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ABSTRACT
Inclusion of hydrodynamic interactions is essential for a quantitatively accurate Brownian dynamics simulation of colloidal suspen-
sions or polymer solutions. We use the generalized Rotne–Prager–Yamakawa (GRPY) approximation, which takes into account all
long-ranged terms in the hydrodynamic interactions, to derive the complete set of hydrodynamic matrices in different geometries:
unbounded space, periodic boundary conditions of Lees–Edwards type, and vicinity of a free surface. The construction is carried out
both for non-overlapping as well as for overlapping particles. We include the dipolar degrees of freedom, which allows one to use
this formalism to simulate the dynamics of suspensions in a shear flow and to study the evolution of their rheological properties.
Finally, we provide an open-source numerical package, which implements the GRPY algorithm in Lees–Edwards periodic boundary
conditions.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0030175., s

I. INTRODUCTION

Brownian dynamics is one of the most versatile and powerful
methods of simulating biological and soft matter systems.1–3 It treats
the solvent implicitly, projecting out the fluid degrees of freedom
and taking their effect into account through the correlations in the
stochastic displacements. These are caused by the so-called hydro-
dynamic interactions (HIs): the motion of one particle induces a
flow that acts on all other particles. As repeatedly demonstrated, the
proper inclusion of hydrodynamic interactions is crucial for correct
capturing of soft matter dynamics.4–12 However, this is not an easy
task due to the long ranged and multi-body character of HI. To make
the problem tractable, one usually resorts to approximations. The

minimum requirement for a good approximation is that it correctly
represents all the long-range terms, decaying with a rate slower or
equal to r−d at large distances, where d is the spatial dimensionality
of the system. For translational and rotational components, such an
approximation was proposed by Rotne, Prager, and Yamakawa.13,14

The Rotne–Prager–Yamakawa (RPY) approximation performs well
in far-field, but it becomes less accurate at smaller distances. In
particular, when the particles overlap, the hydrodynamic tensors
calculated based on RPY may become non-positive definite, which
causes a problem in the Brownian dynamics simulations where the
square root of the mobility matrix is needed. Calculation of hydro-
dynamic tensors for overlapping particles is also important for bead
models of rigid macromolecules.15–19 Overlapping bead models
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allow for a faithful representation of complex macromolecular
shapes using a significantly smaller number of beads than the
nonoverlapping models.

Recently, we proposed a generalization of RPY approach
(GRPY),18,20,21 which works both for non-overlapping and overlap-
ping particles and guarantees that the resulting mobility matrix will
be positive definite. However, as argued in Ref. 22, when dipolar
degrees of freedom are included, the correct derivation of GRPY
should be based on the inverse friction matrix, m,19,22 and not on the
mobility matrix, μ.18,20 A similar, m-based approach was taken by
Durlofsky, Brady, and Bossis in their construction of the Stokesian
Dynamics algorithm.23,24

Both approaches lead to the same results if only translational
and rotational components are considered, but they differ in the
problems involving dipolar degrees of freedom, e.g., dynamics in
shear flows and calculation of hydrodynamic stresses. Physically,
these differences correspond to the fact that the particles placed in
a shear flow modify the effective value of a shear rate. This is a very
significant effect, which cannot be neglected even at relatively low
volume fractions of suspended particles. Thus, the range of appli-
cability of the μ-based approach is very limited, and the m-based
approach needs to be developed, which is the main goal of this
study.

In this article, we show how these ideas can be used for a con-
struction of hydrodynamic matrices for Brownian dynamics simula-
tion in the presence of a shear flow. We are building on our previous
paper21 but with a revised scheme of calculating the dipolar elements
of the hydrodynamic tensors, based on the inverse friction matrix.
We derive a complete set of explicit formulas for the translational,
rotational, and dipolar components of the inverse friction matrix
for nonoverlapping particles as well as regularizing corrections to
these matrices accounting for particle overlaps. We also extend the
method to the case of a general Green’s functions of Stokes flow
and carry out the construction for three different geometries of
the system: unbounded space, free surface, and periodic boundary
conditions of Lees–Edwards kind.

II. HYDRODYNAMIC INTERACTIONS
We consider a suspension of N identical spherical particles

of different radii ai in an incompressible fluid of viscosity η at a
low Reynolds number. The particles are immersed in an external
flow v∞.

Due to the linearity of the Stokes equations, there is a linear
relation between the force and velocity moments, defining the grand
mobility the grand mobility matrix μ,

⎛
⎜
⎜
⎝
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. (1)

The elements μpq (with p, q = t, r, d) are the Cartesian tensors, and the
superscripts t, r, d denote translational, rotational, and dipolar com-
ponents, respectively. Here, F̃ = (F1,F2, . . . ,FN) are the 3N dimen-
sional vectors of forces with which particles act on the fluid and
analogously for the torques T̃, as well as translational and rotational

velocities of the particles, Ũ = (U1, . . . ,UN) and Ω̃ = (Ω1, . . . ,ΩN).
Next, ṽ∞ = (v∞(R1), . . . ,v∞(RN)) are the values of external flow
velocity calculated at the centers of the particles, Ri. Similarly, ω̃∞
gives the vector of vorticities at the centers of the particles, with
ω∞ = 1

2∇×v∞. Finally, Ẽ∞ = (E∞(R1), . . . ,E∞(RN)) is the vector
of strain rates, with E∞ = 1

2(∇v∞ + (∇v∞)T) and T standing for
transposition. Finally, S̃ = (S1, . . . , SN) are the particle stresses. Both
Ẽ∞ and S̃ are 5N-dimensional due to the symmetric and traceless
character of strain and stress tensors.

