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We apply conformal mapping to find the evolving shapes of a dissolving cylinder in a
potential flow. Similar equations can be used to describe melting in a flowing liquid phase.
Results are compared with microfluidic experiments and numerical simulations. Shapes
predicted by conformal mapping agree almost perfectly with experimental observations,
after a modest (20 %) rescaling of the time. Finite-volume simulations show that the
differences with experiment are connected to the underlying assumptions of the analytical
model: potential flow and diffusion-limited dissolution. Approximate solutions of the
equations describing the evolution of the shape of the undissolved solid can be derived
from a Laurent expansion of the mapping function from the unit circle. Asymptotic
expressions for the evolution of the area of the disk and the shift in its centre of mass have
been derived at low and high Péclet number. Analytic approximations to the leading-order
Laurent coefficients provide additional insight into the mechanisms underlying pore-scale
dissolution.
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1. Introduction

There has been a surge of interest in pore-scale modelling of reactive transport, with an
increasing emphasis on coupling molecular scale processes to the evolution of porosity and
mineral composition (Kang et al. 2005; Lichtner & Kang 2007; Li, Steefel & Yang 2008;
Mbogoro et al. 2011; Molins et al. 2012, 2014; Chen et al. 2015; De Baere et al. 2016;
Pereira Nunes, Blunt & Bijeljic 2016; Starchenko, Marra & Ladd 2016; Soulaine et al.
2017; Molins et al. 2019; Oliveira, Blunt & Bijeljic 2019; Dutka et al. 2020). Applications
include subsurface hydrology, fossil-fuel extraction, environmental monitoring and CO2
sequestration. Recent experiments (Soulaine et al. 2017; Dutka et al. 2020) have shown
that a soluble cylinder confined within a Hele-Shaw cell takes up a variety of shapes as
it dissolves, which resemble one half of a lemniscate (or figure-of-eight). The evolving
shapes have been used to validate numerical methods for simulating reactive transport at
the pore scale (Soulaine et al. 2017; Molins et al. 2019; Dutka et al. 2020).

We recently noticed that shapes observed in these microfluidic experiments can be
remarkably well described by a simple two-dimensional model, which assumes potential
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FIGURE 1. Evolution of shapes in a dissolving disk; flow is from left to right. Images from
microfluidic experiments (Dutka et al. 2020) show the characteristic shape of a dissolving
cylinder, with a cusp developing on the trailing edge. The red outlines are generated by solutions
of (3.1)–(3.5a–c). The times are from the experiments; the conformally mapped boundaries
(shown in red) were selected at times when the enclosed area matched that of the undissolved
solid (white).

flow and diffusion-limited reactions. Dissolution is then controlled by the transport of
ions across the concentration boundary layer around the surface of the solid object. Due
to the conformal invariance of the flow and transport equations, solutions can be found by
tracking a time-dependent conformal map from the unit circle to the physical boundary.
Figure 1 shows photographs from a microfluidic Hele-Shaw cell (Dutka et al. 2020), along
with shapes predicted by a time-dependent conformal mapping. An initially cylindrical
disk develops a cusp on the downstream side, which sharpens as it dissolves. This contrasts
with experiments at high Reynolds numbers (Re > 104), where flow separation creates a
well-mixed region behind the object and a flat trailing edge (Huang, Moore & Ristroph
2015). In the microfluidic experiments the Reynolds number is negligible, and a cusp
emerges at the downstream stagnation point; here, dissolution is slowest because the fluid
is by then largely saturated with mineral ions.

Conformal mappings have been widely used to analyse interface motion in
quasi-two-dimensional geometries (Pelcé 2004; Gustafsson & Vasil’ev 2006), particularly
in the context of viscous fingering (Saffman & Taylor 1958; Adda Bedia & Amar 1994)
and solidification (Ivantsov 1947; Langer 1980; Cummings et al. 1999). Most notably, they
were used to derive the shape of invariantly propagating forms: the Saffman–Taylor finger
and the Ivantsov parabola. For dissolution-related problems, corresponding invariant
finger solutions were obtained by Nilson & Griffiths (1990) and Kondratiuk & Szymczak
(2015). However, the conformal mapping approach can also be used to study the
time-dependent dynamics of the growth process. A remarkable idea here, due to Löwner
(1923), Galin (1945) and Polubarinova-Kochina (1945), is that instead of following the
boundary of the growing domain one can trace the evolution of a conformal transformation
between this domain and a simpler region in a complex plane, typically the exterior of
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the unit circle. The evolution of this mapping follows a differential equation, which in
many cases is simpler to study than the original growth problem. This approach has been
successfully applied to the analysis of variety of Laplacian growth phenomena (Shraiman
& Bensimon 1984; Bensimon et al. 1986; Howison 1992; Bauer & Bernard 2006; Gubiec
& Szymczak 2008). Interestingly, this approach can also be generalized to cases where the
growth is driven by advection–diffusion in a potential flow field, since this problem is also
conformally invariant (Bazant 2004). The corresponding Polubarinova–Galin equation
for the evolution of the mapping was first derived by Goldstein & Reid (1978) in the
context of freezing of a saturated porous medium and then applied to a variety of
solidification/melting and dissolution/precipitation problems (Kornev & Mukhamadullina
1994; Bazant, Choi & Davidovitch 2003; Choi et al. 2005; Davidovitch, Choi & Bazant
2005; Bazant 2006; Rycroft & Bazant 2016).

Here, we follow this formalism and compare results obtained by solving the
Polubarinova–Galin equation with direct numerical simulations of a dissolving disk. On
one hand, this allows us to obtain insights into the physics underlying the evolution of
the size and shape of a dissolving object. On the other hand, we can investigate the key
approximations necessary to use conformal mapping: potential flow, and transport-limited
dissolution kinetics. Further progress can be made by representing the conformal mapping
in terms of the leading coefficients in the Laurent expansion. We derive approximate
analytical expressions for the evolution of the conformal radius, centre of mass and aspect
ratio of a shrinking domain.

