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 A B S T R A C T

Dissolution in porous media and fractured rocks alters both the chemical composition of the fluid and the 
physical properties of the solid. Depending on system conditions, reactive flow may enlarge pores uniformly, 
widen pre-existing channels, or trigger instabilities that form wormholes. The resulting pattern reflects 
feedbacks among advection, diffusion, surface reaction, and the initial heterogeneity of the medium. Porous 
and fractured media can exhibit distinct characteristics — for example, the presence of large fractures can 
significantly alter the network topology and overall connectivity of the system. We quantify these differences 
with three network models — a regular pore network, a disordered pore network, and a discrete fracture 
network — evaluated with a unified metric: the flow focusing profile. This metric effectively captures evolution 
of flow paths across all systems: it reveals a focusing front that propagates from the inlet in the wormholing 
regime, a system-wide decrease in focusing during uniform dissolution, and the progressive enlargement of 
pre-existing flow paths in the channeling regime. The metric shows that uniform dissolution cannot eliminate 
heterogeneity resulting from the network topology. This structural heterogeneity — rather than just pore-
diameter or fracture-aperture variance — sets a fundamental limit on flow homogenization and must be 
accounted for when upscaling dissolution kinetics from pore or fracture scale to the reservoir level.
. Introduction

The flow of reactive fluids through rock induces significant changes 
n both the fluid composition and the properties of the solid matrix, 
hereby affecting the transport dynamics within the system. Under-
tanding these processes is essential for a wide range of geological 
nd environmental applications. For instance, the safe disposal of high-
evel radioactive waste depends on the ability to predict the dominant 
odes of transport in the reservoir.1,2 Likewise, assessing contami-
ant migration requires understanding how flow is focused, because 
esidence time determines whether a pollutant can be neutralized.3–5
n both contexts, transport is tightly coupled to the evolving pore 
tructure: reactive fluid remodels the medium and creates preferential 
aths that ultimately control system behavior.6–8 In the context of CO2
equestration, understanding both micro- and macro-scale behavior is 
ritical for process optimization.9–13 Predicting the evolution of flow 
aths enables the avoidance of clogging and maximization of mineral 

I This article is part of a Special issue entitled: ‘CouFrac 2024’ published in International Journal of Rock Mechanics and Mining Sciences.
∗ Corresponding authors.
E-mail addresses: t.szawello@uw.edu.pl (T. Szawełło), piotrek@fuw.edu.pl (P. Szymczak).

replacement.14 It is therefore evident that elucidating the coupling 
between flow, transport, and the evolving properties of the reservoir 
is essential to explain the diversity of structures that emerge from 
dissolution.15–18

A wide body of experimental and numerical work has quantified 
how dissolution patterns depend on the relative time scales of advec-
tion, diffusion, and reaction. In porous media, dissolution experiments 
have investigated the pore scale behavior19–21 and patterns emerging 
at the core scale.17,18,22–26 Their findings have been reproduced and 
extended by multi-scale simulations, from direct numerical models to 
continuum codes.17,19,27–32 Four principal dissolution regimes are now 
recognized: compact, wormholing, channeling, and uniform. In com-
pact (face) dissolution, the reactant is exhausted almost immediately 
after entering the sample, and a reaction front advances uniformly 
across its width.17,33 When wormholing occurs, advective instabilities 
localize flow into a few highly conductive channels that propagate from 
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inlet to outlet.28,34,35 In uniform dissolution, the reactant penetrates 
the full length of the system, enlarging pores homogeneously.18,36
Finally, in the channeling regime, initially existing flow paths are uni-
formly enlarged along their entire length.32,37 Because the transitions 
between these regimes are subtle, distinguishing between them requires 
quantitative analysis of the system evolution.38,39

Analogous dissolution phenomena also occur in fractured media, 
where high-permeability discontinuities channel most of the flow, 
distinguishing them from conventional porous media. Studies of disso-
lution in single-fracture systems — using both numerical models and 
flow-through experiments — have extensively documented aperture 
growth and channel development.23,40–45 Similarly to porous media, 
studies of two-dimensional fracture planes have revealed compact, 
wormhole, and uniform dissolution regimes, each governed by the 
interplay of flow, transport, and chemical reactions.28,46,47 Although 
the coupled flow–transport–reaction equations can be solved directly 
for idealized one- or two-dimensional fractures, doing so for natural 
systems with thousands of intersecting fractures — such as karst 
conduit networks — remains computationally formidable. To address 
this challenge, researchers employ a hierarchy of different representa-
tions: two-dimensional grids of intersecting fractures,41,48,49 fully three-
dimensional networks with spatially variable apertures,50–52 and
stochastic discrete fracture network (DFN) models.53,54 DFNs are at-
tractive because they incorporate field-derived statistics of fracture 
aperture, length, and orientation, bridging single-fracture physics and 
network-scale heterogeneity while remaining computationally tractable 
for reactive transport simulations.55

Porous media and fractured media exhibit fundamentally different 
physical structures and flow behaviors — fractures, for instance, can 
generate long-range, highly connected flow paths — yet the impact 
of these distinct forms of heterogeneity on dissolution dynamics re-
mains poorly understood and has not been systematically compared. 
Early work on variable-aperture fractures showed that the volume 
of reactant required for breakthrough varies non-monotonically with 
the magnitude of the initial aperture variation; a critical level of 
heterogeneity minimizes the breakthrough volume.46,56 The same trend 
was reproduced in numerical analysis of porous media that imposed 
spatially correlated porosity fields.57–59 Follow-up studies examined 
the role of heterogeneity length scale59 and suggested that the strong 
heterogeneity–wormholing link observed in small domains diminishes 
in larger systems.60 There is, however, agreement that heterogene-
ity controls competition among channels and promotes tip branching 
during wormhole growth.56,60

The interplay between heterogeneity and evolving dissolution pat-
terns strongly affects the hydraulic properties of a medium. Pore 
network simulations show that uniform dissolution can eliminate all 
variability in pore diameters,36,61 whereas dissolving an initially ho-
mogeneous medium in the wormholing regime can instead gener-
ate pronounced heterogeneity; these opposing outcomes, in turn, re-
move or create anomalous transport behavior.6,61,62 Heterogeneity in 
porous media has also been shown to affect the onset of preferential 
flow,26,37,63 permeability evolution,64 mixing,65 and even the overall 
dissolution regime.32,39,66 These results show that significant changes 
in system dynamics can arise solely from adjusting pore-diameter 
variability. Beyond pore-size variability, heterogeneity also stems from 
the topology and geometry of pore or fracture networks — specifi-
cally, differences in connectivity and in segment-length distributions. 
This structural heterogeneity also shapes system evolution, influencing 
processes ranging from karst genesis67 to mineral carbonation.68

