv
ins(k), (6.64)

k2(η + yt
fv)vins(k) = (1− k̂k̂)(F tot(k) + k2

yt
fE

yjE
J ins

d ),

or, if one transforms it back into the real space

J ins
d = yjEE − yt

jv∇2vins, (6.65)

− (η + yt
fv)∇2vins = F tot − grad p−

yt
fE

yjE
(∇2J ins

d − grad divJ ins
d ),

where we have used the fact that longitudinal part of the force F tot is compensated by
a pressure gradient such that

−ikp(k) = k̂k̂ · F tot(k) (6.66)

which can be seen from the Fourier transform of (2.10) together with (2.8).
One sees that the above equations describe the following effects

1. Direct effects: the diffusion current is induced by the external force E applied to the
particles with the coefficient of proportionality yjE whereas the suspension velocity
field is induced by the overall external force acting on the particles and the fluid
F tot = fo+nE. Note that the presence of the particles changes the effective viscosity
of the suspension, as the role of η in (1.13) is here played by

ηeff = η + yt
fv. (6.67)

2. Cross effects linking the suspension velocity with the diffusion current. These are

described by the terms yt
jv∇2vins and

yt
fE

yjE

∇2J ins
d respectively. They describe the

processes in which the inhomogeneities in the suspension velocity drive the diffusion
current and vice versa.

It is instructive to rewrite the equations once more, this time expressing the cross
terms in terms of forces instead of the flows. One gets then (still in a small wave-vector
approximation)

J ins
d = yjEE − yt

jv

η + yt
fv

(F tot − grad p),

− (η + yt
fv)∇2vins = F tot − grad p− yt

fE(∇2E − grad divE), (6.68)
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Note that the force (F tot − grad p), when exists, dominates in (6.68), therefore the
cross effects can be best seen in systems with (F tot − grad p) = 0. In fact, the usual
gravity driven sedimentation fulfills this condition, as then the gravitational force is indeed
canceled by the vertical pressure gradient. Another example of such a system is the locally
neutral (fluid neutralizing particles) suspension placed in the electric field. In the former
case, the cross effect manifests itself in a presence of nonzero suspension flow known as
backflow, intrinsic convection or the Beenaker-Mazur flow, as these two were the first to
notice it [97–99]. In the second case, as it was pointed out by Noziéres the above equations
provide a bulk mechanism for the electrokinetic effects (Saxen’s laws): an inhomogeneous
current provides convection and an inhomogeneous flow pattern may drive an electric
current.

As it was already remarked, the above equations were derived first by Nozières [42] in a
rather phenomenological way. The throughout derivation was given by Felderhof [43, 100]
and Noetinger [23]. Felderhof used a technique called renormalized cluster expansion [101]
to derive Eqs. (6.33) and (6.38) and proved that all the kernels in these equations are
short-ranged. The reduction presented in this Chapter is in fact the simplified version of
this technique. Felderhof gives also the explicit values of the coefficients y in the small
density limit.

On the other hand, Noetinger worked from the very start in the Fourier space. He
performed only the partial reduction of the kernels and therefore was left with a number of
cumbersome k → 0 limits to calculate. He did it correctly and obtained the same equations
as Felderhof and we here, although written in a slightly different language (as he used the
hydrodynamic formalism of Mazur, van-Saarlos and Beenaker [21, 59, 102]).

As far as the short-time collective diffusion coefficient is concerned, the calculations of
this quantity, as it was remarked in Introduction, has started with the papers of Burgers
from 1942 [44–47], who however, did not succeed in obtaining the correct formula due to the
problems with divergent integrals. Thirty years later Batchelor [49] derived his well-known
formula for Ds

c to the first order in the volume fraction

Ds
c = Do(1 + 1.45φ). (6.69)

The calculation of k = 0 value of the static structure factor S(0) does not cause a
great trouble, as the static structure factor has been throughly studied both theoretically
and experimentally. In collective diffusion coefficient calculations one usually uses the
Perkus-Yevick approximation, which gives the following dependence of S(0) on the volume
fraction

S(0) =
(1− φ)4

(1 + 2φ)2
. (6.70)
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Chapter 7

Cluster expansion for the retarded
response

In this Chapter we focus our attention on the time-dependent, “retarded” part of the
system’s response to external perturbations (cf. Eq. 5.43). The retarded response is
described by the time-dependent kernels Xab given by Eq. (5.47). Those kernels are long-
ranged, just as it is the case for the instantaneous kernels Y ab. Therefore the reduction
procedure, analogous to that performed on Y ab in Chapter 6 is needed. However the
problem is much more difficult here, as the adjoint Smoluchowski operator L governing
the time-evolution of the system is long-ranged itself. Moreover, the diagrams making up
Xab have much more complicated structure than analogous diagrams for Y ab, so that such
notions as block distribution function cannot be applied in a straightforward way here. It
is to be stressed that there was no proof so far in a literature that the retarded response
kernels Xab can be reduced in a similar way as it was presented in the last Chapter for the
instantaneous response. In this Chapter, using the diagrammatic technique, we perform
the needed reduction. Next, we get the well-defined, explicit expression for the collective
diffusion coefficient as well as for the memory contribution to this coefficient given by
the factor ∆. Then, the equations for the suspension velocity and the particle current
are derived. They differ from the analogous equations derived in section (6.10) by the
presence of the time-dependent terms in the response kernels. Finally, the virial expansion
of ∆ is performed and the expression for the first nonvanishing term in the expansion,
corresponding to the second order in volume fraction, is obtained.

7.1 The diagrammatic representation of the retarded

response kernels

Just as in the preceding Chapter, we are going to construct the diagrammatic repre-
sentation - this time of the retarded response kernels X (5.47) which are of the form
X =< AeLtB >. The task would be more difficult now, because of the time-evolution
operator eLt sitting inside the kernels.

79
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First of all we decompose the adjoint Smoluchowski operator

L = [β−1
→

∇ +F ] · µ·
→

∇ (7.1)

as

L(1, 2, . . . , N) =

N∑

i,j=1

Lo(i) + δL(1, 2, . . . , N), (7.2)

where Lo(i) is the one particle operator

Lo(i) = Do

→

∇2
i , (7.3)

with Do = β−1µo denoting the one-particle diffusion coefficient. The nice thing about
Lo is that it cannot introduce any correlations between particles. Now the evolution
operator can be written as a series

eLt = S(t) +

∫ t

0

dτS(t− τ)δLS(τ) +

∫ t

0

dτ

∫ τ

0

dτ ′S(t− τ)δLS(τ − τ ′)δLS(τ) + ..., (7.4)

where

S(1, 2, . . . , N ; t) =

N∏

i

S(i; t), (7.5)

with

S(i; t) = eLo(i)t. (7.6)

In the diagrams we represent S(i, τ − τ ′) as the horizontal solid line

τ τ ′

called e - bond.
To obtain the diagrammatic expansion of < AeLtB >, we start with performing the

scattering expansion of the operators A and B. In the analogous way, after representing
eLt in form of the series (7.4) we perform the expansion of the δL terms onto the sum of
δL blocks. Then, inserting all the above expansions into < AeLtB > one ends up with
the representation of the retarded response kernel as a sum of diagrams of the following
structure (from left to right)

– on the far left of a diagram a correlation structure is placed, just as it is the case for
the instantaneous diagrams of the previous Chapter

– next one places one of A-blocks
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– next comes a sequence of e-bonds with δL blocks in between

– finally a B-block

Just as it is in the instantaneous case, integrations
∫

dR1 . . .
∫

dRN are performed over

the coordinates of all particles. Moreover, an ordered time integration
∫ t

0
dτ

∫ τ ′

0
dτ ′′∫ τ ′′

0
dτ ′′′ . . . is carried out over the times of all intermediate levels (the number of integrals

is equal to the number of δL blocks in a given diagram).
Note that apart from the evolution operator, there are few more elements in the retarded

response kernels that were not present in the instantaneous response and therefore the
“retarded” diagrams must contain some new symbols. These are:

1. a new bond: dagger line †
†
†

representing two-body interparticle forces ( F - bond)

2. new vertices standing for the following operators:

⊃→ − standing for Zo(i)P(i)µo(i)
→

∇i

⊂→ − standing for
→

∇i µo(i)P(i)Zo(i)

(7.7)

⊃← − standing for Zo(i)P(i)µo(i)
←

∇i

⊂⇒ − standing for β−1
→

∇i µo(i)P(i)Zo(i)

so while → stands for ∇, the double arrow ⇒ stands for β−1∇

Note that the operators in (7.7) do not include the delta function δ(r−Ri) as it is the
case for ⊃ and ⊂ .

For example the diagram

⊂
3

3

3

3

⊃
⊃←

t τ
Fig. 7.1.

τ ′ 0

⊂⇒

3

3

⊃→

⊂
3

⊃→

⊂⇒

3

3

3

⊃
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2

1

3

4

◦

◦

◦

◦

†
†
†

◦

◦

stands for the kernel
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∫
d1 . . . d4 h(12)h(34)Ã(1, 2, 3, 4)

∫ t

0

dτ

∫ τ

0

dτ ′ (7.8)

S(1, 2, 3, 4; t− τ)δ̃L1(2, 3, 4)S(1, 2, 3, 4; τ − τ ′)δ̃L2(1, 2)S(1, 2, 3, 4; τ ′)B̃(1, 2, 3, 4),

with the corresponding blocks given by

Ã(1, 2, 3, 4) = −δ(r −R1)µo(1)P(1)Zo(1)G(12)Ẑo(2)G(21)Ẑo(1)

G(12)Ẑo(2)G(23)Ẑo(3)G(34)Ẑo(4)G(43)Zo(3)P(3)µo(3)
←

∇3,

δ̃L1(2, 3, 4) =
→

∇4 µo(4)P(4)Zo(4)G(43)Ẑo(3)G(32)Ẑo(2)G(23)Zo(3)P(3)µo(3)
→

∇3,

δ̃L2(1, 2) = F (12)
→

∇1 µo(1)P(1)Zo(1)G(12)Ẑo(2)G(21)Zo(1)P(1)µo(1)
→

∇1,

B̃(1, 2, 3, 4) = −
→

∇4 µo(4)P(4)Zo(4)G(43)Ẑo(3)G(34)Ẑo(4)G(42)

Ẑo(2)G(21)Zo(1)P(1)µo(1)δ(r −R1).

The tilde˜ is used in the above expression to denote the fact that Ã, B̃ and δ̃L stand
only for some terms in the scattering expansion of A, B and δL and not for the whole
operators (see also the definition of a block in the next section).

Note that the operator β−1
→

∇ appears in the kernels (cf. (5.47) and (7.1)) always
together with the force F . Therefore every diagram in which there is ⊂

⇒
, has a counterpart

where the place of ⊂
⇒

is taken by the F bond attached to the operator ⊂.

7.2 Diagrammatic analysis

Let us introduce now few more definitions which are needed for further considerations.

block - a part of a diagram corresponding to some term in a scattering sequence of A, B
or δL operator

first (last) vertex of a block - a vertex in a given block which is most to the left ( right)

right(left) terminal block - a block with the property that the particle line passing
through its last(first) vertex v does not pass through any other vertex in a diagram
more to the right(left) than v

right(left) terminal e - bond - an e - bond with the property that the particle line
passing through it does not pass through any vertex in a diagram on the right(left)
side of that e - bond
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improper block - one of the following: either a terminal δL block or a right terminal A
block or a left terminal B block

proper diagram - a diagram which does not contain improper blocks

improper diagram - a diagram which is not proper

unlinked diagram - a diagram the particle lines of which can be divided into k sets
Ci, i = 1, 2...k with k ≥ 2 with the property that particles in Ci are not connected
by any bonds with the particles from Cj. Diagrams which are not unlinked are
called linked. If a given diagram K is unlinked, then there always exists a unique
decomposition C̃i, i = 1, 2...k, in which all C̃i are linked. In this case, C̃i are called
the components of the diagram K.

Let us illustrate the new definitions with an example. The following diagram

⊂
3

3

⊃←

t

⊂⇒

3

3

⊃→

τ

⊂⇒
3

⊃→
τ ′

⊂⇒

3

⊃

0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2

1

3

4

◦

◦

◦

◦

Fig. 7.2.

is a linked, improper diagram. It consists of terminal blocks only, two δL blocks among
them: one right terminal δL block and one left terminal δL block.

7.3 Simplification of the diagrams

In this section we are going to simplify a bit the set of retarded response diagrams by use of
few Rules. These are either cut-off rules, which tell us which elements of a diagram can
be deleted without affecting the analytical expression to which the diagram corresponds,
or The transformation rules, in which the prescription is given how to transform one
set of diagrams into another with a simpler structure under the condition that the sum of
analytic expressions corresponding to the diagrams in the former set is the same as in the
latter.
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The first transformation rule allows us to get rid of the diagrams in which the subdia-
gram of the following structure can be found

⇒ → ⇒ → ⇒ →

⋂

⋃- - - - - -

- - - - - -
- - - - - -

i1
i2
...
in

...

2

1

...

N

δL δL δL
- - - - - - - - -

- - - - - - - - -
- - - - - - - - -

t t’
︸ ︷︷ ︸

k times δL

Fig. 7.3.

The oval here stands for any correlation function corr(i1, i2, . . . , in) involving the particles
{i1, i2, . . . , in} ⊂ {1, 2, . . . , N}. Note that all the δL blocks in the above Figure again must
involve only {i1, i2, . . . , in}.

