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ABSTRACT

Dissolution in porous media and fractured rocks alters both the chemical composition of the fluid and the
physical properties of the solid. Depending on system conditions, reactive flow may enlarge pores uniformly,
widen pre-existing channels, or trigger instabilities that form wormholes. The resulting pattern reflects
feedbacks among advection, diffusion, surface reaction, and the initial heterogeneity of the medium. Porous
and fractured media can exhibit distinct characteristics — for example, the presence of large fractures can
significantly alter the network topology and overall connectivity of the system. We quantify these differences
with three network models — a regular pore network, a disordered pore network, and a discrete fracture
network — evaluated with a unified metric: the flow focusing profile. This metric effectively captures evolution
of flow paths across all systems: it reveals a focusing front that propagates from the inlet in the wormholing
regime, a system-wide decrease in focusing during uniform dissolution, and the progressive enlargement of
pre-existing flow paths in the channeling regime. The metric shows that uniform dissolution cannot eliminate
heterogeneity resulting from the network topology. This structural heterogeneity — rather than just pore-
diameter or fracture-aperture variance — sets a fundamental limit on flow homogenization and must be

accounted for when upscaling dissolution kinetics from pore or fracture scale to the reservoir level.

1. Introduction

The flow of reactive fluids through rock induces significant changes
in both the fluid composition and the properties of the solid matrix,
thereby affecting the transport dynamics within the system. Under-
standing these processes is essential for a wide range of geological
and environmental applications. For instance, the safe disposal of high-
level radioactive waste depends on the ability to predict the dominant
modes of transport in the reservoir.:? Likewise, assessing contami-
nant migration requires understanding how flow is focused, because
residence time determines whether a pollutant can be neutralized.>>
In both contexts, transport is tightly coupled to the evolving pore
structure: reactive fluid remodels the medium and creates preferential
paths that ultimately control system behavior.®® In the context of CO,
sequestration, understanding both micro- and macro-scale behavior is
critical for process optimization.’~'® Predicting the evolution of flow
paths enables the avoidance of clogging and maximization of mineral

replacement.'* It is therefore evident that elucidating the coupling
between flow, transport, and the evolving properties of the reservoir
is essential to explain the diversity of structures that emerge from
dissolution.>-18

A wide body of experimental and numerical work has quantified
how dissolution patterns depend on the relative time scales of advec-
tion, diffusion, and reaction. In porous media, dissolution experiments
have investigated the pore scale behavior'°-?! and patterns emerging
at the core scale.!”:18:22-26 Their findings have been reproduced and
extended by multi-scale simulations, from direct numerical models to
continuum codes.!”>1%27-32 Four principal dissolution regimes are now
recognized: compact, wormholing, channeling, and uniform. In com-
pact (face) dissolution, the reactant is exhausted almost immediately
after entering the sample, and a reaction front advances uniformly
across its width.!7-33> When wormholing occurs, advective instabilities
localize flow into a few highly conductive channels that propagate from
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inlet to outlet.?83435 In uniform dissolution, the reactant penetrates
the full length of the system, enlarging pores homogeneously.'®36
Finally, in the channeling regime, initially existing flow paths are uni-
formly enlarged along their entire length.>>” Because the transitions
between these regimes are subtle, distinguishing between them requires
quantitative analysis of the system evolution.3%3°

Analogous dissolution phenomena also occur in fractured media,
where high-permeability discontinuities channel most of the flow,
distinguishing them from conventional porous media. Studies of disso-
lution in single-fracture systems — using both numerical models and
flow-through experiments — have extensively documented aperture
growth and channel development.?®#0~%> Similarly to porous media,
studies of two-dimensional fracture planes have revealed compact,
wormhole, and uniform dissolution regimes, each governed by the
interplay of flow, transport, and chemical reactions.?84647 Although
the coupled flow-transport-reaction equations can be solved directly
for idealized one- or two-dimensional fractures, doing so for natural
systems with thousands of intersecting fractures — such as karst
conduit networks — remains computationally formidable. To address
this challenge, researchers employ a hierarchy of different representa-
tions: two-dimensional grids of intersecting fractures,*4%49 fully three-
dimensional networks with spatially variable apertures,>*>? and
stochastic discrete fracture network (DFN) models.>3°* DFNs are at-
tractive because they incorporate field-derived statistics of fracture
aperture, length, and orientation, bridging single-fracture physics and
network-scale heterogeneity while remaining computationally tractable
for reactive transport simulations.®®

Porous media and fractured media exhibit fundamentally different
physical structures and flow behaviors — fractures, for instance, can
generate long-range, highly connected flow paths — yet the impact
of these distinct forms of heterogeneity on dissolution dynamics re-
mains poorly understood and has not been systematically compared.
Early work on variable-aperture fractures showed that the volume
of reactant required for breakthrough varies non-monotonically with
the magnitude of the initial aperture variation; a critical level of
heterogeneity minimizes the breakthrough volume.*%°° The same trend
was reproduced in numerical analysis of porous media that imposed
spatially correlated porosity fields.””=>° Follow-up studies examined
the role of heterogeneity length scale®® and suggested that the strong
heterogeneity—-wormholing link observed in small domains diminishes
in larger systems.®® There is, however, agreement that heterogene-
ity controls competition among channels and promotes tip branching
during wormhole growth.56-60