In this paper, we utilize the flow focusing metric introduced by 
Szawełło et al.39 to quantify how different forms of heterogeneity 
couple with dissolution across a range of flow and reaction condi-
tions. We apply the metric to three network models: a regular pore 
network with variance in pore diameters, a disordered pore network 
with variance in pore diameters and lengths, and a discrete fracture 
network with variance in fracture apertures, lengths, and connectivity. 
2 
We distinguish three heterogeneity types: conduit-scale (pore diameter 
or fracture aperture), segment-scale (length), and network-scale (con-
nectivity). By tracking each scale through time, we show that initial 
heterogeneity shapes the evolution of flow paths and ultimately limits 
the degree to which dissolution can homogenize the system. Our focus 
is on the impact of length and connectivity, which together form a 
quenched disorder in the network — that is, a structural heterogeneity 
that dissolution can modify only marginally. Initially, this disorder 
plays a smaller role than the widely studied heterogeneity in conduit 
width: pore diameters enter the conductance in the fourth power and 
fracture apertures in the third, whereas lengths enter only linearly. 
As homogenization progresses and variation in conduit widths dimin-
ishes, however, segment- and network-scale heterogeneity become the 
decisive factors in flow-path selection. This behavior is key to under-
standing the differing responses of porous media and fracture networks 
to dissolution.

2. Reactive transport in network models

We quantitatively describe the dissolution regimes and analyze 
their transport properties by utilizing network models. We use a capil-
lary pore network model for the dissolving porous medium17,31 and 
a graph representation of a discrete fracture network for dissolving 
fractures.53,54 We adjust the initial properties, that is, connectivity, con-
duit lengths, and distributions of pore diameters and fracture apertures, 
to exhibit the differences in dissolution arising from the structure of the 
medium.

2.1. Network generation

We investigate dissolution dynamics in three contrasting network 
geometries.

1. Regular pore network: a diamond lattice in which every edge 
has identical length; variability arises solely from the log-normal 
distribution of pore diameters (conduit-scale heterogeneity).

2. Disordered pore network: a Delaunay network whose nodes are 
randomly positioned, introducing heterogeneity in pore lengths 
and intersection angles while retaining the same diameter distri-
bution as the regular lattice (conduit- and segment-scale hetero-
geneity).

3. Discrete fracture network: a semi-generic model loosely based 
on the fractured carbonate-hosted Pietrasecca Fault in the cen-
tral Apennines, Italy69; node locations, fracture intensities, and 
aperture statistics reproduce the multiscale heterogeneity of nat-
ural carbonate fractures (conduit-, segment-, and network-scale 
heterogeneity).

Fig.  1 shows a representative example of each network.
For every geometry, we generate 30 statistically equivalent realiza-

tions. In the two pore network cases, we use a domain of side length 
𝐿 discretized into 100 × 100 nodes. Periodic boundary conditions are 
applied in the direction perpendicular to the imposed pressure gradient: 
pores on one side of the lattice are connected to their counterparts on 
the opposite side, which removes artificial side-wall effects.

For the regular pore network, each realization shares the same con-
nectivity, but draws pore diameters from an independent log-normal 
distribution with mean 𝑑0, variance 𝑑20 (that is, the coefficient of 
variation is ∼ 1), and correlation length of 0.1𝐿; the sampling procedure 
follows Szawełło et al.39 and Upadhyay et al.60 The value of 𝑑0 can 
range from micrometers to millimeters, depending on the mineral and 
rock type; because the model is formulated in dimensionless variables, 
its exact value is not prescribed. The formulation is, however, most ap-
propriate for long, slender pores, so that dissolution does not drastically 
alter the network topology. In the regular network, all pore lengths are 
set equal to a reference length 𝑙 .
0
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Fig. 1. (a) Example regular pore network realization (diamond lattice); edge width is proportional to the initial pore diameter. (b) Example disordered pore 
network realization (Delaunay lattice); edge width again reflects the initial pore diameter. (c) Example discrete fracture network; shades of gray denote fracture 
families. (d) Graph representation of the same DFN, projected into two dimensions via principal component analysis. Edge width is kept constant; darker areas 
indicate a higher local density of fracture segments.
For the disordered pore network, nodes are randomly distributed 
in the domain and connected using a Delaunay triangulation; node 
positions differ between realizations. To impose periodic boundary 
conditions, we tile the original domain with its translated copies and 
construct a Delaunay triangulation on this enlarged set of points. From 
the resulting edges, we keep only those whose midpoints lie inside 
the original domain. For edges that cross a side boundary, we connect 
them to the matching points on the opposite side, creating periodic 
links. Pore diameters are assigned from the same distributions as for the 
regular network, while pore lengths are given by the Euclidean distance 
between connected nodes; by construction, the average pore length is 
equal to 𝑙0.

The DFN domain (25 m × 10 m × 10 m) is populated with three 
fracture families that differ in orientation, length distribution, aperture 
statistics, and intensity; full generation parameters are listed in Ap-
pendix. Importantly, each fracture family has a set aperture, constant 
throughout the realizations, but the proportions between families vary. 
We convert each DFN to a pipe-network graph with the algorithm of 
Hyman et al.70 preserving fracture intersections as graph nodes.

In every model, the nodes on one boundary serve as the inlet, while 
those on the opposite boundary form the outlet.

2.2. Reactive transport

Our reactive transport model follows the derivations of Budek and
Szymczak31 for pore networks and Szymczak and Ladd71 for single 
3 
fractures. In the pore network representations (Fig.  1a, b), each edge 
corresponds to a cylindrical pore of diameter 𝑑 and length 𝑙; in the 
discrete fracture network (Fig.  1c, d), each edge represents a fracture 
segment of aperture 𝑏 and length 𝑙 spanning a fracture of width 𝑤. 
Volumetric flow 𝑞 in each channel obeys 

𝑞 = −𝐶
𝜇
∇𝑃 , (1)

where 𝐶 is the hydraulic conductance, 𝑃  the pressure, and 𝜇 the 
fluid viscosity. For a cylindrical pore 𝐶 = 𝜋𝑑4∕128 (Hagen–Poiseuille 
equation); for a fracture segment 𝐶 = 𝑤𝑏3∕12 (Reynolds equation). At 
each intersection 𝑖, we impose mass conservation in the form of the 
nodal continuity condition 
∑

𝑗
𝑞𝑖𝑗 = 0, (2)

where the sum is over all edges 𝑖𝑗 incident on node 𝑖. Across the 
network, a constant total volumetric flow rate 𝑄 is enforced by setting 
𝑃 = 𝑃0 at the inlet nodes and 𝑃 = 0 at the outlet, then rescaling 𝑃0 at 
every time step to maintain 𝑄.