2. Dissolution in two dimensions: governing equations

Laboratory experiments and numerical simulations (Dutka et al. 2020) used a
quasi-two-dimensional Hele-Shaw cell, dimensions L(38 mm)× H(33 mm)× d(0.5 mm),
with a disk of radius R = 10 mm blocking the central region of the channel (figure 2). With
these proportions, numerical simulations (Dutka et al. 2020) show that the dissolution
of the disk is essentially two-dimensional, in contrast to taller and thinner cylinders
where there is significant variability of shape in the vertical direction (Soulaine et al.
2017; Molins et al. 2019). In the present case diffusion smears out the variation in
concentration over the small height of the disk (0.5 mm) and there are negligible
differences between the results of two- and three-dimensional simulations. We therefore
consider a two-dimensional pore space, sketched in figure 2, bounded by the lines Sin ,
Sout, and Swall. A soluble disk, with boundary S, is located at the centre of the cell
(L/2,H/2). The fluid velocity along the inlet and outlet lines is constant (U∞), while the
upper and lower walls are impermeable, emulating the experimental set-up. By moving
the boundaries to distant locations, we can accommodate an isolated disk far from any
boundaries.

Fluid flowing under the experimental conditions can be approximated as a lubrication
flow, with a vertically averaged velocity [ux , uy] given by

∇p = μ
(∇2u − K−1u

)
, (2.1)

where μ is the viscosity of the fluid and the pressure p is determined by the
incompressibility condition,

∇ · u = 0. (2.2)

The drag force density from the top and bottom plates, μK−1u, must be included in
the two-dimensional momentum balance; the effective permeability in the experimental
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FIGURE 2. The flow geometry considered in this paper. The system is two-dimensional with
inlet (Sin), outlet (Sout) and inert (Swall) boundaries. The central circle is a thin cylinder of soluble
mineral with a dissolving surface (S).

cell K = d2/12 ≈ 0.0208 mm2. The Reynolds number is small (Re = U∞d/ν < 0.01), so
inertial terms can be neglected.

Transport of reactants follows a convection–diffusion equation

∇ · (uc) = D∇2c, (2.3)

where c is the cup-averaged concentration field (Bird, Stewart & Lightfoot 2001) and D
is the molecular diffusion coefficient. Since dissolution of the solid is extremely slow
in comparison with the time scales for reactant transport (Szymczak & Ladd 2012;
Starchenko et al. 2016), the stationary limit of the convection–diffusion equation is
sufficient. Dissolution of calcium sulphate is well described by a linear rate law in the
undersaturation (Colombani 2008)

R(cS) = k(csat − cS), (2.4)

where cS is the concentration on the mineral surface (S) and k is the surface-reaction-rate
constant. The boundary condition on S can be found by matching the diffusive and reactive
fluxes,

R(cS) = −D(n · ∇c)|S, (2.5)

where the normal vector n points into the fluid domain. In the limit of fast surface
reactions, the concentration boundary condition reduces to a Dirichlet condition

cS = csat, (2.6)

where csat = 15.2 M m−3 is the saturation concentration of CaSO4 (Christoffersen &
Christoffersen 1976). Although the dissolution of gypsum is hindered by surface kinetics,
in the experimental geometry its effect on the overall dissolution time scale is modest, of
the order of 20 % (Dutka et al. 2020).

The concentration flux controls the (normal) motion of the surface points,

csol
dx
dt

= Dn(n · ∇c)|S, (2.7)

where csol = (1 − φ)/vM is the molar concentration of the mineral phase, which had a
measured porosity φ = 0.61 (Dutka et al. 2020), while vM = 74.4 × 10−6 m3 M−1 is the

https://doi.org/10.1017/jfm.2020.609
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Dissolution in Hele-Shaw flow 903 A46-5

molar volume of the crystalline mineral. The characteristic time scale τ = R/(U∞γ )
is 57.3 h; here γ = csat/csol = 0.0029 is the ratio of molar concentrations of aqueous
and (porous) solid phases. With the experimental flow rate (1 ml h−1) the Péclet
number Pe = U∞R/D = 250. The activity-corrected diffusion coefficient, D = 6.75 ×
10−4 mm2 s−1, is used to account for the high ionic strength (≈40 mM) of the nearly
saturated solution near the disk (Dutka et al. 2020). We have solved these equations,
including the effects of confinement, using a finite-volume method (Starchenko et al. 2016;
Starchenko & Ladd 2018); results of these simulations are shown in figures 5 and 6.

It is useful to make the variables dimensionless with the following scalings:

x → x
R
, u → u

U∞
, t → t

τ
= U∞γ t

R
, c → csat − c

csat
, φ = − Kp

U∞μR
. (2.8a–e)

The dimensionless governing equations are then

u − K∇2u = ∇φ, ∇2φ = 0, (2.9a,b)

Pe u · ∇c = ∇2c, Pe
dx
dt

= −n(n · ∇c)|S, (2.10a,b)

with boundary conditions on the soluble mineral surface,

n · ∇p = 0, u = 0, (n · ∇c)|S = DaIIcS. (2.11a–c)

For the parameters of the experiment (k = 4.5 × 10−3 mm s−1, R = 10 mm, D = 6.75 ×
10−4 mm2 s−1), the second Damköhler number DaII = kR/D = 67. A uniform flow along
the x direction is set up across the inlet (Sin) and outlet (Sout) boundaries, with c = 1 at the
inlet and n · ∇c = 0 at the outlet (figure 2). The remaining boundaries (Swall) are no slip,
with n · ∇c = 0. Further details of the numerical and experimental methods can be found
in Dutka et al. (2020).