Before we formulate and prove the rule, we need to introduce some formal definitions.
The set of all diagrams which contain the subdiagram of the form presented in Fig. 7.3

will be called Q. Each diagram K ∈ Q can be divided in two parts. The first part is the
above-mentioned block from Fig. 7.3, which we denote by T . The second part, containing
all the elements of the diagram K which do not belong to T , will be called R (“the rest”).
Note that the blocks T are characterized by

1. the starting time t′ (the final time is always t)

2. the set of particles involved {i1, i2, . . . , in}

3. the correlation function corr(i1, i2, . . . , in)

4. the number of δL blocks

5. the exact scattering structure of δL blocks

Sometimes we would like to work with the set of diagrams whose T parts share some
of the properties (1-5). Such a set would be denoted by T (i, j, ..) where i, j, . . . stand
for the respective properties that the elements of the set share. Therefore for example
K(R, T (t′, {i1, . . . , in})) denotes the set of the diagrams with the given part R and the
part T which involves particles {i1, i2, . . . , in} and starting time t′.

Let us consider now another set of diagrams which can be obtained from Q by the
following transformation: one replaces the set K(R, T (t′, {i1, . . . , in}, corr(i1, i2, . . . , in))
by the single diagram {R, corr(i1, i2, . . . , in; t′)}, which has the same R part, its T part,
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however, consists solely of the correlation function corr(i1, i2, . . . , in) shifted to the time t′,
like in the following Figure

t’

⋂

⋃- - - - - - -

- - - - - - -
- - - - - - -

i1
i2
...
in

Fig. 7.4.

This new set will be called W . The following holds

Rule 1. In the thermodynamic limit the analytic expressions corresponding to the sum of
all diagrams in Q is the same as that corresponding to the sum of all the diagrams in W .
Therefore in all the further considerations one may consider the diagrams W instead of Q.

Proof. Let K(R) ⊂ Q be the set of all diagrams in Q with the given R and different T . The
task of summing the diagrams in K(R) becomes simpler in the thermodynamic limit, as
when the number of particles goes to infinity, the sum over all the different T ’s approaches

Peq(1, . . . , N)eL(1,2,...,N)(t−t′), (7.9)

which, using the invariance of Peq with respect to time, can be rewritten as

eD(1,2,...,N)(t−t′)Peq(1, 2, . . . , N), (7.10)

where the relation (3.23) has been used.
But now the operator eD(1,2,...,N)(t−t′) stands at the far left of the diagram. However, using
the integration by parts one proves that

∫
dR1 . . . dRNeD(1,2,...,N)(t−t′)F (1, 2, . . . , N) =

∫
dR1 . . . dRNF (1, 2, . . . , N) (7.11)

where F (1, 2, . . . , N) is any function of the particle positions. Therefore the evolution
operator eD(1,2,...,N)(t−t′) can be dropped from (7.10).

Let us now consider the sum of all diagrams in the set W (R), which contains W dia-
grams with the same part R as the previously considered Q diagrams. From the definition
of W we know that the T -parts of these diagrams contain only the correlation function
corr{i1, i2, . . . , in}. But again, in the thermodynamic limit the sum of such functions ap-
proaches Peq(1, 2, . . . , N) and therefore is equal to the sum of T parts of K diagrams.
Therefore the sum of K(R) is equal to the sum of W (R) (with the same R). The repeated
application of this fact to different R structures gives the desired conclusion.
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The next rule is the cut-off one, namely

Rule 2. The right terminal e-bonds in any diagram can be erased

Proof. The proof here stems from the fact that the differential operator
→

∇i in the right

terminal e-bond of the form S(i, t1 − t2) = eDo

→

∇2
i (t1−t2) has nothing on its right to act on

and so in this case S(i, t1 − t2) is reduced to the identity operator and can be omitted
without changing the value of the diagram.

Note that with the use of the two above Rules we have arrived at the diagrams deployed
of all terminal e-bonds. The following rule allows us in a similar way to get rid of improper
blocks in the diagrams.

Rule 3. The sum of all improper diagrams vanishes. Therefore in the further analysis one
can replace the set of all (i.e. improper as well as proper) diagrams by the set of proper
diagrams only.

As we know, an improper diagram must contain one of the following: either a right (or
left) terminal δL block or a right terminal A block or a left terminal B block. To proof
the above theorem, we are going to tackle these cases one by one.

The case when a diagram contains a right terminal δL block is simple: every δL block
ends with the ⊂

→
operator, in case of right terminal δL block the divergence has nothing to

act on and so the value of such a diagram vanishes. Therefore we get

Lemma 1. Every diagram with a right terminal δL block vanishes

The case of left terminal δL block is a bit more complicated. Although it is not true
that each diagram with a left terminal δL block vanishes separately, one can nevertheless
prove that

Lemma 2. Let KC;S be a set of diagrams K with the correlation structure C and scattering
structure S, such that K contains at least one left terminal δL block. Then

∑

C

KC;S = 0,

Proof. Let us consider one of the left terminal δL blocks of the diagram KC;S and denote
it by Lb. There are two possibilities:

a) Lb begins with ⊂
⇒

operator i.e. β−1
→

∇i µo(i)P(i)Zo(i)

b) Lb begins with F jiµo(i)P(i)Zo(i)
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Here i denotes the particle with which Lb begins whereas j is some particle from the
diagram different from i. Therefore we can divide the diagrams KC;S into two groups:
KCa;S and KCb;S depending on whether Lb have the form (a) or (b). In the first group,
using the integration by parts we can change ⊂

⇒
operator at the beginning of Lb for −1 ·⊂⇐

operator. But, as Lb is the left terminal block, after such operation, the differentiation in
−1 ·⊂⇐ acts only on the correlation function on the far left of the diagram. But the sum
of all the correlation structures gives just the equilibrium distribution Peq. However

∇iPeq = β
∑

j

F (ij)Peq(X), (7.12)

from which one sees that the sum of all KCa;S diagrams is equal to the sum of all KCb;S

diagrams taken with the opposite sign, which gives the desired conclusion.

To complete the proof of Theorem 3 we need to consider two more cases: the diagrams
with a right terminal A-block and those with left terminal B-block. However, in the first
case, it suffices to change ⊂

←
operator at the end of A-block to −1 ·⊂→ using integration by

parts, and then, using Lemma 1, one sees that the given diagram vanishes. Eventually, in
case of diagrams with left terminal B-block, the proof is analogous to the proof of Lemma
2.

A very attractive property of proper diagrams which greatly facilitates all the analysis
is that

Theorem 1. Proper diagrams are connected.

Proof. Let us assume that a given proper diagram D of the form < AeLtB > is not con-
nected, which means that it consists of at least two components. There are two possibilities

1. The blocks A and B are in the same component of the diagram D.

Let us denote the above-mentioned component which contains both A and B by C1.
Then consider another component: C2, the existence of which is assured by the fact
that D is not connected. Note that C2 can contain only δL blocks. The last block
on the right of C2 is therefore the right terminal δL block. Therefore the graph D is
improper which contradicts the assumptions of the Theorem.

2. The blocks A and B are in the different components of the diagram D.

In this case let us consider a component which contains A and call it C1. Let us see
which block stands at the right end of C1. It can either A-block or one of the δL
blocks but not B-block as it should be disconnected from A. In all cases the diagram
D is improper: in the first case because of the right terminal A block, in the second
one - because of the right terminal δL block. Therefore there is again a contradiction
with respect to the assumption of the Theorem.
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7.4 The nodal structure of the evolution diagrams

As the evolution diagrams consist of many different building blocks (A, B and δL) no
wonder that their nodal structure is much more complicated than that of the instantaneous
response diagrams analyzed in Chapter 6. For example the diagram

⊂
3

3

3

⊃←

t

⊂⇒

3

⊃→

τ

⊂⇒
3

⊃→
τ ′

⊂⇒
3

⊃

0

- - - - - -

- - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3

2

4

5

6

7

1

◦

◦

Fig. 7.5.

has the nodal structure graph (NSG) of the form



CHAPTER 7. RETARDED RESPONSE 89

4,5

2,3

1

6
7

Fig. 7.6.

We see that the nodal graph can have quite a complicated tree-like structure and it may
be not easy to apply in this case the methods developed in Chapter 6. In particular, the
block distribution function cannot be defined on the nodal structure like that in Fig. 7.6,
as it lacks the linear ordering crucial for the block distribution function and “uncorrelating
operator” Punc concepts (remember that Punc has the property of statistically uncorrelating
the particle blocks at its left from those at its right, but which block is on the left side
of which in Fig. 7.6 ?). The rest of this section would be devoted to the proof that if we
consider only NSG’s of nonvanishing proper diagrams then the situation looks far more
brightly: in fact such NSG’s are linearly ordered and all the concepts of Chapter 6 can be
applied in this case. Restricting ourselves to the set of proper diagrams only would not
affects the analytic expressions for the kernels X, given by the sum of all diagrams, as due
to the Rule 3 the overall effect of the improper diagrams vanishes.

To begin with, let us introduce some notions from the graph theory (see for example
[103]). To stress the difference between nodal structure graphs and diagrams we are going
to call the vertices in NSG nodes and the bonds in NSG - edges. The new notions are

path - a sequence of nodes and edges in a diagram of the form n1E(n1, n2)n2...E(nk−1, nk)nk,
where ni are the nodes and E(ni, ni+1) stands for the edge linking nodes ni and ni+1.
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cycle - a path n1E(n1, n2)n2...E(nk−1, nk)nk with k ≥ 3 in which all the edges are different
and the first node is the same as the last one: nk = n1

tree - an acyclic (i.e. not containing any cycles) connected graph

terminal node - a node which has less than two edges coming out of it

chain - a tree which has not more than two terminal nodes

For example the NSG in Fig. 7.6 is a tree with 4 terminal nodes, therefore it is not a
chain.

First of all we notice that

Lemma 3. The nodal structure graph of a connected diagram is a tree.

Proof. Suppose that in NSG of a given diagram D there is a cycle: i1 E(i1, i2) i2 . . .
E(ik−1, ik) ik E(iki1) i1, k ≥ 2 (here im denotes the nodes of a graph whereas E(in, in+1)
stands for the nodal line linking the node in with the node in+1). If we remove E(i1, i2)
we notice that the graph remains connected as there still remains a path between i1 and i2
going through ikik−1...i3, which contradicts the fact that E(i1, i2) is a nodal line. Therefore
there cannot be any cycles in the NSG, so it is a tree.

The simple statement that every diagram of X =< AeLtB > begins with the A block
and ends with B leads to the following property of NSG graph:

Lemma 4. In every NSG graph there should be one terminal node Nfirst containing the
first operator in the A block and one terminal node Nlast containing the last operator in B
block. It may happen that Nfirst = Nlast.

Now we are ready to formulate and prove the theorem

Theorem 2. The nodal structure graph of a proper diagram is a chain.

Proof. If the NSG for the given proper diagram D, which from Lemma 3 is a tree, would
not be a chain, then it should have more than two terminal nodes. Therefore there is at
least one terminal node No different from Nfirst and Nlast defined in Lemma 4. But such a
No node must begin (or end) with a left (right) δL block, which contradicts the assumption
that D is proper.

The chain structure induces the complete ordering in a NSG graph: we say that the
node Ni precedes the node Nj (Ni < Nj) in a given NSG if in the path joining Nfirst with
Nlast the block Ni comes before Nj. Note that we need here Theorem 2, because if NSG
would not be a chain it might happen that Ni or/and Nj would not lie on the path joining
Nfirst with Nlast.

The final theorem in this section states that the above ordering is compatible with time
order in the following sense:
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Theorem 3. If Q is the NSG graph of a nonvanishing proper diagram and Ni, i =
1, 2 . . .M - its nodes numbered in such a way that Ni < Nj for i < j, then time coor-
dinates of the vertices of the node Ni are larger or equal to time coordinates of the vertices
of Ni+1

Proof. The theorem has a clear geometrical interpretation, namely that

The node Ni lies entirely to the left of the nodal line Nii+1 whereas the node
Ni+1 lies entirely to the right of it.

This means that there should be no vertices in the dashed areas on the below scheme
denoted by Mi and Mi+1.

Mi
Ni

Ni+1Mi+1

�
time

But if there would be vertices in Mi (Mi+1) then the node Ni (Ni+1) would end (begin)
with an improper block, which contradicts the assumption that the diagram is proper.

The fact that the nodal graphs are ordered and that this ordering agrees with the
ordering imposed by time coordinate allows us to apply the reduction formalism introduced
in the previous Chapter to the case of retarded response kernels.

7.5 The reduction of the evolution diagrams

Now that we have the linear ordering of NSG graphs, we perform the reduction of the
evolution diagrams analogous to that presented in section 6.7 for the case of instantaneous
diagrams.

Let us start with the diagrams making up the kernel X jE (5.47). We divide them into
four groups

1. Diagrams with the articulation line in A-block
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2. Diagrams with the articulation line in δL -block

3. Diagrams with the articulation line in B-block

4. Irreducible diagrams.

Let us tackle them one by one

1. Theorem 3 implies that all the nonvanishing diagrams with the articulation line inside
A-block must be of the form

← ⇒ → ⇒ → ⇒

G1−articulation line

A1

A2 δL δL B

⋂

⋃

⋂

⋃

- -
- -

- -

- - - - - - -
- - - - - - -

- - - - - - -

where the ovals stand for correlation functions and we have denoted in each block
the respective divergence operators.