The interplay between heterogeneity and evolving dissolution pat-
terns strongly affects the hydraulic properties of a medium. Pore
network simulations show that uniform dissolution can eliminate all
variability in pore diameters,3*-°! whereas dissolving an initially ho-
mogeneous medium in the wormholing regime can instead gener-
ate pronounced heterogeneity; these opposing outcomes, in turn, re-
move or create anomalous transport behavior.®°1:52 Heterogeneity in
porous media has also been shown to affect the onset of preferential
flow,?637:63 permeability evolution,®® mixing,®> and even the overall
dissolution regime.>23%% These results show that significant changes
in system dynamics can arise solely from adjusting pore-diameter
variability. Beyond pore-size variability, heterogeneity also stems from
the topology and geometry of pore or fracture networks — specifi-
cally, differences in connectivity and in segment-length distributions.
This structural heterogeneity also shapes system evolution, influencing
processes ranging from karst genesis®” to mineral carbonation.®®

In this paper, we utilize the flow focusing metric introduced by
Szawetto et al.>° to quantify how different forms of heterogeneity
couple with dissolution across a range of flow and reaction condi-
tions. We apply the metric to three network models: a regular pore
network with variance in pore diameters, a disordered pore network
with variance in pore diameters and lengths, and a discrete fracture
network with variance in fracture apertures, lengths, and connectivity.
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We distinguish three heterogeneity types: conduit-scale (pore diameter
or fracture aperture), segment-scale (length), and network-scale (con-
nectivity). By tracking each scale through time, we show that initial
heterogeneity shapes the evolution of flow paths and ultimately limits
the degree to which dissolution can homogenize the system. Our focus
is on the impact of length and connectivity, which together form a
quenched disorder in the network — that is, a structural heterogeneity
that dissolution can modify only marginally. Initially, this disorder
plays a smaller role than the widely studied heterogeneity in conduit
width: pore diameters enter the conductance in the fourth power and
fracture apertures in the third, whereas lengths enter only linearly.
As homogenization progresses and variation in conduit widths dimin-
ishes, however, segment- and network-scale heterogeneity become the
decisive factors in flow-path selection. This behavior is key to under-
standing the differing responses of porous media and fracture networks
to dissolution.

2. Reactive transport in network models

We quantitatively describe the dissolution regimes and analyze
their transport properties by utilizing network models. We use a capil-
lary pore network model for the dissolving porous medium'”-3! and
a graph representation of a discrete fracture network for dissolving
fractures.>>>* We adjust the initial properties, that is, connectivity, con-
duit lengths, and distributions of pore diameters and fracture apertures,
to exhibit the differences in dissolution arising from the structure of the
medium.

2.1. Network generation

We investigate dissolution dynamics in three contrasting network
geometries.

1. Regular pore network: a diamond lattice in which every edge
has identical length; variability arises solely from the log-normal
distribution of pore diameters (conduit-scale heterogeneity).

2. Disordered pore network: a Delaunay network whose nodes are
randomly positioned, introducing heterogeneity in pore lengths
and intersection angles while retaining the same diameter distri-
bution as the regular lattice (conduit- and segment-scale hetero-
geneity).

3. Discrete fracture network: a semi-generic model loosely based
on the fractured carbonate-hosted Pietrasecca Fault in the cen-
tral Apennines, Italy®”; node locations, fracture intensities, and
aperture statistics reproduce the multiscale heterogeneity of nat-
ural carbonate fractures (conduit-, segment-, and network-scale
heterogeneity).

Fig. 1 shows a representative example of each network.

For every geometry, we generate 30 statistically equivalent realiza-
tions. In the two pore network cases, we use a domain of side length
L discretized into 100 x 100 nodes. Periodic boundary conditions are
applied in the direction perpendicular to the imposed pressure gradient:
pores on one side of the lattice are connected to their counterparts on
the opposite side, which removes artificial side-wall effects.

For the regular pore network, each realization shares the same con-
nectivity, but draws pore diameters from an independent log-normal
distribution with mean d,, variance dg (that is, the coefficient of
variation is ~ 1), and correlation length of 0.1 L; the sampling procedure
follows Szawelto et al.>° and Upadhyay et al.°C The value of d,, can
range from micrometers to millimeters, depending on the mineral and
rock type; because the model is formulated in dimensionless variables,
its exact value is not prescribed. The formulation is, however, most ap-
propriate for long, slender pores, so that dissolution does not drastically
alter the network topology. In the regular network, all pore lengths are
set equal to a reference length /.
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(c) discrete fracture network
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Fig. 1. (a) Example regular pore network realization (diamond lattice); edge width is proportional to the initial pore diameter. (b) Example disordered pore
network realization (Delaunay lattice); edge width again reflects the initial pore diameter. (c) Example discrete fracture network; shades of gray denote fracture
families. (d) Graph representation of the same DFN, projected into two dimensions via principal component analysis. Edge width is kept constant; darker areas

indicate a higher local density of fracture segments.

For the disordered pore network, nodes are randomly distributed
in the domain and connected using a Delaunay triangulation; node
positions differ between realizations. To impose periodic boundary
conditions, we tile the original domain with its translated copies and
construct a Delaunay triangulation on this enlarged set of points. From
the resulting edges, we keep only those whose midpoints lie inside
the original domain. For edges that cross a side boundary, we connect
them to the matching points on the opposite side, creating periodic
links. Pore diameters are assigned from the same distributions as for the
regular network, while pore lengths are given by the Euclidean distance
between connected nodes; by construction, the average pore length is
equal to /.

The DFN domain (25 m x 10 m x 10 m) is populated with three
fracture families that differ in orientation, length distribution, aperture
statistics, and intensity; full generation parameters are listed in Ap-
pendix. Importantly, each fracture family has a set aperture, constant
throughout the realizations, but the proportions between families vary.
We convert each DFN to a pipe-network graph with the algorithm of
Hyman et al.”® preserving fracture intersections as graph nodes.

In every model, the nodes on one boundary serve as the inlet, while
those on the opposite boundary form the outlet.