We consider dissolution of a porous medium or a fracture network 
by an aqueous reactant of inlet concentration 𝑐in, injected at the inlet 
nodes. We assume a single-component dissolution reaction with a linear 
rate law 
𝑅(𝑐w) = 𝑘𝑐w, (3)

where 𝑘 is the surface reaction rate and 𝑐w is the reactant concentration 
at the pore/fracture wall. This rate law is a standard approximation 
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for far-from-equilibrium reactions, such as dissolution by concentrated 
acid; in that case 𝑐w corresponds to the concentration of H+ ions.17 An 
equivalent formulation appears in the karst literature, where limestone 
dissolution is often treated as first order in undersaturation, which 
maps directly onto our driving concentration variable.40

It is convenient to express the wall concentration in terms of the 
bulk concentration 𝑐. The rate law in Eq. (3) can then be written 
as 𝑅(𝑐) = 𝑘eff(𝑑h)𝑐, where 𝑘eff(𝑑h) is an effective reaction rate that 
incorporates the hindering effects of transverse diffusion: 

𝑘eff(𝑑h) =
𝑘

1 + 𝑘𝑑h
𝐷Sh

, (4)

where 𝐷 is the diffusion coefficient, Sh is the Sherwood number,72–74
and 𝑑h is the hydraulic diameter, equal to 𝑑 for pores and 2𝑏 for 
fractures. The Sherwood number, Sh, depends on reaction rate at 
mineral surfaces, but the variation is relatively small, for porous media 
limited by the values Sh = 3.656 and Sh = 4.364 (we approximate it by 
a constant value, Sh = 4), while in fractured media, from Sh = 7.54 to 
Sh = 8.24 (we approximate it by Sh = 8).

Along each conduit we solve the one-dimensional advection–
reaction equation for the bulk concentration 

𝑞 𝑑𝑐
𝑑𝑥

= −𝑠𝑘eff(𝑑h)𝑐, (5)

where 𝑥 is the coordinate along the channel length; the reactive surface 
is 𝑠 = 𝜋𝑑 for pores and 𝑠 = 2𝑤 for fractures.

While in Eq. (5) the effective reaction rate 𝑘eff(𝑑h) incorporates the 
effects of transverse diffusion, axial diffusion (along the flow direction) 
is neglected. In general, this approximation is justified when the Péclet 
number, which measures the relative importance of advection and dif-
fusion, is larger than one. The definition of the Péclet number requires 
a choice of length scale; for reactive infiltration this scale is set by the 
penetration length of the reactant, that is, the characteristic distance it 
can travel into the medium before being consumed. If, on this length 
scale, advection dominates over axial diffusion, then axial diffusion can 
be safely neglected.

At each intersection 𝑖, we assume perfect mixing of the concentra-
tion, 

𝑐𝑖 =

∑

𝑗′ 𝑞𝑖𝑗𝑐
out
𝑖𝑗

∑

𝑗′ 𝑞𝑖𝑗
, (6)

where the sum runs over all edges with flow directed into node 𝑖 and 
𝑐out𝑖𝑗  is the outlet concentration at the end of those edges. The node 
concentration 𝑐𝑖 is then used as the inlet concentration for all edges 
with flow directed out of node 𝑖.

Mineral dissolution enlarges each conduit according to 

𝜕𝑡𝑑 =
2𝑘eff(𝑑)
𝜈𝑐sol

𝑐, 𝜕𝑡𝑏 =
2𝑘eff(2𝑏)
𝜈𝑐sol

𝑐, (7)

where 𝑐sol is the molar concentration of soluble mineral in the solid and 
𝜈 is the stoichiometric coefficient of the reaction. To keep the model 
tractable, in each time step we compute the total volume of mineral 
dissolved along the conduit and increase its diameter (or aperture) 
uniformly so that the conduit volume increases by exactly that amount, 
thereby preserving mass conservation.

The model assumes a separation of time scales between transport 
relaxation and mineral dissolution: for each geometry we solve the 
steady-state flow and transport problem (Eq. (5)) and then update 𝑑 or 
𝑏 using the above law. This quasi-steady approximation is appropriate 
when the acid capacity number 𝛾 = 𝑐in∕(𝜈𝑐sol), which measures the 
volume of solid dissolved by a unit volume of reactant, is much smaller 
than one. This condition is satisfied in the great majority of geolog-
ical and industrial reactive transport processes. There are, however, 
systems where this approximation can break down, for example in the 
dissolution of halite or caramel.75

System evolution is governed by two dimensionless numbers: the 
effective Damköhler number, Da , measuring the ratio of advective to 
eff

4 
reactive time scales, and the reaction–diffusion parameter G, charac-
terizing the hindering effects related to diffusion across the channel.

Daeff =
𝑠0𝑘eff(𝑑h0 )𝐿

𝑄
, G =

𝑘𝑑h0
𝐷Sh , (8)

where 𝑠0 and 𝑑h0  are the initial average reactive surface and hydraulic 
diameter, respectively.

The two dimensionless groups we employ — the effective Damköh-
ler number Daeff  and the transport ratio G — quantify the competition 
of advective, diffusive, and reactive time scales in both porous and 
fractured media. We define them with the total volumetric flow rate 𝑄
rather than a mean velocity, because strong initial flow focusing in 
discrete fracture networks (DFNs) makes any ‘‘average’’ velocity unrep-
resentative. This volumetric definition also remains consistent for our 
pore network simulations, which share identical width and an equal 
number of inlet pores, so 𝑄 scales directly with the mean pore velocity.

A direct, one-to-one comparison of Daeff  between the two systems 
is nevertheless impossible. In our models, a cross-section perpendicular 
to the main flow contains only 200 conduits in the pore networks 
but roughly 5000 fracture elements in the DFNs; the vastly different 
hydraulic cross-sections imply different residence-time distributions 
even at the same global flow rate 𝑄. Consequently, we treat Daeff  as a 
system-specific control parameter, scanning it separately for pore and 
fracture networks and then comparing the resulting dissolution regimes 
rather than matching absolute values.

Simulation time is expressed as a dimensionless dissolved volume, 

𝑇 =
𝑉diss
𝑉 p0

, (9)

where 𝑉 p0  is the initial total pore (or fracture) volume and 𝑉diss is the 
cumulative volume of solid that has dissolved.