The diagram A1 has the scattering structure µoPZo(GẐo)n−1, which we have en-
countered before while analyzing IjE and Ijv in Chapter 6 (see ( 6.26) and (6.29)).
Therefore in the limit of the macroscopic system the sum of all A1’s equals Y irr

jv , just
as in case of IjE and Ijv.

Next we notice that the upper part of the diagram has the same structure as diagrams
of the kernel XfE . Therefore, the analogous reasoning to that presented in section
6.7 leads us to the conclusion that in the limit of the macroscopic system the sum of
all the diagrams with the articulation line in the A-block is equal to

Y irr
jv GXfE(t), (7.13)

where we have again used the compact notation in which the dependence of the quan-
tities on the space variables as well as integration over these variables is suppressed.

2. All the nonvanishing diagrams with the articulation line inside δL-block are of the
form
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← ⇒

→ ⇒

G−art. line⋂

⋃

- -

- -
- -

- -
- -

- -

⋂

⋃

A δL1

δL2 B

Here we recognize in the lower part of the diagram the structure of the diagrams
of X irr

jv , while the upper part, after changing the direction of divergence in δL2 (by
integration by parts) recovers the structure of the diagrams of X fE . Therefore in
the limit of the macroscopic system the sum of all the diagrams with the articulation
line in the δL-block is equal to

∫ t

0

dτX irr
jv (t− τ)GXfE(τ). (7.14)

3. Finally all the nonvanishing diagrams with articulation line inside B-block must are
of the form

← ⇒ → ⇒

G−art. line

⋂

⋃- -
- -

- -

⋂

⋃- -

- -

- -

A δL B1

B2

Here in the limit of the macroscopic system the sum is equal to

X irr
jv (t)GY fE . (7.15)

4. The irreducible diagrams do not need any reduction, their sum is just

X irr
jE(t). (7.16)
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Eventually, summing up (7.13-7.16) we get for the kernel X jE in the limit of the
macroscopic system the following expression

XjE(t) = X irr
jE(t) + Y irr

jv GXfE(t) +

∫ t

0

dτX irr
jv (t− τ)GXfE(τ)+

+ X irr
jv (t)GY fE .

(7.17)

In an analogous way we prove that

Xjv(t) = X irr
jv (t) + Y irr

jv GXfv(t) +

∫ t

0

dτX irr
jv (t− τ)GXfv(τ) + X irr

jv (t)GY fv. (7.18)

Inserting these equations into (5.45) we get for the retarded current

J ret(t) =

∫ t

−∞

dt′(X irr
jE(t− t′)E(t′) + X irr

jv (t− t′)vo(t
′))+

+ Y irr
jv G

∫ t

−∞

dt′
(
XfE(t− t′)E(t′) + Xfv(t− t′)vo(t

′)
)

+

+

∫ t

−∞

dt′
∫ t−t′

0

dτX irr
jv (t− t′ − τ)G

(
XfE(τ)E(t′) + Xfv(τ)vo(t

′)
)

+

+

∫ t

−∞

dt′X irr
jv (t− t′)G

(
Y fEE(t′) + Y fvvo(t

′)
)
.

(7.19)

Changing the variables of integration in the third term to (t′, t′′ = t′ + τ), reversing the
order of the integrations and using the fact that (5.45)

∫ t′′

−∞

dt′
(
XfE(t′′ − t′)E(t′) + Xfv(t′′ − t′)vo(t

′)
)

= f ret(t
′′), (7.20)

we can write the above-mentioned term as

∫ t

−∞

dt′′X irr
jv (t− t′′)Gf ret(t

′′). (7.21)

We can further simplify (7.19) by noticing that due to Eqs. (6.32) and (5.45)

G(Y fEE + Y fvvo) = vins − vo, (7.22)

so that (7.19) takes form



CHAPTER 7. RETARDED RESPONSE 95

J ret(t) =

∫ t

−∞

dt′(X irr
jE(t− t′)E(t′) + X irr

jv (t− t′)vins(t
′))+

+ Y irr
jv vret(t) +

∫ t

−∞

dt′X irr
jv (t− t′)vret(t

′) =

=

∫ t

−∞

dt′
(
X irr

jE(t− t′)E(t′) + X irr
jv (t− t′)vs(t

′)
)

+ Y irr
jv vret,

(7.23)

where we have introduced the ”retarded” velocity given by

vret = Gf ret (7.24)

and used the fact that the total suspension velocity is given by

vs(t) =< v >t= vins(t) + vret(t). (7.25)

If we add to the J ret obtained above the expression (6.33) for the instantaneous particle
current we can write the total particle current as

J(t) = J ins(t) + J ret(t) = Y irr
jEE(t) + Y irr

jv vs(t)+

+

∫ t

−∞

dt′
(
X irr

jE(t− t′)E(t′) + X irr
jv (t− t′)vs(t

′)
)
.

(7.26)

7.6 Force density

The same decomposition procedure can be performed on the kernels X fE and Xfv (5.47).
Proceeding just as in the last section we obtain for them

XfE(t) = X irr
fE(t) + Y irr

fv GXfE(t) +

∫ t

0

dτX irr
fv (t− τ)GXfE(τ) + X irr

fv (t)GY fE .

Xfv(t) = X irr
fv (t) + Y irr

fv GXfv(t) +

∫ t

0

dτX irr
fv (t− τ)GXfv(τ) + X irr

fv (t)GY fv.

(7.27)

and for the retarded force density

f ret(t) =

∫ t

−∞

dt′X irr
jv (t− t′)vret(t

′) =

=

∫ t

−∞

dt′(X irr
fE(t− t′)E(t′) + X irr

fv (t− t′)vs(t
′)) + Y irr

fv vret.

(7.28)
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Adding this to the expression (6.38) for f ins we get for the total force density

< f >t= f ins(t) + f ret(t) = Y irr
fEE(t) + Y irr

fv vs(t)+

+

∫ t

−∞

dt′
(
X irr

fE(t− t′)E(t′) + X irr
fv (t− t′)vs(t

′)
)
.

(7.29)

The above result can be inserted into the Stokes equation to yield, after the Fourier trans-
form

k2vs(k, t) =
1

η
(1− k̂k̂)

(
f o(k, t) + Y irr

fEE(k, t) + Y irr
fv vs(k, t)+

+

∫ t

−∞

dt′
(
X irr

fE(k, t− t′)E(t′) + X irr
fv (k, t− t′)vs(k, t′)

))
, (7.30)

where again the homogeneity of the system has been assumed.

7.7 The long-time diffusion coefficient

Now we are ready to write down the expression for the total (i.e. instantaneous + retarded)
diffusion current

Jd(t) = J(t)− nvs(t) = Y irr
jEE(t) + (Y irr

jv − n)vs(t)+

+

∫ t

−∞

dt′
(
X irr

jE(t− t′)E(t′) + X irr
jv (t− t′)vs(t

′)
)
.

The long time collective diffusion coefficient can be obtained by considering the small
k limit of the Fourier transform of the above relation. The Fourier transform reads (for a
homogeneous system)

Jd(k, t) =
(
Y irr

jE(k)E(k, t) + (Y irr
jv (k)− n)vs(k, t)

)
+

+

∫ t

−∞

dt′
(
X irr

jE(k, t− t′)E(k, t′) + X irr
jv (k, t− t′)vs(k, t′)

)
. (7.31)

By the similar reasoning as that applied in Chapter 6 to the analysis of the small-k limit of
Y kernels one can prove that in the limit k → 0 the kernel X jv(k, t) vanishes. Therefore
in this limit Eq. (7.31) takes form

Jd(t) = yjEE(t) +

∫ t

−∞

dt′X irr
jE(k = 0, t− t′)E(t′), (7.32)
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where we have used (6.43).
If one is interested in the dynamics in the timescale t long compared to the relaxation

time of the kernel XjE then one can write

Jd(t) = yjEE(t) +

∫ ∞

0

dt′X irr
jE(k = 0, t′)E(t) (7.33)

Therefore the long-time collective diffusion coefficient can be identified with

Dl
c =

kBT

3nS(0)
Tr

[
yjE1 +

∫ ∞

0

X irr
jE(k = 0, t′)dt′

]
= Ds

c(1−∆),

where Ds
c is given by (6.46) and ∆ is the measure of the memory contribution to the

long-time diffusion coefficient given by

∆ = − 1

3yjE

∫ ∞

0

TrX irr
jE(k = 0, t′)dt′ =

kBT

µoH(0)

∫ ∞

0

dt′
1

3N
<

(∑

i,j,k

[
∇i + βF ji

]
· µik

)
·
( ∑

l,m,p

[
∇l + βF ml

]
· µlp(t′)

)
>irr,

(7.34)

where we have used the fact that the trace of a tensor product of two vectors is equal to
their scalar product.

By comparison of (7.34) with the earlier expression for ∆ (1.30) one sees that we can
continue analytically the memory function M(k, t) to k = 0 by putting

M(k = 0, t) =
kBT

3NµoH(0)
<

(∑

i,j,k

[
∇i +βF ji

]
·µik

)
·
( ∑

l,m,p

[
∇l +βF ml

]
µlp(t′)

)
>irr . (7.35)

Now we turn to the case of finite but small k to derive the equations for the diffusion
current and suspension velocity analogous to (6.68) but this time with inclusion of the
retarded response terms.

7.8 The small k limit of the equations for the velocity

and diffusion current

The structure of the equations for the suspension velocity and diffusion current can be seen
most clearly after the Fourier transform in time

Jd(k, ω) = Y irr
jE(k)E(k, ω) + (Y irr

jv (k)− n)vs(k, ω) + X irr
jE(k, ω)E(k, ω) +

+ X irr
jv (k, ω)vs(k, ω),

−k2vs(k, ω) =
1

η
(1− k̂k̂)

(
f o(k, ω) + Y irr

fE(k)E(k, ω) + Y irr
fv (k)vs(k, ω)

+ X irr
fE(k, ω)E(k, ω) + X irr

fv (ω)vs(k, ω)
)
, (7.36)
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where the vector quantities such as vs, E, f or J are transformed as

C(k, t) =

∫ ∞

−∞

C(k, t)e−iωtdω C(k, w) =
1

2π

∫ ∞

−∞

C(k, ω)eiωtdω, (7.37)

while the Fourier transform of the kernels X =< AeLtB > reads

X(ω) =

∫ ∞

0

< AeLtB > eiωtdt. (7.38)

Using the expansion in k of the kernels Y (k) derived in section 6.10 together with the
analogous expansions for the kernels X(k)

X irr
jE(k, ω) = xjE(ω)1 + . . . , (7.39)

X irr
jv (k, ω) = k2xjv(ω) + . . . , (7.40)

X irr
fv (k, ω) = −k2xfv(ω) + . . . , (7.41)

X irr
fE(k, ω) = k2xfE(ω) + . . . , (7.42)

we can write the equations for the diffusion current and force density for small but finite
k as

Jd(k, ω) =
(
yjE + xjE(ω)

)
E(k, ω) + k2(1− k̂k̂)

(
yt

jv + xt
jv(ω)

)
vs(k, ω),

(7.43)

k2(η + yt
fv + xt

fv(ω))vs(k, ω) = (1− k̂k̂)
(
f o(k, ω) + nE(k, ω) + k2(yt

fE + xt
fE(ω))E(k, ω)

)
,

(7.44)

where xt
ab denotes as before the transversal part of the operator xab whereas xl

ab stands for
its longitudinal part.
Once again we can change to the real space and transform equations to the form analogous
to (6.68), getting

Jd(ω) =
(
yjE + xjE(ω)

)
E(ω)−

yt
jv + xt

jv(ω)

η + yt
fv + xt

fv(ω)

(
F tot(ω)− grad p(ω)

)
,

−
(
η + yt

fv + xt
fv(ω)

)
∇2vs(k, ω) = F tot(ω)− grad p(ω)

−
(
yt

fE + xt
fE(ω)

)(
∇2E(ω)− grad divE(ω)

)
, (7.45)

where as before (cf. Eq. 6.62)

F tot(ω) = f o(ω) + nE(ω). (7.46)
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Note that the instantaneous response equations (6.68) can be obtained from (7.45) by
taking the limit ω →∞.

As it can be seen, the inclusion of the retarded response terms in the equations adds new
elements in comparison with the instantaneous response described by (6.68): the effective
viscosity and the diffusion coefficient attain the frequency-dependent terms xt

fv and xjE

respectively. Also the cross terms linking J d with the Laplacian of vs and the Laplacian of
vs with E gain the new, frequency-dependent contributions xt

jv and xt
fE , which are equal

each to the other due to the Onsager symmetry. The overall picture remains essentially the
same: we get the equation for the velocity supplemented by the boundary conditions which
must be solved first. Then, once we have vs, we calculate the particle current with respect
to it with use of the equation (7.43). Note that all the coefficients in the above equations
are obtained from the short-range response kernels and therefore they are well-defined,
local characteristics of the system.

7.9 The collective diffusion memory function - virial

expansion

In this section the memory contribution to the long-time diffusion coefficient is studied by
means of the virial expansion in the density of the spheres. It is found that the first two
terms in this expansion, corresponding to contributions of one- and two-particle clusters,
vanish. The explicit expression for the first nonvanishing term, which gives the contribution
of three-particle clusters, is found.