Note that on the RHS of Eq. (1), we find two quantities related
to the forces (F̃ and T̃) and one quantity related to the flow (Ẽ∞).
Although seemingly inconsistent, such a choice reflects the quan-
tities that can be controlled in most situations of practical interest
(forces, torques, and external flows acting on a particle). However,
from the point of view of theoretical analysis, the inverse friction
matrix m plays a much more important role. This matrix, intro-
duced by Durlofsky, Brady, and Bossis,23 links force and velocity
multipoles,
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The inverse friction matrix will play a central role in the construc-
tion of the generalized Rotne–Prager–Yamakawa (GRPY) approxi-
mation, as detailed in Sec. IV.

III. BROWNIAN DYNAMICS IN A SHEAR FLOW
We consider the particles immersed in an external linear

shear flow

v∞(r) = K∞ ⋅ r, (3)

where K∞ is the constant velocity gradient matrix, e.g., for a simple
shear flow,

K∞ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 γ̇
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, γ̇ = const. (4)

In such a case, the strain rate, E∞, is simply a symmetric part of the
K∞ tensor.

The hydrodynamic tensors defined in Sec. II can then be used in
the Brownian dynamics scheme describing the evolution of the posi-
tion vector Ri and the direction vector êi (e.g., the magnetic dipole
moment) of each particle i = 1, . . ., N,1

Ri(t + Δt) = Ri(t) + K∞ ⋅ Ri(t)Δt

+
⎛

⎝
∑
j
μttij ⋅ Fj +∑

j
μtrij ⋅ Tj +∑

j
μtdij : E∞

⎞

⎠
Δt + Γti(Δt),

êi(t + Δt) = êi(t) +
1
2
ϵ : K∞Δt × êi(t) +

⎡
⎢
⎢
⎢
⎢
⎣

∑
j
μrtij ⋅ FjΔt

+∑
j
μrrij ⋅ TjΔt +∑

j
μrdij : E∞Δt + Γri (Δt)

⎤
⎥
⎥
⎥
⎥
⎦

× êi(t), (5)
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where ϵ is the Levi–Civita tensor and: stands for tensor contrac-
tion. The stochastic displacement Γ(Δt) is a vector of 6N Gaussian
random variables with zero mean and the covariance,

⟨Γpi (Δt)Γ
q
j (Δt)⟩ = 2kBTμpqij Δt, p, q = t, r i, j = 1, . . .N. (6)

In the above equations, we have neglected the terms involv-
ing divergence of mobility tensors (cf. Ref. 1) since they van-
ish within the RPY approximation. However, when one goes
beyond RPY approximation and includes many-body effects in
hydrodynamic interactions or introduces lubrication correction,
the divergence of the mobility matrix becomes non-zero and
needs to be taken into account in Brownian dynamics simulation
schemes.25

In general, there are two ways in which the uniform shear can
be introduced in the molecular or Brownian dynamics simulations.
The first is to confine the system between two parallel plates and
translate one plate parallel to another at a constant speed. The dis-
advantage of such a setup is the presence of strong wall effects,
which are undesirable, unless our intention is to model the flow
in nanochannels. Alternatively, to mitigate wall effects and more
effectively simulate the bulk, one uses the periodic cell of the Lees–
Edwards kind,26,27 which deforms, becoming progressively more
titled with time [cf. Fig. 1(a)]. For a simple shear of a form γ̇zex, the
tilting angle (i.e., the angle between the instantaneous direction of
the tilted z axis and its original direction) varies with the shear rate
γ̇ and time t as27

θ = arctan(
γ̇Lzt mod Lx

Lz
), (7)

where Lx, Ly, and Lz determine the initial size of the cell and mod
stands for the modulo operation. Similarly, for the simulations of
elongational flow, Kraynik–Reinelt boundary conditions28 can be
used. Again, the orthogonal cell is transformed into a parallelogram,
albeit this time the deformation takes place along two orthogonal
directions.

IV. GENERALIZED ROTNE–PRAGER–YAMAKAWA
APPROXIMATION

The relation between the velocities of particles moving in a
Stokes flow and induced force density localized on particle surfaces
can be written as

[U i + Ωi × ρi − v∞(r)]r∈Si = ∑j
∫ TA(r − r′)f j(r

′
)d3r′. (8)

Here, ρi = r − Ri, with Ri denoting the position of particle i. On the
other hand, −f j(r′) is the density of the forces with which the par-
ticle j is acting on the fluid. Finally, TA is the Green’s function for
the Stokes problem for a particular geometry. In the present study,
we will consider specifically the case of unbounded space, where the
Green’s function is the Oseen tensor, TO, periodic boundary con-
ditions, where the fundamental solution is given by the Hasimoto
tensor, TH , and the vicinity of a free surface, with the tensor TF (see
Sec. V for more details).