The above model is implemented in our in-house network simula-
tion code, written in Python, as described in Szawełło,76 where the 
source code and input files are openly available.

2.3. Model assumptions and limitations

The model relies on several simplifying assumptions and approx-
imations, which we summarize here for clarity. First, we represent 
the porous medium as a network of cylindrical pipes and the frac-
tured medium as a network of rectangular fracture segments. Both 
the geometry of each conduit and the intersections (which we treat 
as volumeless nodes) are simplified in this way. This idealization is 
standard in pore network and DFN models and is what allows us to 
extend modeling beyond the scale of individual pores while retaining 
analytical expressions for flow and transport within each conduit.

A second approximation concerns how dissolution modifies the 
conduit geometry. Because the reactant concentration decays along 
each conduit, the local dissolution rate is largest near the upstream end 
and smallest near the downstream end. In our model, we compute the 
total volume of mineral dissolved along the conduit and increase its 
diameter (or aperture) uniformly. This update is most accurate when 
the reactant penetration length, 

𝑙p = 𝐿
Daeff

, (10)

is large compared with the average conduit length, 𝑙p ≫ 𝑙0. The same 
scale enters the treatment of axial diffusion: neglecting diffusion along 
the flow direction is justified when the Péclet number based on 𝑙p is 
greater than one, so that advection dominates on the scale over which 
the reactant is consumed. This restriction means that the model is 
not intended to describe strongly diffusion-dominated regimes such as 
compact dissolution.

Additional assumptions are made regarding transport and chemical 
reactions. We assume a separation of time scales between flow and 
transport relaxation and mineral dissolution (acid capacity number 
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Fig. 2. Evolution of the three network types and the flow focusing profile in the wormholing regime. (a) Regular pore network (Daeff = 0.2, G = 5). (b) Disordered 
pore network (Daeff = 0.2, G = 5). (c) Discrete fracture network (Daeff = 0.02, G = 5) shown as a graph after a principal-component-analysis projection. In each 
case, edge width is proportional to the volumetric flow rate, with the same proportionality constant used for a given network type. For the DFN, only edges 
carrying more than 1% of the maximum flow rate in the system are plotted. In the flow focusing plots, the initial profile is shown by the black line, and profiles 
at later times (𝑇 = 1.0, 2.0, 5.0, and 10.0 for both pore networks; 𝑇 = 0.1, 0.2, 0.5, and 1.0 for the fracture network) are shown by colored lines.
𝛾 ≪ 1). We also assume perfect mixing of reactant at each intersection, 
which is a reasonable approximation for disordered networks but may 
overestimate mixing in simple regular lattices at high Péclet numbers, 
where streamline-based mixing models can be more appropriate.65
Finally, the chemical kinetics are represented by a single-component 
linear rate law. This is a common approximation across a range of 
systems, but care is needed when applying it to systems with multiple 
reactive species and strong buffering, where equilibrium reactions can 
substantially modify the fluid chemistry (for example by buffering the 
H+ concentration).

2.4. Flow focusing profile

The main tool that we use to determine the evolution of the system 
is the flow focusing profile.39 We segment the medium into cross 
sections along the main flow direction, 𝑥, and in each of them we 
calculate the flow focusing index, 𝑓50%,38 according to 

𝑓50% =
𝑛X∕2 − 𝑛50%

𝑛X∕2
, (11)

where 𝑛50% is the smallest number of conduits carrying 50% of the total 
flow through a given cross section of the medium, and 𝑛X is the total 
number of conduits in that cross section. Calculating the index, 𝑓50%, for 
cross sections along the entire medium, we obtain a profile measuring 
flow focusing as a function of distance from the inlet at a given time.
5 
3. Results

Each network type exhibits distinct dissolution behavior due to 
differences in structural organization and type of heterogeneity. For 
the regular pore network, all conduits are of the same length, and only 
conduit-scale heterogeneity is present, in the form of the distribution of 
diameters. In the disordered pore network, apart from the conduit-scale 
heterogeneity, based on the same noise as in the regular network, there 
is also the segment-scale heterogeneity in the form of distribution of 
conduit lengths and intersection positions. While in the case of porous 
media, the conduit- and segment-scale heterogeneity can be of the 
same order of magnitude, their couplings with dissolution are different, 
with the latter much more persistent. Finally, in the discrete fracture 
network, the nodes, edges, and apertures are distributed to approximate 
a real fracture network, introducing heterogeneity across all scales. 
Fracture families with various apertures introduce the conduit-scale 
heterogeneity, variance in fracture lengths generates the segment-scale 
heterogeneity (which in fractures can be much larger than that in 
apertures), and finally connectivity within the structure creates hetero-
geneity on the scale of the entire network, as sometimes only a few 
fractures can span the entire domain.

We simulate the three systems, choosing the dimensionless param-
eters Daeff and G to explore the standard dissolution regimes: uniform 
dissolution, channeling, and wormholing. Fig.  2 presents the networks 
evolving in the wormholing regime, alongside the changes of the flow 
focusing profile. In pore networks, the dissolution regime becomes 
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Fig. 3. Evolution of the regular pore network and the flow focusing profile in three dissolution regimes: (a) uniform (Daeff = 0.002, G = 5), (b) channeling 
(Daeff = 0.02, G = 5), and (c) wormholing (Daeff = 0.2, G = 5). Edge width is proportional to the volumetric flow rate, with the same proportionality constant used 
in all panels. The plots show the initial flow focusing profile (black line) and profiles at times 𝑇 = 1.0, 2.0, 5.0, and 10.0 (colored lines). The frame color denotes 
the dissolution regime: green for uniform, red for channeling, and blue for wormholing.
apparent almost immediately through the emergence of one or a few 
dominant channels. In the DFN the pattern is subtler: flow is further 
concentrated along pre-existing high-conductivity paths, but a newly 
developed high-permeability flow path can still be discerned. In each 
case the dissolution dynamics are captured by the flow focusing profile, 
which appears as a front of increased focusing that advances from the 
inlet toward the outlet; this increase is less pronounced in the DFN 
because strong focusing already exists at 𝑇 = 0.0.

Because we define the profile in the same way for every network, it 
acts as a single quantitative metric for both porous and fractured media. 
Tracking its evolution in (Daeff, G) space lets us compare dissolution in 
DFNs with that in regular and disordered pore networks, exposing both 
shared regimes and geometry-specific differences.