To start with, let us calculate the memory factor ∆ in the absence of hydrodynamic
interactions, i.e. when the mobility matrix is of the form

µij = µoδij. (7.47)

In this limit ∆ reads simply

1

3Nµo

∫ ∞

0

dt′ <
∑

i,j=1

F ij ·
∑

k,l=1

F kl >, (7.48)

where the irreducibility requirement is relaxed, as when there are no hydrodynamic
interactions the diagrams are deployed of all the G connectors not only the solitary ones.

But the sums in vertices of (7.48) vanish, as the sum of all interparticle forces is equal
to zero. Therefore in systems without hydrodynamic interactions the short- and long- time
collective diffusion coefficients are equal.

In order to find ∆ for a diluted suspension with the volume fraction φ =
4

3
πa3n � 1

one may use the virial expansion. However, as it can be seen from the expression (7.34)
the factor ∆ can be written as

∆ =
∆̃

H(0)
(7.49)
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where we have singled out the contributions of a different nature: instantaneous response
described by the hydrodynamic factor H(0) and the retarded one given by

∆̃ =
kBT

3Nµo

∫ ∞

0

dt′ < T (t′) >irr (7.50)

with T (t) given by

T (t) =
[∑

i,j,k

(
∇i + βF ji

)
· µik

]
·
[∑

l,m,p

(
∇l + βF ml

)
· µlp(t)

]
, (7.51)

These two terms behave differently as functions of the volume fraction and therefore it
is more convenient to look for the virial expansion of H(0) and ∆̃ separately. In fact, the
virial expansion for H(0) is well-established theoretically [48]. It reads

H(0) = 1 + λφ +O(φ2), (7.52)

where the value of the parameter λ for hard-sphere suspensions reads [48, 104, 105]

λ ≈ −6.546. (7.53)

We can therefore concentrate on finding the virial expansion of ∆̃ in the form

∆̃ = d1 + d2φ + d3φ
2 + . . . (7.54)

To obtain it one starts with the cluster expansion of the operator < T (t) >irr

< T (1, 2, . . . , N ; t) >irr=
∑

i

< T (i; t) >irr +
∑

i,j

< T (i, j; t) >irr + · · · =

N < T (1; t) >irr +
N(N − 1)

2!
< T (1, 2; t) >irr + . . . (7.55)

By inspecting Eq. (7.50) one concludes that the s-th virial coefficient is given by

ds =
N !kBT

3(N − s)!s!Nµoφs−1

∫ ∞

0

dt < T (1, 2, . . . , s; t) >irr (7.56)

Let us analyze now the first few terms. The first term, which is determined by the one-
particle contributions to T (t), vanishes as in this case µ again has the form (7.47). The
second term, multiplying φ vanishes from the symmetry of the two-body hydrodynamic
interactions as shown in Appendix D.

The first nonvanishing term in the cluster expansion of < T (t) > is therefore the three-
particle one. Let us analyze it in more detail. First of all

Theorem 4. All the nonzero three particle diagrams making up < T (1, 2, 3; t) > are irre-
ducible and therefore < T (1, 2, 3; t) >irr=< T (1, 2, 3; t) >



CHAPTER 7. RETARDED RESPONSE 101

Proof. The kernel < T (t) > can be written as < A(1, 2, 3)eLtB(1, 2, 3) >. However the
sum of all the diagrams, in which either A or B does not depend on the positions of all
three particles but only one or two of them, vanishes (the proof is essentially the same as
the proof that d2 vanishes, given in the Appendix D). What remains are the diagrams in
which the particles (1,2,3) are connected with each other by at least one bond in A and
one in B. All such diagrams are irreducible.

Therefore we can relax the irreducibility condition while calculating the virial coefficient
d3. The explicit expression for it reads

d3 =
kBT

32π2µoa6

∫ ∞

0

dt′dR12 dR13

[ 3∑

i,j,k=1

(
∇i + βF ji

)
·µik

]
·
[ 3∑

l,m,p=1

(
∇l + βF pl

)
· µlp(t

′)
]
g(1, 2, 3),

(7.57)

where

g(1, 2, 3) =
n(1, 2, 3)

n3
, (7.58)

with the 3-particle distribution function n(1, 2, 3) defined by Eq. (6.7).
Note that due to the fact that the virial expansion of H(0) is of the form (7.52) the

coefficient d3 describes also the first nonvanishing term in the cluster expansion of ∆ itself.

7.10 The expression for ∆ for hard spheres

In Chapter 3 it is shown that in case of hard spheres one should replace in all the expressions
the forces F ij with the functions T ij given by (3.28). However, the terms involving T ij

can be further simplified if one makes use of the fact that [13] the part of the mobility
matrix corresponding to the motion along the line of the centers of spheres i and j goes to
zero as the spheres approach each other, i.e.

lim
|Ri−Rj |→0

R̂ij ·
∑

k

(µik − µjk). (7.59)

Then, from the definition of T ij (3.28) one gets

∑

i,j,k

T ijµjk = 0 (7.60)

Using the above fact one rewrites the expression for ∆ (7.34) for the case of the hard
sphere potential as

∆ =
kBT

µoH(0)

∫ ∞

0

dt′
1

3N
<

(∑

i,j

∇i ·µij

)
·
(∑

l,m

∇l · µlm(t′)
)

>irr, (7.61)
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Moreover, the equilibrium distribution of N hard spheres is given by the characteristic
function of the nonoverlapping configurations of the spheres, i.e.

Peq(X) ∼ W (1, 2, . . . , N) =
∏

i6=j

W (Rij) W (x) =





0 x < 2a

1 x ≥ 2a,

(7.62)

so that the three-particle coefficient d3 for the hard sphere system reads

d3 =
kBT

32π2a6µo

∫ ∞

0

dt′
∫

dR12 dR13

( 3∑

i,j=1

∇i · µij

)
·
( 3∑

l,m=1

∇l ·µlm(t′)
)
W (1, 2, 3). (7.63)



Chapter 8

The numerical computation of the
memory function

This Chapter is devoted to the numerical estimation of the memory contribution ∆ to the
long-time collective diffusion coefficient Dl

c for the hard sphere system. The factor ∆ is
given (see (1.30) and (1.34)) by

∆ =

∫ ∞

t′=0

M(k = 0, t′)dt′. (8.1)

For the hard sphere system, the memory function M(k, t) at k = 0 is given by (7.35)

M(t) =
kBT

3NµoH(0)
<

( N∑

i,j=1

∇j · µij

)
·
( N∑

k,l=1

∇l · µkl(t)
)

>irr (8.2)

Subsequently we are going to denote M(k = 0, t) simply by M(t).

It is reasonable to divide the task of estimating ∆ into two stages

1. calculations of the initial value of the memory function M(t = 0). As this is the
dimensional quantity (measured in 1/time) it is convenient to consider rather the
dimensionless one, eg. Mo = τRM(t = 0) where τR = a2/Do is the structural
relaxation time (1.6). Then

Mo =
a2

3Nµ2
oH(0)

<
( N∑

i,j=1

∇j · µij

)
·
( N∑

k,l

∇l · µkl

)
>irr . (8.3)

2. calculations of the relaxation time of the memory function, given by

τM =
1

M(t = 0)

∫ ∞

t′=0

M(t′)dt′. (8.4)

103
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The reason why we have singled the initial value of the memory function is that it
can be estimated by means of equilibrium averaging only, which can be done with much
greater accuracy than the calculations of τM , which require Brownian dynamic simulations.
Then, even without the Brownian dynamics simulations, we can estimate the value of ∆
provided we assume that the relaxation time of M would not be very different from the
relaxation times for other memory functions for Brownian particles (e.g. the viscosity
memory function, whose relaxation time is assessed experimentally in [106]).

This Chapter is devoted to the first part of the task - i.e. to the calculation of Mo,
whereas the next one presents results of the Brownian dynamics simulation performed to
estimate τM .

We start with the calculations of Mo for very small volume fractions, when the virial
expansion (7.57) can be used.

8.1 Virial expansion of Mo for hard spheres

In section 7.9 we have proved that the first nonvanishing term in the virial expansion of
∆ is the one related to the three-particle clusters (7.63). The analogous expansion can be
performed for the initial value Mo, i.e.

Mo = m1 + m2φ + m3φ
2 + . . . (8.5)

The results of section 7.9 imply that also in this case m1 = m2 = 0, whereas the
three-particle term m3 is given by

m3 =
1

32π2a4µ2
o

∫
dR12 dR13

( 3∑

i,j=1

∇j ·µij

)2
W (1, 2, 3). (8.6)

Our goal now would be to calculate the above integral. To do it, we adopt an algorithm
analogous to the one used by Cichocki et al. in [75]. First of all let us restrict the integral
to the triangles ∆123 obeying

R23 ≥ R13 ≥ R12. (8.7)

Due to the symmetry the integral over such triangles is equal to one sixth of the value of
the total integral. Next, the integration variables are changed to R12, α - the angle at the
particle 1 and β - the angle at the particle 2.

The Jacobian of such a transformation reads

dR12dR13 = 8π2 sin2 α sin2 β

sin4(α + β)
R5

12dR12dαdβ

and so the integral (8.6) takes form
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m3 =
3

2a4µ2
o

∫

π−β≥α≥β≥π−(α+β)

dα dβ
sin2 α sin2 β

sin4(α + β)
·

·
∫ ∞

2a

R5
12dR12

( 3∑

i,j=1

∇j · µij

)2
.

(8.8)

The main problem in calculating numerically the above integral lies in computing the
divergence of the mobility matrix µ, as it may considerably increase the numerical com-
plexity of the algorithm. For example, if one wants to obtain ∇ · µ in a crudest possible
way using the formula

∂

∂Riα
µijαβ(R1, . . . , Ri, . . . , RN ) ≈ 1

∆r

(
µijαβ(R1, . . . , Ri + ∆reα, . . . , RN)−

µijαβ(R1, . . . , Ri, . . . , RN)
)

for some sufficiently small ∆r, then one needs to calculate µ 3N times to obtain ∇ ·µ for
a given configuration. The formula (8.9) is very inaccurate; more accurate finite-difference
methods exist [107] but they need even more calculations of µ, which is unacceptable from
the point of view of numerical efficiency.

As the divergence of mobility matrix is a crucial object for computations of the collective
diffusion memory function we have derived an alternative, analytical scheme of calculating
it based on the multipole expansion method.

We start with the expression (2.31) for the mobility matrix. This, together with the
relations (2.20) and (2.27) gives for µ

µ =
[
P

1

Z−1
o + G

P
]−1

. (8.9)

Using now the following tensor differentiation rule

δA−1 = −A−1δAA−1 (8.10)

we can represent the derivative of µ as

∂

∂X
µ = −µ

( ∂

∂X
·
[
P

1

Z−1
o + G

P
])

µ. (8.11)

The tensor Zo is the one-particle operator, so it does not depend on the positions of
particles given by X. Therefore

∂

∂X
µ = −µ

[
P

1

Z−1
o + G

(
∂

∂X
G)

1

Z−1
o + G

P
]
µ. (8.12)

We see that finding the derivative of the mobility matrix boils down to differen-
tiation of the connectors G. However, in the multipole formalism, the derivative of
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G(l, σ, m; l′, σ′, m′) can be expressed as the linear combination of the G matrices linking
different multipoles. Therefore

∂

∂X
G = RG, (8.13)

where R is a well-defined matrix. The exact form of R can be found with use of the
representation of G by means of the vector spherical harmonics [108].

In this way we obtain the analytical expression for the divergence of the mobility matrix.
Naturally in the numerical calculations one truncates the multipoles at l = L (see Chapter
2) and obtains the truncated matrix ∂

∂X
µL. The program deriving ∂

∂X
µ from (8.12) and

(8.13) is only approximately 3 times slower than the program calculating solely µ for the
same configuration of particles, whereas the explicit techniques based on finite difference
methods are at least 3N times slower! Moreover the calculations of ∂

∂X
µ by the above

procedure are as accurate as the analogous calculations of ζ and µ, i.e. for L = 3 it is
expected that the accuracy of ∂

∂X
µ obtained from (8.12) is about 1% with respect to the

exact value.

The above algorithm for calculation of ∂
∂X

µ was implemented numerically by E.Wajnryb
and incorporated into the CFW package described in Chapter 2.

The integral (8.8) is carried out as follows. First the integration over R12 is performed
by the simple Simpson method, as for the fixed angles α and β the integrand is non-
oscillating function of R12. Then the resulting function of α and β is integrated by means
of the Monte Carlo technique.

After 100 000 Monte Carlo trials we have arrived at the following result for the initial
value of the memory function

m3 = 1.42± 0.02, (8.14)

where the error corresponds to the standard deviation due to all the Monte Carlo trials.