The key idea behind the GRPY approximation is to describe
force density in terms of its three multipoles only,

f j =w
t
j ⋅ Fj + wr

j ⋅ Tj + wd
j : Sj, (9)

where w
p
j are operators associated with different multipoles

(p = t, r, d),

wt
j(r) =

1
4πa2

j
1δ(ρj − aj), wr

j (r) =
3

8πa3
j
ε ⋅ ρ̂jδ(ρj − aj)

wd
j (r) =

3
4πa3

j
δ(ρj − aj)ρ̂j ⋅ I.

(10)

In the above equation, [ϵ ⋅ ρ̂j]αβ = ϵαβγ[ρ̂j]γ and I is the fourth rank
isotropic tensor, traceless and symmetric in its first and last index
pairs,

Iαβδγ =
1
2
(δαδδβγ + δαγδβδ −

2
3
δαβδδγ). (11)

Next, the velocity field in the LHS of Eq. (8) is approximated
by a linear flow. The multipoles characterizing this flow, velocity,
U i − v∞(Ri), vorticity, Ωi − ω∞, and strain rate, −E∞(Ri), can

FIG. 1. Schematics of different geometries of the system. (a) Lees–Edwards periodic boundary conditions for the shear flow. The tilt of periodic cells changes as a function of
time. (b) Vicinity of a free surface. Gray particle (i) feels the hydrodynamic disturbance generated by the white particle j (solid line) as well as its images (dashed line).
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be obtained from [U i + Ωi × ρi − v∞(r)]r∈Si by integration of this
expression multiplied by the transposed w

p
i operators. This leads to

the following relation for the elements of the inverse friction matrix:

mpq
A,ij = ⟨w

p
i ∣TA∣w

q
j ⟩

= ∫ ∫ [w
p
i (r
′
)]

T
⋅ TA(r′ − r′′) ⋅wq

j (r
′′
)dr′dr′′, (12)

where we have used relation (2) together with approximation (9).
The inverse friction matrix is symmetric; thus,

mpq
ij = [m

qp
ji ]

T
. (13)

Finally, we need to keep in mind that the Brownian dynamics
simulation uses the mobility matrix, μ, and not the inverse friction
matrix, m. The latter needs then to be partially inverted to get μ,
which is the last step of the construction. This is a difference to the
previous approach18,20,21 where the formulas analogous to (12) were
used directly to generate the mobility matrix. As commented in the
Introduction, if the problem does not entail dipolar degrees of free-
dom, then both approaches lead to the same results. However, if the
problem involves shear flow or calculation of particle stresses, then
the m-based approach is a correct one since the particles placed in a
shear flow modify the effective value of a shear rate.

V. FUNDAMENTAL SOLUTIONS
A. Unbounded space: Oseen tensor

The Oseen tensor is a fundamental solution of the Stokes
equations in the unbounded domain,

η∇2TO −∇QO = −1δ(r), ∇ ⋅ TO = 0, (14)

and reads

TO(r) =
1

8πη0r
(1 + r̂r̂). (15)

The second tensor on the LHS in Eq. (14), QO, gives the associated
pressure,

QO(r) =
1

4πr2 r̂. (16)

B. Periodic case: Hasimoto tensor
The generalization of (14) to the case of periodic boundary

conditions is given by

η∇2TH −∇QH = −1∑
n
[δ(r − L ⋅ n) − 1], ∇ ⋅ TH = 0, (17)

which defines the Hasimoto tensor, TH(r), and its associated pres-
sure tensor, QH(r).29 Here, n = [n1,n2,n3] is a vector of integers
numbering the cells in the real lattice, and L ⋅ n are the images of the
origin in successive cells. In the above, L is the lattice matrix, the
columns of which are the lattice vectors.

Using the Ewald summation technique, the Hasimoto tensor
can be written as21,30–33

TH(r) = ∑
n

⎡
⎢
⎢
⎢
⎢
⎣

erfc(
rn
√

2σ2
)T0(rn) +

e−r
2
n/2σ

2

4
√

2π3ησ
r̂nr̂n
⎤
⎥
⎥
⎥
⎥
⎦

−
σ2

2ηV
1 +

1
ηV ∑

′

n
[1 − (1 +

1
2
σ2k2

n)k̂nk̂n]

×
e−k

2
nσ

2
/2

k2
n

cos(kn ⋅ r), (18)

QH(r) = ∑
n

⎡
⎢
⎢
⎢
⎢
⎣

erfc(
rn
√

2σ2
)Q0(rn) +

1
rn

e−r
2
n/2σ

2

2
√

2π3σ
r̂n
⎤
⎥
⎥
⎥
⎥
⎦

+
1
V ∑

′

n
k̂n

e−k
2
nσ

2
/2

kn
sin(kn ⋅ r), (19)

where σ is a splitting parameter for the Ewald summations, whereas

rn = r + L ⋅ n, (20)

and in the reciprocal lattice,

kn = 2πn ⋅ L−1. (21)

The prime at the summation symbol in (19) indicates that the term
n = 0 is to be omitted.