3.1. Regular pore network

We simulate the regular pore network for Daeff ∈ {0.002, 0.02, 0.2}
and G ∈ {0.1, 1, 5}. The flow focusing profile is recorded at 𝑇 ∈
6 
{0.0, 1.0, 2.0, 5.0, 10.0}, giving a complete history of the dissolution pro-
cess. Fig.  3 presents the evolution of the network in the three dissolu-
tion regimes and Fig.  4 shows the profile evolution for each (Daeff,G)
pair: panel (a) displays the full range to reveal overall trends, whereas 
panel (b) focuses on the range of evolution of the profile, containing 
additional information on variability within the ensemble.

In the uniform regime (top rows of Fig.  4a, b), the flow focusing 
profile declines with time. The drop is steepest at high G: diffusion 
hindrance suppresses the growth of the widest channels, allowing 
narrower ones to dissolve faster so the network approaches complete 
homogeneity (profile values tend toward zero at G = 5, as shown 
in the top-right panels of Fig.  4a, b). At low G the values of the 
profile also decrease, but now because all channels enlarge at nearly the 
same rate, which reduces conductance contrasts between them. A small 
inlet–outlet asymmetry persists, indicating that the reactant penetration 
length — though large — is still finite relative to the system length.

In the channeling regime (middle rows of Fig.  4a, b), profile values 
increase in time along the entire system length. Initial main flow 
paths widen almost uniformly from inlet to outlet, although the region 
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Fig. 4. Evolution of the flow focusing profile for the regular pore network across the (Daeff, G) parameter space. (a) Mean profile value at successive time snapshots 
(solid lines). (b) Same data, with ensemble variability: the shaded band around each curve denotes the mean ± 1 standard deviation across all realizations. The 
plots show the initial flow focusing profile (black line) and profiles at times 𝑇 = 1.0, 2.0, 5.0, and 10.0 (colored lines). The frame color denotes the dissolution 
regime: green for uniform, red for channeling, and blue for wormholing.
near the inlet remains slightly more homogeneous, as more dissolution 
occurs there before the main flow path dominates the system. The effect 
of G is subtler. At low G the focusing weakens with depth, whereas 
at high G this decline nearly disappears, because diffusion hindrance 
allows more reactant to reach the deeper portions of the network. 
Conversely, at higher G the homogenization near the inlet is more 
pronounced, as dissolution in smaller channels is then faster. This inlet-
outlet asymmetry is clearly visible in the dissolution pattern in Fig. 
3b.

In the wormholing regime (bottom rows of Fig.  4a, b), a single 
highly conductive channel advances through the lattice, producing a 
sigmoidal profile: near-maximum values behind the tip and unchanged 
values ahead of it. The progress of the wormhole is faster for larger G 
— again, due to diffusion hindrance, more reactant is pushed toward 
the tip of the wormhole, instead of being used for widening the already 
existing parts of the channel.
7 
Fig.  4b shows the variability of the flow focusing profile within the 
ensemble. The data indicate that, although different network
realizations — which vary in their initial pore-diameter distributions 
— evolve at different rates, the variance becomes negligible by the end 
of the simulation. This convergence implies that the ultimate outcome 
— whether the degree of homogenization in the uniform regime or a 
characteristic level of channelization — does not depend on the specific 
initial diameter distribution.

3.2. Disordered pore network

The results of dissolution for the disordered pore network are 
depicted in Figs.  5 and 6. They are in agreement with our previous 
work.39 We run the same set of simulations as for the regular lattice, 
using identical dimensionless parameters. We utilize the same diameter 
distributions, yet the initial flow focusing index in the ensemble is 
higher (𝑓 ≈ 0.5 in Fig.  6 versus 0.4 in Fig.  4). This difference reflects 
50%
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Fig. 5. Evolution of the disordered pore network and the flow focusing profile in three dissolution regimes: (a) uniform (Daeff = 0.002, G = 5), (b) channeling 
(Daeff = 0.02, G = 5), and (c) wormholing (Daeff = 0.2, G = 5). Edge width is proportional to the volumetric flow rate, with the same proportionality constant used 
in all panels. The plots show the initial flow focusing profile (black line) and profiles at times 𝑇 = 1.0, 2.0, 5.0, and 10.0 (colored lines). The frame color denotes 
the dissolution regime: green for uniform, red for channeling, and blue for wormholing.
the additional segment-scale heterogeneity introduced by non-uniform 
pore lengths.

The dissolution patterns evolve at different rates in the disordered 
and regular pore networks, as shown in Figs.  3 and 5. In the channel-
ing and wormholing regimes, the disordered network advances more 
slowly: at the same dimensionless dissolved volume, the channels in 
the disordered network extend noticeably less than those in the regular 
lattice. In the uniform regime, however, the disordered lattice dissolves 
at a comparable rate — and, at high G, even faster — than the regular 
network.

Several factors contribute to the contrasting evolution of the two 
networks. Geometrically, the disordered lattice contains numerous 
edges perpendicular to the main pressure gradient. These cross-flow 
channels are nearly inactive in the uniform regime, where transverse 
pressure differences are negligible, but they start to carry substantial 
flow once wormholes form, because the wormhole tips impose strong 
lateral pressure gradients. This is increasing the reactant demand 
and slowing the growth. Second, pronounced aperture and length 
heterogeneity promotes branching, which further retards wormhole 
8 
advance.56,60 When heterogeneity becomes extreme, however, stronger 
flow focusing can compensate for the branching penalty and accelerate 
growth again.56 Because our disordered network displays significant 
heterogeneity at both conduit and segment scales, pinpointing its exact 
position on this spectrum — and how these competing effects balance 
— remains challenging.

The two networks differ not only in how quickly they evolve but 
also in how completely they can homogenize. At low Damköhler num-
bers (top rows of Fig.  6a, b), the disordered network still enters the 
uniform dissolution regime, yet the resulting homogenization is weaker 
than in the regular network. Structural heterogeneity — independent of 
diameter variations — persists, and even at high G the flow focusing in-
dex plateaus at 𝑓50% ≈ 0.25, as shown in the top-right panels of Fig.  6a, 
b. This saturation indicates an intrinsic limit to homogenization in the 
disordered medium. The snapshots in Fig.  5a change only marginally 
over time, confirming that much of the initial flow distribution is 
related to the disordered geometry of the network. This finding is cru-
cial for studies aiming at complete homogenization: although uniform 
dissolution can eliminate all diameter-based heterogeneity in regular 
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Fig. 6. Evolution of the flow focusing profile for the disordered pore network across the (Daeff, G) parameter space. (a) Mean profile value at successive time 
snapshots (solid lines). (b) Same data, with ensemble variability: the shaded band around each curve denotes the mean ± 1 standard deviation across all 
realizations. The plots show the initial flow focusing profile (black line) and profiles at times 𝑇 = 1.0, 2.0, 5.0, and 10.0 (colored lines). The frame color denotes 
the dissolution regime: green for uniform, red for channeling, and blue for wormholing.
lattices,36,61 it cannot remove heterogeneity rooted in the network 
topology. Because natural rocks are never perfectly regular — both 
pore diameters and lengths vary — results derived from regular pore 
networks cannot be generalized directly to real systems.