8.2 The asymptotic part of m3

In this section we study the asymptotic part of the integrand in (8.8), that is the part
that becomes dominant when the triangle ∆123 grows, i.e. when its longest side R23 goes
to infinity. We know that the integrand is short ranged, so the asymptotic part should
decay at least as fast as R−4

23 or even faster. By examining the 3-particle scattering diagrams

making up
(∑3

i,j=1∇j ·µij

)2
one concludes that there indeed are contributions that behave

asymptotically as R−4
23 . They are given by the diagrams of the form < A|B > with both A

and B of one of the following four kinds {L1, L2, L3, L4}. Here L1 and L2 given by
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⊂ l = 1

σ = 0

3

l = 2

σ = 0

⊃←
1,2

L1

3

2

1

⊂ l = 1

σ = 0

3

l = 2

σ = 0 ⊃←
1,2

L2

3

2

1

Fig. 8.1.

and L3 and L4 are obtained from the above ones by interchanging the positions of particles
1 and 2. In the above diagrams the rectangular box with (1, 2) inside stands for any
scattering sequence of the form GẐoGẐo...G involving the particles 1 and 2. Note that for
a given length of the longest side R23 the diagrams Li would give the biggest contribution if
particles 1 and 2 are close to each other, therefore the main contribution to the asymptotic
part is given by the long, thin triangles ∆123, for which R23 ≈ R13 >> R12. The sum of
all sequences of the form

3

l = 2

σ = 0

⊃
1,2

2

1

Fig. 8.2.

is known in hydrodynamics as µdt
21(1, 2) (see eg. [67]). Here ”t” denotes as always the first

multipole of the force density i.e. the total force acting on the particle 1, whereas “d”
stands for the symmetrized dipole of the force density on particle 2, i.e.

f d(j) =

∫
[f(r; i)(r −Ri)]

sdr, (8.15)

where the symbol “s” stands for the symmetrization. In the multipole notation introduced
in section 2.5 the “d” multipole corresponds to l = 2, σ = 0. The tensorial form of µdt

1i

with i = 1, 2 reads [109]
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µdt
1iαβν

(R) = α1i(R)(R̂αR̂β −
1

3
δαβ)R̂ν + β1i(R)[

1

2
(R̂αδβν + R̂βδαν)− R̂αR̂βR̂ν ], (8.16)

where α and β are the scalar functions and R = Ri−R2. Therefore the sum of all diagrams
with the scattering sequences like that on the left in Fig. 8.1 can be written as

∂

∂R1ν

3

8πηR2
32

R̂32α
(R̂32β

R̂32γ
− 1

3
δβγ)µdt

21βγµ
(R21), (8.17)

where we used the expressions for G from Appendix C.
After inserting (8.16) and differentiation one obtains

L1 = − 3R̂23

8πηR2
23

(α′12(R12) +
2α12(R12)− 3β12(R12)

R12
)[(R̂12 · R̂23)2 − 1

3
]. (8.18)

Adding up the analogous expressions for the other Li we get eventually the expression

( 3∑

i,j=1

∇j·µij

)
= −

∑

i=1,2

3R̂i3

8πηR2
i3

∑

j=1,2

(α′1j(R12)+
2α1j(R12)− 3β1j(R12)

R12
)[(R̂12·R̂i3)

2−1

3
] = I(1,2),3

(8.19)
We use here the subscript “(1, 2), 3” to emphasize the fact that the above expression gives a
good asymptotic for the situation in which the particle 3 is far away from particles 1 and 2.
In principle we could insert now the expression (8.19) into (8.8) and, after the integration,
obtain the estimation of he contribution of the asymptotic diagrams to m3. However, the
problem with the above asymptotic expression is that it gives completely wrong estimation
of

(∑3
i,j=1∇j · µij

)
for smaller triangles ∆123 (small here means such that their sides are

not much longer than 2a). It stems from the asymmetric nature of the expression (8.19):
note that for the case when ∆123 is a small equilateral triangle (8.19) yields a nonzero
value of

(∑3
i,j=1∇j · µij

)
, whereas the real value is, due to the symmetry, zero. As m3 is

given by the integral of
(∑3

i,j=1∇j ·µij

)2
, we conclude from the above that the expression

(8.19) would give the value of m3 overestimated to a large extend.
To avoid this artifact in our calculations of the contribution of the asymptotic diagrams

to the value of m3 we have used the symmetrized version of (8.19), namely

( 3∑

i,j=1

∇j · µij

)
≈ I(1,2),3 + I(1,3),2 + I(2,3),1 (8.20)

where I(1,3),2 is given by the expression analogous to (8.19) in which, however, the particle
indexes 2 and 3 are interchanged and analogous hold for I(2,3),1. The expression (8.20) has
the same asymptotic behavior as (8.19), and, at the same time, due to the symmetrization
with respect to the particle indexes, behaves much better for smaller triangles.
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Before we calculate m3 from (8.20) using (8.8) we should first have the expression
for the hydrodynamic functions α(R12) and β(R12). This may be achieved by means of
the scheme devised by Cichocki, Felderhof and Schmitz [67], which allows one to find
the expansion of different functions describing the two-body hydrodynamic interactions in
powers of the inverse interparticle distance. Following their algorithm, we have found the
series expansion of α(R12) and β(R12) up to terms (1/R12)

500). The first 20 terms of these
series can also be found in [109].

The calculations of the asymptotic contribution to m3 were performed with use of
Mathematica and yielded

masym
3 ≈ 1.90

which is of the order of m3 itself (cf. (8.14)), which shows that the asymptotic terms
give an important contribution to the initial value of the memory function in the three-
body approximation.

8.3 Monte Carlo calculation of Mo for concentrated

suspensions

The calculations of Mo based on the virial expansion presented above are applicable only
to very diluted suspensions. To find Mo for larger volume fractions, where clusters of
more than 3 hydrodynamically interacting particles become important we have used the
method of Monte Carlo averaging. It consists in generating several thousand statisti-
cally independent configurations of N hard spheres in periodic boundary conditions for a
given volume fraction and the subsequent calculation of Mo for each configuration. Monte
Carlo averaging techniques have previously been used in theory of colloidal suspensions to
calculate several transport coefficients such as viscosity, permeability or self-diffusion coef-
ficient [78,80,81]. The use of periodic boundary conditions gets rid of the boundary effects
in the simulated sample, giving rise at the same time to some artificial effects caused by
introducing periodicity in the sample. These are however less severe and easier to account
for than the boundary effects for the finite sample (see also section 8.6 below). Moreover,
when deriving the periodic Green function [69,94,110] one supplements the equations with
the condition that the net suspension velocity in a whole sample is equal to zero, as oth-
erwise the divergences in the fluid velocity field would appear. The resulting formulae for
the hydrodynamic matrixes in the periodic boundary conditions guarantee therefore that
vs(k = 0) = 0, what, in turn, implies that the limits k → 0 of the unreduced kernels
Y jE(k) and XjE(k, t) are equal to their values in k = 0 which means that we can relax
the irreducibility condition in ∆ and calculate Mo as

Mo =
a2

3Nµ2
oH(0)

<
( N∑

i,j=1

∇j · µij

)2
> . (8.21)

As we have already remarked in section 7.9, for some purposes it may be reasonable
to separate out the instantaneous response effects described by the hydrodynamic factor
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H(0) and study (in analogy with ∆̃ introduced in section 7.9) the retarded response in the
form

M̃o =
a2

3Nµ2
o

<
( N∑

i,j=1

∇j ·µij

)2
> . (8.22)

As these two terms (H(0) and M̃o) behave differently as functions of φ and N , cal-
culating them separately is more convenient (especially for the analysis of the finite- size
effects presented in the section 8.6 below). In fact, for the hydrodynamic factor a very
good numerical data has been obtained by Ladd [78], so there is no need to repeat these
calculations here. Hence subsequently we are going to concentrate on calculations of M̃o.

In the next section we dwell on the subject of generating statistically independent
configurations for Monte-Carlo averaging.

8.4 Sample-generating technique

To be able to calculate an equilibrium average of a given quantity C one must first generate
a large set of nonoverlapping configuration of spheres which are statistically independent.
Then one calculates C for all of the configurations in the set and finally the mean of those
values as well as the mean deviation is found.

Our sample generation technique for a suspension of N spheres inside the volume V
(with the volume fraction φ = 4N

3V
πa3) is the following: For very small volume fractions

(φ < 0.01) we just generate random positions of the spheres and check if they overlap
or not. If they do, we discard the positions and generate new configuration. We keep on
trying till we finally obtain a non-overlapping configuration. Usually for φ = 0.01 one must
perform no more than 10 trials. To obtain the configurations for larger φ we start with
the previously prepared configuration for φ = 0.01 and then use the following random-
stepping routine

1. choose one sphere at random (let us denote it by i)

2. move the sphere i. The displacement on every coordinate is given by the Gaussian
random variable whose standard deviation is equal to (L/N)1/3 − 1 where L = V 1/3

is the side of the box.

3. check if the new position of the sphere is not taken by any other sphere. If it is so,
the move is not performed.

4. go to 1

After every successful move we shrink the side of the box by δL sufficiently small to
ensure that the spheres would not overlap with the displaced walls. By such “rattling
& shrinking” procedure we can obtain a nonoverlapping configuration of the sphere for
any volume fraction up φ = 0.49, which corresponds to the fluid-solid transition for hard
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N tPC tCR memory
30 50 s 15 s 10MB
100 34 min 9 min 150MB
200 4.5 h 67 min 340MB

Table 8.1: The amount of time and RAM needed to calculate the divergence of the mobility
matrix for N spherical particles in periodic boundary conditions taking into account the
multipoles up to L = 3. The divergence was calculated from (8.12). In the above PC stands
for the standard PC Pentium-III 500MHz 512 MB RAM computer with Lahey Fortran 95
compiler while CR is the Cray SV1-A in the Interdisciplinary Centre for Mathematical and
Computational Modelling ( ICM) at the Warsaw University. As it is seen the computational
time grows approximately like N 3 while the memory consumption grows like N 2.

sphere system [111]. To generate more configurations for a given volume fraction, we use
once again the random stepping routine, this time without shrinking. The algorithm is
performed 5000N times to assure that the final configuration is statistically independent
form the initial one.

8.5 Numerical efficiency

The CFW package with the mobility divergence algorithm incorporated provides us with
virtually exact way of calculating both µ and ∇·µ. Unfortunately for such a throughout
treatment of the hydrodynamic interactions one is bound to pay a price, as the time needed
to calculate µ and ∂

∂X
µ for one configuration by our program is quite considerable and

the same holds form the amount of RAM needed (in contradistinction to schemes based
on the Oseen or Rote-Pragner approximations, in which the mobility matrix is calculated
with use of the Eq. (2.54) or (2.55) and the divergence of such an object is simply zero).
These characteristics for the calculations of ∇ · µ in frames of L = 3 scheme are given
in Table 8.1. We see that the computational time grows approximately like N 3 while the
memory consumption grows like N 2.

This means that it is more feasible computationally to perform the calculations for the
smaller number of particles than the larger one, even if we take into consideration the fact
that, due to the self-averaging, the results obtained for the larger systems would generally
be less fluctuating than those of the smaller ones. Of course from the physical point of view
the situation is quite the reverse: we want as many particles as possible, because in case
of small number of particles in the periodic boundary conditions there is rather a strong
interaction of a given particle with its periodic images which can affect the properties of
the system in a considerable way.
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Figure 8.1: The initial value of the memory function M̃o as a function of the inverse cube
root of the number of particles in the periodic cell N .

8.6 The complications associated with introducing pe-

riodicity in the model

The use of periodic boundary conditions allows us to get rid of the boundary effects but
at the same time introduces periodicity into the model of disordered medium, which can
affect the result of our calculations. Similar phenomenon was reported in case of Monte
Carlo calculations of collective mobility of colloidal particles [78, 80, 81], when the peri-
odicity effects caused a strong dependence of the result on the number of particles used
in simulations. In order to investigate this effect, we have performed the simulations for
several values of N - the number of particles in a periodic cell while keeping the volume
fraction constant. In this way we have obtained the set of M̃o(N, Φ) - the values of M̃o for
the hard sphere suspension of volume fraction φ with N spheres in the periodic cell. Then
we looked into the data to see if some scaling of the results with N can be observed. It
turned out that the data scales with N as N−1/3 - see Fig. 8.1 for the data for φ = 0.3
and N = 30,50,60,70 and 100. Below we present the possible explanation, why M̃o(N, φ)
should scale with N in such a way.

Looking at the expression (8.3) we notice that M̃o measures the square of the length of
a vector U tot

U tot =

N∑

i,j=1

∇j ·µij =
∑

i

U I
i (8.23)

which is the sum of the Smoluchowski velocities (5.21) of all the particles in the absence
of interparticle and external forces as well as the ambient flow.

Due to the symmetry U tot vanishes for all the regular configurations of the particles,
therefore M̃o is equal zero for the cubic arrays of hard spheres (fcc, bcc or sc). But the
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periodic boundary conditions impose the regular, periodic structure on our problem, which
is expected to lead to decrease of M̃o. As an example of such a decrease caused by the
periodicity let us consider the asymptotic three-body term (8.19) described in section 8.2.
As we remember, these asymptotic terms come from the triangles ∆abc in which two
particles, say a and b are close to each other, whereas Rca ≈ Rcb >> Rab. In Fig. (8.3)
we have pictured such a situation (the particles a and b are not too close to each other for
sake of the clarity of the picture). Now we consider the contributions to U I

a from all the
triangles ∆abc′ where c′ is the periodic image of c. Note that only the c′ from cells relatively
close to c give the contribution to U I

a which behaves like R−2
ac , because the contribution

from c′1 situated further away is practically exactly balanced by the contribution from some
c′2 situated on the opposite side of the central cell to c′1. The difference between the two
behaves as R−4

ac and not as R−2
ac !
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Figure 8.3: The effect of periodicity on the value of the memory function. Shown are
two particles a and b lying close to each other and the third particle c together with
its periodic images c’. The contribution from the triangles ∆abc′1 with c′1 lying far away
from the central cell are almost completely counterbalanced by the contribution from the
triangle ∆abc′2 with c′2 from the cell on the opposite side.

