
Long-term day-by-day tracking of microvascular networks sprouting
in fibrin gels: from detailed morphological analyses to general growth

rules.

Katarzyna O. Rojek1, Antoni Wrzos2, Stanisław Żukowski2, 3, Michał Bogdan1, Maciej Lisicki2,
Piotr Szymczak2, and Jan Guzowski1

1Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
2Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

3Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS & Université Paris Cité,
Paris, France

Comparative Study of Bead Sprouting Morphology Analysis Tools

1 Introduction

The purpose of this supplementary information is to offer a comprehensive comparison of the tool
we developed for the analysis of sprouting angiogenesis with existing tools. The primary aim of this
comparison is to evaluate how well these available tools, in the forms they were originally shared, performed
in our specific case. It’s important to note that our intention is not to criticize the presented tools. It is
entirely possible that there are optimal ways to adjust their parameters, of which we may not be aware,
which could lead to improved performance.

Additionally, we want to clarify that we were not aware of the existence of the majority of these tools
when we commenced this project in late 2020. At that time, it was challenging to anticipate the specific
difficulties we would encounter. Consequently, we decided that developing our own software from scratch
was the most suitable approach.

We will compare our tool with three others: two open-source options— the Sprout Analysis plugin
for ImageJ [1] and the SproutAngio tool written in Python [2]; and one paid tool, IKOSA, which utilizes
the machine learning model Spheroid Sprouting Assay v2.1.0 [3]. The tests for IKOSA were conducted
using a free trial version. Our starting point for all these tools is an 8-bit max-pooled (projected) 2D
image, as shown in Figure 1, selected from our dataset. This image was not chosen with a bias towards
any particular tool but rather as a challenging test case that may pose difficulties for all of the tested
softwares.

All processing will be carried out using a single core of an AMD Ryzen 5 5600x processor. It’s worth
noting that our software allows us to run multiple tasks in parallel, which provides an advantage when
dealing with larger datasets containing numerous images. We will evaluate the tools in several categories,
including execution time (estimated order of magnitude, as obtaining exact values in some cases may not
be feasible), the quality of results in terms of images and metrics, and the overall user experience (ease
of use, challenges encountered, strengths, and weaknesses).

1

Figure 1: Endothelial cell bead sprouting on day 9 under the influence of a 50 ng/ml VEGF concentration.

2 Proposed software results and performance

2.1 Timing

We conducted timing measurements using the magic function %time in Jupyter Notebook. The com-
putation process took approximately 120 milliseconds when including full serialization, which encompasses
saving the segmentation mask (Figure 2), the skeleton mask (Figure 3), and pickling the graph object
(pickling refers to the Python operation of saving custom objects in binary format). This approach also
allows for convenient access to all necessary data from memory after the computation.

Furthermore, we offer the option to run the software with additional debugging graph information,
such as images displaying graph connectivity, the bead mask, skeleton, and bifurcation angles (Figure 4).
However, it’s worth noting that due to the relatively slow font rendering, the computation time increases
to approximately 1 second.

2.2 Graphical output

Upon examining Figure 2, it becomes apparent that part of the structure is being cut during segmen-
tation, resulting in the incomplete reconstruction of the entire network. This truncation occurs because

2

the largest connected component is selected. While it’s possible to omit this step, doing so would leave
unwanted disconnected portions in the image. Figure 3 displays the full skeleton prior to the pruning of
excessively short branches. The graph with connectivity is depicted in Figure 4.

It’s worth noting that there is a specific case to consider, where a junction between branches b181
and b191 at the bottom of the image is missing (as seen in Figure 4). This can be attributed to a
rare case, which is elucidated using Figures 5 and 6. Junctions j83 and j84 (depicted in Figure 5) are
situated extremely close to each other, and the software does not allow for branches shorter than one
pixel. Consequently, after deleting branch b184, junction j83 is regarded as a redundant tip junction
(highlighted in red), and junction j84 between branches b190 and b188 is merged (appearing in violet).
This situation is more clearly illustrated in Figure 6, where the involved branches are marked in cyan
on the skeleton mask prior to pruning excessively short branches. It’s important to emphasize that such
cases are relatively infrequent, thus they have a small impact on the overall statistics.