At intermediate Daeff (middle rows of Fig.  6a, b), the disordered 
network behaves differently from the regular lattice. The additional 
heterogeneity — especially the variation in pore lengths — makes it
harder for a single dominant flow path to form across the entire system. 
As shown in Fig.  5, preferential channels are present from the begin-
ning, but they are much less pronounced than in the regular network. 
This reflects the different roles of the two types of heterogeneity. The 
pore-diameter field is spatially correlated, so clusters of large pores tend 
to line up and create continuous low-resistance corridors; flow concen-
trates along these corridors and dissolution then sharpens them into 
channels. The pore-length distribution, by contrast, is uncorrelated and 
therefore acts against the formation of such system-spanning paths. As 
a result, the dissolution regime depends strongly on G, as demonstrated 
9 
by the behavior of the flow focusing profile in Fig.  6. At small G, the 
network displays the features of the wormholing regime: a sigmoidal 
profile and a dominant path that grows gradually from inlet to outlet. 
At higher G, the profile resembles that of the regular network, but 
with more initial homogenization. Because channel growth is slower, 
dissolution has more time to smooth out inlet-region heterogeneity 
before a single path takes over.

At high Daeff, both networks consistently develop wormholes and 
their growth accelerates with increasing G. The key difference lies in 
how strongly the wormholes compete. In the regular lattice, screening 
is stronger, so one wormhole soon outcompetes its neighbors and 
captures nearly the entire discharge. Once this conduit monopolizes 
the flow, the high velocity within it increases the reactant penetration 
length, broadening the transition zone in the flow focusing profile 
(bottom rows of Fig.  4a, b). In the disordered network, weaker screen-
ing allows several channels to share the flux; the dominant wormhole 
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Fig. 7. Evolution of the discrete fracture network and the flow focusing profile in three dissolution regimes: (a) uniform (Daeff = 0.0002, G = 5), (b) channeling 
(Daeff = 0.002, G = 5), and (c) wormholing (Daeff = 0.02, G = 5). The network is shown as a graph after a principal-component-analysis projection; only edges 
carrying more than 1% of the maximum flow rate in the system are plotted. Edge width is proportional to the volumetric flow rate, with the proportionality 
constant rescaled to maximize visibility but kept fixed within each regime. The plots show the initial flow focusing profile (black line) and profiles at times 
𝑇 = 0.1, 0.2, 0.5, and 1.0 (colored lines). The frame color denotes the dissolution regime: green for uniform, red for channeling, and blue for wormholing.
advances more slowly, and the focusing profile remains steeper (bottom 
rows of Fig.  6a, b).

The ensemble variability shown in Fig.  6b is of the same order of 
magnitude as in the regular network, but — because it now reflects 
spatially correlated diameter heterogeneity and the randomness of node 
positions — the profile is less smooth. How this variability evolves 
depends on the dissolution regime. In the uniform regime it decreases 
as conduit-scale heterogeneity is removed. In the channeling regime it 
first increases and then declines, indicating different evolution rates for 
individual realizations that eventually converge to a common outcome. 
In the wormholing regime variable growth rates are also evident; 
however, because the simulation ends before wormhole breakthrough, 
the expected late-time reduction in variability is not yet observed.

3.3. Discrete fracture network

Fig.  7 presents the evolution of the dissolving DFNs and Fig.  8 de-
picts the corresponding changes in the flow focusing profile across the 
parameter space. We perform the simulations for Daeff ∈
{0.0002, 0.002, 0.02} and G ∈ {0.1, 1, 5}, and capture data at 𝑇 ∈
{0.0, 0.1, 0.2, 0.5, 1.0}. The initial values of the flow focusing index are 
very high (𝑓50% ≈ 0.8 in Fig.  8), indicating that the network is strongly 
channelized even before any reaction occurs. Because the discrete 
fracture network has a much larger hydraulic cross-section than the 
pore lattices, the effective Damköhler numbers required to traverse the 
three dissolution regimes are shifted roughly one order of magnitude 
lower. After accounting for this shift, the expected progression — 
uniform dissolution, channeling, and finally wormholing — emerges 
unchanged.

As visible in the top rows of Fig.  8a, b, in the uniform regime the 
flow focusing profile shows a modest decrease, maximally to around 
𝑓50% ≈ 0.7 in the top-right panels of Fig.  8a, b, but the values 
remain high, showing that uniform aperture growth cannot eliminate 
heterogeneity rooted in fracture connectivity and path lengths, making 
complete homogenization unattainable in a DFN.

In the channeling regime (middle and middle-right panels of
Fig.  8a, b), the flow focusing profile rises only slightly with time, as 
expected for a network that is already strongly channelized. Its shape, 
however, evolves much like in porous media: the increase is nearly 
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uniform across the entire domain. In addition, for Daeff = 0.002 and 
G = 0.1, the DFN transitions to the wormholing regime, mirroring the 
behavior of the disordered pore network and further underscoring the 
influence of additional heterogeneity.

In the wormholing regime (middle-left panels and bottom rows of 
Fig.  8a, b), the flow focusing profile develops a transition zone, much 
like in porous media. A notable difference, however, is that a higher 
G slows wormhole advance — the opposite of the behavior seen in 
pore networks. At the same time, the flow focusing index no longer 
approaches its maximum when G is large. This indicates that diffu-
sion limitation becomes significant, restricting dissolution in the main 
channel. As a result, competition among flow paths weakens; smaller 
channels continue to carry a portion of the flux, thereby reducing the 
growth rate of the dominant path.

The variability in the flow focusing index (Fig.  8b) mirrors that 
of the disordered pore network, rising at first and then declining as 
dissolution proceeds. In the DFNs the wormholes ultimately reach the 
outlet, and, once breakthrough occurs, the profile exhibits the expected 
reduction in variability.

3.4. Homogenization by dissolution

The flow focusing data show that perfect homogenization is
unattainable in either disordered porous media or DFNs. To examine 
why, we compare the velocity distributions for all three network types. 
Specifically, we sample the initial velocity distribution, the distribution 
after uniform dissolution (final snapshots for Daeff = 0.002, G = 5 in 
Figs.  4 and 6, and Daeff = 0.0002, G = 5 in Fig.  8), and the distribution 
for an ideal network with perfectly uniform diameters and apertures.