Therefore the effective volume which gives the contribution to U I
a is limited to the

periodic cell itself and few of its nearby copies and is therefore proportional to L3, where
L is the side of periodic cell.

On the other hand the contribution to
(∑3

i,j=1∇j · µij

)2
from the clusters of particles

of large linear dimensions R � a behave as R−4. Basing on this observation, one can
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estimate the contribution to M̃ from all the clusters with R ≥ Ro � a to be proportional
to R−1

o .
Taking into account the above statements one concludes that the following relation

should hold

M̃o(L, φ) = M̃o(φ)− A(φ)L−1, (8.24)

where M̃o(L, φ) is the value of M̃o for the hard sphere suspension of volume fraction φ in
a periodic cell with side L. For the given volume fraction L is proportional to N 1/3, hence
we expect that M̃o should depend on N in the following way

M̃o(N, φ) = M̃o(φ)− B(φ)N−1/3, (8.25)

where B(φ) is some (unfortunately unknown) function of φ. In this way we have arrived
at the desired result.

This means that by fitting the values of M̃o obtained for different number of spheres N
in the periodic cell to the dependence (8.25) one can estimate the value of M̃o(φ). We see
from the above reasoning why it is more convenient to calculate M̃o separately from H(0):
if we would consider their ratio, the finite size effects from H(0) and M̃o would be mixed
and it would be harder to analyze the effects and obtain the asymptotic value.

For the data presented in Fig. 8.1 by fitting the dependence (8.25) one obtains the
following asymptotic value of M̃o(N =∞) for φ = 0.3

M̃o(φ = 0.3) = 0.035± 0.002. (8.26)

8.7 Calculation details and analysis of the data

The calculations of M̃o were performed for six volume fractions: φ = 0.01, 0.1, 0.2, 0.3, 0.4
and 0.45. In order to investigate the influence of system size on the value of M̃o for the
volume fraction φ = 0.3 the simulations were performed for several values of N : namely
for 30,50,60,70 and 100 particles in the unit cell. For all the other volume fractions the
calculations were performed only for three values of N , namely for N = 30, 50 and 100.
The results together with M̃o(∞) calculated by fitting them into (8.25) can be found in
Table (8.2).

In the Fig. 8.4 the results for different volume fraction are presented, together with the
M̃o(φ) dependence given by the virial expansion (7.63).

The first thing that strikes oneself in this Figure is that the Monte Carlo data diverges
very quickly from the virial expansion predictions. This means that the many-body hydro-
dynamic interactions affect the value of M̃o even for very small densities, so the range of
applicability of the virial expansion is limited in principle to very dilute suspensions with
φ� 0.1 (for φ = 0.1 the error of the value given by the virial expansion amounts to about
40 %!) This behavior of M̃o(φ) can be understood when we remember that the largest
contribution to m3 is due to the asymptotic diagrams of the form < Li|Lj >, where the
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number

φ N of M̃o(N) M̃o(N =∞) Mo

trials
N=50 16689 (9.63± 0.15) · 10−5

φ = 0.01 N=70 5490 (1.00± 0.03) · 10−4 (1.46± 0.05) · 10−4 (1.55± 0.05) · 10−4

N=100 12017 (1.07± 0.015) · 10−4

N=50 5617 (5.40± 0.08) · 10−3

φ = 0.1 N=70 2139 (5.80± 0.15) · 10−3 (9.1± 0.5) · 10−3 (1.7± 0.1) · 10−2

N=100 6433 (6.18± 0.08) · 10−3

N=50 4712 (1.37± 0.02) · 10−2

φ = 0.2 N=70 7001 (1.48± 0.02) · 10−2 (2.61± 0.08) · 10−2 (9.2± 0.3) · 10−2

N=100 3549 (1.625± 0.03) · 10−2

N=30 18572 (1.917± 0.015) · 10−2

N=50 3381 (2.11± 0.03) · 10−2

φ = 0.3 N=60 476 (2.19± 0.08) · 10−2 (3.35± 0.2) · 10−2 0.24± 0.015
N=70 3396 (2.25± 0.03) · 10−2

N=100 1987 (2.40± 0.04) · 10−2

N=50 29733 (2.55± 0.01) · 10−2

φ = 0.4 N=70 4030 (2.64± 0.04) · 10−2 (3.6± 0.2) · 10−2 0.54± 0.03
N=100 3726 (2.77± 0.04) · 10−2

N=50 6436 (2.68± 0.04) · 10−2

φ = 0.45 N=70 5029 (2.73± 0.04) · 10−2 (3.09± 0.01) · 10−2 0.67± 0.02
N=100 5744 (2.77± 0.04) · 10−2

Table 8.2: The results of the Monte Carlo calculations of the initial value of the memory
function. Shown are the number of Monte Carlo trials for each volume fraction φ and
number of particles N , the calculated values of M̃o(N, φ) (8.22), the estimated values of
M̃o(N = ∞, φ) and finally the values of Mo(φ) (8.3), obtained by dividing M̃o by the
hydrodynamic factor taken from [78]
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Figure 8.4: The initial value of the memory function M̃o as a function of the volume fraction
(points) together with the small φ expansion results given by Eq. (8.14) (solid line)

subdiagrams Li, i = 1, . . . , 4 are described in section 8.2 (see Fig. 8.1). Note that these
diagrams are S-reducible, as they include a solitary connector (which decays like R−2).
If the suspension is so dilute that only the 3- particle diagrams are important, then as
it has already been mentioned in section 7.9, the diagram < Li|Lj > will be irreducible,
as any two particles will be linked by at least one bond in Li and one in Lj. On the
other hand, for more dense suspensions, when many-particle clusters become important,
the diagrams < Li|Lj > will generally be reducible, as in the majority of cases Li and Lj

would involve different particles. In this case the above-mentioned solitary connectors will
not only be nodal, but also articulation lines, which means that the whole diagram will be
reducible and therefore will not contribute to M̃o. This would lead to decrease of M̃o for
the suspensions which are not very diluted in comparison with the predictions of the virial
expansion.

The other characteristic feature of M̃o(φ) which can be seen in Fig. 8.4 is that for
large volume fractions the function seems to be decreasing. This can be understood if
one remembers the discussion in section 8.6, in which it is argued that M̃o essentially
measures the asymmetry of the configuration of the particles and vanishes for all the
regular configurations. On the other hand, for the large volume fraction, the spheres have
not much place to move and they become more ordered [112], which is a probable reason
why M̃o decreases.

As it is said at the beginning of this Chapter, the mere knowledge of the initial value
of the memory function allows one to estimate the value of ∆ provided one makes some
assumptions about the relaxation time τM . To obtain the characteristic relaxation time
for the collective processes in a suspension we use the semi-phenomenological reasoning
due to Medina-Noyola [113] and de Schepper et al. [114, 115]. They argued namely that
the effect of hydrodynamic interactions on the dynamics of a suspension can be taken
into account by replacing in the formulae the one-particle diffusion coefficient Do, which
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φ τc

τR
∆

0.01 0.94 0.01 %
0.1 0.55 1 %
0.2 0.32 3 %
0.3 0.20 5 %
0.4 0.13 7 %
0.45 0.10 7 %

Table 8.3: The estimate of the memory contribution to the long-time collective diffusion co-
efficient ∆ from the initial values of the memory function (Table 8.2) and the characteristic
relaxation time τc (8.29) (here given in units of structural relaxation time τR)

describes the diffusion in the absence of hydrodynamic interactions by the short-time self
diffusion coefficient Ds

s. The latter is defined as

Ds
s = lim

k→∞
lim
z→∞

D(k, z), (8.27)

and characterizes the short-time decay of the “self” intermediate scattering function

Fs(k, t) =< eik·(R1(t)−R1(0)) >, (8.28)

describing the single particle motions in a suspension.
As the characteristic time for the collective phenomena in the absence of the hydro-

dynamic interactions reads simply τ o
c = a2S(0)/Do, the above reasoning would give the

characteristic time for the collective processes for systems with hydrodynamic interactions
to be

τc ≈ a2S(0)/Ds
s (8.29)

Assuming that the relaxation time of our memory function τM is not very different from
τc and taking the values of Ds

s from the numerical simulations of Ladd [78], we get the
estimations of the integral of the memory function ∆, which together with the values of
τc are presented in Table 8.3. One concludes from inspecting the Table that the memory
function effect is expected to be quite small (less than 10 %) but it is growing with the
volume fraction.

In the next Chapter our estimation will be given a more firm ground, as we would
perform the Brownian dynamics simulations and study the time-dependence of the memory
function, from which another estimate of τM will be calculated.
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Chapter 9

Brownian dynamics calculations of
the memory function

In this section we estimate the relaxation time τM of the memory function M for three
volume fractions φ = 0.2, 0.3 and 0.4 by means of the Brownian dynamics simulations.
This is the largest and most time-consuming part of the numerical calculations in the
Thesis.

9.1 The method

The Smoluchowski equation (3.10) is a good starting point for deriving the algorithm of
the dynamic simulation of a suspension of Brownian particles. Let us namely integrate
this equation over the small time interval ∆t with the condition that the positions of the
particles for t = 0 are known (so that the initial distribution is given by Po(X) = δ(X −
X0) =

∏
i δ(Ri −Ro

i ). To the first order in ∆t the solution of the Smoluchowski equation
is given by the multivariate Gaussian distribution uniquely defined by the moments

< ∆X >∆t=

∫
XDPo(X)∆t dX =

∫
(LX)Po(X)∆t dX =

= (β−1 ∂

∂X
· µ + µF)∆t

(9.1)

and

< ∆X∆X >∆t= 2β−1µ∆t, (9.2)

where the absence of external disturbances is supposed (vo = E = 0). In the above
formula the mobility matrix as well as the forces are calculated at the initial configuration
(for t = 0). In the numerical implementation one constructs the configuration space

119
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trajectories, which are chosen according to the distribution function given by (9.1) and
(9.2). Therefore the trajectory of the particle i is given by

Ri = Ro
i + β−1

∑

j

(
∇j · µo

ij

)
∆t +

∑

j

µo
ij · F o

j∆t + γi(∆t), (9.3)

where γi(∆t) is the random displacement given by the Gaussian distribution with the
average value zero and covariance obeying

< γi(∆t)γj(∆t) >= 2β−1µij∆t. (9.4)

The above algorithm was derived for the first time by Ermak and McCammon in 1978
[116]. Since then many groups have tried to use this algorithm to calculate the dynamic
properties of the colloidal suspensions. In spite of the apparently simple structure of (9.3),
if one wants to implement numerically this algorithm, one is immediately faced with two
complex problems. The first is calculation of the mobility matrix µ, the second, even more
complex, is to obtain the divergence of µ needed in (9.3). Therefore it is no wonder that
various groups working on the numerical implementation of the Brownian dynamics have
tried to adopt a number of approximations to reduce the complexity of the problem. For
example Ermak and McCammon in the above-mentioned paper [116], Dickinson and co-
workers [117–121] as well as van Megen, Snook and Gaylor [122, 123] used the Oseen and
Rote-Pragner approximations (2.54,2.55) of the mobility matrix, which, as it was already
mentioned in Chapter 2, are very crude.

Much more elaborate are the numerical simulations of Brady and co-workers presented
in a series of papers (see for example [74, 124–126]). They have included more multipoles
in calculations of µ. Unfortunately, as it was mentioned in Chapter 2, they still do not
take into account all the long-range contributions to µ, which makes their scheme not
satisfactory.

9.2 The implementation

In our numerical implementation of the Brownian dynamics algorithm we use the CFW
package together with the procedure for calculating the divergence of the mobility matrix
as described in Chapter 8.

The next step needed in the Brownian dynamics simulations is to obtain the values for
the set of 3N displacements Mi obeying (9.4). To this end the multivariate normal deviate
generator from the NAG numerical library is used (G05EAF/G05EZF procedures in the
library).

Now we turn to the question of choosing the appropriate time step in the Brownian
dynamics simulations. On the one hand the smaller the timestep, the more precise the
simulation is, on the other hand when one uses shorter timestep, one needs more computer
time to get the Brownian trajectory of the same length. We have performed a number
of tests to determine the optimal timestep and finally decided on ∆t = 10−4d2/Do where
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d = 2a is the diameter of the spheres. The discrepancy between the results obtained with
this timestep and with ∆t = 10−5d2/Do is found to be less than 7% (which is almost always
less than the error of the value itself).

There is one more problem with which each numerical implementation of Brownian
dynamics must cope somehow. Namely because of the finite timestep it may happen that
after displacing the particles according to (9.3) one would end up with the configuration in
which some of the spheres overlap. This would violate the boundary condition (3.25) stating
that the probability current coming through the surfaces Rij = 2a (which correspond to
the touching of spheres i and j) vanishes. We must stress that such a behavior is an artifact
coming solely from the finite time step - the dynamic itself does not allow overlapping of the
spheres, as when the two spheres approach each other there emerges a divergence in the part
of the friction tensor ζ corresponding to the motion along the line of centers, as described in
section 2.6. Therefore the mobility for such a motion goes to zero as |Ri−Rj| → 2a. From
(9.2) we see that the vanishing of the mobility results also in vanishing of the probability
that the spheres will be pushed towards each other by a Brownian force.

