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Text S1. The Pore Network Model: Detailed Description 

1   Model equations and dimensionless groups 

1.1   Fluid flow 

For an incompressible fluid, the steady-state fluid mass conservation at each node i yields 

∑ 𝑞𝑖𝑗 = 0,                                                                  𝑗                                                                                (𝑆1.1)                                                    

where qij is the volumetric flow rate through channel ij (qij>0 indicates flow from node i to 

j), and the summation is over all neighboring nodes j, linked to node i (Fig. S1a). The 

channel flow rates are calculated using Hagen-Poiseuille equation 

𝑞𝑖𝑗 =
𝜋𝑟𝑖𝑗

4

8𝜇𝑙
𝛥𝑝𝑖𝑗 ,                                                                                                                                         (𝑆1.2) 

where rij is channel radius, μ is fluid viscosity and Δpij=pi-pj is the pressure drop between 

two nodes, which are a distance of l apart (l is assumed to be constant throughout the 

network). The system of linear equations S1.1 and S1.2 is solved for the pressures at the 

nodes. 

1.2   Reactive transport and dissolution 

Dissolution in the cylindrical pores is modeled assuming that: (a) the reaction is 

characterized by first-order kinetics; (b) reactant transport is controlled by advection in the 

axial direction, with negligible diffusion; whereas (c) in the transverse (radial) direction the 

transport and reaction rates are controlled by the diffusion of reactant from the bulk fluid 

to the mineral surface (Fig. S1b). Condition (b) restricts the analysis to cases in which the 

Péclet number is sufficiently large, Pe= v̅l/D >>1, where v̅ is the average fluid velocity and 

D is the molecular diffusion coefficient.  

Following assumption (a), the reaction rate at the channel surface is  

𝐽𝑟 = 𝜆𝑐𝑤 ,                                                                                                                                                    (𝑆1.3) 

where cw is the reactant concentration at the wall and λ is the kinetic reaction rate 

coefficient [L/T]. Reactants at the pore wall are supplied by the diffusion from the bulk 

fluid. This diffusive flux can be expressed by 

𝐽𝐷 = ℎ(𝑐 − 𝑐𝑤),                                                                                                                                        (𝑆1.4) 
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where c is the flow-weighted average concentration (so-called mixing-cup concentration), 

defined as 𝑐 =
1

𝑞
∫ 𝑐(𝜌)

𝑟

0
𝑣(𝜌)2𝜋𝜌𝑑𝜌, with v the fluid velocity and ρ the radial coordinate 

(Hanna and Rajaram, 1998; Dreybrodt et al., 2005). 

 
Figure S1. Schematic of the network model. (a) The model comprises 2-D rectangular 

network of cylindrical channels and nodes (junctions) in a soluble solid. Node i is 

connected to its neighbor j through channel ij, and heterogeneity is introduced via channel 

radii. Anisotropy degree, S, is modified by changing the average size of the transverse (y-

direction) channels, while the average size of longitudinal channels (in the main flow 

direction, x) is kept constant. The model cells include the solid volume between respective 

channels (green frame). Reactive fluid of constant flow rate, Q, and concentration, c0, flows 

from the network inlet face to the outlet face, whereas at the sidewalls periodic boundary 

conditions are set. (b) The channels are of length l and radius r which changes (by Δr, in 

gray) following dissolution over a timestep Δt. Reactant diffuses from the fluid bulk to the 

solid mineral surface. The diffusive flux magnitude is characterized by the mass-transfer 

coefficient h(r). 

The mass-transfer coefficient, h, is inversely proportional to the radius, 

ℎ(𝑟) =
𝐷𝑆ℎ

2𝑟
,                                                                                                                                             (𝑆1.5) 

where Sh is the Sherwood number. Sh depends on λ and is bounded by two asymptotic 

limits; high reaction rate (transport limit, Sh=4.364) and low reaction rate (reaction limit, 

Sh=3.656), respectively (Gupta & Balakotaiah, 2001; Hayes & Kolaczkowski, 1994). In our 

calculations Sh is approximated by a constant, Sh=4 (Budek & Szymczak, 2012; Noiriel & 

Deng, 2018). This assumption is valid as long as the solute entrance length required to 
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reach the asymptotic value of the Sherwood number, len, remains small (len<<l). The 

entrance length increases with the radius and fluid velocity (see, e.g., Bejan, 2013; 

Rohsenow et al., 1998). In all our presented simulations, the condition len<<l holds.    