3. Time dependence of the conformal map

In order to apply conformal-mapping techniques, fluid motion must be reduced to a
potential flow. Fortunately, the dimensionless permeability (K = d2/12R2 ≈ 2 × 10−4) is
small in the experimental geometry, and the shear stress is therefore negligible outside
a thin boundary layer around the disk. The Laplacian term in the momentum equation
(2.9a,b) will be neglected, in order to maintain a potential flow within the entire
fluid domain. Furthermore, we will assume that the chemical reactions on the mineral
surface are rapid in comparison with ion diffusion, so that the boundary condition for
the concentration (2.11a–c) can be replaced by cS = 0. The errors introduced by the
assumptions of potential flow and fast reactions will be considered in § 4.2.

The dimensionless equations and boundary conditions (2.9a,b)–(2.11a–c), with K = 0
and cS = 0, can be written in complex notation

∇̄z∇zφ = 0, (3.1)

Re
[
Pe (∇̄zφ)(∇zc)

] = ∇̄z∇zc, (3.2)

Pe
dzb

dt
= −nzRe

[
n̄z∇zc

] |z=zb; (3.3)

Re
[
n̄z∇zφ

] = 0, c = 0, z ∈ zb, (3.4a–c)

φ → Re [z] , c → 1, z → ∞. (3.5a–c)
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FIGURE 3. Illustration of the conformal mappings; the boundary of the object in the different
domains is indicated by the red lines. The flow creates an asymmetry in the disk, but at high
Péclet numbers the solution can be simplified by a conformal mapping from the physical domain
z to the exterior of the unit circle ω = g(z). The function f (ω) maps back from the unit circle
to the physical domain. In § 5 we exploit a general solution for advection–diffusion around an
absorbing slit (length 4a1), which can be mapped from the physical domain using the complex
potential W = φ + iψ ; this domain can also be reached from the unit circle with the mapping
W(ω) = a1(ω + ω−1). The coefficient a1 is the conformal radius (3.11); it reflects the size of the
solid object in the physical domain.

The variable z = x + iy identifies locations in the physical domain and zb marks spatial
positions along the mineral–fluid boundary (S); the subscript z indicates gradients and
normals in the physical (z) domain. Although the concentration field is not a harmonic
function, the advection–diffusion equation (3.2) is nevertheless conformally invariant
(Bazant 2004), and takes the same form in any domain that can be related to the physical
one by a conformal mapping. The conformal invariance of (3.1), (3.2), (3.4a–c) and
(3.5a–c) allows for a solution of the transport problem in a domain of our choosing, with
the mapping function only entering into the evolution of the boundary (3.3).

An analytic function f (ω) maps the exterior of the unit circle ω = r eiθ to the physical
domain, z(t) = f (ω, t), with a boundary zb(t) = f (ωb, t); the inverse mapping is defined by
ω(t) = g(z, t). In § 5 we introduce an auxiliary domain W = φ + iψ , which is the exterior
of a finite length slit; φ and ψ are the velocity potential and stream function respectively.
The connections between the physical domain (z) and the two mathematical domains
(ω and W) are shown in figure 3. Derivatives of the mapping functions g′(z) = 1/f ′(g(z))
can be used to relate gradients in the physical and mathematical domains, ∇z = �g′∇w
(Needham 2000). We will frequently suppress the time dependence of the mapping
function, because it does not enter into the calculation of the flux but only into the
evolution of the mapping function itself.

The velocity potential around a unit disk takes the simple form (Bazant 2004),

φ = Re
[
ω + ω−1] , (3.6)

which on the surface of the disk is just φ(ωb) = 2 cos θ . The flux of aqueous ions leaving
the mineral surface can be calculated in the mathematical domain using the relation
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nω = nzg′/|g′|,

Re
[
n̄z∇zc

] |z=zb = |g′(z)|Re [n̄ω∇ωc]|ω|=1 = σ(ωb)

| f ′(ωb)| , (3.7)

where the factor |g′| = | f ′|−1 compensates for the change in metric under the conformal
mapping. The flux around the unit circle can be obtained from the radial derivative of the
concentration,

σ(ωb) = (∂rc)r=1, (3.8)

and the velocity of the boundary points from (3.3) is

żb = −ωbσ(ωb)

Pe f ′(ωb)
. (3.9)

A marker point on the boundary moves simultaneously in both the physical and
mathematical domains; for an individual Lagrangian point both zb and ωb are time
dependent (Bensimon et al. 1986; Feigenbaum, Procaccia & Davidovich 2001). Expressing
żb in (3.9) through the mapping function, zb(t) = f (ωb(t), t), leads to a generalized
Polubarinova–Galin (PG) equation for the evolution of f (Goldstein & Reid 1978; Bazant
et al. 2003):

Re
[
ωb f ′(ωb, t)żb

]
= Re

[
ωb f ′(ωb, t)∂t f (ωb, t)

]
= −σ(ωb)

Pe
. (3.10)

The multiplication by ω̄b eliminates the term proportional to ω̇b, since |ωb|2 = 1. The sign
is the opposite from Bazant et al. (2003) because it is dissolution rather than precipitation.