2.3 Evaluated metrics

The computed metrics are provided in Listing 1, presented in µm units where applicable. These metrics
represent the direct output from the code. The ’sm’ (single metrics) discussed in this article include: area
A, area_circle AC , total_length L, r_max (maximum tip extent from the bead rm), area_by_length λ,
nof_primary_branch Npb, and bifurcation_generation G.

Although additional single metrics are available, many of them can be derived from the aforementioned
metrics or from histogram metrics ’hm’. Some metrics are applied to the graph before lifting, such as
nof_tips. We have chosen to retain these metrics in this form, as further code development will require
careful planning. Relevant histogram metrics ’hm’ include:

• length_rank2 Lbif : Lengths of bifurcated segments, which is important and includes primary
branches where the bifurcation condition is met.

• length_rank1: Lengths of tip segments Ltip. The number of entries in this statistic provides the
correct count of tips Ntip on the pruned graph.

• length_primary: Lengths of the primary branches.

• angle ϕ: Bifurcation angles.

Please note that some entries were skipped or not discussed for the sake of clarity. Additionally, it’s
important to acknowledge that the sum of the number of entries from length_rank1 + length_rank2
+ length_primary may not equal nof_branch in general, as length_rank2 can contain some primary
branches. However, we are aware of small defect related to the imperfect detection of very short primary
branches close to the surface of a bead, which may result in a minor statistical error in the number of
segments.

Listing 1: Metrics computed using the proposed software relevant to the benchmark network.
{ ’sm ’ : { ’ area ’ : 171068.19032499997 ,

’ a r e a_c i r c l e ’ : 104121.75269999998 ,
’ to ta l_length ’ : 11424.855072122935 ,
’ length_avg ’ : 89 .96819804029533 ,
’ length_std ’ : 81 .2966378986271 ,
’r_max ’ : 657.1432145658965 ,
’ r_avg ’ : 280.8429672447792 ,
’ r_std ’ : 219.42989478637466 ,
’ tortuos i ty_avg ’ : 1 .101993464968535 ,
’ t o r tuos i ty_std ’ : 0 .1688595066182397 ,
’ nof_branch ’ : 84 ,
’ area_by_length ’ : 14 .973335700547537 ,
’ l a cuna r i t y ’ : 7 .321845364513845 ,
’ nof_primary_branch ’ : 21 ,
’ nof_t ips ’ : 47 ,
’ b i f u r c a t i on_ra t i o ’ : 1 .1622714288988771 ,
’ b i f u r ca t i on_gene ra t i on ’ : 2 .162271428898877} ,

’hm ’ : {

3

’ length_rank2 ’ : array ([29 .90467604 , 65 .95821823 , 17.6591901 , 64 .23562656 ,
14 .29307585 , 241 .34242617 , 2 .51 , 48 .78192239 ,
84.1003026 , 22 .98370417 , 152 .08471172 , 18 .08983802 ,

262 .88756855 , 129 .45868281 , 141 .91949271 , 99 .80627448 ,
16.4041901 , 100 .75676042 , 249 .45578854 , 191.9298345 ,
73 .63483626 , 178 .83433073 , 135 .91206302 , 59 .89854219 ,
72 .23321823 , 24 .66935208 , 18 .60967604 , 138 .33287291 ,
60 .29224635 , 188 .93175866 , 12.6391901 , 104 .48481666 ,
7 .83451406 , 227.0225276 , 167 .34967252 , 129 .46386439 ,

39 .17257031 , 3 .765 , 102 .40546458 , 158 .57595052 ,
58 .12370417 , 11 .295 , 97 . 04400677]) ,

’ length_rank1 ’ : array ([68 .86192239 , 63 .66354219 , 80.2461125 , 110 .88595052 ,
51 .41805625 , 76 .48629408 , 111 .27965469 , 81 .80562656 ,
78 .29289427 , 57.7453026 , 49 .94773229 , 61 .36886615 ,

125 .53060521 , 62.6761125 , 225 .01706302 , 127 .77303489 ,
160 .00933073 , 185 .94898541 , 38 .65273229 , 43 .45740833 ,
49 .30176042 , 398 .84059993 , 348 .99851731]) ,