2.2. Reactive transport

Our reactive transport model follows the derivations of Budek and
Szymczak®!' for pore networks and Szymczak and Ladd’! for single

fractures. In the pore network representations (Fig. 1a, b), each edge
corresponds to a cylindrical pore of diameter d and length /; in the
discrete fracture network (Fig. 1c, d), each edge represents a fracture
segment of aperture b and length / spanning a fracture of width w.
Volumetric flow ¢ in each channel obeys

g=-Svp, @
U

where C is the hydraulic conductance, P the pressure, and yu the

fluid viscosity. For a cylindrical pore C = zd*/128 (Hagen-Poiseuille

equation); for a fracture segment C = wb?/12 (Reynolds equation). At

each intersection i, we impose mass conservation in the form of the

nodal continuity condition

Z 4q;; = 0, 2)
Jj

where the sum is over all edges ij incident on node i. Across the
network, a constant total volumetric flow rate Q is enforced by setting
P = P, at the inlet nodes and P = 0 at the outlet, then rescaling P, at
every time step to maintain Q.

We consider dissolution of a porous medium or a fracture network
by an aqueous reactant of inlet concentration ¢;,, injected at the inlet
nodes. We assume a single-component dissolution reaction with a linear
rate law

R(cy) = key,, 3

where k is the surface reaction rate and c,, is the reactant concentration
at the pore/fracture wall. This rate law is a standard approximation
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for far-from-equilibrium reactions, such as dissolution by concentrated
acid; in that case c,, corresponds to the concentration of H ions.!” An
equivalent formulation appears in the karst literature, where limestone
dissolution is often treated as first order in undersaturation, which
maps directly onto our driving concentration variable.*?

It is convenient to express the wall concentration in terms of the
bulk concentration c¢. The rate law in Eq. (3) can then be written
as R(c) = keff(dh)c, where keff(dh) is an effective reaction rate that
incorporates the hindering effects of transverse diffusion:

k

kdh ’
DSh

Kege(d™) = 0)

where D is the diffusion coefficient, Sh is the Sherwood number,’%74
and d" is the hydraulic diameter, equal to d for pores and 2b for
fractures. The Sherwood number, Sh, depends on reaction rate at
mineral surfaces, but the variation is relatively small, for porous media
limited by the values Sh = 3.656 and Sh = 4.364 (we approximate it by
a constant value, Sh = 4), while in fractured media, from Sh = 7.54 to
Sh = 8.24 (we approximate it by Sh = 8).

Along each conduit we solve the one-dimensional advection—
reaction equation for the bulk concentration

qZ—; = —skege(dMe, &)
where x is the coordinate along the channel length; the reactive surface
is s = =d for pores and s = 2w for fractures.

While in Eq. (5) the effective reaction rate k.g(d") incorporates the
effects of transverse diffusion, axial diffusion (along the flow direction)
is neglected. In general, this approximation is justified when the Péclet
number, which measures the relative importance of advection and dif-
fusion, is larger than one. The definition of the Péclet number requires
a choice of length scale; for reactive infiltration this scale is set by the
penetration length of the reactant, that is, the characteristic distance it
can travel into the medium before being consumed. If, on this length
scale, advection dominates over axial diffusion, then axial diffusion can
be safely neglected.

At each intersection i, we assume perfect mixing of the concentra-
tion,

z ¥4 qijC[OjUt
= —,

' Z j! 9ij
where the sum runs over all edges with flow directed into node i and
c,."j“t is the outlet concentration at the end of those edges. The node
concentration ¢; is then used as the inlet concentration for all edges
with flow directed out of node i.
Mineral dissolution enlarges each conduit according to

_ Zeer(d) p o 2Ker(2D)
VCsol | ! VCsol

(6)

o,d 7)
where ¢, is the molar concentration of soluble mineral in the solid and
v is the stoichiometric coefficient of the reaction. To keep the model
tractable, in each time step we compute the total volume of mineral
dissolved along the conduit and increase its diameter (or aperture)
uniformly so that the conduit volume increases by exactly that amount,
thereby preserving mass conservation.

The model assumes a separation of time scales between transport
relaxation and mineral dissolution: for each geometry we solve the
steady-state flow and transport problem (Eq. (5)) and then update d or
b using the above law. This quasi-steady approximation is appropriate
when the acid capacity number y = ¢;;/(ves), which measures the
volume of solid dissolved by a unit volume of reactant, is much smaller
than one. This condition is satisfied in the great majority of geolog-
ical and industrial reactive transport processes. There are, however,
systems where this approximation can break down, for example in the
dissolution of halite or caramel.”®

System evolution is governed by two dimensionless numbers: the
effective Damkohler number, Da.¢, measuring the ratio of advective to
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reactive time scales, and the reaction—diffusion parameter G, charac-
terizing the hindering effects related to diffusion across the channel.

Sokegr(dM)L ~ kd®

[9) >~ 7 DSh’ ®

Dagg =
where s, and d(})1 are the initial average reactive surface and hydraulic
diameter, respectively.

The two dimensionless groups we employ — the effective Damkoh-
ler number Dag; and the transport ratio G — quantify the competition
of advective, diffusive, and reactive time scales in both porous and
fractured media. We define them with the total volumetric flow rate Q
rather than a mean velocity, because strong initial flow focusing in
discrete fracture networks (DFNs) makes any “average” velocity unrep-
resentative. This volumetric definition also remains consistent for our
pore network simulations, which share identical width and an equal
number of inlet pores, so Q scales directly with the mean pore velocity.

A direct, one-to-one comparison of Da; between the two systems
is nevertheless impossible. In our models, a cross-section perpendicular
to the main flow contains only 200 conduits in the pore networks
but roughly 5000 fracture elements in the DFNSs; the vastly different
hydraulic cross-sections imply different residence-time distributions
even at the same global flow rate Q. Consequently, we treat Da. as a
system-specific control parameter, scanning it separately for pore and
fracture networks and then comparing the resulting dissolution regimes
rather than matching absolute values.