3.1. The Laurent hierarchy
The mapping function can be expanded in a Laurent series (Galin 1945;
Polubarinova-Kochina 1945; Howison 1992; Bazant et al. 2003; Rycroft & Bazant 2016)

f (ω, t) = a1(t)ω + a0(t)+ a−1(t)ω−1 + · · · . (3.11)

In addition to providing a relatively simple solution strategy for the PG equation (3.10),
the coefficients am offer physical insight into the size and shape of the evolving solid
body. Reflection symmetry about the real (x) axis implies that the mapping function from
the unit circle must also be symmetric, Im[ f (ω̄)] = −Im[ f (ω)], which requires that the
Laurent coefficients am are all real. The coefficient a1 relates the overall size of the solid
domain to the radius of the unit circle, and is usually referred to as the conformal radius.
The conformal centre a0 approximates the shift in the centre of mass when mapping
to the real domain. Points within the solid are bounded by the condition |z − a0| ≤ 2a1
(Pommerenke 1975), while far from the solid object (|ω| → ∞) z ∼ a1ω. The flux from
(3.7) corresponds to a renormalized flow field in the physical domain, with a far field
velocity a1U∞. In the mathematical domain the Péclet number must therefore be replaced
by the rescaled value Pe a1, reflecting the decreasing size of the dissolving cylinder; the
flux is therefore explicitly time dependent (Bazant et al. 2003).

https://doi.org/10.1017/jfm.2020.609
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


903 A46-8 A. J. C. Ladd, L. Yu and P. Szymczak

Substituting the Laurent expansion for f (ω) (3.11), the evolution of the boundary can be
found from (3.10):

Re

[
Pe

1∑
m′=−∞

1∑
m′′=−∞

m′am′ ȧm′′ e−i(m′−m′′)θ

]
= −σ(θ, t). (3.12)

The mapping function can be approximated by a finite number of terms, with coefficients
found by taking moments

∫ π

−π
eimθ · · · dθ of the evolution equation. For a Laurent series

including terms up to ω−M, there are M + 2 unknowns, matched by M + 2 cosine moments

1∑
m′=−M

1∑
m′′=−M

m′am′ ȧm′′
[
δ(m − m′ + m′′)+ δ(m + m′ − m′′)

] = −σm(t)
πPe

, (3.13)

where σm are moments of the flux

σm(t) =
∫ π

−π

cos(mθ)σ (θ, t) dθ. (3.14)

The coefficients satisfy the differential equations

1−m∑
m′=−M

m′am′ ȧm′+m + (m′ + m)am′+mȧm′ = sm, (3.15)

with sm(t) = −σm(t)/(πPe) and 0 ≤ m ≤ (M + 1). Similar equations have been derived in
the low Péclet limit (Rycroft & Bazant 2016), but without assuming a reflection symmetry.
However, for symmetric objects we recover the same differential equations as Rycroft
& Bazant (2016), but with right-hand sides that are valid at any Péclet number, not just
the asymptotic limits. In this work we examine high Péclet (§ 4) and low Péclet (§ 5.2)
asymptotics as well as the general case (§ 5). For small Péclet numbers (Pe � 1) the
Laurent series (3.11) can be truncated after the first two terms (§ 5.2) and closed form
solutions obtained (Rycroft & Bazant 2016). At Pe = 0, (3.15) reduces to the hierarchy
describing Laplacian growth (sm = δ1,m), analysed (for example) by Gustafsson & Vasil’ev
(2006).

Given an expression for the flux around the unit circle – (4.2), (5.5) or (5.6)
– the evolution of the boundary can be found by solving a system of differential
algebraic equations (DAEs) of the form F ( y, ẏ) = 0, with initial conditions a1 = 1,
am /= 1 = 0. Equation (3.15) was implemented as a residual to the IDA solver (https://
computing.llnl.gov/projects/sundials), using Python bindings (https://pypi.org/project/
Assimulo/) provided by the Assimulo suite (Andersson, Führer & Åkesson 2015). The IDA
implements backwards differencing of variable orders and variable step sizes to maintain
the solution within a specified tolerance (10−8 in this work). Consistent initial conditions,
meaning that y(0) and ẏ(0) satisfy the DAEs, were implemented by noting that at t = 0 all
the coefficients except a1 are zero, corresponding to a circular shape. The initial derivatives
of the Laurent coefficients are then

ȧ1−m(0) = sm

1 + δm,0
. (3.16)

Event handling in Assimulo was used to terminate the simulation once the conformal
radius was less than twice the specified tolerance.
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The area and centre-of-mass position of the dissolving solid can be related to the Laurent
coefficients by applying Green’s theorem to the complex function F(z) (Rycroft & Bazant
2016) ∫∫

A
F′(z) dx dy = − 1

2i

∮
C

F(zb) dz̄b, (3.17)

where A is the (two-dimensional) domain bounded by the closed curve C and the contour is
taken in the counter-clockwise direction. Mapping to the unit circle ωb = eiθ , the contour
integral can be converted to a definite integral,∫∫

A
F′(z) dx dy = 1

2

∫ π

−π

F( f (ωb))ωbf ′(ωb) dθ. (3.18)

We can use this result to calculate the undissolved area A(t) (with F(z) = z), and the
location of the centre of mass Δx(t) (with F(z) = z2/2), using the Laurent expansion for
f (ω) (3.11)

A(t) = π

1∑
m=−M

ma2
m(t), (3.19)

Δx(t) = π

2A(t)

1∑
m′=−M

1∑
m′′=−M

(m′ + m′′)am′+m′′(t)am′(t)am′′(t). (3.20)

4. High Pe asymptote

In the high Péclet limit (Pe � 1), there is an explicit solution for the concentration field
outside the unit circle (Bazant 2004).

c(r, θ) = erf
(√

Pe(r1/2 − r−1/2) sin(|θ |/2)
)
. (4.1)

The polar angle is bounded by −π ≤ θ ≤ π, with the downstream stagnation point at
θ = 0 (trailing edge) and the upstream stagnation point at θ = π (leading edge). Equation
(4.1) can be obtained by mapping the solution in the upper half-plane c = erf(

√
Pe Im[ξ ])

to the exterior of the unit circle, with the mapping function ω = ξ 1/2 + ξ−1/2 (Bazant
2004). The asymptotic character of the solution follows from the mapping function, which
imposes a spurious c = 0 condition along the θ = 0 line behind the disk. At large Pe
the field values downstream of a given location have a negligible effect on the upstream
values; hence the asymptotic character of the solution.

