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In elastic macromolecules, the value of the short-time diffusion coefficient depends
on the choice of the point the displacement of which is tracked. On the other hand,
the experimentally more relevant long-time diffusion coefficient is independent of
the reference point, but its estimation usually requires computationally expensive
Brownian dynamics simulations. Here we show how to obtain a precise estimate
of the long-time diffusion coefficient of elastic macromolecules in a fast and robust
manner, without invoking Brownian dynamics.
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1. Introduction

Precise estimation of the diffusion constant of biomolecules is important for
quantitative analysis of transport in living cells. It is also crucial for the proper
interpretation of biophysical experiments, such as fluorescence correlation spectroscopy,
ultracentrifugation or dynamic light scattering. If the internal structure of the
macromolecule is rigid, then its transport properties can be efficiently calculated
by a variety of methods, including bead modelling (Bloomfield, Dalton & Van Holde
1967; de la Torre & Bloomfield 1978; Byron 2008; Zuk, Cichocki & Szymczak 2018),
boundary element methods (Allison 1999; Aragon 2004) or path integral techniques
(Kang, Mansfield & Douglas 2004; Mansfield & Douglas 2008; Juba et al. 2017).

However, it becomes increasingly clear that the structure of most biomolecules
is flexible and fluctuating rather than rigid. Even well-folded proteins undergo
slow, large-scale movements of subunits, which are referred to as protein breathing
(Makowski et al. 2008). In many cases, one finds flexible linkers or loops connecting
domains, allowing for inter-domain hinge motions or flap motions (Jacobs, Kuhn &
Thorpe 2002; Thorpe et al. 2005). For example, HIV-1 protease has two molecular
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flaps which move a distance of up to 7 Å when the enzyme becomes associated with
a substrate (Ishima et al. 1999). At the extreme end of the flexibility spectrum are
proteins with disordered sequences that fail to form a permanent tertiary structure but
can adopt a variety of transient conformations. These are referred to as intrinsically
disordered proteins (IDPs) (Dyson & Wright 2005; Oldfield & Dunker 2014). It is
estimated that 30 %–50 % of eukaryotic proteins contain at least one long disordered
region. These proteins participate in important regulatory functions in the cell,
including transcription, translation and cell signalling (Galea et al. 2008; Oldfield
et al. 2008; Dosztányi, Mészáros & Simon 2009). Several IDPs have been shown to
be associated with various diseases such as cancer and neurodegenerative diseases
(Iakoucheva et al. 2002; Uversky, Oldfield & Dunker 2008). The importance of IDPs
in cellular processes calls for rethinking of the classical structure–function paradigm
(Wright & Dyson 1999; Berlow, Dyson & Wright 2018), that protein function depends
on a fixed three-dimensional structure.

Flexibility of the molecules brings considerable complications into the calculation
of their hydrodynamic properties. Instead of the 6 degrees of freedom of a rigid
molecule, we now need to deal with 6N degrees of freedom, with N standing for the
number of rigid subunits. To make the problem tractable, a number of approximations
have been adopted over the years. Perhaps the simplest was introduced by Kirkwood
& Riseman (1948) in the context of polymer solutions. Here, the polymer is assumed
to be rigidly frozen in one of a large number of possible conformations. Transport
properties are then calculated by treating the molecule as a rigid body, and the results
are averaged over the equilibrium ensemble. Such a rigid body approximation was
later taken up by Zimm (1980, 1982) and de la Torre and co-workers (Schmidt,
Cifre & de la Torre 2012; de la Torre 2016), and incorporated into the HYDRO set
of programs (de la Torre 2016); however, the validity of this approximation and its
accuracy remain unclear (Schmidt et al. 2012).

To facilitate the analytical treatment of polymer dynamics, Kirkwood & Riseman
(1948) introduced an additional ‘pre-averaging’ approximation in which the chain
conformation-dependent hydrodynamic disturbance, induced by the motion of the
polymer, is replaced by its equilibrium average over all chain conformations. However,
while pre-averaged Kirkwood–Riseman theory was successful in explaining many
dynamical properties of polymers, a number of studies (Zimm 1980; de La Torre,
Jimenez & Freire 1982) indicated that the errors introduced by this approach can be
considerable.