Simulation time is expressed as a dimensionless dissolved volume,

Vi
7=, ©
i€

where VOp is the initial total pore (or fracture) volume and Vg is the
cumulative volume of solid that has dissolved.

The above model is implemented in our in-house network simula-
tion code, written in Python, as described in Szawelto,”® where the
source code and input files are openly available.

2.3. Model assumptions and limitations

The model relies on several simplifying assumptions and approx-
imations, which we summarize here for clarity. First, we represent
the porous medium as a network of cylindrical pipes and the frac-
tured medium as a network of rectangular fracture segments. Both
the geometry of each conduit and the intersections (which we treat
as volumeless nodes) are simplified in this way. This idealization is
standard in pore network and DFN models and is what allows us to
extend modeling beyond the scale of individual pores while retaining
analytical expressions for flow and transport within each conduit.

A second approximation concerns how dissolution modifies the
conduit geometry. Because the reactant concentration decays along
each conduit, the local dissolution rate is largest near the upstream end
and smallest near the downstream end. In our model, we compute the
total volume of mineral dissolved along the conduit and increase its
diameter (or aperture) uniformly. This update is most accurate when
the reactant penetration length,

L
P Dag’

I (10)
is large compared with the average conduit length, I, > /,. The same
scale enters the treatment of axial diffusion: neglecting diffusion along
the flow direction is justified when the Péclet number based on I, is
greater than one, so that advection dominates on the scale over which
the reactant is consumed. This restriction means that the model is
not intended to describe strongly diffusion-dominated regimes such as
compact dissolution.

Additional assumptions are made regarding transport and chemical
reactions. We assume a separation of time scales between flow and
transport relaxation and mineral dissolution (acid capacity number
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(c) discrete fracture network
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Fig. 2. Evolution of the three network types and the flow focusing profile in the wormholing regime. (a) Regular pore network (Da.s = 0.2, G = 5). (b) Disordered
pore network (Da.g = 0.2, G = 5). (c) Discrete fracture network (Day s = 0.02, G = 5) shown as a graph after a principal-component-analysis projection. In each
case, edge width is proportional to the volumetric flow rate, with the same proportionality constant used for a given network type. For the DFN, only edges
carrying more than 1% of the maximum flow rate in the system are plotted. In the flow focusing plots, the initial profile is shown by the black line, and profiles
at later times (7" = 1.0,2.0,5.0, and 10.0 for both pore networks; 7' = 0.1,0.2,0.5, and 1.0 for the fracture network) are shown by colored lines.

y < 1). We also assume perfect mixing of reactant at each intersection,
which is a reasonable approximation for disordered networks but may
overestimate mixing in simple regular lattices at high Péclet numbers,
where streamline-based mixing models can be more appropriate.®®
Finally, the chemical kinetics are represented by a single-component
linear rate law. This is a common approximation across a range of
systems, but care is needed when applying it to systems with multiple
reactive species and strong buffering, where equilibrium reactions can
substantially modify the fluid chemistry (for example by buffering the
H™ concentration).

2.4. Flow focusing profile

The main tool that we use to determine the evolution of the system
is the flow focusing profile.>® We segment the medium into cross
sections along the main flow direction, x, and in each of them we
calculate the flow focusing index, fsqq,>® according to
g = e, an
where nsq, is the smallest number of conduits carrying 50% of the total
flow through a given cross section of the medium, and ny is the total
number of conduits in that cross section. Calculating the index, £, for
cross sections along the entire medium, we obtain a profile measuring
flow focusing as a function of distance from the inlet at a given time.

3. Results

Each network type exhibits distinct dissolution behavior due to
differences in structural organization and type of heterogeneity. For
the regular pore network, all conduits are of the same length, and only
conduit-scale heterogeneity is present, in the form of the distribution of
diameters. In the disordered pore network, apart from the conduit-scale
heterogeneity, based on the same noise as in the regular network, there
is also the segment-scale heterogeneity in the form of distribution of
conduit lengths and intersection positions. While in the case of porous
media, the conduit- and segment-scale heterogeneity can be of the
same order of magnitude, their couplings with dissolution are different,
with the latter much more persistent. Finally, in the discrete fracture
network, the nodes, edges, and apertures are distributed to approximate
a real fracture network, introducing heterogeneity across all scales.
Fracture families with various apertures introduce the conduit-scale
heterogeneity, variance in fracture lengths generates the segment-scale
heterogeneity (which in fractures can be much larger than that in
apertures), and finally connectivity within the structure creates hetero-
geneity on the scale of the entire network, as sometimes only a few
fractures can span the entire domain.

We simulate the three systems, choosing the dimensionless param-
eters Da.g and G to explore the standard dissolution regimes: uniform
dissolution, channeling, and wormholing. Fig. 2 presents the networks
evolving in the wormholing regime, alongside the changes of the flow
focusing profile. In pore networks, the dissolution regime becomes
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Fig. 3. Evolution of the regular pore network and the flow focusing profile in three dissolution regimes: (a) uniform (Da.; = 0.002, G = 5), (b) channeling
(Dagg = 0.02, G =5), and (c) wormholing (Da.¢ = 0.2, G = 5). Edge width is proportional to the volumetric flow rate, with the same proportionality constant used
in all panels. The plots show the initial flow focusing profile (black line) and profiles at times T" = 1.0,2.0,5.0, and 10.0 (colored lines). The frame color denotes
the dissolution regime: green for uniform, red for channeling, and blue for wormholing.

apparent almost immediately through the emergence of one or a few
dominant channels. In the DFN the pattern is subtler: flow is further
concentrated along pre-existing high-conductivity paths, but a newly
developed high-permeability flow path can still be discerned. In each
case the dissolution dynamics are captured by the flow focusing profile,
which appears as a front of increased focusing that advances from the
inlet toward the outlet; this increase is less pronounced in the DFN
because strong focusing already exists at 7" = 0.0.