The flux around the unit circle (3.8) can be obtained from the radial derivative of the
concentration (4.1),

σ(θ, t) = (∂rc)r=1 = 2

√
Pe a1(t)

π
sin(|θ |/2), (4.2)

with moments

σm(t) = 8
1 − 4m2

√
Pe a1(t)

π
. (4.3)

As discussed in § 3.1, the Péclet number has been replaced by the rescaled value Pe a1,
and the flux is therefore explicitly time dependent. Integrating the hierarchy (3.15) with
the asymptotic flux moments (4.3) requires 128 Laurent coefficients to obtain the collapse
time with six-digit precision. The computations take of the order of 3 minutes.
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FIGURE 4. The area and shift in centre of mass of a dissolving disk as a function of time.
The solid lines are a fully convergent solution (M = 128) of the PG equation (3.15), while
experimental measurements (Dutka et al. 2020) are shown as solid circles. The dashed lines are
single moment approximations to (3.19) and (3.20), A/A0 � a2

1 and Δx � a0 (§ 4.3). The time
scale t0 is the collapse time of the disk, when the dissolving solid vanishes entirely: t0 = 14.5
from the PG equation versus 17.5 from experiment.

4.1. Comparison with experiment
Numerical solutions of the hierarchy (3.15), with the high Péclet flux moments (4.2), lead
to a surprisingly close match with experimentally observed shapes (figure 1), despite the
differences in fluid flow (viscous versus potential) and boundary conditions. However,
solutions from the PG equation were matched to experimental images with the same
undissolved area, rather than the same time. Figure 4 includes a comparison of the area of
the undissolved solid (3.19) with experimental measurements from Dutka et al. (2020).
The time axis is scaled by the collapse time t0, which is the time taken for complete
dissolution of the sample. In the scaled time the areas match to within the uncertainties of
the experimental measurements, so that the different underlying physics is reflected only in
a change of time scale. The experimental conditions result in a time scale τ = 57.3 h (§ 2),
while the sample took 1000 h to dissolve completely. The dimensionless collapse time
from experiment is therefore t0 = 17.5, whereas the collapse time from the PG equation
is t0 = 14.5. The size and shape of the undissolved solid can therefore be mapped to the
experimental observations by a change in time scale of less than 20 %.

The centre of mass of the disk shifts downstream as it dissolves, but the theoretical
prediction is approximately twice as large as the experimentally observed shift (figure 4).
Discrepancies in dissolution time scale and drift of the centre of mass have been
investigated by numerical simulations and will be discussed in § 4.2. The assumption of
potential flow and transport-limited kinetics leads to faster dissolution at the leading edge
of the disk than in the experiment, but nevertheless the shapes at matching areas (figure 1)
are very similar. We discuss the independence of shape and shift in terms of the Laurent
coefficients in §§ 4.3 and 5.3.

We note that the experiment used for figure 4 is not the same as the one shown in
figure 1. For figure 1 we selected the experiment with the most regular shapes, but
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halfway through that experiment the flow rate was quadrupled, changing the time scale.
We therefore used another experiment, with a constant flow rate but slightly less regular
shapes, for figure 4. A complete description of the experimental results can be found in
Dutka et al. (2020); it includes videos of all the experiments, and examples of the images
utilized for figures 1 and 4 (figures 11 and 10 respectively from that work).

4.2. Limitations of potential flow and transport-limited kinetics
We have shown in § 4.1 that the differences between the theoretical model described by
(3.1)–(3.5a–c) and microfluidic experiments can largely be accounted for by a change
in time scale and a shift in the position of the centre of mass; the solid shapes are
remarkably similar and the outlines of the boundary overlap almost exactly. Finite-volume
simulations of equations enable us to track the effects of the different physics that separates
the solutions of (3.1)–(3.5a–c) from the laboratory experiments: Stokes versus potential
flow, finite versus infinite Damköhler number and confined versus unbounded systems.
The finite-volume simulations are second-order approximations to (2.9a,b)–(2.11a–c), laid
out in § 2; the methods have been described in detail elsewhere (Starchenko et al. 2016;
Starchenko & Ladd 2018; Dutka et al. 2020).

Figure 5 shows the shape of a dissolving disk from finite-volume simulations (red
lines) at different dimensionless times (t = 4, 8, 12). Images in each row correspond to
a particular physical model indicated by the title – potential flow versus Stokes flow and
transport-limited dissolution versus a finite reaction rate; the dimensionless time in each
column is the same. The black dashed lines are from a conformal mapping of potential flow
and transport-limited kinetics in an infinite domain, at times chosen so that the area of the
undissolved solid matches that in the finite-volume simulation; those areas are indicated
in each panel.

Results from a potential flow simulation, with a slip boundary condition on the surface
of the dissolving disk, are shown in figure 5(a). Transport-limited kinetics, c(r ∈ S) = 0,
were used to match the solution from the PG equation. In this case solutions of the PG
equation (3.15) need no rescaling of the time or shift in centre of mass to map onto the
finite-volume results. The time scale (tC) and shift (Δx) exactly match the finite-volume
simulation, as indicated by the red line (with a slope of 1) in figure 6(a) and the red line in
figure 6(b).

In Stokes flow the fluid velocity on the disk vanishes, which sets up a viscous boundary
layer around the disk with a thickness of order d, the gap between the plates of the
Hele-Shaw cell. The disk dissolves more slowly than in the potential flow case, as indicated
in figure 6(a). In order to match shapes, rescaled times tC were determined by matching
areas between solutions of the PG equation and finite-volume simulations

A(tC) = Asim(t). (4.4)

The linear dependence of tC on t (figure 6a) shows that there is a single rescaling of the
time that enables the shapes from conformal mapping to match those from Stokes-flow
simulations. The shift in centre of mass is reduced by switching from potential to Stokes
flow (figure 6b) and is more in line with the experimental observations, although the shift
(blue line) is still too large.