An important observation, due to Fixman (1981, 1983), is that the diffusion
coefficient in a flexible macromolecule will also be time-dependent, with well-defined
short- and long-time limits. The difference between the two is due to memory effects
related to the relaxation of the internal coordinates of the molecule. Due to the
positiveness of the memory function, the long-time diffusion coefficient can be shown
to be always smaller than the short-time diffusivity (Fixman 1983). These effects have
been further studied by Liu & Dünweg (2003) using the Zwanzig–Mori projection
operator technique.

From another angle, Wegener (1982) and Harvey, Mellado & García de la Torre
(1983) have considered relatively simple molecules with one flexible joint, which
was taken into account by the introduction of appropriate generalized coordinates.
One problem that they encountered was that the diffusion coefficient turned out to
be dependent on the choice of the origin. In an insightful paper, Wegener (1985)
proposed that the appropriate reference point (which he called centre of diffusion,
CD) should correspond to the minimal short-time diffusion coefficient, but he was
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FIGURE 1. Snapshots of the trajectory of an elastic molecule undergoing Brownian
motion.
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FIGURE 2. Mean square displacement (MSD) of a given point on a molecule versus time.
The molecule consists of four beads connected with springs, as shown in the inset. The
blue points correspond to the MSD of bead no. 1, whereas the red points correspond to
that of bead no. 4.

not able to find an explicit formula for its position. He also hypothesized that the
minimal short-time diffusion coefficient is equal to the long-time diffusion coefficient,
accessible by experimental measurements.

Below, we show how to find the centre of diffusion for a rather broad class
of elastic macromolecules, which can be represented as a collection of N beads
interacting with a general intramolecular potential. We also demonstrate that the
short-time diffusion coefficient calculated at the centre of diffusion is not equal to the
long-time diffusion coefficient (as claimed by Wegener), but the difference between
the two is small and can be calculated at a modest computational expense.

Before we turn to a formal description of the method, let us first briefly present
the main problems one encounters when analysing the diffusion of flexible molecules,
using a simple example. Consider a small linear molecule, which consists of four
beads – three of radius a, and the fourth of radius 3a (figure 1). The beads are
connected with harmonic springs of an equilibrium length l0= 4a and spring constant
k = 5.5kT/a. The hydrodynamic interactions between them are described within the
Rotne–Prager approximation (Rotne & Prager 1969; Yamakawa 1970; Zuk et al.
2014). The evolution is calculated using the Brownian dynamics (BD) algorithm
(Ermak & McCammon 1978). In figure 2, we show the mean square displacement
of the centres of the first and fourth bead. The distances are measured in a, whereas
the time unit is τ = a2/6D0, where D0 is the diffusion coefficient of a single bead of
radius a.
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There are several observations to be made based on the data in figure 2. First, for a
given point P of the molecule, the mean square displacement 1R2(t) is linear in time
only at very short and very long times. The corresponding definitions of the short-time
and long-time translational diffusion coefficient read:

〈(R(t)−R(0))2〉 ∼ 6Ds(P)t, t→ 0 (1.1)

and
〈(R(t)−R(0))2〉 ∼ 6Dl t, t→∞. (1.2)

In the above, 〈· · ·〉 denotes the equilibrium average.
Second, the value of the short-time diffusion coefficient depends on the choice of

the point that we track. Conversely, the long-time diffusivity is independent of the
choice of the reference point. Finally, the value of the long-time diffusion coefficient
is always smaller than that of its short-time counterpart. For the data in figure 2, Dl=

0.2898± 0.0002 (in the units of D0), whereas the short-time diffusion coefficients are
Ds(1)= 1 (for the small bead) and Ds(4)= 1/3 (for the large bead).

In experiments, the long-time diffusion coefficient is usually measured, due to the
time scales involved in either fluorescence correlation spectroscopy, ultracentrifugation
or dynamic light scattering. However, a direct assessment of Dl in the BD simulations
is very hard, if not impossible, for complex biomolecules. The main reason for this
is a relatively slow convergence of the value of Dl with the time interval over
which the data is collected, due to the presence of relatively long relaxation times,
related to the relaxation of the internal degrees of freedom as well as the rotation
of the macromolecule as a whole. The acquirement of statistically meaningful BD
data on these time scales is computationally expensive, mostly due to the necessity
of generating a normally distributed random vector with a covariance determined
by the N-particle diffusion tensor. To give an example, the generation of figure 2
requires three days of computation time on a Intel Xeon E5-2670 workstation at
2.50 GHz. The bead models of real biological macromolecules are much more
complex, comprising hundreds of beads. Since the computational complexity of
simulating the BD trajectory increases with the number of beads (N) as N3, the
calculation becomes prohibitively expensive to carry out.