Nevertheless as the timestep in simulation is finite, the problem persists and have to be
coped with. The other groups tried to solve this problem by the following two alternative
schemes

1. rejecting the displacements ∆Ri = Ri −Ro
i (9.3) that lead to the overlapping con-

figurations

2. moving the spheres that have overlapped a bit backwards along their trajectories, so
that their distance would be equal to |Ri −Rj| = 2a + ε. This method is used by
Brady and co-workers.

We feel that both the above methods are artificial and can disturb in a considerable
way the dynamics of the Brownian particles that one wants to investigate. Our own way of
dealing with the problem is to counterbalance the artificial current at Rij = 2a by adding
the current of the same magnitude but opposite sign by means of the following algorithm

1. Calculate the displacements ∆X from the formula (9.1) for a given timestep ∆t

2. associate with every sphere an auxiliary velocity ui given by

ui =
∆Ri

∆t
(9.5)

3. solve a classical molecular dynamic problem of finding the evolution of N hard spheres
with the velocities ui over the time period ∆t [112,127,128]. The numerical procedure
applied here locates time, collision partners and all the impact parameters for every
collision occurring in the system in chronological order.

4. go to 1
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φ N number total
of length
trajectories of

trajectories

N=30 13 110276

φ = 0.2 N=50 12 30535

N=100 24 24298

N=30 7 124703

φ = 0.3 N=40 7 46103

N=100 10 10680

N=30 15 134915

φ = 0.4 N=50 9 51567

N=100 12 12093

Table 9.1: The statistics and results of the Brownian dynamics simulations. Shown are:
the number of trajectories obtained for different volume fractions and number of particles
and the total length of these trajectories in timesteps ∆t = 4 · 10−4a2/Do

By applying the hard-sphere collision dynamics over the time interval ∆t we assure that
the probability current flowing through the surface Rij = 2a is zero, because during the
collisions of the spheres i and j the component of the relative velocity uij, which is parallel
to the line of the centers of the colliding pair changes sign. Note that the component of uij

perpendicular to Rij remains unchanged as it should be, because the boundary condition
(3.25) affects only the parallel component.

9.3 Numerical results

The Brownian dynamics simulations using the above-described algorithm were performed
for three volume fractions φ = 0.2, 0.3 and 0.4. Table 9.1 gives some statistics of the
calculations such as the number of trajectories X(t) which were obtained for each volume
fraction φ and number of particles N , the length of these trajectories measured in timesteps
∆t = 4 · 10−4a2/Do and the total number of timesteps for each φ and N .
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The simulations for N up to 50 were performed on Pentium III PC (500 MHz) computers
whereas the simulations for N = 100 - on Cray SV1-A machine in the Interdisciplinary
Centre of Modelling (ICM) at the Warsaw University.

As we are looking for the integral of M(t) divided by the initial value M(t = 0) all the
time-independent quantities in the expression for M(t) (8.2) are of no interest for us here.
Therefore in the simulations it is enough to measure the quantity T (t) given by (cf Eqs.
(7.51) and (8.23))

T (t) =< U tot(0)U tot(t) > (9.6)

as naturally
1

M(t = 0)

∫ ∞

t=0

M(t′)dt′ =
1

T (t = 0)

∫ ∞

t=0

T (t′)dt′. (9.7)

The raw data of the form U tot(K∆t) =
∑N

i,j=1∇j · µij(K∆t) with K = 1, 2, . . . were
averaged to yield the correlation function according to [128, 129]

T (τ) =
1

Kmax(τ)

Kmax(τ)∑

K=1

U tot(K∆t)U tot(τ + K∆t), τ = m∆t, m = 1, 2, 3 . . . (9.8)

Here Kmax∆t gives the last possible time origin for which the calculation of T (τ) makes
sense. It is given by the condition that Kmax(τ)∆t + τ must never exceed the total time
of a given trajectory, i.e.

Kmax(τ) +
τ

∆t
= Ktraj , (9.9)

where Ktraj is the total number of timesteps in a given trajectory. From Eq. (9.8) one sees
that the statistics for the longer times τ gets worse. Finally, the last step is to average T (τ)
over all the trajectories obtained for the given volume fraction φ and number of particles
N .

9.4 The long-time tail fitting

As we are essentially interested in the value of the time integral of the memory function,
a key question for us concerns the behavior of M(t)/M(t = 0) for long times. It can
not be assessed by means of the Brownian dynamics simulations and therefore some kind
of conjecture as to the behavior of the memory function when t → ∞ is needed. Some
indications can be found in theoretical studies on the memory function of the self diffusion
problem in a suspension [9, 17, 130–132], in which it was predicted that the self-diffusion
memory function have an algebraic long time tail (namely t−5/2) and the amplitude of
this tail was calculated for a number of limiting cases (e.g. the dilute suspension, lack of
hydrodynamic interactions etc.). This is connected with the fact that the Fourier transform
of the memory function M̂(ω) is a meromorphic function of the square root of ω. Therefore
one gets the following expansion [131, 132]
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M̂(α) = M̂(0) + M̂1α + M̂2α
2 + M̂3α

3 + . . . ,

with

α =
√

ω. (9.10)

The first coefficient in the above expansion is closely connected with the relaxation
time, as

τM =
M̂(α = 0)

M(t = 0)
, (9.11)

whereas the second gives the amplitude of the long-time tail t−3/2 in the function M(t)
(which stems from the properties of the Fourier transform). If, however M1 vanishes then
M(t) has the long-time tail of the form t−5/2 with the amplitude determined by M3.

It is not unreasonable to expect that such an algebraic long-time tail will be present
also in our case. However, because of the complicated form of the memory function in our
case and particularly the fact that the two-body contributions to M vanish, the techniques
applied in the above-cited papers to determine the coefficients in (9.10) are not directly
applicable in our case.

Therefore we decided on semi-empirical way of accounting for the long-time behavior of
the memory function. Namely we have tried to fit to our data the tail of the form At−(2n+1)/2

with n = 1, 2, 3.... The fitting was performed only for trajectories with N ≤ 50, as in case
of N = 100 the errors of the data are too large to obtain any reasonable fit. In all the
cases the best fit was obtained for the tail of the form t−3/2 (see Fig. 9.1 for the fit of the
t−3/2 tail of the M(t) for φ = 0.4 and N = 50).
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Figure 9.1: The memory function M(t)
M(0)

for N=50 and φ = 0.4 (solid line) together with the

fit of the long-time tail At−3/2 starting from t = 400∆t on (dashed).
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Such a fitting cannot serve as a proof that the collective diffusion memory function has
indeed the t−3/2 long time-tail. Nevertheless fitting of the t−3/2 tail to the data gives the
upper bound of the value of τM , as the At−(2n+1)/2 with n > 1 decay faster.

Now that we have a long-time fit, we can calculate the relaxation time τM given by
(8.4). The results are the following

for φ = 0.2 τM = (315± 60)∆t = (0.126± 0.025)τR

for φ = 0.3 τM = (300± 40)∆t = (0.120± 0.015)τR (9.12)

for φ = 0.4 τM = (220± 50)∆t = (0.09± 0.02)τR

From the relaxation time we can estimate the errors δ( M(t)
M(0)

) of the correlation function

itself using the Zwanzig-Ailawadi formula [129, 133, 134]

δ(
M(t)

M(0)
) =

√
2τ2

T
[1− M(t)

M(0)
] (9.13)

where T stands for the total simulation time and τ2 is given by

τ2 = 2

∫ ∞

0

( M(t)

M(0)

)2

dt. (9.14)

Figures 9.2 and 9.3 show the memory functions together with the errors for 30 and 100
particles respectively for the volume fraction φ = 0.3.
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Figure 9.2: The memory function M as a function of time (in units of relaxation time
τM) for the volume fraction φ = 0.3 and the number of particles N = 30. The function
is normalized by its initial value M(t = 0). Dashed lines mark the accuracy of the result
calculated according to Zwanzig-Ailawadi formula (9.13) supplemented by the condition
that the memory function is positive.
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Figure 9.3: Same as in Fig. 9.2 but for 100 particles

9.5 Finite size effects

One can expect that just as it was for Mo, also in the case of the τM calculations the peri-
odicity introduced by the boundary conditions can affect the result and make it dependent
on N . To this end it is reasonable to analyze the M(t)

M(0)
curves for the same density and

different number of particles to seek for the possible scaling effects. It is best to look at
the curves for small t, as then the errors are not too big. Having all the above in mind
we have looked into the short time form of the memory functions for different number of
particles N for φ = 0.2, 0.3 and 0.4. As an example, in Fig. 9.4 the memory functions for
φ = 0.3 and N = 30, 40 and 100 are presented.
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Figure 9.4: The memory function M(t)
M(0)

for φ = 0.3 and N=30, 40 and 100 (short-dashed,

long-dashed and solid lines respectively).
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φ ∆
0.2 0.01± 0.003
0.3 0.03± 0.01
0.4 0.05± 0.015

Table 9.2: The final results for the memory contribution to the long-time collective diffusion
coefficient ∆. The values of ∆ for φ = 0.2, 0.3 and 0.4 are calculated from Mo computed
in Chapter 8 (Table 8.2) and τM calculated in this Chapter.

As can be seen, within the range of errors no scaling is observed. From the results
for φ = 0.2 and φ = 0.4 the similar conclusions can be drawn, which may indicate that
the relaxation time is not sensitive to the system’s size. However, on the other hand, it
may also mean that our data is not accurate enough for the scaling to be seen. This fact
augments further the uncertainty with which the results (9.12) are given.

9.6 Final results

By combining the above results for τM with the values of Mo obtained in the Chapter 8,
we calculate the values of ∆ for the volume fractions φ = 0.2, 0.3 and φ = 0.4. The results
obtained in this way are given in Table 9.2.

We see that the estimations of ∆ from the initial value of the memory function and
characteristic time of the collective relaxation processes τc presented in the previous Chap-
ter were essentially correct. They gave the values of ∆ which are of the same magnitude
as these calculated from the Brownian dynamics for the volume fractions φ = 0.2, 0.3
and 0.4. Moreover, the estimations based on τc captured yet another important feature of
the memory function, namely that its relaxation time τM gets shorter with the increase
of the volume fraction. This phenomenon can be understood when we remember that the
quantity

∑
j∇j ·µij which plays the major role in M(t) is very sensitive to particle configu-

rations. And naturally the more dense the suspension is, the smaller particle displacement
is needed to change the overall configuration in the considerable way, what results in the
rapid changes in M(t).
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Chapter 10

Comparison with the experimental
data

From the final results for ∆ presented in the last section, one concludes that the contri-
bution of the memory function to the long-time collective diffusion coefficient is nonzero
but relatively small in comparison with the short time diffusion coefficient Ds

c . One may
ask, however, if this results agree with the experimental measurements of the long- and
short-time diffusion coefficient. However, in our case the quantitative comparison with the
experimental data is almost impossible because of the very large errors of the measurements
of the diffusion coefficient.

Pusey [8] in his review paper on colloidal suspensions, while discussing the problem
of the memory contributions to Dl

c, quotes the experimental results of Kops-Werkhoven
and Fijnaut [135] on the short time collective diffusion coefficient together with the results
obtained by van Megen et. al [136] on the long-time collective diffusion coefficient. We
reproduce the both sets of data in Fig. 10.1.
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Figure 10.1: Short (squares) and long-time (triangles) diffusion coefficient normalized by
the one particle value taken from [136] and [135] respectively
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Pusey comments that “while the short-time results appear to be slightly larger than
the long-term ones, the difference is hardly significant given the large error bars”. He
concludes that “the extant experimental evidence indicates that the memory contribution
to collective diffusion is relatively small at least at concentrations below freezing”. It is
hard to believe but since 1991 when those words were written, despite the development of
the experimental techniques, there is still a lack of valuable data from which the memory
contribution could be estimated [137]. This is caused by the fact (see eg. [136]) that it is
very hard for the experimentalists to get accurate results for small wave vectors. Therefore
to get the collective diffusion coefficient they usually extrapolate the results obtained for
small wave numbers down to k = 0, which gives rise to quite a large error.

Another way of approaching Dl
c is the sedimentation phenomena [10], i.e. the exper-

iments in which the flux of the particles induced by an external force (e.g. gravity or
centrifugal force) is measured. As it is shown in section 5.1 the collective diffusion coeffi-
cient is related to the sedimentation coefficient by

Dc =
kBT

S(0)
K. (10.1)

As the experimental timescale in sedimentation experiments is almost always much
larger than τR one concludes that Dc calculated from (10.1) can be identified with the
long-time collective diffusion coefficient. Unfortunately the errors of the diffusion coefficient
obtained in such a way are at least as large as these of the light scattering experiments and
they get larger with the increase of the volume fraction. It is caused by the fact that for
large volume fractions the sedimentation velocity is small and hence hard to be measured
with good accuracy. It is a pity, because the suspensions with large volume fractions are
systems in which we expect the memory effects to be visible most clearly.