In a simulation, the implementation of the Lees–Edwards
boundary conditions requires that the lattice matrix depends on
time, as given by Eq. (7). In the case at hand, for the coordinate axes
defined as in (4), the lattice matrix takes the following form:

L =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

Lx 0 γ̇Lzt mod Lx
0 Ly 0
0 0 Lz

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (22)

We define the volume of the basic cell as

V = detL, (23)

and the splitting parameter σ is taken to be

σ =
V1/3

√
2π

, (24)

which corresponds to optimization of the numerical cost of the
real and reciprocal sum. Further details on performing the Ewald
summation in skewed cells can be found in Ref. 21.

C. Free surface
In the presence of boundaries, the Oseen solution gains an

additional part describing the flow reflected from interfaces. For a
free surface [cf. Fig. 1(b)], the flow field due to the force density
localized at the source point r′, i.e., f (r) = F0δ(r − r′), is given by34,35

v(r) = TF(r, r′) ⋅ F0 = TO(r − r′) ⋅ F0 + TO(r − r′⋆) ⋅ P ⋅ F0, (25)

where P = 1 − 2êz êz denotes the reflection operator, which trans-
forms any point into its mirror image with respect to the surface
and êz a unit vector perpendicular to the surface. Finally, r′⋆ = P ⋅ r′

is the image of r′ with respect to the surface. Note that the ten-
sor TF(r, r′) is not translationally invariant, but the construction
of GRPY approximation proceeds as before with TA(r, r′) replacing
TA(r − r′) in Eqs. (8) and (12).
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VI. INVERSE FRICTION MATRIX
Expression (12) allows one to calculate the inverse friction

matrix for any propagator T, corresponding to a particular geom-
etry of the system. Below, we will consider specifically the cases
discussed in Sec. V: unbounded space (Oseen tensor), the periodic
system (Hasimoto tensor), or vicinity of a free surface. An analogous
construction can be carried out for systems bounded by a cylinder
and a sphere,34,36,37 for the system bounded by two hard walls38 or
elastic membrane,39 in a liquid film between two fluids,40,41 or any
other system in which the fundamental solution can be derived.

The construction below is written out for a specific example of
a Hasimoto tensor corresponding to periodic boundary conditions,
but it can be applied to any of the tensors discussed above as long
as it is characterized by the same singularities as the Oseen tensor as
the particles begin to overlap.

Let us introduce the following auxiliary matrices:

Mpq
A (r; a, b) = Dp

(r; a) ⋅ TA(r) ⋅
←Ð
Dq
(r; b), (26)

where p, q = t, r, d.
The differential operators in (26) are given by

Dt
(r; a) = (1 +

a2

6
∇

2
r)I, Dr

(r; a) = −
1
2
ε ⋅ ∇r ,

Dd
(r; a) = (1 +

a2

10
∇

2
r)I : ∇r .

(27)

Next, the arrow above D means that the differential operator acts
to the left, changing the sign of each differentiation, e.g., f (r)←Ð∇r

= −(∇rf (r)) and f (r)
←Ð
∇

2
r = (∇

2
r f (r)).

A. Unbounded space
In unbounded space, the self-terms of the m matrix (corre-

sponding to i = j) are simply single particle mobilities,

mpq
O,ii = m

pq
0 (ai). (28)

Single particle mobilities, mpq
0 , are only nonzero for p = q and read

mtt
0 (a) =

1
6πηa

1, mrr
0 (a) =

1
8πηa3 1, mdd

0 (a) =
3

20πηa3 I. (29)

For i ≠ j, the form of the expression for the elements of the
inverse friction matrix depends on the distance between the parti-
cles. For nonoverlapping particles, the elements of the inverse fric-
tion matrix, mpq, are equal to the respective elements of the M
matrix,

mpq
O,ij =M

pq
O (Rij; ai,aj), Rij > ai + aj, (30)

where Rij = Ri − Rj. On the other hand, for partially overlapping
configurations (∣ai − aj∣ ≤ Rij ≤ ai + aj), Eq. (26) can no longer be
used and mpq is calculated directly using the integral formula (12)
(see Ref. 22),

mpq
O,ij = m

pq
O,ov(Rij; ai, aj), (31)

where we introduced the subscript ov to emphasize that we use
Eq. (12) for the overlapping particles. Finally, when the smaller par-
ticle becomes fully immersed in a larger one (Rij ≤ ∣ai − aj∣), then the

shape of the surface over which we integrate (12) changes and the
formulas for mpq(Rij) become much simpler. We will use subscript
im to indicate such an immersed configuration.