2. Short- and long-time diffusion coefficient

Turning to a formal description, let us introduce a general model of a macromolecule
as a collection of beads of different sizes (possibly overlapping), suspended in a
viscous fluid and interacting with potential forces. We assume that the Reynolds
number is small and thus the motion is an overdamped one. On a mesoscopic level
(Van Kampen 1992), the state of such a system is then described by positions of
the centres of the beads X = (R1, R2, . . . , RN). An important step in the analysis
is splitting X into the internal and external coordinates. The internal coordinates
describe simply the relative positions of the beads with respect to each other

Xint = (R12,R23, . . . ,RN−1,N), (2.1)

with Rij = Ri − Rj. The external coordinate, on the other hand, describes the position
of one specific point P of the macromolecule in the laboratory frame. This position
will be given by a vector R, which is a linear combination of the positions of the
beads

R= x1R1 + x2R2 + · · · + xNRN, (2.2)
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with the non-negative coefficients xi summing up to one (that is,
∑N

i=1 xi = 1). The
configuration vector can thus be written as X= (R,Xint). The vector of the coefficients
xi will be denoted as x:

x= {x1, x2, . . . , xN}. (2.3)

Note that for identical beads, the choice x1 = x2 = · · · xN = 1/N corresponds to the
position of the centre of mass of the system.

The potential energy of particle interactions U(Xint) is only a function of the
internal coordinates, Xint. Similarly, the N-particle mobility matrix µ describing the
hydrodynamic interactions between the beads is also a function of Xint only. The
mobility matrix links the velocities of the particles with the forces acting on them,
according to

Ui =
∑

j

µijFj, (2.4)

where Ui is the velocity of bead i and Fj is the force with which particle j act on
the fluid. Note that the mobility matrix needs to be positive-definite for all particle
configurations (Happel & Brenner 1973).

Let P(X, t) be the probability density of finding the system in configuration X at
time t, with the normalization

∫
dX P(X, t) = 1, where dX = dR dXint and dXint =

dR12 . . .dR1N . At equilibrium, the distribution becomes uniform in R and Boltzmannian
in the internal coordinates – that is, Peq(X)= (1/V)Peq(Xint) with Peq(Xint)∼ e−βU(Xint).
The evolution of a Brownian system is governed by the generalized Smoluchowski
equation

∂tP(X, t)=L(X)P(X, t), (2.5)

where

L(X)=
N∑

i,j=1

∂

∂Ri
· Dij(Xint) ·

(
∂

∂Rj
+ β

∂U(Xint)

∂Rj

)
(2.6)

is the evolution operator and

Dij(Xint)= kBTµij(Xint) (2.7)

is the diffusion matrix. Note that ∂/∂Ri = xi(∂/∂R) + ∂/∂Ri,int, where the second
term on the right-hand side denotes the derivative with respect to Ri through the
dependence on Xint.

In the following, we will characterize the motion of the point R (2.2) by introducing
the time- and origin-dependent diffusion coefficient

D(t, x)=
1
6

d
dt
〈[R(t)−R(0)]2〉, (2.8)

where 〈· · ·〉 denotes an equilibrium average (that is, 〈A〉 =
∫

A(X)Peq(X) dX) and x is
the weight vector defined in (2.3). Note that here we adopt the convention that Peq(X)
is always placed at the right-hand side of the integrand, which is important if A is a
differential operator.