Once a steady-state is reached, the reactive and the diffusive fluxes (Eqs. S1.3 and S1.4) 

become equal. This provides an expression for the concentration at the wall in terms of 

the average concentration, c 

𝑐𝑤 =
𝑐

1 + 𝜆/ℎ(𝑟)
.                                                                                                                                    (𝑆1.6) 

Next, expressing the reaction rate (Eq. S1.3) in terms of the average concentration leads to   

𝐽𝑟 = 𝜆𝑒𝑓𝑓𝑐,                                                                                                                                                 (𝑆1.7) 

where the effective reaction rate coefficient (Budek & Szymczak, 2012; Noiriel & Deng, 

2018), which incorporates both kinetics and transport effects on reaction rate, is 

𝜆𝑒𝑓𝑓 =
𝜆

1 + 𝑔(𝑟)
,                                                                                                                                     (𝑆1.8) 

and  

𝑔(𝑟) =
𝜆

ℎ(𝑟)
.                                                                                                                                             (𝑆1.9) 

The function g(r) is the ratio between the characteristic time-scales of transport td=r/h and 

reaction, tr=r/λ, and accounts for the extent by which dissolution rate within a single 

channel is hindered by transport: for g<<1 dissolution rate is limited by kinetics, whereas 

for g>>1 the reaction is transport-controlled.  

Since dissolution in the channels is dominated by advection along the axial direction ξ 

(Pe>>1), we obtain 1-D advection-reaction reactant transport equation  

𝑞
𝑑𝑐

𝑑𝜉
= −2𝜋𝑟𝜆𝑒𝑓𝑓𝑐.                                                                                                                               (𝑆1.10) 

Note that in the above, indices associated with individual channels and nodes (cf. Eqs. S1.1 

& S1.2) were omitted for clarity of presentation. For a given reactant concentration at the 

channel inlet, c(ξ=0)=cin, Eq. S1.10 can be solved for the concentration at the channel 

outlet, c(ξ=l)=cout, 

𝑐𝑜𝑢𝑡 = 𝑐𝑖𝑛𝑒
−

𝑠𝜆𝑒𝑓𝑓

𝑞 ,                                                                                                                                 (𝑆1.11) 
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where s=2πrl is the channel surface area. Lastly, the concentration of solute at the nodes 

is calculated from channel outlet concentrations, cout, and solute balance, assuming 

complete mixing at the channel intersections (Varloteaux et al., 2013; Kang et al., 2019). 

Given the reaction rate (Eq. S1.7), the erosion rate of the channels can be calculated based 

on the mass conservation 

𝜕𝑟

𝜕𝑡
=

𝜆𝑒𝑓𝑓

𝜈𝑐𝑠𝑜𝑙
𝑐,                                                                                                                                           (𝑆1.12) 

where csol is the molar concentration of soluble solid material and ν accounts for the 

stoichiometry of the reaction (Detwiler and Rajaram, 2007; Algive et al., 2010). This 

provides the total volume of mineral dissolved from a single channel surface during a time-

step Δt, 

∆𝑉𝑑𝑖𝑠𝑠 =
2𝜋𝑟∆𝑡𝜆𝑒𝑓𝑓

𝜈𝑐𝑠𝑜𝑙
∫ 𝑐(𝑥)

𝑙

0

𝑑𝑥 = ∆𝑡𝑞
𝑐𝑖𝑛

𝜈𝑐𝑠𝑜𝑙
(1 − 𝑒

−
𝑠𝜆𝑒𝑓𝑓

𝑞 ).                                                    (𝑆1.13) 