Note that for p = q, the components mpq
O,im(ai, aj) of the inverse

friction matrix can be directly obtained from the single particle
mobilities since

mpq
O,im(Rij; ai, aj) = mpq

0 (max(ai, aj)), p = q. (32)

On the other hand, for p ≠ q, the components mpq
O,im(ai, aj) read

mrt
O,im(r;a, b) = Θ(a − b)mrr

0 (a) ⋅ ε ⋅ r, (33)

mtd
O,im(r;a, b) = Θ(b − a)r ⋅mdd

0 (a), (34)

whereas mrd
O,im = 0.

B. Periodic case
Analogous to Eq. (30), for nonoverlapping particles in periodic

boundary conditions [Fig. 1(a)], the inverse friction matrix can be
expressed through the differential operators (26) as

mpq
H,ij =M

pq
H (Rij; ai,aj) Rij > ai + aj. (35)

The matrix elements of Mpq
H can be calculated using the Ewald

summation formula for the Hasimoto tensor (19).
For partially overlapping particles ((∣ai − aj∣ < Rij ≤ ai + aj), we

recover the elements of the inverse friction matrix by splitting the
Hasimoto tensor asTH =TO + (TH −TO) and calculating the respec-
tive contributions to the inverse friction matrix using either the inte-
gral formula (12) (for the first term) or the differential formula (26)
(for the second term),

mpq
H,ij = m

pq
O,ov(Rij; ai, aj) + Mpq

HO(Rij; ai,aj). (36)

In the above equation, the index HO corresponds to putting into
Eq. (26) the difference between the propagators

THO = TH − TO. (37)

Note that THO has no singularities at the particles overlap. The con-
struction of THO using the Ewald summation formula is described in
the Appendix.

The relation analogous to (36), although with mO ,ov replaced by
mO ,im, is used to calculate m in the situation when one sphere is fully
immersed within the other.

Finally, the self-terms of the m matrix are

mpq
O,ii = m

pq
0 (ai) + Mpq

HO(Rij = 0; ai, ai). (38)

Some of the components of the above-presented solution have
been reported previously in the literature. In particular, the tt com-
ponent of the Rotne–Prager mobility matrix for periodic systems
has been obtained by Beenakker30 (see also Refs. 31, 32, and 42).
Next, Jain et al.43 modified it to account for bead overlaps, but still
for translational degrees of freedom only. On the other hand, Stoltz
et al.42 considered the particles immersed in an external shear flow
and the Lees–Edwards boundary conditions; however, they again
limited themselves to translational degrees of freedom only, neglect-
ing the stresslet that arises as a particle is exposed to flow. The same
regularizing correction for overlaps as derived above has also been
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used by Zhou and Chen,44 but, again only in the case of transla-
tional degrees of freedom and in absence of external shear. Finally, as
mentioned in the Introduction, Mizerski et al.21 performed a similar
construction to the one presented above but based on the μ matrix,
which fails to take into account the modifications of the effective
shear rate due to the presence of the particles. An approach closest to
the present one, based on the m matrix, was originally developed by
Brady et al. as a part of the Stokesian Dynamics method.32 Reference
32 considers equal-sized particles only and does not consider the
regularizing corrections for particle overlaps. Subsequently, how-
ever, Fiore, Swan, and collaborators45–47 developed this approach
further within so-called Fast Stokesian dynamics. Following the
standard Ewald splitting into real and reciprocal space part, they
subsequently approximate the real space sum by one term only, cor-
responding to the base cell, effectively assuming that the size of the
cell is much larger than the inverse of the splitting parameter, Lσ ≫
1. This allows them to calculate this part analytically. On the other
hand, the reciprocal space part of the Ewald summation is calculated
using the fast Fourier transform technique, which requires a prior
mapping of the particle force moment to a regular spatial grid. It
is an alternative approach to the one presented here, well-suited to
handle large numbers of particles in an efficient manner, but with a
somewhat less controllable accuracy. We also note that in Refs. 45–
47, only translational and dipolar degrees of freedom are considered,
and rotation is not included in the computational scheme.

C. Free surface
Since the fundamental solution in this case [Fig. 1(b)] can be

expressed in a relatively simple way in terms of the Oseen tensor
[Eq. (25)], a similar decomposition holds for the elements of the
inverse friction matrix48 (for i ≠ j),

mpq
F,ij(Ri,Rj) = mpq

O,ij(Ri − Rj) + mpq
O,ij(Ri − R⋆j ) ⋅ P

q, (39)

where R⋆j is the image point defined analogously to that in Eq. (25)
and

Pt
= P, Pr

= −P,Pdαβγδ =
1
2
(PαγPβδ + PαδPβγ −

2
3
δαβδγδ). (40)

The overlaps between the particles as well as between the particle
and the wall can be accounted for by introducing the terms mpq

O,ov
whenever the arguments of the respective mpq

O,ij function becomes
smaller than ai + aj.

The self-terms of the m matrix (corresponding to i = j) are
calculated as

mpq
F,ii(Ri) = mpq

0 (ai) + mpq
O,ii∗(Ri, ai) ⋅ Pq, (41)

where mpq
O,ii∗ is the inverse friction matrix element for the particle i

and its image for unbounded space and is equal to

mpq
O,ii∗ = {

Mpq
O (Ri − R∗i ; ai, ai), zi > ai

mpq
O,ov(Ri − R∗i ; ai, ai), zi < ai,

(42)

where zi is the distance between the center of particle i and the
surface. Note that Ri − R∗i = 2ziêz .