Making use of the stationarity of the stochastic process governing the motion of the
molecule,

D(t, x)=−
1
3

d
dt
〈R(t) · R(0)〉 =−

1
3

d
dt

Tr〈ReL(X)tR〉, (2.9)

878 R3-5

https://doi.org/10.1017/jfm.2019.652
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


B. Cichocki, M. Rubin, A. Niedzwiecka and P. Szymczak

which allows us to express D(t) in the following form (Akcasu 1982; Fixman 1983;
Cichocki & Hinsen 1992; Liu & Dünweg 2003):

D(t, x)=Ds(x)−
∫ t

0
M(τ , x) dτ , (2.10)

where

Ds(x)≡Ds(x)=−
1
3

Tr〈RL(X)R〉 =
kBT

3

N∑
i,j=1

xixj〈Tr µij〉 (2.11)

is the short-time diffusion coefficient and the memory function M(t) is given by

M(t, x)= 1
3 Tr〈VeLint(Xint)tV〉. (2.12)

Here, Lint(Xint) is the Smoluchowski operator L(X), in which the derivatives with
respect to Ri were replaced by the derivatives with respect to Ri,int. The particle flux,
V, is given by

V =D(X)R=
N∑

i,j=1

xj

{[
∂

∂Ri,int
· Dij(Xint)

]
− β

∂U(Xint)

∂Ri,int
· Dij(Xint)

}
, (2.13)

where we have introduced the operator D(X) adjoint to L(X), given by L(X)Peq(X) · · ·
= Peq(X)D(X).

In biophysical experiments, a long-time diffusion coefficient is usually measured,
Dl =D(t=+∞), related to displacements much larger than the size of the molecule.
Note that, for a bound system, the long-time diffusion coefficient does not depend on
the choice of the tracked point R. Indeed, the difference of diffusion coefficients for
two different choices of x follows

D(t, x)−D(t, x′)=−
1
3

d
dt
〈[R(t)−R′(t)] · [R(0)+R′(0)]〉, (2.14)

where we have used (2.8) together with the condition of detailed balance. For a bound
system, the vector R(t)−R′(t) is of a limited length; hence, D(t, x)−D(t, x′)→ 0 as
t→∞. In our case this statement means that Dl becomes independent of the choice
of the coefficients x. On the other hand, both Ds and M(τ ) do depend on the choice
of the reference point. We then obtain

Dl =Ds(x)−
∫
+∞

0
M(τ ; x) dτ . (2.15)

The direct computation of the long-time diffusion coefficient by means of BD
simulation is computationally expensive (Liu & Dünweg 2003; Schmidt et al. 2012).
However, a relatively simple estimate of Dl can be obtained by the analysis of (2.15).
First, note that the right-hand side of the above relation is the difference between
two non-negative quantities. This is a consequence of the fact that the Smoluchowski
equation (2.5) governing the evolution of the system describes overdamped dynamics
with detailed balance (Van Kampen 1992). Consequently, the lower the value of
Ds(x), the closer it is to the long-time diffusion coefficient. The upper bound for Dl
can then be obtained by taking the minimum of the short-time diffusion coefficient
Ds(x) with respect to x.

878 R3-6

https://doi.org/10.1017/jfm.2019.652
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Diffusion coefficients of elastic macromolecules

The formal procedure is the following. We introduce a matrix A indexed by the
particle labels (i, j) as

Aij =
1
3 Tr〈µij〉. (2.16)

We can then express Ds(x) as

Ds(x)= kBT(xT
· A · x), (2.17)

where the superscript T stands for the transposition. Next, we solve the variational
problem of finding the minimum of Ds(x) with respect to x. The normalization
condition for x can be expressed as xT · i = 1, where i is a column vector of ones.
The variational problem for Ds(x) with respect to xi, i= 1, 2, . . . ,N, is then

δ{xT
· A · x− λ(xT

· i− 1)} = 0. (2.18)

From the above, we get the extremum condition 2A · xmin − λi= 0. This corresponds
to a minimum, due to the positive definiteness of the matrix A. Explicitly,

xmin =
λ

2
A−1

· i, (2.19)

where the coefficient λ can be obtained from the normalization condition, yielding
λ/2= (iT

· A−1 · i)−1, so that

xmin =
A−1 · i

iT
· A−1 · i

=

∑
j

(A−1)ij∑
i,j

(A−1)ij
. (2.20)

Finally, we get the minimum value of the short-time diffusion coefficient as

Ds(xmin)= kBTxT
min · A · xmin = kBT

1
iT

· A−1 · i
= kBT

1∑
i,j

(A−1)ij
. (2.21)