Because we define the profile in the same way for every network, it
acts as a single quantitative metric for both porous and fractured media.
Tracking its evolution in (Dagg, G) space lets us compare dissolution in
DFNs with that in regular and disordered pore networks, exposing both
shared regimes and geometry-specific differences.

3.1. Regular pore network

We simulate the regular pore network for Da.; € {0.002,0.02,0.2}
and G € {0.1,1,5}. The flow focusing profile is recorded at T €

{0.0,1.0,2.0,5.0,10.0}, giving a complete history of the dissolution pro-
cess. Fig. 3 presents the evolution of the network in the three dissolu-
tion regimes and Fig. 4 shows the profile evolution for each (Da.. G)
pair: panel (a) displays the full range to reveal overall trends, whereas
panel (b) focuses on the range of evolution of the profile, containing
additional information on variability within the ensemble.

In the uniform regime (top rows of Fig. 4a, b), the flow focusing
profile declines with time. The drop is steepest at high G: diffusion
hindrance suppresses the growth of the widest channels, allowing
narrower ones to dissolve faster so the network approaches complete
homogeneity (profile values tend toward zero at G = 5, as shown
in the top-right panels of Fig. 4a, b). At low G the values of the
profile also decrease, but now because all channels enlarge at nearly the
same rate, which reduces conductance contrasts between them. A small
inlet—outlet asymmetry persists, indicating that the reactant penetration
length — though large — is still finite relative to the system length.

In the channeling regime (middle rows of Fig. 4a, b), profile values
increase in time along the entire system length. Initial main flow
paths widen almost uniformly from inlet to outlet, although the region
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near the inlet remains slightly more homogeneous, as more dissolution
occurs there before the main flow path dominates the system. The effect
of G is subtler. At low G the focusing weakens with depth, whereas
at high G this decline nearly disappears, because diffusion hindrance
allows more reactant to reach the deeper portions of the network.
Conversely, at higher G the homogenization near the inlet is more
pronounced, as dissolution in smaller channels is then faster. This inlet-
outlet asymmetry is clearly visible in the dissolution pattern in Fig.
3b.

In the wormholing regime (bottom rows of Fig. 4a, b), a single
highly conductive channel advances through the lattice, producing a
sigmoidal profile: near-maximum values behind the tip and unchanged
values ahead of it. The progress of the wormhole is faster for larger G
— again, due to diffusion hindrance, more reactant is pushed toward
the tip of the wormhole, instead of being used for widening the already
existing parts of the channel.

Fig. 4b shows the variability of the flow focusing profile within the
ensemble. The data indicate that, although different network
realizations — which vary in their initial pore-diameter distributions
— evolve at different rates, the variance becomes negligible by the end
of the simulation. This convergence implies that the ultimate outcome
— whether the degree of homogenization in the uniform regime or a
characteristic level of channelization — does not depend on the specific
initial diameter distribution.

3.2. Disordered pore network

The results of dissolution for the disordered pore network are
depicted in Figs. 5 and 6. They are in agreement with our previous
work.3? We run the same set of simulations as for the regular lattice,
using identical dimensionless parameters. We utilize the same diameter
distributions, yet the initial flow focusing index in the ensemble is
higher (f5y4 ~ 0.5 in Fig. 6 versus 0.4 in Fig. 4). This difference reflects
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the additional segment-scale heterogeneity introduced by non-uniform
pore lengths.

The dissolution patterns evolve at different rates in the disordered
and regular pore networks, as shown in Figs. 3 and 5. In the channel-
ing and wormholing regimes, the disordered network advances more
slowly: at the same dimensionless dissolved volume, the channels in
the disordered network extend noticeably less than those in the regular
lattice. In the uniform regime, however, the disordered lattice dissolves
at a comparable rate — and, at high G, even faster — than the regular
network.

Several factors contribute to the contrasting evolution of the two
networks. Geometrically, the disordered lattice contains numerous
edges perpendicular to the main pressure gradient. These cross-flow
channels are nearly inactive in the uniform regime, where transverse
pressure differences are negligible, but they start to carry substantial
flow once wormholes form, because the wormhole tips impose strong
lateral pressure gradients. This is increasing the reactant demand
and slowing the growth. Second, pronounced aperture and length
heterogeneity promotes branching, which further retards wormhole

advance.’®°° When heterogeneity becomes extreme, however, stronger
flow focusing can compensate for the branching penalty and accelerate
growth again.>® Because our disordered network displays significant
heterogeneity at both conduit and segment scales, pinpointing its exact
position on this spectrum — and how these competing effects balance
— remains challenging.

The two networks differ not only in how quickly they evolve but
also in how completely they can homogenize. At low Damkohler num-
bers (top rows of Fig. 6a, b), the disordered network still enters the
uniform dissolution regime, yet the resulting homogenization is weaker
than in the regular network. Structural heterogeneity — independent of
diameter variations — persists, and even at high G the flow focusing in-
dex plateaus at f5,q &~ 0.25, as shown in the top-right panels of Fig. 6a,
b. This saturation indicates an intrinsic limit to homogenization in the
disordered medium. The snapshots in Fig. 5a change only marginally
over time, confirming that much of the initial flow distribution is
related to the disordered geometry of the network. This finding is cru-
cial for studies aiming at complete homogenization: although uniform
dissolution can eliminate all diameter-based heterogeneity in regular
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Fig. 6. Evolution of the flow focusing profile for the disordered pore network across the (Da.y, G) parameter space. (a) Mean profile value at successive time
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realizations. The plots show the initial flow focusing profile (black line) and profiles at times T = 1.0,2.0,5.0, and 10.0 (colored lines). The frame color denotes
the dissolution regime: green for uniform, red for channeling, and blue for wormholing.

lattices,3%61 it cannot remove heterogeneity rooted in the network
topology. Because natural rocks are never perfectly regular — both
pore diameters and lengths vary — results derived from regular pore
networks cannot be generalized directly to real systems.