Fig.  9 presents the comparison of these distributions. For the regular 
pore network, the initial histogram is broad because of diameter vari-
ability; after dissolution it narrows sharply and collapses to a single 
value in the uniform diameter limit. This behavior is consistent with 
other studies that use the regular pore network.36,61

In the disordered network the initial velocity histogram is broad, 
with a high-velocity tail generated by the largest pores. Uniform disso-
lution trims this tail by reducing the contrast between large and small 
pores. At the same time, very low velocities become more common: as 
heterogeneity diminishes, flow aligns with the main pressure gradient 
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Fig. 8. Evolution of the flow focusing profile for the discrete fracture network across the (Daeff, G) parameter space. (a) Mean profile value at successive 
time snapshots (solid lines). (b) Same data, with ensemble variability: the shaded band around each curve denotes the mean ± 1 standard deviation across all 
realizations. The plots show the initial flow focusing profile (black line) and profiles at times 𝑇 = 0.1, 0.2, 0.5, and 1.0 (colored lines). The frame color denotes 
the dissolution regime: green for uniform, red for channeling, and blue for wormholing.
and many pores oriented perpendicular to it carry negligible flux. 
Interestingly, the histogram after dissolution almost coincides with that 
of the uniform-diameter lattice with the same topology, confirming that 
the remaining heterogeneity — and thus the residual flow focusing — 
is rooted in network structure, not in diameter variance.

The DFN follows the same overall trend: the high-velocity tail 
shortens, and the number of low-velocity fractures increases. After 
dissolution the tail closely matches the uniform-aperture case, yet the 
low-velocity end still differs markedly. This mismatch likely results 
from the three fracture families in the structure of the DFN, which 
begin with distinct initial apertures. Dissolution broadens the aperture 
distribution of each family, but not enough for fractures from different 
families to overlap in large numbers. Forcing all apertures to a single 
initial value would eliminate this discrepancy — but at the cost of 
fundamentally altering the structure of the network.

Whether we look at the network after dissolution or at an idealized 
version with uniform diameters or apertures, the velocity distributions 
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are still far from the delta-like peak achieved by the regular pore lattice. 
All residual variance is therefore dictated by structural heterogeneity. 
Because that heterogeneity is greater in the DFN than in the disordered 
pore network, the lowest attainable flow focusing index is likewise 
higher. The principle is the same in every case: once the network ge-
ometry sets a structural limit, additional dissolution cannot homogenize 
the flow any further.

4. Conclusions

Dissolution reshapes both structure and flow in porous and fractured 
media — systems whose contrasting architectures and transport behav-
iors influence many geologic and engineering processes. To quantify 
these effects, we perform network-based simulations on three models: 
a regular pore network, a disordered pore network, and a discrete 
fracture network, spanning a wide range of flow and reaction condi-
tions. The results are quantified using the flow focusing profile. Every 
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Fig. 9. Velocity distributions for three network types: (a) regular pore network, (b) disordered pore network, and (c) discrete fracture network. Each panel shows 
three histograms: the initial distribution (black), the distribution after uniform dissolution (blue), and the distribution for the same ensemble but with uniform 
diameters or apertures (orange). Velocities are normalized by the ensemble-average velocity in each case.
dissolution regime presents distinct characteristics in each system. In 
the uniform regime, all networks are homogenized and flow focusing 
decreases across the entire domain. However, while the flow in the 
regular medium becomes completely uniform, the disordered medium 
retains a certain level of focusing, and the discrete fracture network 
remains highly heterogeneous, with only minimal redirection of flow 
into parts of the network beyond the main paths.

In the channeling regime, we observe an increase in flow focusing 
along the whole system, with slight inlet–outlet asymmetry in the 
regular medium and a much more pronounced asymmetry — with 
significant homogenization near the inlet — in the disordered medium. 
For the discrete fracture network, this increase is minimal, as the flow 
is highly channelized from the outset. In the wormholing regime, a 
front in the flow focusing profile progresses from the inlet, marking 
wormhole formation, but the speed of the wormhole and the sharpness 
of the front differ between the systems.

We focus our analyses on the interplay between heterogeneity and 
uniform dissolution. The three systems exhibit different types and 
degrees of heterogeneity, and each responds to dissolution in its own 
way. In the regular network, heterogeneity arises solely from the pore-
diameter distribution and is readily eliminated by uniform dissolution. 
In the disordered network and the DFN, additional structural hetero-
geneity persists: the lengths of individual paths and the connectivity 
between parts of the network remain unchanged. Uniform dissolution 
therefore removes only the heterogeneity associated with diameter or 
aperture variations, demonstrating that the inherent structure exerts 
strong control over dissolution dynamics.

These findings carry important implications for continuum-scale 
modeling. In our simulations, dissolution can eradicate heterogeneity 
in conduit diameters (or apertures) but cannot remove heterogeneity 
rooted in path lengths and network connectivity; as a result, flow never 
becomes fully uniform in the disordered lattice or in the DFN. Darcy-
scale finite-difference models, however, represent the medium only 
through spatially varying porosity or permeability fields. Because those 
fields evolve toward uniform values when diameters enlarge uniformly, 
such models would predict nearly complete flow homogenization under 
uniform dissolution — an outcome that, according to our network 
results, is unattainable in natural media where connectivity and length 
distributions persist. Capturing the true limits of homogenization will 
therefore require numerical approaches that retain at least some in-
formation on network topology, for example through higher-order 
upscaling techniques or hybrid continuum–network formulations.