3. Discussion

Returning to the example of the chain molecule of figure 2, for the Rotne–Prager
model of hydrodynamic interactions, (2.21) gives the diffusion constant of Ds(xmin)=
0.2919, which is less than 0.7 % off the long-time diffusion coefficient obtained in
the BD simulations. On the other hand, the Kirkwood formula, which corresponds to
calculating the diffusion coefficient in the geometrical centre of a macromolecule (that
is, for xi = 1/N), gives

DK =
kBT
N2

∑
i,j

(A)ij = 0.375, (3.1)

which significantly overestimates the value of the long-time diffusion coefficient. In
fact, DK is even larger than the single-body diffusion coefficient of the largest bead
(that is, for xi= δ4i), which is D4= kBTA44= 0.33(3). A slightly better estimate can be
obtained by taking the centre of mass of the macromolecule, with xi ∼ a3

i , where ai
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is the radius of the ith bead. In this case DCM = 0.312, which is still, however, about
8 % off the value obtained from the BD. Another possibility is to take the weight
proportional to the friction coefficients of individual beads (that is, xi∼ ai). This leads
to D= 0.309, about 7 % off the BD value.

Note that (2.21) itself is exact, as no approximations have been made in the
derivation. One can use it for different models of hydrodynamic interactions – both
in simple models (for example, Oseen or Rotne–Prager far-field approximation (Kim
& Karrila 1991)) or in more sophisticated approaches, like the multipole expansion
method (Mazur & van Saarloos 1982; Felderhof 1988; Cichocki et al. 1994). The
interaction potential can also be arbitrary, provided that it keeps the system bound.
Importantly, the estimation of the long-time diffusion coefficient using (2.21) is not
intensive computationally, since it does not require BD simulations. All that is needed
are the equilibrium averages Aij (2.16), which can be obtained, for example, by Monte
Carlo sampling (Binder 1995).

In polymer physics, pre-averaging approximation is popular (Kirkwood & Riseman
1948; Zimm 1956; Dubois-Violette & De Gennes 1967; Yamakawa 1971; Bird
et al. 1987; Doi & Edwards 1988; Prakash 1999), in which the diffusion matrix
Dij is replaced in the evolution equation by its equilibrium average. This leads to a
significant simplification of the dynamics. The particle flux (2.13) is then simply

V(x)=−β
N∑

i,j=1

FiAijxj, (3.2)

where we have used the fact that 〈Dij〉 = AijI. In particular, if x corresponds to the
diffusion centre, then the flux vanishes, since V(xmin)∼

∑
Fi = 0. Hence, within the

pre-averaging approximation, the memory function at the centre of diffusion vanishes;
consequently, the long-time diffusion coefficient at this point is equal to its short-time
counterpart. In fact, as shown in Zimm (1956), Yamakawa (1971), Bird et al. (1987),
Öttinger (1987, 1996) with the pre-averaged dynamics, the motion of the centre of
resistance separates out from that of the internal configuration and becomes a Markov
process. In this literature, xmin is usually called ‘centre of resistance’, since it also has
the property that the net torque of hydrodynamic forces around this point vanishes
during a uniform translation of the molecule relative to the fluid (Zimm 1956;
Yamakawa 1971). However, these properties of xmin hold only within the pre-averaging
approximation (Bird et al. 1987; Öttinger 1987). To avoid confusion regarding the
properties of xmin, we have decided to call it ‘centre of diffusion’, following Wegener
(1985), who coined that term for a point inside the molecule where the diffusion
coefficient is minimal.

If we go beyond the pre-averaging approximation, the memory function no longer
vanishes, and we expect a small difference between the long-time diffusion coefficient
and its short-time counterpart, calculated at xmin. This can be estimated by a direct
calculation of the memory function given by (2.12). For our chain molecule, the
memory function is shown in figure 3. We present there M(t) for three different
points of the molecule – one of the small beads (no. 1 in the inset of figure 2),
the large bead (no. 4) and the centre of diffusion. The two former points exhibit
exponential tails with the same characteristic decay time, connected with the rotation
of the system as a whole. At the same time, the dynamics of the centre of diffusion
shows a much smaller memory contribution. Even more importantly, the decay of
M(t) is now much faster – the long relaxation time connected with the slowest
decaying mode is not present. This means that the calculation of memory correction
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FIGURE 3. The memory function M(t) given by (2.12) for three different points on the
molecule – bead no. 1 (blue), bead no. 4 (red) and the centre of diffusion (black).