VII. CONCLUDING REMARKS
We presented the reformulation of the GRPY approximation

based on the inverse friction matrix and derived a complete set of
all matrices mpq for translational, rotational, and dipolar degrees of
freedom, including the regularizing corrections for overlapping par-
ticles. The latter can be used whenever due to the finite time step the
particles overlap. In such a case, standard formulas for mobility may
lead to a matrix which is not positive definite leading to numerical
problems in the Brownian dynamics simulations, where a square-
root of the mobility matrix is needed. In the literature, such cases
as dealt with in a variety of ways: by introduction of a short-ranged
repulsive potential to prevent the overlaps,49–53 by rescaling the radii
of the spheres for the sake of calculation μ so that the gap between
the particles becomes positive,49,54,55 or by reflecting the particles
elastically each time they overlap.25,55,56 The regularizing corrections
derived above allow one to simply continue the simulations, with-
out a need for extra rescaling or reflection. As noted in Refs. 49, 54
and 55, hydrodynamic interactions will cause the particle to leave
the overlapping configuration in few time steps.

Additionally, the possibility of calculating hydrodynamic ten-
sors for overlapping particles is important in the construction of
bead models of rigid macromolecules.15–19 Such models allow for
a faithful representation of complex macromolecular shapes using
a significantly smaller number of beads than the nonoverlapping
models.

Moreover, for the system with a free surface, we have shown
how to take into account the overlaps of the particles with the sur-
face. We did not give the formulas for hydrodynamic tensors in the
presence of the hard wall, since these were provided by Swan and
Brady,57 but without the regularizing corrections for particle over-
laps or for the overlap between particles and the wall. The former
can be constructed relatively easily following the procedure outlined
in Eq. (36). The derivation of the latter is needed for the Brownian
Dynamics simulations in the vicinity of the wall,58 but the proper
account of overlaps is here significantly more complex than in the
free surface case and will be the subject of the future work. We also
note that a similar construction to ours (but for translational degrees
of freedom only) has been carried out in Ref. 41 for cylindrical
objects embedded in a viscous sheet.

Finally, by inclusion of the dipolar degrees of freedom as well
as Lees–Edwards boundary conditions, the presented formalism
can be used to study the rheological properties of complex flu-
ids and non-equilibrium phenomena such as shear-thickening or
shear-thinning.

APPENDIX: THE ELEMENTS OF THE INVERSE
FRICTION MATRIX FOR UNBOUNDED SPACE
AND PERIODIC BOUNDARY CONDITIONS

In this appendix, we give explicit expressions for t, r, and d
components of the inverse friction matrix with GRPY approxima-
tions and show the construction of the THO tensor on the example
of translational degrees of freedom. The formulas are given both
for unbounded and periodic systems and for the cases of non-
overlapping as well as overlapping particles. For the sake of brevity,
we will only give the nonzero m components. Additionally, we omit
dt, rt, and dr components since they can be obtained from td, tr,
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and rd matrix elements using the symmetry of inverse friction
matrix [Eq. (13)].

In the case of Oseen tensor, the auxiliary matrix (26) is as
follows:

Mtt
O(r; a, b) =

1
8πηr

[(1 +
a2 + b2

3r2 )1 + (1 −
a2 + b2

r2 )r̂r̂]. (A1)

According to Eq. (30), this also gives the elements of the inverse
friction matrix, mtt

O for nonoverlapping particles. For overlapping
particles (∣a − b∣ < r ≤ a + b), the inverse friction matrix is calculated
according to Eq. (31) with

mtt
O,ov(r; a, b) =

1
6πηab

⎡
⎢
⎢
⎢
⎢
⎣

16r3
(a + b) − ((a − b)2 + 3r2

)
2

32r3 1

+
3((a − b)2

− r2
)

2

32r3 r̂r̂
⎤
⎥
⎥
⎥
⎥
⎦

.

Next, when the smaller particle is fully immersed in a larger one (for
r ≤ ∣a − b∣), the matrix element is no longer dependent on r and
attains the form given by Eq. (32).

Next, we move to the periodic (Hasimoto) case. Then,

Mtt
H(r; a, b) = ∑

n
{Mtt

O(rn; a, b)erfc(
rn
√

2σ2
)

+ [(a2 + b2
)(

1
6
σ−2 +

1
3
r−2
n )1

+ ((a2 + b2
)(

1
6
r2
nσ
−4
−

1
3
σ−2
− r−2

n ) + 1)r̂nr̂n]

×
1

4
√

2π3ησ
e−r

2
n/2σ

2

} −
σ2

2ηV
1 +

1
ηV ∑

′

n

× [1 − (1 +
1
2
σ2k2

n)k̂nk̂n](k
−2
n −

a2 + b2

6
)

× e−k
2
nσ

2
/2 cos(kn ⋅ r). (A2)

For an overlapping configuration, we use construction (36)
to calculate the inverse friction matrix. The key element here
is Mtt