’ length_primary ’ : array ([115 . 42305625 , 24 .97386615 , 39 .04643646 , 20 .25838021 ,
8 .56967604 , 9 .30483802 , 16 .61951406 , 263 .97430937 ,

94 .57095052 , 11 .07967604 , 132 .09999824 , 4 .80467604 ,
23 .10983802 , 4 .28483802 , 47 .86838021 , 120 .53224635 ,
13 .805 , 13 .37435208 , 9 .08951406 , 153 .87576718 ,
61 . 11659844]) ,

’ r ’ : array ([631 . 06661396 , 609 .19230595 , 569 .85845128 , 525 .95431441 ,
463 .37210544 , 438 .64180036 , 300 .23629161 , 364 .46245818 ,
325 .10556386 , 291 .35737922 , 288 .55449507 , 347 .17256246 ,
523 .75767703 , 397 .50230569 , 220 .10853913 , 214 .72239479 ,
262 .80191447 , 393 .36192756 , 545 .07035401 , 243 .93855686 ,
596 .56210817 , 349 .00058499 , 617 .95211081 , 412 .98844687 ,
657 .14321457 , 468 .57068304 , 482 .39202795 , 516 .92747695 ,
248 .83520214 , 209 .19385657 , 320 .82130342 , 448 .86386915 ,
414 .10055765 , 243 .18843255 , 388.5902364 , 331.9706301 ,
208 .87362806 , 343 .26028062 , 426.0572512 , 343.6454924 ,
405 .66795181 , 424 .66500032 , 493 .39858543 , 610 .22689276 ,
397 .72215276 , 490 .49953499 , 598 .41921687]) ,

’ ang le ’ : array ([107 . 28149837 , 49 .69912247 , 90.9640207 , 28 .52134122 ,
32 .67823737 , 69 .00471432 , 64 .94831328 , 38 .16055155 ,
40 .29999669 , 85.3768021 , 89 .97647957 , 33.4165814 ,
52 .84170322 , 78 .22425844 , 45 .71318864 , 59 .85861445 ,
92 .07163954 , 88 .99491399 , 96 .42125961 , 43 .57958006 ,
46 . 06865378]) ,}}

4

Figure 2: Segmentation mask of the endothelial cell network.

5

Figure 3: Skeleton of the network with a central bead mask applied. This skeleton includes all segments,
including those that are later pruned.

6

Figure 4: Graph presenting connectivity, bifurcation angles, segmentation mask, pruned skeleton and
bead mask.

7

Figure 5: Graph during the lifting (pruning) process, where some branches vanish from the connectivity
(indicated in red) and are replaced by the blue ones. Red junctions represent redundant tip junctions,
while violet junctions indicate the merging of branches.

8

Figure 6: Skeleton with the cyan part where one junction is absent.

3 Sprout Analyzer plugin for ImageJ

3.1 Timing

Measuring the execution time of this software posed a challenge, as its primary audience comprises
GUI users. Nonetheless, it exhibited a relatively responsive performance. It is worth noting that a
significant portion of the total time consumed could be attributed to rendering and launching ImageJ
windows, which renders a fair comparison impractical.

A rough estimate, favoring the Sprout Analyzer, suggests that the software operates within a similar
time frame for computational tasks as the our software. However, when considering the entire rendering
process, the complete operation takes a few seconds.

3.2 Graphical output

The results obtained from the analysis are depicted in Figures 7, 8, and 9. The segmentation results
(Figure 7) bear a resemblance to the outcomes produced by our software, which is a reasonable observation.
However, there are certain aspects that could be improved upon: a portion of the structure is truncated,
some disconnections are present, and certain gaps are left uncovered, which may lead to the formation

9

of artificial loops in the skeletons. Depending on subsequent processing steps, these results might still be
valid.

Furthermore, the software generates a nuclei mask (Figure 8, a feature not included in our software.
This mask allows for the measurement of various metrics within the most densely stained regions of the
cells, typically corresponding to internal cell organelles.

Regrettably, the bead mask (Figure 9) appears to be an invalid result, despite our attempts to ad-
just the initial parameters for bead mask identification. It is possible that this issue arises from our
misinterpretation or misuse of the software’s functionality.