to the diffusion coefficient at xmin does not require the generation of long Brownian
trajectories. Already the integration up to T = 5 gives

∫ T
0 M(t) dt= 0.002, which differs

just by 5 % from the integral up to T = 100. Note that the memory correction itself
is just 0.7 % of the long-time diffusivity, when calculated at the centre of diffusion.
Contrastingly, the memory contribution to Dl calculated at bead no. 1 corresponds
to as much as 250 % of the final value, whereas that calculated at bead no. 4 is
approximately 15 %.

Finally, let us briefly recall the case of a rigid macromolecule. In such a case, the
memory function can be calculated analytically (Cichocki, Ekiel-Jezewska & Wajnryb
2012; Cichocki, Ekiel-Jeżewska & Wajnryb 2015) and it can be shown that there
exists a reference point for which the memory function vanishes; thus the mean square
displacement of this point is linear over the entire time range.

In summary, we have presented a simple and accurate method of estimating the
experimentally relevant long-time diffusivity of elastic macromolecules, based on
the minimization of the short-time diffusion coefficient with respect to the tracked
point. The method becomes exact within the pre-averaging approximation. In the case
considered here, the long-time diffusivity is overestimated slightly (within 1 %) using
this method. The exact value of this difference can be estimated by calculating the
memory function, M(t), at the centre of diffusion, where the short-time diffusivity
is minimal. This calculation, although involving dynamical simulations, is relatively
inexpensive, since M(t) decays at this point on a much faster time scale than at
any other point of the macromolecule. The computational simplicity of the method
is crucial for the efficient estimation of diffusion coefficients of large and complex
elastic macromolecules, the bead models of which involve hundreds of components.

Naturally, the accuracy of the method will depend on the system studied, including
the number of beads, their sizes and interbead potentials. It seems, however, that
elimination of the slowest decaying mode in the memory function at xmin will in
general produce a high-accuracy estimate of Dl. The full assessment of the accuracy
of the method will only be possible if the relaxation times corresponding to the
Smoluchowski dynamics (2.5) are estimated, which should be the subject of further
investigations.

878 R3-9

https://doi.org/10.1017/jfm.2019.652
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


B. Cichocki, M. Rubin, A. Niedzwiecka and P. Szymczak

Acknowledgement

This work was partially supported by grant no. UMO-2016/22/E/NZ1/00656 from
the National Science Center, Poland.

References

AKCASU, A. Z. 1982 Comments on the diffusion coefficient and first cumulant. Macromolecules 15
(5), 1321–1324.

ALLISON, S. A. 1999 Low Reynolds number transport properties of axisymmetric particles employing
stick and slip boundary conditions. Macromolecules 32 (16), 5304–5312.

ARAGON, S. 2004 A precise boundary element method for macromolecular transport properties.
J. Comput. Chem. 25 (9), 1191–1205.

BERLOW, R. B., DYSON, H. J. & WRIGHT, P. E. 2018 Expanding the paradigm: intrinsically
disordered proteins and allosteric regulation. J. Molecular Biol. 430 (16), 2309–2320.

BINDER, K. 1995 Monte Carlo and Molecular Dynamics Simulations in Polymer Science. Oxford
University Press.

BIRD, R., HASSAGER, O., ARMSTRONG, R. & CURTISS, C. 1987 Kinetic theory. In Dynamics of
Polymeric Liquids, vol. 2. John Wiley.

BLOOMFIELD, V., DALTON, W. & VAN HOLDE, K. 1967 Frictional coefficients of multisubunit
structures. I. Theory. Biopolymers 5 (2), 135–148.

BYRON, O. 2008 Hydrodynamic modeling: the solution conformation of macromolecules and their
complexes. Method. Cell Biol. 84, 327–373.

CICHOCKI, B., EKIEL-JEZEWSKA, M. & WAJNRYB, E. 2012 Intrinsic viscosity for Brownian particles
of arbitrary shape. J. Phys.: Conf. Ser. 392, 012004.
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