At intermediate Dagg; (middle rows of Fig. 6a, b), the disordered
network behaves differently from the regular lattice. The additional
heterogeneity — especially the variation in pore lengths — makes it
harder for a single dominant flow path to form across the entire system.
As shown in Fig. 5, preferential channels are present from the begin-
ning, but they are much less pronounced than in the regular network.
This reflects the different roles of the two types of heterogeneity. The
pore-diameter field is spatially correlated, so clusters of large pores tend
to line up and create continuous low-resistance corridors; flow concen-
trates along these corridors and dissolution then sharpens them into
channels. The pore-length distribution, by contrast, is uncorrelated and
therefore acts against the formation of such system-spanning paths. As
a result, the dissolution regime depends strongly on G, as demonstrated

by the behavior of the flow focusing profile in Fig. 6. At small G, the
network displays the features of the wormholing regime: a sigmoidal
profile and a dominant path that grows gradually from inlet to outlet.
At higher G, the profile resembles that of the regular network, but
with more initial homogenization. Because channel growth is slower,
dissolution has more time to smooth out inlet-region heterogeneity
before a single path takes over.

At high Da.y, both networks consistently develop wormholes and
their growth accelerates with increasing G. The key difference lies in
how strongly the wormholes compete. In the regular lattice, screening
is stronger, so one wormhole soon outcompetes its neighbors and
captures nearly the entire discharge. Once this conduit monopolizes
the flow, the high velocity within it increases the reactant penetration
length, broadening the transition zone in the flow focusing profile
(bottom rows of Fig. 4a, b). In the disordered network, weaker screen-
ing allows several channels to share the flux; the dominant wormhole
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Fig. 7. Evolution of the discrete fracture network and the flow focusing profile in three dissolution regimes: (a) uniform (Da = 0.0002, G = 5), (b) channeling
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T =0.1,0.2,0.5, and 1.0 (colored lines). The frame color denotes the dissolution regime: green for uniform, red for channeling, and blue for wormholing.

advances more slowly, and the focusing profile remains steeper (bottom
rows of Fig. 6a, b).

The ensemble variability shown in Fig. 6b is of the same order of
magnitude as in the regular network, but — because it now reflects
spatially correlated diameter heterogeneity and the randomness of node
positions — the profile is less smooth. How this variability evolves
depends on the dissolution regime. In the uniform regime it decreases
as conduit-scale heterogeneity is removed. In the channeling regime it
first increases and then declines, indicating different evolution rates for
individual realizations that eventually converge to a common outcome.
In the wormholing regime variable growth rates are also evident;
however, because the simulation ends before wormhole breakthrough,
the expected late-time reduction in variability is not yet observed.

3.3. Discrete fracture network

Fig. 7 presents the evolution of the dissolving DFNs and Fig. 8 de-
picts the corresponding changes in the flow focusing profile across the
parameter space. We perform the simulations for Days €
{0.0002,0.002,0.02} and G € {0.1,1,5}, and capture data at T €
{0.0,0.1,0.2,0.5,1.0}. The initial values of the flow focusing index are
very high (f50¢ ~ 0.8 in Fig. 8), indicating that the network is strongly
channelized even before any reaction occurs. Because the discrete
fracture network has a much larger hydraulic cross-section than the
pore lattices, the effective Damkohler numbers required to traverse the
three dissolution regimes are shifted roughly one order of magnitude
lower. After accounting for this shift, the expected progression —
uniform dissolution, channeling, and finally wormholing — emerges
unchanged.

As visible in the top rows of Fig. 8a, b, in the uniform regime the
flow focusing profile shows a modest decrease, maximally to around
fs00, =~ 0.7 in the top-right panels of Fig. 8a, b, but the values
remain high, showing that uniform aperture growth cannot eliminate
heterogeneity rooted in fracture connectivity and path lengths, making
complete homogenization unattainable in a DFN.

In the channeling regime (middle and middle-right panels of
Fig. 8a, b), the flow focusing profile rises only slightly with time, as
expected for a network that is already strongly channelized. Its shape,
however, evolves much like in porous media: the increase is nearly
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uniform across the entire domain. In addition, for Da; = 0.002 and
G = 0.1, the DFN transitions to the wormholing regime, mirroring the
behavior of the disordered pore network and further underscoring the
influence of additional heterogeneity.

In the wormholing regime (middle-left panels and bottom rows of
Fig. 8a, b), the flow focusing profile develops a transition zone, much
like in porous media. A notable difference, however, is that a higher
G slows wormhole advance — the opposite of the behavior seen in
pore networks. At the same time, the flow focusing index no longer
approaches its maximum when G is large. This indicates that diffu-
sion limitation becomes significant, restricting dissolution in the main
channel. As a result, competition among flow paths weakens; smaller
channels continue to carry a portion of the flux, thereby reducing the
growth rate of the dominant path.

The variability in the flow focusing index (Fig. 8b) mirrors that
of the disordered pore network, rising at first and then declining as
dissolution proceeds. In the DFNs the wormholes ultimately reach the
outlet, and, once breakthrough occurs, the profile exhibits the expected
reduction in variability.