3.3 Evaluated metrics

The results generated by the software are presented in Table 1. Although the names of the metrics
imply that these are related to sprouts, it appears that they are more pertinent to the nuclei image (as
depicted in Figure 8). When considering the results in the context of a nuclei image, they seem plausible;
however, they are not applicable to our specific dataset.

This discrepancy may stem from a misunderstanding of the software’s functionality on our part, but it
is more likely that the software is not producing the correct output for our data. This discrepancy could
be attributed to the option within the software to independently label channels for the sprout and nuclei
images, while our dataset consists of only one channel.

n(beads) 1
n(sprouts) 6

n(cells) 233
Total sprout area (pixels²) 255

Total network length (pixels) 706.35238
Average sprout length (pixels) 117.7254
Average sprout width (pixels) 0.36101
Average junctions per sprout 0

Cell density (1/pixels²) 0.91373

Table 1: Metrics from the Sprout Analyzer ImageJ.

3.4 User experience

In general, utilizing this software was straightforward. The installation process merely required Im-
ageJ, followed by the download of the plugin via the built-in package manager. Conducting the analysis
itself was intuitive, involving a three-step process during which users could adjust various parameters.
While we initially used default settings, we later engaged in some experimentation to enhance results.

The software features a simple graphical user interface (GUI) that enables users to view the outcomes
of the analysis, including computed metrics. In its current form, it is tailored more towards individuals
without programming backgrounds who intend to analyze a limited number of images. For more extensive
analyses, it becomes necessary to develop a macro that can process data using the plugin, a task that
may pose some difficulty.

Furthermore, it’s important to note that the software is both free and open-source, making it advan-
tageous for those interested in extending its functionality. Regrettably, in our specific case, the software
did not function as expected. Additionally, making custom extensions would be challenging due to our
limited experience in crafting ImageJ macros.

10

Figure 7: Segmentation mask of the endothelial cell network from the Sprout Analyzer ImageJ.

11

Figure 8: Nuclei mask obtained from the Sprout Analyzer ImageJ.

12

Figure 9: Bead mask returned by the Sprout Analyzer ImageJ. The mask does not match the original
bead.

4 IKOSA Spheroid Sprouting Assay v2.1.0

4.1 Timing

Similar to the case with Sprout Analyzer ImageJ, precise timing in this application, which is web-based
and primarily designed for an enhanced user experience through its graphical user interface (GUI), proves
to be challenging. Several factors necessitate consideration, including the time required for navigating
through various windows, data submission to the queue, potential wait times in the queue for resource
allocation, and the actual computational processes, followed by the transmission of results.

For a single image, the elapsed time ranged from several seconds to over a dozen seconds after initiating
data submission for computation. However, it remains challenging to precisely gauge the duration of
the processing phase, as it can be influenced by various factors, including internet connection speed.
Consequently, a detailed timing analysis falls beyond the scope of our capabilities.

13

4.2 Graphical output

The segmentation results are presented in Figure 10. In all software solutions, including this one,
complete network reconstruction was not achieved. However, the software effectively assigns distinct colors
and numerical labels to the sprouts. In some instances, there may be debate regarding the accurate division
of specific sprouts, but it’s worth noting that the network under consideration is not straightforward. In the
region of sprout segmentation, the software correctly identifies skeletons, and the bead mask is accurately
detected.

4.3 Evaluated metrics

Results are presented in the Table 2. They look reasonable and are comparable (order of magnitude
after re-scaling by factor 1.255) with our results. The main metrics are area of sprouts and total length,
two parameters describing bead and number of sprouts, witch is close to definition of primary branches.
While there are fewer metrics available than those offered by our software, the authors of this model can
certainly expand it, creating an impressive tool based on machine learning, which is currently performing
well.

roi_size [Px^2] 1.048576e+06
number_of_sprouts 1.100000e+01
sprouts_total_length [Px] 5.370472e+03
sprouts_total_area [Px^2] 8.429200e+04
body_area [Px^2] 6.544000e+04
body_circularity 5.705830e-01

Table 2: Metrics from the IKOSA software

4.4 User experience

This software boasts one of the best graphical interfaces, characterized by its modern web-based
architecture, excelling in data storage, computation, result review, and comprehensive documentation.
Additionally, it provides computational resources as part of its solution. One drawback of this approach
is its closed nature, limiting control over the computational process. While it offers the option to train
models, it necessitates extensive data preparation, which can be a substantial undertaking. Furthermore,
this is a paid tool, which may present a drawback in scientific applications, with costs potentially increasing
based on the volume of calculations.