There is one more phenomenon that must be mentioned in connection with the small
wavevector measurements of the diffusion coefficient. Namely in the Thesis we have per-
formed calculations for monodisperse systems - i.e. such, in which all particles are of
the same size. In reality, however, colloidal particles inevitably have some distribution of
size: “polydispersity”. For the spherical particles a good measure of polydispersity is
the standard deviation of the particle size distribution P (a) divided by its mean [8]

σ ≡
√

a2 − a2

a
(10.2)

where

an =

∫
anP (a)da (10.3)

Even the systems which are referred to in the papers as ”monodisperse” have usually
small (σ = 0.01− 0.05) degree of polydispersity. It is important for our problem as it has
been shown [53] that the polydispersity leads in general to the nonzero value of ∆ even
in the absence of the hydrodynamic interactions. Therefore in the experiments these two
effects are usually mixed. Unfortunately, the theories which allow one to calculate the
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contribution of polydispersity to ∆ [8, 53] are not well developed (they are based on the
number of rather arbitrary approximations). We hope that the present work, giving the
estimate of memory effects for the monodisperse, hydrodynamically interacting suspension,
would be a help for the experimentalists in a hard task of separating these two effects.

To sum up: the numerical estimation of the memory contribution to the long-time
collective diffusion coefficient seems to be in a qualitative agreement with the experimental
results. Both suggest that the memory factor ∆ is nonzero but small and grows with
the volume fraction. However the quantitative comparison of the numerical results with
experiment is hard because of the considerable errors of the data.
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Summary

The subject of the Thesis has been the analysis of the memory contribution to the collective
diffusion coefficient of interacting Brownian particles. It has been suggested more than
twenty years ago by Ackerson [51] that this contribution may give rise to a difference
between short- and long-time diffusion coefficient in colloidal suspensions. The theoretical
analysis of these quantities is obstructed by the infinite range hydrodynamic interactions in
the system, because of which some of the transport kernels are non-local. These difficulties
has been overcome by deriving the local equations with the short-range kernels, giving the
diffusion current in terms of the external force and the velocity of a suspension as a whole.
It is to be stressed that so far in the literature on the subject, the similar procedure was
performed only for the instantaneous response case [23,42,43] . The generalization of this
scheme to include the memory effects, which come from the relaxation of the distribution
function, is a nontrivial task. It is the main theoretical result of the Thesis. It is worth to
point out that a number of other problems can be worked out using the formalism presented
here. In the Thesis we have concentrated on the memory function for the collective diffusion
process, but we have simultaneously derived the expressions for other memory functions
such as the viscosity memory function giving rise to the frequency-dependent contribution
to the effective viscosity of the suspension (7.45).

The second part of the work is concerned with the numerical estimation of the above-
mentioned memory contribution to Dc. This is achieved by means of extensive computer
simulations with use of the Monte-Carlo averaging and the Brownian dynamics technique.
The overall result of these calculations is that the relative memory contribution to the
collective diffusion coefficient is growing with the volume fraction but never exceeds 10 %.
These results agree qualitatively with the experimental data, the quantitative comparison
being impossible because of the large experimental errors. It is to be hoped that the present
results would stimulate the precise experimental measurements of the collective diffusion
coefficient.
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Appendix A

The scattering sequences

In this appendix we give the derivation of the scattering sequences (2.41) and (2.42) of the
operators µ and C̃ respectively.

Let us begin with µ. From (2.20), (2.27) and (2.31)

µ = ζ−1 = [PZo
1

1 + GZo
P]−1 = [PZoP −PZo

1

1 + GZo
GZoP]−1 =

= [ζo(1− ζ−1
o PZo

1

1 + GZo
GZoP)]−1, (A.1)

where

ζo = PZoP (A.2)

is the one-particle friction matrix. Expressing the inverse in Eq. (A.1) as a series we get

µ = µo + µoPZo
1

1 + GZo
[1 + GZoPµoPZo

1

1 + GZo
+

GZoPµoPZo
1

1 + GZo

GZoPµoPZo
1

1 + GZo

+ ...]GZoPµo, (A.3)

where the one-particle mobility matrix is given by

µo = ζ−1
o . (A.4)

The series in square brackets in (A.3) can be summed to yield

µ = µo + µoPZo
1

1 + GZo

1

1− GZoPµoPZo
1

1 + GZo

GZoPµo =

= µo + µoPZo
1

1 + G(Zo −ZoPµoPZo)
GZoPµo (A.5)
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and the scattering expansion of µ takes form

µ = µo + µoPZo
1

1 + GẐo

GZoPµo, (A.6)

where the convective extended friction matrix [64] is defined as

Ẑo = Zo −ZoPµoPZo. (A.7)

Therefore we have succeded in deriving (2.41).
Next we turn to the C̃ operator. From (2.33) together with (2.20) and the above-derived

(A.6) one obtains

C̃ = Zo(1 + GZo)
−1P[µo + µoPZo(1 + GẐo)−1GZoPµo] =

= Zo(1 + GZo)
−1Pµo + Zo(1 + GZo)

−1PµoPZo(1 + GẐo)−1GZoPµo =

= (1 + ZoG)−1Pµo + (1 + ZoG)−1ZoPµoPZoG(1 + ẐoG)−1ZoPµo. (A.8)

Using the matrix identity

(1 + A)−1(B − A)(1 + B)−1 = (1 + A)−1 − (1 + B)−1 (A.9)

for

A = ZoG,

B = ẐoG,

B − A = −ZoPµoPZoG (A.10)

we arrive at

C̃ = (1 + ẐoG)−1ZoPµo = ZoPµo − Ẑo(1 + GẐo)−1GZoPµo, (A.11)

which after inserting Ẑ yields the desired result (2.42).



Appendix B

The irreducible multipoles of the
force density and velocity

In this appendix we give the explicit expression for the set of the irreducible multipoles in
terms of which the multipole moments of the velocity around the i-th sphere (2.45) as well
as the force density on the surface on the sphere can be expressed.

To begin with, ∇l(v(r)− vo(r)) can be written in terms of irreducible tensors as [72]

1

l!
∂l

γ1 ...γl
vα(r) = (h0,l+1)αγ1...γl

+ (h1,l+1)αγ1...γl
+ (h2,l+1)αγ1...γl

, (B.1)

where

(h0,l+1)αγ1...γl
= (c0,l+1)αγ1...γl

(B.2)

(h1,l+1)αγ1...γl
= − l

l + 1
(εαγ1λ(c1,l)λγ2...γl

)S(γ)

(h2,l+1)αγ1...γl
=

(l − 1)(l + 2)

2(2l + 1)
((c2,l−1)αγ1...γl

δγ1γ2
)− l − 1

2l + 1
(δαγ1(c2,l−1)γ2...γl

),

where S(γ) stands for the symmetrization over in the γ indices. The irreducible velocity
multipoles cσ,l read

(c0,l)αγ1...γl−1
=

1

(l − 1)!
∂l−1

γ1 ...γl−1
vα(r) = cl

αγ1...γl
(B.3)

(c1,l)αγ2...γl
=

1

l!
∂l−1

γ2 ...γl
ωα(r) = lεαλµc

(l+1)
λγ2...γlµ

(c2,l)αγ3...γl+1
=

1

(l + 1)!
∂l−1

γ3...γl
∇2vα(r) = l(l + 1)δλµc

(l+2)
λµγ3...γl+1

,

where ω = ∇ × v and the overline stands for the symmetric and traceless (and hence
irreducible) part of the tensor.
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Similarly the force multipoles can be written as a sum of the irreducible multipoles f σ,l

of the form

(f 0,l)αγ1...γl−1
= f l

αγ1...γl
(B.4)

(f 1,l)αγ2...γl
=

l

l + 1
εαλµf

(l+1)
λγ2...γlµ

(B.5)

(f 2,l)αγ3...γl+1
=

l(l + 1)

2(2l + 1)
δλµf

(l+2)
λµγ3...γl+1

. (B.6)



Appendix C

The explicit formulae for
hydrodynamic matrices

In this appendix we give the explicit form of the hydrodynamic matrices G and Zo in
frames of the multipole formalism. The formulae are reproduced after [71].

The single-particle friction operator Zo reads in this case

Zo;lσµ1...µl,l′σ′µ′

1
...µ′

l′
= δll′δµ1µ′

1
. . . δµlµ

′

l
zl;σσ′ , (C.1)

where the matrix zl;σσ′ reads

zl;σσ′ =
8πη

(l + 1)(2l− 3)!!




Al0 0
Al2

2(2l + 3)

0
Al1

2(2l− 1)
0

Al2

2(2l + 3)
0

Bl2

4(2l − 1)(2l + 3)
.




(C.2)

The values of the coefficients A and B depend on the specific model under consideration.
For the hard spheres with stick boundary conditions they read

Al0 =
2l + 1

2
a2l−1, Al1 = a2l+1,

Al2 =
2l + 3

2
a2l+1, Bl2 =

2l + 1

2
a2l+3.

(C.3)

The elements of the Green operator G read
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Gl0µ1...µl,l′0µ′

1
...µ′

l′
(ij) = (−1)l′−1∂l−1

µ2 ...µl
∂l′−1

µ′

2
...µ′

l′
T µ1µ1′

(R)
(µ′)

(µ)

|R=Ri−Rj
,

Gl0µ1...µl,l′1µ′

1
...µ′

l′
(ij) = (−1)l′−1∂l−1

µ2 ...µl
∂l′

νµ′

2
...µ′

l′
T µ1κεκνµ′

1
(R)

(µ′)
(µ)

|R=Ri−Rj
,

Gl0µ1...µl,l′0µ′

1
...µ′

l′
(ij) = (−1)l′−1∂l−1

µ2 ...µl
∂l′−1

µ′

2
...µ′

l′
∇2T µ1µ1′

(R)
(µ′)

(µ)

|R=Ri−Rj
,

Gl1,l′0(ij) = Gl0,l′1(ij),

Gl2,l′0(ij) = Gl0,l′22(ij), (C.4)

Gl1,l′1(ij) = −Gl0,l′2(ij),

Gl1,l′2(ij) = Gl2,l′1(ij) = Gl2,l′2(ij),

where a µ indicates the irreducible part of the Cartesian tensor a with respect to the
indices µ1 . . . µl. The above expressions can be simplified to

Gl0,l′0(ij) = (−1)l′−1 (−1)l+l′−2

8πη

(2l + 2l′ − 3)!!

Rl+l′−1
ij

G
(l,l′)
1 (R̂ij),

Gl0,l′1(ij) = (−1)l′−1 (−1)l+l′−2

4πη

(2l + 2l′ − 3)!!

Rl+l′

ij

G
(l,l′)
2 (R̂ij), (C.5)

Gl0,l′2(ij) = (−1)l′ (−1)l+l′−2

4πη

(2l + 2l′ − 1)!!

Rl+l′+1
ij

G
(l,l′)
2 (R̂ij),

with

G
(l,l′)
1;µ1...µl,µ

′

1
...µ′

l′
(r) = rµ1

. . . rµl
rµ′

1
. . . rµ′

l
+

2(2l + 2l′ − ll′ − 1)

(2l + 2l′ − 3)(2l + 2l′ − 1)
,

× δµ1µ′

1
rµ2

. . . rµl
rµ′

2
. . . rµ′

l

µ′
µ

,

G
(l,l′)
2;µ1...µl,µ

′

1
...µ′

l′
(r) = εµ1µ′

1
νrνrµ2

. . . rµl
rµ′

2
. . . rµ′

l

µ′
µ

,

G
(l,l′)
3;µ1...µl,µ

′

1
...µ′

l′
(r) = rµ1

. . . rµl
rµ′

1
. . . rµ′

l
.



Appendix D

Proof that the second virial
coefficient d2 in the expansion of ∆̃

vanishes

By solving the problem of two particles (”1” and ”2”) moving in an incompressible fluid one
can show that the two-body mobility matrix µ(R1, R2) has the following form [13,67,109]

µ12,αβ = µ21,αβ = a12(R)R̂αR̂µ + b12(R)(δαµ − R̂αR̂µ),

µ11,αβ = µ22,αβ = a11(R)R̂αR̂µ + b11(R)(δαµ − R̂αR̂µ), (D.1)

R = R1 −R2

with α and β denoting the Cartesian indexes and a11, a12, b11 and b12 - the scalar functions
of the interparticle distance R12.

The symmetries of the above form of the mobility matrix are the reason why the second
virial coefficient in the expansion of ∆̃ (7.54) in section 7.9 vanishes. The above-mentioned
coefficient reads (7.56)

d2 =
kBT

6Nµoφ2

∫ ∞

0

dt < T (1, 2; t) >irr (D.2)

with

T (1, 2; t) =
( 2∑

i,j,k=1

[
∇i + βF ji

]
· µik

)
·
( 2∑

l,m,p=1

[
∇l + βF pl

]
· µlp(t)

)
, (D.3)

However, from (D.1) one gets

∇1 · µ12 = −∇2 · µ12 = −∇2 · µ21,

∇1 · µ11 = −∇2 · µ11 = −∇2 · µ22,
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so that

2∑

i,k=1

∇i · µik = 0 (D.4)

Moreover, the sum of interparticle forces in a system vanishes, what in our case boils
down to

F 12 + F 21 = 0. (D.5)

This, together with (D.1), guarantees that

2∑

i,j,k=1

F ji ·µik = 0. (D.6)

The relations (D.4) and (D.6) give us

T (1, 2; t) = 0 (D.7)

which in turn results in vanishing of the virial coefficient d2.
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