3.4. Homogenization by dissolution

The flow focusing data show that perfect homogenization is
unattainable in either disordered porous media or DFNs. To examine
why, we compare the velocity distributions for all three network types.
Specifically, we sample the initial velocity distribution, the distribution
after uniform dissolution (final snapshots for Da,s = 0.002, G = 5 in
Figs. 4 and 6, and Dagy = 0.0002, G = 5 in Fig. 8), and the distribution
for an ideal network with perfectly uniform diameters and apertures.

Fig. 9 presents the comparison of these distributions. For the regular
pore network, the initial histogram is broad because of diameter vari-
ability; after dissolution it narrows sharply and collapses to a single
value in the uniform diameter limit. This behavior is consistent with
other studies that use the regular pore network.3%:6!

In the disordered network the initial velocity histogram is broad,
with a high-velocity tail generated by the largest pores. Uniform disso-
lution trims this tail by reducing the contrast between large and small
pores. At the same time, very low velocities become more common: as
heterogeneity diminishes, flow aligns with the main pressure gradient
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Fig. 8. Evolution of the flow focusing profile for the discrete fracture network across the (Da.y, G) parameter space. (a) Mean profile value at successive
time snapshots (solid lines). (b) Same data, with ensemble variability: the shaded band around each curve denotes the mean + 1 standard deviation across all
realizations. The plots show the initial flow focusing profile (black line) and profiles at times 7 = 0.1,0.2,0.5, and 1.0 (colored lines). The frame color denotes
the dissolution regime: green for uniform, red for channeling, and blue for wormholing.

and many pores oriented perpendicular to it carry negligible flux.
Interestingly, the histogram after dissolution almost coincides with that
of the uniform-diameter lattice with the same topology, confirming that
the remaining heterogeneity — and thus the residual flow focusing —
is rooted in network structure, not in diameter variance.

The DFN follows the same overall trend: the high-velocity tail
shortens, and the number of low-velocity fractures increases. After
dissolution the tail closely matches the uniform-aperture case, yet the
low-velocity end still differs markedly. This mismatch likely results
from the three fracture families in the structure of the DFN, which
begin with distinct initial apertures. Dissolution broadens the aperture
distribution of each family, but not enough for fractures from different
families to overlap in large numbers. Forcing all apertures to a single
initial value would eliminate this discrepancy — but at the cost of
fundamentally altering the structure of the network.

Whether we look at the network after dissolution or at an idealized
version with uniform diameters or apertures, the velocity distributions
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are still far from the delta-like peak achieved by the regular pore lattice.
All residual variance is therefore dictated by structural heterogeneity.
Because that heterogeneity is greater in the DFN than in the disordered
pore network, the lowest attainable flow focusing index is likewise
higher. The principle is the same in every case: once the network ge-
ometry sets a structural limit, additional dissolution cannot homogenize
the flow any further.

4. Conclusions

Dissolution reshapes both structure and flow in porous and fractured
media — systems whose contrasting architectures and transport behav-
iors influence many geologic and engineering processes. To quantify
these effects, we perform network-based simulations on three models:
a regular pore network, a disordered pore network, and a discrete
fracture network, spanning a wide range of flow and reaction condi-
tions. The results are quantified using the flow focusing profile. Every
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dissolution regime presents distinct characteristics in each system. In
the uniform regime, all networks are homogenized and flow focusing
decreases across the entire domain. However, while the flow in the
regular medium becomes completely uniform, the disordered medium
retains a certain level of focusing, and the discrete fracture network
remains highly heterogeneous, with only minimal redirection of flow
into parts of the network beyond the main paths.

In the channeling regime, we observe an increase in flow focusing
along the whole system, with slight inlet-outlet asymmetry in the
regular medium and a much more pronounced asymmetry — with
significant homogenization near the inlet — in the disordered medium.
For the discrete fracture network, this increase is minimal, as the flow
is highly channelized from the outset. In the wormholing regime, a
front in the flow focusing profile progresses from the inlet, marking
wormbhole formation, but the speed of the wormhole and the sharpness
of the front differ between the systems.

We focus our analyses on the interplay between heterogeneity and
uniform dissolution. The three systems exhibit different types and
degrees of heterogeneity, and each responds to dissolution in its own
way. In the regular network, heterogeneity arises solely from the pore-
diameter distribution and is readily eliminated by uniform dissolution.
In the disordered network and the DFN, additional structural hetero-
geneity persists: the lengths of individual paths and the connectivity
between parts of the network remain unchanged. Uniform dissolution
therefore removes only the heterogeneity associated with diameter or
aperture variations, demonstrating that the inherent structure exerts
strong control over dissolution dynamics.

These findings carry important implications for continuum-scale
modeling. In our simulations, dissolution can eradicate heterogeneity
in conduit diameters (or apertures) but cannot remove heterogeneity
rooted in path lengths and network connectivity; as a result, flow never
becomes fully uniform in the disordered lattice or in the DFN. Darcy-
scale finite-difference models, however, represent the medium only
through spatially varying porosity or permeability fields. Because those
fields evolve toward uniform values when diameters enlarge uniformly,
such models would predict nearly complete flow homogenization under
uniform dissolution — an outcome that, according to our network
results, is unattainable in natural media where connectivity and length
distributions persist. Capturing the true limits of homogenization will
therefore require numerical approaches that retain at least some in-
formation on network topology, for example through higher-order
upscaling techniques or hybrid continuum-network formulations.