14

Figure 10: The segmentation mask generated by the IKOSA machine learning tool shows detected sprouts,
each marked with distinct colors and labeled with numbers. Corresponding skeletons are also identified,
and the bead mask is outlined with a polygon.

5 SproutAngio Python tool

5.1 Preliminary discussion

This tool stood out as one of the most promising options due to its implementation in the Python
programming language and because it compares results with Sprout Analyzer from ImageJ. However, it
has a specific requirement for two-channel images containing sprouts and nuclei. Without such data, its
utilization becomes less straightforward. Despite this limitation, we made an effort to conduct a basic
comparison to assess the software’s performance and results. This software performs the main analysis
using 3D data from the nuclei channel, with elements of the 2D max projection using the sprout channel.

We concur with the authors of SproutAngio in acknowledging that 2D projection introduces simplifi-
cations and leads to the loss of information. However, the applicability of 3D processing depends on the
characteristics of the data being processed. We observed that the dataset provided by the SproutAngio
authors is approximately 2-3 times denser in the z-direction, making 3D processing more suitable.

It is important to note that a comprehensive analysis should ideally incorporate time information,
denoted as (X, Y, Z, t). However, neither SproutAngio nor our software utilizes information from previous
or subsequent frames during the segmentation process.

The distinct advantage of operating in a 2D context following maximum projection (similar to SproutAn-
gio’s approach, at least partially) lies in significantly accelerated processing compared to 3D counterparts.
To illustrate, we tested SproutAngio on the publicly available image group4-05.chi (Figure 11), contain-
ing two channels with dimensions 43x1024x1024. The computation took approximately 3 minutes and 15
seconds, resulting in Figure 12. This processing time is 1.5 times longer than what our software requires
to process an entire dataset comprising 2638 images (using 5 out of 6 cores), each with, on average,
more intricate networks. Even when giving SproutAngio the benefit of the doubt, our software remains
approximately three orders of magnitude faster in terms of the number of processed images, while still
providing abundant morphological information about the networks.

Given the evident challenge of developing efficient 3D segmentation software, at the time we were
starting development, we opted for a more modest approach in our software. To provide perspective
on the computation time scale, consider that if we were to recompute everything 100 times (which is
approximately accurate, considering all our tests), and each image required 200 seconds of computation,
we would need to wait for 200

3600·24 · 2638 · 100 = 610 days instead of just a few hours.

15

5.2 Timing

We utilized the magic function %time within the Jupyter Notebook environment for benchmarking.
In this comparison, we focus exclusively on step 2 of the SproutAngio code (Listing 2), which aligns with
our segmentation definition. We experimented by providing a maximum-projected image (Figure 1) as
input, employing 2D filtering instead of the original 3D filtering approach (utilizing the same method as
in the original code). The recorded computational time, with the ’napri’ library for visualization disabled,
was approximately 9 seconds, slightly less.

Performing the same computation on publicly available data group4-05.chi with the unaltered code
took around 50 seconds, slightly less. It appears that a substantial portion of the processing time is
allocated to line 29, which involves median filtering. Turning off the median filtering, time has been
reduced to a bit less than 9 seconds (result in Figure 13). Notably, results without filtering exhibit
considerable similarity, as the final step involves maximum projection, effectively mitigating the impact
of such filtering. Applying Gaussian blur, or similar smoothing method after max projection, would lead
to similar effect as with the 3D median filtering. Consequently, employing median filtering before max
projection appears unnecessary, as it mainly increases computational complexity.