HO, which can be calculated by the formula analogous to
(A2) but with the first term in the sum (for n = 0) replaced by
Mtt

O(r; a, b)(erfc( r
√

2σ2
) − 1) = −Mtt

O(r; a, b)erf( r
√

2σ2
), i.e.,

Mtt
HO(r; a, b) = −Mtt

O(r; a, b)erf(
r
√

2σ2
)

+ ∑
′

n
Mtt

O(rn; a, b)erfc(
rn
√

2σ2
)

+∑
n
[(a2 + b2

)(
1
6
σ−2 +

1
3
r−2
n )1 +⋯. (A3)

Finally, the self-terms are constructed using Eq. (38), i.e., putting
a = b and r = 0 into Eq. (A3) and then adding the single particle

mobility, mtt
0 . This might seem problematic because the individual

terms corresponding to n = 0 in (A2) are diverging as r → 0. How-
ever, together they converge to a finite limit, which we denote by
M̃tt

HO(a). Explicitly,

M̃tt
HO(a) = lim

r→0

⎧⎪⎪
⎨
⎪⎪⎩

−Mtt
O(r; a, a)erf(

r
√

2σ2
) +

1
4
√

2π3ησ

× [
a2

3
(
σ−2

2
+ r−2

)1

+ (2a2
(−

σ−2

3
− r−2

) + 1)r̂r̂]
⎫⎪⎪
⎬
⎪⎪⎭

=
1

4
√

2π3ση
(−1 +

a2

9σ2 )1. (A4)

The construction of other components of the inverse friction
matrix is analogous to the one presented above for tt components.
For the sake of brevity, we give below only the final formulas for the
other components,

Mrr
O(r; a, b) =

1
16πηr3 (3r̂r̂ − 1), (A5)

mrr
O,ov(r; a, b) =

1
512πηa3b3r3 (s

0
(r; a, b)1 + s1

(r; a, b)r̂r̂), (A6)

s0
(r; a, b) = 5r6

− 27r4
(a2 + b2

) + 32r3
(a3 + b3

)

− 9r2
(a2
− b2
)

2
− (a − b)4

(a2 + 4ba + b2
),

s1
(r; a, b) = 3((a − b)2

− r2
)

2
(a2 + 4ba + b2

− r2
),

(A7)

Mrr
H(r) = ∑

n
{Mrr

O(rn; a, b)erfc(
rn
√

2σ2
)

− [(
1
4
σ−2 +

1
2
r−2
n )1 + (

1
4
σ−4r2

n −
1
2
σ−2
−

3
2
r−2
n )

× r̂nr̂n]
1

4
√

2π3ησ
e−r

2
n/2σ

2

}

+
1

4ηV ∑
′

n
[1 − (1 +

1
2
σ2k2

n)k̂nk̂n]

× e−k
2
nσ

2
/2 cos(kn ⋅ r), (A8)

M̃rr
HO(a) = −

1
48
√

2π3σ3η
1, (A9)

Mrt
O(r; a, b) =

1
8πηr2 ϵ ⋅ r̂, (A10)
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mrt
O,ov(r; a, b) =

1
128πηa3br2 (a − b + r)2

× (b2 + 2b(a + r) − 3(a − r)2
)ϵ ⋅ r̂, (A11)

Mrt
H(r; a, b) = ∑

n
[Mrt

O(rn; a, b)erfc(
rn
√

2σ2
)

+
ϵ ⋅ r̂n
rn

1
4
√

2π3ησ
e−r

2
n/2σ

2

]

+
1

2ηV ∑
′

n

ϵ ⋅ k̂n
kn

e−k
2
nσ

2
/2 sin(kn ⋅ r), (A12)

Mtd
O (r, a, b) =

3
20πηb2 [h

0
(r; a, b)p0

(r̂) + h1
(r; a, b)p1

(r̂)], (A13)

p0
αβγ(r̂) = δαβ r̂γ + δαγ r̂β −

2
3
δβγ r̂α,

p1
αβγ(r̂) = r̂α(r̂β r̂γ −

1
3
δβγ),

(A14)

h0
O(r; a, b) =

1
6
b2
(5a2 + 3b2

)r−4,

h1
O(r; a, b) =

5
6
b2
(3r−2

− (5a2 + 3b2
)r−4
).

(A15)

The matrix mtd
O,ov(r, a, b) is given by a formula analogous to (A13)

but with h0(r; a, b) and h1(r; a, b) replaced by

h0
O,ov(r; a, b) = −

1
96abr4 (10r6

− 24ar5
− 15r4

(b − a)(b + a)

+ (b − a)5
(a + 5b)),

h1
O,ov(r; a, b) = −

5
96abr4 ((a − b)

2
− r2
)

2

× ((a − b)(a + 5b) − r2
),

(A16)

Mtd
H(r; a, b) = ∑

n
{Mtd

O (rn, a, b)erfc(
rn
√

2σ2
)

+ [χ0
(rn, a, b)p0

(r̂n) + χ1
(rn, a, b)p1

(r̂n)]