In order to keep the model tractable, we assume that each cylindrical channel dissolves 

uniformly along its length. The corresponding change in channel radius is then 

𝛥𝑟 =
∆𝑉𝑑𝑖𝑠𝑠

𝑠
=

𝛥𝑡𝑞

𝑠

𝑐𝑖𝑛

𝜈𝑐𝑠𝑜𝑙
(1 − 𝑒

−
𝑠𝜆𝑒𝑓𝑓

𝑞 ).                                                                                        (𝑆1.14) 

The model accounts for a finite amount of soluble solid as follows. If locally—between 

adjacent channels cells—solid is fully dissolved, channel merging is implemented by 

increasing the associated hydraulic conductivity (Roded et al., 2018). 

1.3   Dimensionless groups characterizing the network evolution 

As observed from Eq. S1.11, the decay of reactant concentration between channel inlet 

and outlet is determined by a function 

𝑓(𝑟, 𝑞) =
𝑠𝜆/𝑞

1 + 𝑔(𝑟)
=

𝑠𝜆𝑒𝑓𝑓

𝑞
,                                                                                                             (𝑆1.15) 

which comprises the ratio between the reactive and advective transport rates. The relative 

change in radius can then be expressed in terms of the functions f and g (using Eq. S1.14) 

as 

𝛥𝑟

𝑟0
=

𝛥𝑡̂𝑐𝑖𝑛/𝑐0

(1 + 𝑔)𝑓
(1 − 𝑒−𝑓),                                                                                                                  (𝑆1.16) 
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where r0 is the initial average channel radius and t ̂is the dimensionless time, defined as 

𝑡̂ =
𝜆𝑡𝛾

𝑟0
.                                                                                                                                                   (𝑆1.17) 

Here γ=c0/csolν is the acid capacity number, defined as the ratio between the number of 

molecules in a unit volume of a mineral to the number of molecules of the reactant in a 

unit volume of injected fluid. The dissolution rate of the pores is a function of f and g, with 

dependence on time arising through the radius, r, and flow rate, q. To characterize 

transport and reaction conditions, we use initial averaged values of f and g functions for 

the longitudinal pores aligned in the main flow direction, x. This leads to the following 

definition of the dimensionless Damkӧhler number: 

𝐷𝑎 =
𝑠0𝜆

𝑞̅(1 + 𝐺)
,                                                                                                                                    (𝑆1.18) 

and 

𝐺 =
𝜆2𝑟0

𝐷𝑆ℎ
,                                                                                                                                               (𝑆1.19) 

where s0 and q̅ are the average surface area and inlet flow rate in longitudinal pores. Note 

that the Péclet number does not appear in these equations as the diffusive effects in the 

axial direction are neglected (Pe>>1). 

2   Initial and boundary conditions 

We consider the inflow of reactive fluid of constant total volumetric flow rate, Q, and 

reactant concentration, c0, from network inlet face, x=0, to outlet face, x=Lx, and impose 

the pressure at the boundaries   

𝑝(𝑥 = 0, 𝑦) = 𝑝𝑖𝑛       𝑎𝑛𝑑       𝑝(𝑥 = 𝐿𝑥 , 𝑦) = 0.                                                                           (𝑆1.20) 

As permeability increases in the course of dissolution, to maintain the flow rate, Q, fixed, 

the pressure at the inlet nodes is adjusted at every time-step. Along with the x 

(longitudinal) direction, periodic boundary conditions for flow and transport are set, and 

concentration at the outlet nodes is calculated from solute mass conservation (Eq. S1.11; 

free-flow boundary).  
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Text S2. Dissolution of a Fracture with Anisotropically-Correlated 

Roughness 

In this section, we explore the dissolution patterns in a single fracture with an anisotropy 

introduced by imposing anisotropic spatial correlation lengths of the initial aperture. This 

is a fundamentally different way of introducing the anisotropy in a dissolving system from 

that presented in the main text. This difference allows us to examine the sensitivity of our 

results to the details of the anisotropy model and to test the limitations of the regular pore 

network model (PNM) in studying wormholing in anisotropic media.  