Our work extends the application of the flow focusing profile from 
disordered pore networks39 to a broader class of systems, including reg-
ular networks and discrete fracture networks, and shows that conduit-, 
segment-, and network-scale heterogeneity each leave a distinct imprint 
on dissolution regimes. The metric provides a unified way to compare 
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porous and fractured media across parameter space and to identify 
when channeling, wormholing, or uniform dissolution are limited by 
quenched structural disorder. The strongly varying levels of this dis-
order in porous media and fracture networks indicate that care is 
needed when extrapolating laboratory experiments — often based on 
core dissolution in porous media — to field-scale fracture networks. 
The emergent properties of the dissolving medium, and its transport 
behavior, may differ substantially from those inferred from such experi-
ments. This implies that predictions of stimulation efficiency, injectivity 
evolution, or reactive-front propagation in applications such as acidiz-
ing, geothermal operations, and geological carbon storage must account 
for the structural heterogeneity encoded in path lengths and connec-
tivity. Designs or models that assume uniform dissolution can fully 
homogenize flow are likely to underestimate the persistence of pref-
erential paths, and therefore the degree of channelized transport, even 
in regimes that appear uniform at the pore scale.
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Appendix. DFN generation

We generate three-dimensional discrete fracture networks (DFN) us-
ing the dfnWorks54 software suite. The cornerstone of the DFN method-
ology is that fractures tend to have a radius (length) that is much 
larger than their aperture (height). This disparity is used to justify a 
co-dimension one representation of each fracture. For example, each 
fracture is a one-dimensional line in a two-dimensional simulation 
or a two-dimensional plane in a three-dimensional simulation. Thus, 
in our 3D DFN model, each fracture is represented as a rectangle 
using the methods described in Hyman et al.77 These planes inter-
sect with one another to form a network, through which flow and 
transport is simulated. The size, shape, orientation, and other hydro-
logical properties are sampled from distributions whose parameters 
are determined from a site characterization, cf. Viswanathan et al.78
for a comprehensive discussion of DFN modeling approaches. Thus, 
dfnWorks stochastically generates three-dimensional DFNs with desired 
characteristics such as length distributions and fracture intensities. 
Details of dfnWorks in terms of algorithms and various applications can 
be found in Hyman et al.54

We consider a semi-generic DFN loosely based on the fractured 
carbonate-hosted Pietrasecca Fault in the central Apennines, Italy, cf. 
Smeraglia et al.69 for detailed information about the fractured media. 
The domain is 25 m × 10 m × 10 m. We adopt three families from the 
survey and modify a few of their properties for our semi-generic study. 
Generation parameters of the networks are provided in Table  A.1. We 
measure network surface area in terms of the fracture intensity [m−1], 
which is the sum of surface area of each fracture (𝑆𝑓 ) divided by the 
volume of the domain, 

𝑃32 =
1
𝑉

∑

𝑓
𝑆𝑓 . (A.1)

The fracture radii of all three families are sampled from a truncated 
power-law distribution with decay exponent 𝛼, minimum radius 𝑟0, and 
maximum radius 𝑟𝑢, and probability density function 

𝑝𝑟(𝑟, 𝑟0, 𝑟𝑢) =
𝛼
𝑟0

(𝑟∕𝑟0)−1−𝛼

1 − (𝑟𝑢∕𝑟0)−𝛼
. (A.2)

We modify the minimum and maximum fracture radius from the data 
provided in Smeraglia et al.69 This modification requires a change in 
the values of fracture intensity 𝑃32. Fracture family orientations are 
sampled from a three dimensional von Mises Fisher distribution, 

𝑓 (𝐱;𝝁, 𝜅) =
𝜅 exp(𝜅𝝁𝑇 𝐱)
4𝜋 sinh(𝜅)

. (A.3)

In (A.3), 𝝁 is the mean direction vector of the fracture family, 𝑇  denotes 
transpose, and 𝜅 ≥ 0 is the concentration parameter that determines 
the degree of clustering around the mean direction. Values of 𝜅 close 
to zero lead to a uniform distribution of points on the sphere while 
larger values create points with a small deviation from mean direction. 
𝐱 is a random 3-dimensional unit vector within entries sampled from 
a uniform distribution on [0, 1]. Trend and Plunge are converted to a 
3D normal vector using the standard convention where an upward-
pointing normal (negated from the standard downward pole) is given 
by

𝝁[0] = − sin(Trend) cos(Plunge),

𝝁[1] = − cos(Trend) cos(Plunge), (A.4)
𝝁[2] = sin(Plunge).

The distribution is sampled using the method detailed in Wood.79
Fractures from each family are placed into the domain with equal 

probability until the target 𝑃  values are attained. After the network is 
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Table A.1
Discrete fracture network parameters used for generating various fracture 
families. 
 DFN families
 Parameter Family #1 Family #2 Family #3 
 Aspect ratio 2 2 2  
 𝑃32 [m−1] 2.52 4.84 0.315  
 Aperture [m] 2.23 × 10−6 9.02 × 10−6 3.67 × 10−6 
 𝛼 2.16 1.31 2.31  
 𝑟0 [m] 1 1 1  
 𝑟𝑢 [m] 5 5 5  
 𝜅 39.9 61.3 4.72  
 Trend [◦] 330 337 263  
 Plunge [◦] 86 87 51  

generated, isolated fractures and clusters of fractures, those that do not 
connect inflow and outflow boundaries, are removed because they do 
not participate in flow and transport. We generate thirty independent 
and statistically identical networks.

A.1. Graph representation

Once the networks are generated, we derive a graph/pipe-network 
representation using the method presented in Hyman et al.70 At the 
core of the DFN methodology is the conceptual model of a set of 
fractures, which are discrete entities intersecting with one another to 
form a network. The following maps a DFN  made up of a set of 𝑛
fractures {𝑓𝑖} to a graph  composed of a set of vertices 𝑉  and edges 
𝐸. If two fractures 𝑓𝑖 and 𝑓𝑗 intersect, 𝑓𝑖 ∩𝑓𝑗 ≠ ∅, then there is a vertex 
𝑣 ∈ 𝑉 , 
𝜓 ∶ 𝑓𝑖 ∩ 𝑓𝑗 → 𝑣 (A.5)

that represents the line of intersection between the fractures 𝑓𝑖 and 𝑓𝑗 . 
If 𝑓𝑖 ∩ 𝑓𝑗 ≠ ∅ and 𝑓𝑖 ∩ 𝑓𝑘 ≠ ∅, then there is an edge in 𝐸 connecting the 
corresponding vertices, 

𝜓 ∶ 𝑓𝑖 ∩ 𝑓𝑗 ≠ ∅ and 𝑓𝑖 ∩ 𝑓𝑘 ≠ ∅ → 𝑒(𝑢, 𝑣) ∈ 𝐸. (A.6)

Under the mapping 𝜓 each fracture is represented by a 𝑘-clique where 
𝑘 is the number of intersections on the fracture. Thus, each edge can 
be thought of as residing on a single fracture and edge weights can 
represent hydrological and geometric properties of that fracture.

Data availability

All simulation data files are available in Szawełło et al.80 The code 
used for dissolution simulations and flow-focusing analysis is avail-
able at https://github.com/tomaszszawello/poreNetDP and archived 
in Szawełło.76 The code used to generate the fracture networks is 
dfnWorks54, which is open source and available at https://github.com/
lanl/dfnWorks.
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