A closer match with the experimental time scale can be achieved by including a finite
surface dissolution rate, which in dimensionless form is given by (2.11a–c). Now the
shift in centre of mass closely aligns with the experimental measurements shown in
figure 4, although the dissolution is slightly slower (magenta line in figure 6a). The
remaining discrepancy can be resolved by using a similar sized Hele-Shaw cell, with
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FIGURE 5. Finite-volume simulations (red lines) of a dissolving disk (Dutka et al. 2020) at
Pe = 250; the simulations are matched with solutions of the Polubarinova–Galin equation (3.15)
at the same area. Dimensionless times for the three columns are t = 4, t = 8, and t = 12
respectively, with the time scale from (2.8c). (a) Finite-volume simulations with potential
flow and transport-limited kinetics, as used in conformal mapping. A finite-volume simulation
with Stokes flow instead of potential flow is shown in (b). (c) Results with the reaction rate
characterizing the experiments (k = 4.5 × 10−3 mm s−1); the Damköhler number DaII =
k/U∞ = 66.7. Solutions of the PG equation (black dashed lines) have been scaled in time and
shifted to coincide with the finite-volume simulations. The time scales and shifts are shown in
figure 6.

dimensions 3.8R × 3.3R as opposed to an unbounded system. This produces a small
change in the centre of mass position (black line in figure 6b) but reduces the time for
complete dissolution to t0 = 17.5 (figure 6a) or 1000 h, which precisely matches the
experiment.

4.3. Analytic solutions for the low-order Laurent coefficients
Analytical approximations to the Laurent coefficients can be obtained by first truncating
the expansion of the mapping function (3.11), beyond the third term. The truncated
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FIGURE 6. Time scale and centre of mass for different flow and transport equations. (a) The
rescaled time (tC) of the conformal mapping (potential flow, DaII → ∞, infinite domain) is
compared with the dissolution time scale for different physical models (t): potential flow,
DaII → ∞, unbounded domain (red); Stokes flow, DaII → ∞, unbounded domain (blue);
Stokes flow, DaII = 66.7, unbounded domain (magenta); Stokes flow, DaII = 66.7, finite domain
(black). For potential flow (with DaII = ∞ and an unbounded domain) the time scales tC and t
are the same, so the slope is unity. The decreased slopes for Stokes-flow simulations reflect the
slower dissolution in these cases. (b) The shift in centre of mass for different physical models.
The black circles are the experimental results; the corresponding simulations are shown by the
black lines.

moment hierarchy from (3.15) becomes

−2a0
−1ȧ0

−1 + 2a0
1ȧ0

1 = − 8√
π3Pe

√
a0

1, (4.5)

−a0
−1ȧ0

0 + a0
1ȧ0

0 = 8

3
√

π3Pe

√
a0

1, (4.6)

−a0
−1ȧ0

1 + a0
1ȧ0

−1 = 8

15
√

π3Pe

√
a0

1. (4.7)

The zero superscript denotes approximate solutions for am from the three-term expansion
of f . Noticing that a1 (solid black line in figure 7) is significantly larger that a−1 (solid blue
line in figure 7), we can solve for a0

1 by neglecting the small term 2a0
−1ȧ0

−1 in (4.5),

a0
1(t) =

(
1 − t

t0
0

)2/3

. (4.8)

The collapse time, when a0
1 vanishes,

t0
0 =

√
π3Pe
6

= 14.674 (4.9)

is within 1 % the exact (M = 128) value, t0 = 14.506. There are only small differences
between the exact numerical solution for a1 (solid black line) and the approximate result
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FIGURE 7. Time-dependent Laurent coefficients at Pe = 250. The solid lines are numerical
results with M = 128. The time has been scaled by the analytical collapse time t00 =

√
π3Pe/6;

the numerical collapse time t0 = 0.98857t00. The dashed lines are the analytical approximations
from (4.8) and (4.12a,b).

a0
1 (dashed black line), mostly near the collapse point; the exact coefficient a1 vanishes at

t0, while the analytical approximation a0
1 vanishes at t0

0, which is approximately 1 % larger.
The remaining coefficients can be found by replacing the time variable in (4.6) and (4.7)

by a0
1, noting that ȧ0

1 = −2/(3t0
0

√
a0

1)

(−a0
−1 + a0

1

) da0
0

da0
1

= −2
3

a0
1, (4.10)

−a0
−1 + a0

1

da0
−1

da0
1

= − 2
15

a0
1. (4.11)

Solving first for a0
−1 and then for a0

0, the solutions in terms of a0
1 are

a0
0 = 5 exp(−15/2)

[
Ei(15/2)− Ei(15/2 + ln a0

1)
]
, a0

−1 = − 2
15 a0

1 ln a0
1, (4.12a,b)

where Ei(x) = − ∫∞
−x t−1 e−t dt is the exponential integral function. The analytical

solutions from (4.12a,b) are compared with numerical results (M = 128) in figure 7.
There are only small differences in centre of mass (red lines) between the numerical
(solid) and analytical (dashed) results. At the collapse point (t = t0

0) a0
1 = a0

−1 = 0,
while the shift in centre of mass reaches a constant value close to the numerical one,
a0

0 = 5 exp(−15/2)Ei(15/2) = 0.800. The discrepancy in a0
−1 (blue lines) in figure 7

comes from the neglect of higher-order Laurent coefficients (m < −1), rather than the
approximation for a0

1.