Our work extends the application of the flow focusing profile from
disordered pore networks>® to a broader class of systems, including reg-
ular networks and discrete fracture networks, and shows that conduit-,
segment-, and network-scale heterogeneity each leave a distinct imprint
on dissolution regimes. The metric provides a unified way to compare
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porous and fractured media across parameter space and to identify
when channeling, wormholing, or uniform dissolution are limited by
quenched structural disorder. The strongly varying levels of this dis-
order in porous media and fracture networks indicate that care is
needed when extrapolating laboratory experiments — often based on
core dissolution in porous media — to field-scale fracture networks.
The emergent properties of the dissolving medium, and its transport
behavior, may differ substantially from those inferred from such experi-
ments. This implies that predictions of stimulation efficiency, injectivity
evolution, or reactive-front propagation in applications such as acidiz-
ing, geothermal operations, and geological carbon storage must account
for the structural heterogeneity encoded in path lengths and connec-
tivity. Designs or models that assume uniform dissolution can fully
homogenize flow are likely to underestimate the persistence of pref-
erential paths, and therefore the degree of channelized transport, even
in regimes that appear uniform at the pore scale.
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Appendix. DFN generation

We generate three-dimensional discrete fracture networks (DFN) us-
ing the prNWoRks®* software suite. The cornerstone of the DFN method-
ology is that fractures tend to have a radius (length) that is much
larger than their aperture (height). This disparity is used to justify a
co-dimension one representation of each fracture. For example, each
fracture is a one-dimensional line in a two-dimensional simulation
or a two-dimensional plane in a three-dimensional simulation. Thus,
in our 3D DFN model, each fracture is represented as a rectangle
using the methods described in Hyman et al.”” These planes inter-
sect with one another to form a network, through which flow and
transport is simulated. The size, shape, orientation, and other hydro-
logical properties are sampled from distributions whose parameters
are determined from a site characterization, cf. Viswanathan et al.”®
for a comprehensive discussion of DFN modeling approaches. Thus,
pFNWoORKs stochastically generates three-dimensional DFNs with desired
characteristics such as length distributions and fracture intensities.
Details of brNWorks in terms of algorithms and various applications can
be found in Hyman et al.>*

We consider a semi-generic DFN loosely based on the fractured
carbonate-hosted Pietrasecca Fault in the central Apennines, Italy, cf.
Smeraglia et al.%” for detailed information about the fractured media.
The domain is 25 m x 10 m x 10 m. We adopt three families from the
survey and modify a few of their properties for our semi-generic study.
Generation parameters of the networks are provided in Table A.1. We
measure network surface area in terms of the fracture intensity [m™1],
which is the sum of surface area of each fracture (.S f) divided by the
volume of the domain,

})32:%25[-
f

The fracture radii of all three families are sampled from a truncated
power-law distribution with decay exponent «, minimum radius r,, and
maximum radius r,, and probability density function

a (rfro)™ '™
ro 1= (r,/ro)®"
We modify the minimum and maximum fracture radius from the data
provided in Smeraglia et al.®” This modification requires a change in
the values of fracture intensity Pj,. Fracture family orientations are
sampled from a three dimensional von Mises Fisher distribution,

(A1)

pe(r,rg,r,) = (A.2)

Kk exp(cpu’ x)

47 sinh(x)
In (A.3), u is the mean direction vector of the fracture family, T denotes
transpose, and « > 0 is the concentration parameter that determines
the degree of clustering around the mean direction. Values of x close
to zero lead to a uniform distribution of points on the sphere while
larger values create points with a small deviation from mean direction.
x is a random 3-dimensional unit vector within entries sampled from
a uniform distribution on [0, 1]. Trend and Plunge are converted to a
3D normal vector using the standard convention where an upward-
pointing normal (negated from the standard downward pole) is given
by

fxp,x) = (A.3)

u[0] = —sin(Trend) cos(Plunge),

u[1] = — cos(Trend) cos(Plunge), (A.4)

u[2] = sin(Plunge).

The distribution is sampled using the method detailed in Wood.”’
Fractures from each family are placed into the domain with equal

probability until the target P;, values are attained. After the network is
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Table A.1
Discrete fracture network parameters used for generating various fracture
families.

DFN families

Parameter Family #1 Family #2 Family #3
Aspect ratio 2 2 2

Py [m] 2.52 4.84 0.315
Aperture [m] 2.23x 107 9.02 x 107° 3.67x 107
a 2.16 1.31 2.31

ro [m] 1 1 1

r, [m] 5 5 5

K 39.9 61.3 4.72
Trend [°] 330 337 263
Plunge [°] 86 87 51

generated, isolated fractures and clusters of fractures, those that do not
connect inflow and outflow boundaries, are removed because they do
not participate in flow and transport. We generate thirty independent
and statistically identical networks.

A.1. Graph representation

Once the networks are generated, we derive a graph/pipe-network
representation using the method presented in Hyman et al.”® At the
core of the DFN methodology is the conceptual model of a set of
fractures, which are discrete entities intersecting with one another to
form a network. The following maps a DFN 7 made up of a set of n
fractures {f;} to a graph G composed of a set of vertices V' and edges
E. If two fractures f; and f; intersect, f; N f; # @, then there is a vertex
veVv,

v:ifinf;—-v (A.5)

that represents the line of intersection between the fractures f; and f;.
If finf; # @ and f;N f, # @, then there is an edge in E connecting the
corresponding vertices,

v finf,#0and fin fi #0 — e(w,v) € E. (A.6)

Under the mapping y each fracture is represented by a k-clique where
k is the number of intersections on the fracture. Thus, each edge can
be thought of as residing on a single fracture and edge weights can
represent hydrological and geometric properties of that fracture.

Data availability

All simulation data files are available in Szawelto et al.%° The code
used for dissolution simulations and flow-focusing analysis is avail-
able at https://github.com/tomaszszawello/poreNetDP and archived
in Szaweto.”® The code used to generate the fracture networks is
prNWorks®#, which is open source and available at https://github.com/
lanl/dfnWorks.
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