 

Figure S2. Dissolution patterns in single fracture with anisotropically-correlated aperture. 

The red color map represents the aperture in the fracture with the correlation lengths (a) 

Λy/Λx=10, (b) Λy/Λx=1, (c) Λy/Λx=0.1. The system size is 16384b0x16384b0, where b0 is an initial 

average aperture. Initial roughness is R=0.1 (Eq. S2.4). The Damköhler number is equal to 

Da=λ/v̅=1 and the Peclet number Pe=v̅b0/D=100. 

The model equations of fracture dissolution are based on “depth-averaged” model 

proposed by Hanna and Rajaram (1998) (see also Detwiler and Rajaram, 2007; Rajaram et 

al., 2009; Szymczak and Ladd, 2012), in which the fluid velocity and reactant concentration 

are averaged over the fracture aperture. The depth-integrated fluid flux is calculated based 

on the Reynolds approximation, whereas the reactant concentration is obtained by solving 

a depth-averaged advection-diffusion-reaction equation. The details of the particular 

implementation of this model used in the present study can be found in Upadhyay et al. 

(2015). 

The initial aperture field of the fracture is created by means of the spectral synthesis 

method (Saupe, 1988), in which one uses a power spectral density of a fracture as a starting 

point, and then generates the spatially periodic random field with the prescribed spectral 

density using inverse Fourier transform.  
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We use a lognormal distribution, 

𝑙𝑛(𝑏(𝑥, 𝑦)) = 𝑊 + 𝑢(𝑥, 𝑦),                                                                                                                   (𝑆2.1) 

where u(x,y) is a zero-mean normally distributed random-variable covariance function, 

u(x,y), of the form (Hanna an Rajaram, 1998)  

〈𝑢(𝑥, 𝑦)𝑢(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦)〉 = 𝜎2𝑒𝑥𝑝 [−√(
𝛿𝑥

𝛬𝑥
)

2
+ (

𝛿𝑦

𝛬𝑦
)

2

].                                                         (𝑆2.2)   

where Λx and Λy are the spatial correlation lengths along x and y directions. The mean 

aperture of such a field is given by  

〈𝑏(𝑥, 𝑦)〉 = 𝑒𝑊+𝜎2/2,                                                                                                                               (𝑆2.3) 

whereas the mean relative roughness reads 

𝑅 =
√〈𝑏2〉 − 〈𝑏〉2

〈𝑏〉
= √𝑒𝜎2−1.                                                                                                               (𝑆2.4) 

The results in Fig. S2 demonstrate that decreasing transverse correlation length, Λy, leads 

to a decrease in wormhole spacing, Ls, and an increase in wormhole density, n. The stronger 

wormhole competition for high transverse correlation length is attributed to the formation 

of stretched high conductivity regions and strong interaction through the pressure field. 

This is in full agreement with the PNM results presented in this work, e.g., the 

corresponding decrease in wormhole spacing and the increase in wormhole density 

obtained in the network system as anisotropy degree, S, is reduced. 

Further, in accordance with our findings from the PNM, for large transverse correlation 

length (corresponding to large S) substantial wormhole widening downstream is observed 

(Fig. S2a). This is attributed to the increased flow in the active wormholes as dissolution 

progresses and as the spacing between them increases. Due to large pressure gradients, 

the flow spreads sideways from the wormhole tip, leading to widening downstream. The 

results also demonstrate the tendency to develop side branches for low transverse 

conductivity (relatively small Λy in the fracture model and small S in the network model), 

where thinner wormholes are obtained (Fig. S2c).  

In summary, the qualitative agreement between the results of the PNM and the single 

fracture model with respect to wormhole density and wormhole shapes demonstrates that 

the main results and conclusions of this study are insensitive to the details of the pore-

scale anisotropy model, and are well captured by the simple representation of a porous 

medium via the PNM. 