4.4. Time-dependent area and centre of mass
In § 4.2, we noted that the impact of potential flow and transport-limited kinetics was
largely restricted to the time dependence of the area of the solid domain and the shift in
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its centre of mass (figure 6); the shapes at the same area were similar for the different
physical models (figure 5). Here we examine the time dependence of the conformal area
(a1) and centre (a0), which are closely connected to the area and centre of mass of the
disk. Figure 4 shows that approximations to the area and centre of mass derived from the
first two coefficients in the Laurent expansion (dashed lines) are almost indistinguishable
from the exact results (solid lines). Taking the terms involving just m = 0 and m = 1 from
(3.19) and (3.20), we have:

A
A0

� a2
1, Δx � a0. (4.13a,b)

The area corresponds approximately to the square of the conformal radius, whereas the
centre-of-mass position corresponds to the conformal centre.

Equations (4.13a,b) and (4.8) imply that the area of the object will decrease as (1 −
t/t0

0)
4/3. The scaling is not exact, but a comparison of the solid and dashed black lines in

figures 4 and 7 shows that it is very close. Interestingly a similar scaling is predicted for
mechanical erosion at large Reynolds numbers (Moore et al. 2013), despite the different
mechanisms for material removal. Erosion of friable materials such as clay (Ristroph et al.
2012) is due to the large shear stresses on the solid surface caused by the flowing fluid. On
the other hand, dissolution is a result chemical reactions at the solid surface. However, the
interplay of convection and diffusion, momentum in one case (erosion) and mass in the
other (dissolution), may offer an explanation for the similarity in the scaling of the area.

In contrast to the shapes in figure 1, with the cusp pointing downstream, erosion
produces objects with the cusp pointing upstream (Ristroph et al. 2012). Nevertheless,
in both cases the flux scales as

√
U∞/a1, which is also the case for dissolution at large

Re (Huang et al. 2015). This gives a general scaling relation for the evolution of the
conformal radius ȧ1 ∼ a−1/2

1 which leads to (4.8). The area of two-dimensional bodies
then scales as (1 − t/t0)

4/3 (Moore et al. 2013), while the volume of three-dimensional
bodies scales as (1 − t/t0)

2 (Huang et al. 2015). However, at low Péclet numbers the area
decays approximately linearly in time (§ 5.2) for both dissolution (Rycroft & Bazant 2016)
and erosion (Quaife & Moore 2018).

4.5. Motion of the leading and trailing edges
The position and curvature of the boundary near the leading (θ = π) and trailing (θ = 0)
edges can be written in terms of cumulants of the Laurent coefficients,

S±
n (t) =

1∑
m=−M

(±1)mmnam(t), (4.14)

where the minus sign refers to the leading edge, and the plus sign to the trailing edge. The
positions and curvatures are given by

z±
b = S±

0 , C±
b = d2x/dθ 2

(dy/dθ)2
= − S±

2

(S±
1 )

2
. (4.15a,b)

The velocity of the leading edge increases slowly at first and then more rapidly, as
shown in figure 8. Similarly to a parabolic tip (Cummings et al. 1999), the velocity of
the leading edge is proportional to the square-root of the curvature. The multiplicative
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FIGURE 8. Velocity of the leading and trailing edges, ż±
b , at Pe = 250 (M = 128); the plus sign

refers to the trailing edge and the minus sign to the leading edge. The curvature of the leading
edge (4.15b) is shown as the dashed black line.

factor, 2/
√

Pe π, can be found by summing the time derivatives of the coefficients

Ṡ−
0 (0) =

1∑
m=−M

(−1)mȧm(0) = 4
3t0

0

(
1
2 +

∞∑
m=1

(−1)m−1 1
4m2 − 1

)
= 2√

Pe π
, (4.16)

where ȧm(0) given by (3.16). It is larger than the velocity of a parabolic tip (Cummings
et al. 1999) by a factor of

√
2, but consistent with the flux at the leading edge of the circle

(4.2). The connection between velocity and curvature is approximately maintained at later
times, as shown in figure 8.

By contrast, the trailing edge is essentially stationary (Ṡ+
0 (0) = 0) until late in the

dissolution, when the effective Péclet number, a1(t)Pe, is small. In reality the trailing
edge has a small velocity even at t = 0 (§ 5); however, a limitation of the asymptotic
approximation is that the flux at the trailing edge is predicted to vanish (4.1), whereas
in fact it takes a constant value of 1/π (Choi et al. 2005). However, these differences are
not significant when making comparisons with the experiment, given the uncertainties in
the data.

5. Solutions for arbitrary Péclet number

The high Péclet asymptotic approximation (§ 4), is valid in the region θ � Pe−1/2 (Choi
et al. 2005). Near the trailing tip, θ � Pe−1/2, the flux takes a different form from (4.2),
σ → 1/π. However, an exact conformal mapping can be derived from a Boussinesq
transformation, which uses the velocity potential φ and stream function ψ as coordinates.
The physical domain z ∈ R2 is mapped to the φ–ψ plane with the complex function
W(z) = φ(z)+ iψ(z), as illustrated in figure 3. The stream function ψ is constant along
the boundary of the disk and can be taken to be zero. The boundary of the dissolving disk
then maps to a slit along the real axis (φ,ψ = 0), with −2a1 ≤ φ ≤ 2a1. The parameter
a1 < 1 is time dependent (with a1(0) = 1), reflecting the shrinking scale of the object;
determining a1(t) is again part of the calculation.
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A new function C(φ, ψ) = e−Peφ/2[1 − c(φ, ψ)] satisfies the Helmholtz equation

∂2
φC + ∂2

ψC = (Pe/2)2C, (5.1)

with boundary conditions (Goldstein & Reid 1978)

C = e−Peφ/2, −2a1 ≤ φ ≤ 2a1, ψ = 0, (5.2a–c)

C → 0, φ2 + ψ2 → ∞. (5.3a,b)

The solution of (5.1)–(5.3a,b) can be found by solving an integral equation for the flux
(∂ψc)ψ=0,

π =
∫ 2a1

−2a1

K
[

1
2 Pe(φ − φ′)

] (
∂ψc

)
ψ=0 , dφ′, (5.4)

where the kernel K(x) = ex K0(|x |) and K0 is a modified Bessel function. This approach
was first used by Goldstein & Reid (1978), who applied it to the evolution of a frozen
domain with a heat sink at the origin. They calculated a series of shapes similar to
those shown in figure 5. Subsequently, Kornev & Mukhamadullina (1994) solved for the
steady-state shape of the frozen region directly. These problems involve both a fluid region
with convection diffusion (as here), but also a coupled interior region with a Laplacian
temperature field. In our case there is only the exterior domain but the same method can
be used to calculate the concentration flux on the surface.