×
1

4
√

2π3ησ
e−r

2
n/2σ

2

} +
1

2ηV ∑
′

n
[p0
(k̂n)

− (2 + σ2k2
n)p

1
(k̂n)](1 −

5a2 + 3b2

30
k2
n)

×
1
kn

e−k
2
nσ

2
/2 sin(kn ⋅ r), (A17)

χ0
(r; a, b) =

1
15
(5a2 + 3b2

)(σ−2r−1 + 3r−3
),

χ1
(r; a, b) = (5a2 + 3b2

)(
1

30
r3σ−6

−
1

15
σ−4r

−
1
3
σ−2r−1

− r−3
) + σ−2r + 3r−1, (A18)

Mrd
O (r; a, b) =

3
16πηr3 q(r̂), (A19)

mrd
O,ov(r; a, b) =

3
512πηb3a3r3 ((a − b)

2
− r2
)

2

× (a2 + 4ba + b2
− r2
)q(r̂), (A20)

qαβγ(r̂) = r̂δ(ϵδαβ r̂γ + ϵδαγ r̂β), (A21)

Mrd
H (r, a, b) = ∑

n
[Mrd

O (rn, a, b)erfc(
rn
√

2σ2
)

+ (
1

8σ2 +
3

8r2
n
)q(r̂n)

1
√

2π3ησ
e−r

2
n/2σ

2

]

−
1

4ηV ∑
′

n
q(k̂n)e−k

2
nσ

2
/2 cos(kn ⋅ r), (A22)

Mdd
O (r; a, b) =

3
40πηa3b3 [f

0
O(r; a, b)d0

(r̂) + f 1
O(r; a, b)d1

(r̂)

+ f 2
O(r; a, b)d2

(r̂)], (A23)

d0
αβγδ(r̂) =

3
2
(r̂α r̂β −

1
3
δαβ)(r̂γ r̂δ −

1
3
δγδ),

d1
αβγδ(r̂) =

1
2
(r̂α r̂γδβδ + r̂β r̂γδαδ + r̂α r̂δδβγ

+ r̂β r̂δδαγ − 4r̂α r̂β r̂γ r̂δ),

d2
= I − d0

− d1,

(A24)

f 1
O(r; a, b) = a3b3

(
5
r3 −

8(a2 + b2
)

r5 ),

f 2
O(r; a, b) = 2a3b3 a2 + b2

r5 ,

f 0
O(r; a, b) = −2f 1

O(r; a, b) − 2f 2
O(r; a, b).

(A25)

The matrix mdd
O,ov(r, a, b) is given by a formula analogous to (A23)

but with f i(r; a, b) replaced by

f 0
O,ov(r; a, b) =

1
32r5 [5r

8
− 30r6

(a2 + b2
) + 32r5

(a3 + b3
)

− 10r2
(a − b)4

(a2 + 4ab + b2
) + 3(a − b)6

× (a2 + 6ab + b2
)],

f 1
O,ov(r; a, b) =

1
32r5 [5r

8
− 25r6

(a2 + b2
) + 32r5

(a3 + b3
)

− 15r4
(a2
− b2
)

2
+ 5r2

(a − b)4
(a2 + 4ab + b2

)

− 2(a − b)6
(a2 + 6ab + b2

)],

f 2
O,ov(r; a, b) =

1
64r5 [5r

8
− 40r6

(a2 + b2
) + 64r5

(a3 + b3
)

− 30r4
(a2
− b2
)

2
+ (a − b)6

(a2 + 6ab + b2
)],

(A26)
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Mdd
H (r; a, b) = ∑

n
{Mdd

O (rn; a, b)erfc(
rn
√

2σ
)

+ (ϕ0
(rn; a, b)d0

(r̂n) + ϕ1
(rn; a, b)d1

(r̂n)

+ ϕ2
(rn; a, b)d2

(r̂n))
1

4
√

2π3ησ
e−

r2n
2σ2 }

+
1

20ηV ∑
′

n
(−

2
3
k2
nσ

2d0
(k̂n) + d1

(k̂n))

× (10 − k2
n(a

2 + b2
))e−

1
2 k

2
nσ

2

cos(kn ⋅ r), (A27)

ϕ0
(r; a, b) =(a2 + b2

)(−
1

15
σ−8r4 +

4
15

σ−6r2 +
2
5
σ−4

+
12
5
σ−2r−2 +

36
5
r−4
) −

2
3
σ−4r2

− 2σ−2
− 6r−2,

ϕ1
(r; a, b) =

1
10
(a2 + b2

)(r2σ−6
− 4σ−4

− 16r−2σ−2
− 48r−4

)

+ 3r−2 + σ−2,

ϕ2
(r; a, b) =

2
5
(a2 + b2

)(r−2σ−2 + 3r−4
),

(A28)

M̃dd
HO(a) = −

a2

25
√

2π3ησ5
I. (A29)

DATA AVAILABILITY

The Fortran implementation of GRPY algorithm in periodic
boundary conditions is available for download from github repos-
itory https://github.com/pjzuk/GRPerY. The examples included
demonstrate the usage of this code both in Brownian and non-
Brownian simulations.
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