Listing 2: 3D median filtering and max projection in SproutAngio.
1
2 # 1− Basic parameters :
3 image_path = ’ test_data /VEGFA_10ng. c z i ’
4 med ian_f i l t e r ing = (7 , 7 , 7)
5
6 (. . .)
7
8 # 2− Sprout segmentat ion :
9 # Import ing necessary l i b r a r i e s and d e f i n i n g f unc t i on s f o r the ana l y s i s :

10
11 (. . .)
12
13 with Cz iF i l e (image_path) as im :
14 image_array = im . asar ray ()
15
16 # check ing the shape o f the array
17 print (image_array . shape)
18
19 # de f i n i n g the co r r e c t channe l s i n t o new arrays based on the above (3) shape
20 im_sprout = image_array [0 , 0 , 0 , 0 , : , : , : , 0]
21 im_nuclei = image_array [0 , 0 , 0 , 1 , : , : , : , 0]
22
23 # Opening napari
24 import napar i
25 viewer = napar i . view_image (im_sprout , name=’ im_sprout ’)
26
27 # median f i l t e r i n g the sprout channel
28 med_sprout = im_sprout
29 med_sprout = sc ipy . ndimage . med ian_f i l t e r (med_sprout , s i z e=med ian_f i l t e r ing)
30
31 viewer . add_image (med_sprout , name="median_f i l tered_sprout ")
32
33 # tak ing the maximum pro j e c t i on o f the sprou t channel and
34 #check ing i f median f i l t e r i n g s i z e i s ok
35 max_proj_0 = np .max(im_sprout , ax i s =0)
36 viewer . add_image (max_proj_0 , name="max_projection_sprout")
37
38 max_projection = np .max(med_sprout , ax i s =0)

5.3 Graphical output

Starting from the pure implementation, we obtained the segmentation illustrated in Figure 14 (again
using benchmark image from our dataset). This segmentation proved ineffective due to the use of the Otsu
threshold, which was also tested in our approach. To address this issue, we substituted the Otsu method
with a simple average threshold, consistent with our software’s approach (Figure 15). The resulting

16

segmentation exhibits high quality, closely resembling our own results. It applies a consistent coloration
scheme to each sprout, akin to the ICOSA software. Additionally, it offers the flexibility to adjust the
bead radius, enabling the exclusion of more sprouts, which can potentially be equal to number of primary
branches in our analysis.

The results obtained from the group4-05 image are presented in Figure 12. Once again, the segmen-
tation process performed effectively. However, in a distinct case, specifically group1-07, numerous errors
stemming from the ’napri’ library were encountered, including division by zero errors. This issue might
be attributed to the underdeveloped nature of the network in this particular image.

We were unable to conduct testing on the latter section of the code using benchmark image, as it
would necessitate significant modifications, especially given that our dataset lacks a separate channel for
nuclei. Consequently, further comparisons might yield misleading results. The authors of SproutAngio
have introduced novel methods for measuring the width of sprouts, utilizing nuclei and the Euclidean
distance transform (EDT). While we have not extensively examined this section of the code, a preliminary
assessment of the results presented in Table 3 suggests its validity.

total skeleton length 437.000000
average skeleton length 109.250000
sprout number 4.000000
nuclei number 95.000000
tip width 30.780433
stalk width 35.618997
root width 46.062441
sprout volume 709204.000000
average paired nuclei distance 34.271619

Table 3: Metrics from the SproutAngio for the group4-05 data

17

Figure 11: Max-projected bead sprouting data from group 4-05, sourced from the SproutAngio authors
database.

18

Figure 12: The segmentation of the image group4-01 is based on data provided by the authors of SproutAn-
gio.

19

Figure 13: The segmentation of the image group4-01 is based on data provided by the authors of SproutAn-
gio with median filtering turned off. Small holes and irregularities are present comparing to the variant
with the median filtering (Figure 12).

20

Figure 14: The segmentation mask generated using SproutAngio with the Otsu threshold, using the max-
projected benchmark image as input.

21

Figure 15: The segmentation mask generated using SproutAngio with the average threshold, using the
max-projected benchmark image as input.

References

[1] J. Eglinger, H. Karsjens, and E. Lammert. “Quantitative assessment of angiogenesis and pericyte
coverage in human cell-derived vascular sprouts”. In: Inflamm Regener 37, 2 (2017). doi: https:
//doi.org/10.1186/s41232-016-0033-2.

22

[2] M. Beter et al. “SproutAngio: an open-source bioimage informatics tool for quantitative analysis of
sprouting angiogenesis and lumen space”. In: Sci Rep 13, 7279 (2023). doi: https://doi.org/10.
1038/s41598-023-33090-6.

[3] IKOSA AI. url: https://www.kmlvision.com/our-offerings/ikosa-ai/. (accessed: 21.09.2023).

23

