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The discussers wish to point out that some of the key results in this
paper have been published previously (Lichtner 1988; Szymczak
and Ladd 2014; Ladd and Szymczak 2017). In those papers, the
governing Eqs. (16), (20), (21) were derived by asymptotic analysis
in the limit that ga Eq. (2) is small. In particular, these papers show
that there can be a diffuse interface between dissolved and undis-
solved materials, with a nonzero concentration downstream of the
reaction front (Sherwood 1987; Hinch and Bhatt 1990). On the
other hand, the authors and colleagues have energetically proposed
an alternative scenario (Zhao et al. 2008, 2010, 2013, 2014, 2015,
2018; Zhao 2014) where the downstream concentration vanishes
and the interface is sharp. In the paper under discussion, the same
equations, which were heavily (but incorrectly) criticized recently
(Zhao et al. 2018), are reintroduced without comment or citations to
closely related work.

The connection between Eq. (21) and prior work, for example
Eq. (30) in Ladd and Szymczak (2017), can be made explicit by a
different scaling of the dimensionless quantities (Ladd and
Szymczak 2017)

~u ¼ u
u0

; ~x ¼ xu0
Df

where u0 is the fluid velocity in the undissolved matrix. These
dimensionless variables can be connected to the ones in the paper
under discussion �u and �x by the parameter Zh [Eq. (28)]

~u ¼ Zh �u; ~x ¼ Zh�1 �x

Substituting for �u andr ¼ ∂=∂�x in Eq. (21) we recover Eq. (30)
of Ladd and Szymczak (2017), noting that the parameter H ¼
Df ks0=u20 ¼ Zh�2. The scalings are equivalent for finite Zh, but
the fast-reaction (or thin-front) limit of Eq. (21) cannot be taken
directly because the reaction rate appears in the length scale. By
contrast, in the scaling from Szymczak and Ladd (2014) and Ladd
and Szymczak (2017) the dimensionless velocity is always of order
unity and the thin-front limit can be found by takingH ! 1 (Ladd
and Szymczak 2017).

Finally, we note that the porosity and concentration profiles for a
steadily propagating front were derived in Szymczak and Ladd
(2013, 2014) under the same conditions of small changes in porosity.
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