The integral equation can be transformed to the unit circle ωb = eiθ by the mapping
function W(ωb) = a1(ωb + ω−1

b ). The (real) mapping function for the boundary is just
the velocity potential on a circle of radius a1, φ = 2a1 cos θ . From the mapping function
W(ωb), we have dφ + idψ = 2a1 sin θ(−rdθ + idr), and the integral equation can be
transformed to the θ coordinate,

π =
∫ π

0
K
[
λ(cos θ − cos θ ′)

]
σ(θ ′) dθ ′, (5.5)

where λ = Pe a1 and the flux σ(θ) = ∂rc(r, θ)|r=a1 . The flux in (4.2) is the high Péclet
limit of (5.5) (Goldstein & Reid 1978).

It is preferable to solve the integral equation on the circle (5.5) rather than the slit
(5.4) because the flux is well behaved; for θ � Pe−1, σ ∼ sin |θ |/2, while for θ � Pe−1,
σ ∼ π−1 (Choi et al. 2005). On the other hand, the flux in (5.4) is singular at φ = ±1.
Given a numerical representation of the flux (appendix A), we can solve for the evolution
of the disk as in § 4; the Laurent coefficients are calculated by numerical integration over
the perimeter of the circle. In this case the flux σ(θ, t) must be recalculated at every
time step, because the Péclet number is no longer just a scaling parameter. Nevertheless,
a typical simulation, with M = 32 and 128 quadrature points, takes approximately 10
minutes to integrate to the collapse point; this level of approximation is sufficient to
predict the collapse time t0 to 5 significant figures. The remaining figures were generated
using 34 Laurent coefficients to represent the mapping function (M = 32); the collapse
time with M = 64 differs by less than one part in 105. The more rounded tip may reduce
the dependence of the shape on the number of Laurent coefficients in comparison with
calculations using the high Pe asymptotic flux.

5.1. Shapes of a dissolving disk at different Péclet numbers
The shapes of a dissolving disk have been calculated for different initial Péclet numbers
(Pe); the results are summarized in figure 9. At sufficiently large Péclet numbers
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FIGURE 9. Dissolution in potential flow by an exact conformal mapping (red solid lines) and
the high Péclet asymptotic approximation (black dashed lines). Results are shown at different
dimensionless times and at Péclet numbers: Pe = 100 (a), Pe = 10 (b) and Pe = 1 (c). The time
for complete dissolution t0 derived from the exact conformal mapping is shown in parentheses.

(Pe > 100), the shapes derived from the asymptotic flux (3.8) are almost indistinguishable
from the exact shapes from (5.5) (figure 9a). The sequence of shapes is independent
of Pe, with a dimensionless time scale proportional to

√
Pe. Since time was made

non-dimensional by the fluid velocity (2.8c), the physical time scale is proportional to
Pe−1/2.

The disk develops a cusp at the trailing edge, which becomes more pronounced as it
dissolves. This shape is characteristic of dissolution experiments and simulations at low
Re, but high Pe (Soulaine et al. 2017; Dutka et al. 2020). The fluid near the trailing edge is
nearly saturated with mineral ions and the disk dissolves much more slowly here than on
the leading edge. The slow dissolution of the trailing edge also accounts for the positive
shift in the centre of mass (figure 4). There does not seem to be an asymptotic shape where
only the size (a1) and centre (a0) are time varying. Instead, the tip is constantly evolving in
a history dependent manner. Interestingly, high Péclet precipitation does have an invariant
shape (Davidovitch et al. 2005), although it is not known what initial conditions lead to
that shape. We were unable to find a similar factorization for the mapping function of a
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dissolving object, and numerical results show that an invariant shape does not evolve from
an initially circular disk.

By contrast, dissolution at high Reynolds numbers results in a flat trailing edge, due
to enhanced mixing in the wake behind the object (Huang et al. 2015). The leading edge
of a dissolving cylinder (or sphere) has a finite radius of curvature (Huang et al. 2015),
as it does at low Re. On the other hand, erosion at high Reynolds number leads to a
triangular-shaped tip with straight edges meeting at approximately 90◦ (Ristroph et al.
2012; Moore et al. 2013).

At lower Pe, (3.8) incorrectly predicts a cusp at the trailing edge, while the exact
solution is more egg shaped (figure 9b). Furthermore, the asymptotic flux does not
capture the persistent circular shape when Pe < 1 (figure 9c). The circular shape at low
Péclet (Pe < 1) has been found previously (Rycroft & Bazant 2016), using a low Péclet
asymptotic expansion. The numerical approach outlined in this section is uniformly valid
over the whole range of Péclet numbers, and smoothly connects the low and high-Pe
asymptotes. In § 5.2 we improve on the low Péclet expansion in Rycroft & Bazant (2016)
by including logarithmic (in Pe) contributions to the flux.

5.2. Low Péclet limit
At low Péclet numbers there is an asymptotic expansion of (5.4) for which the leading
terms are (Choi et al. 2005)

σ(θ, t) = 1 + (1 − C)Pe a1(t) cos θ + O(Pe2)

C
; (5.6)

here, C(t) = −γ − ln(Pe a1(t)/4) and γ is Euler’s constant.
The flux (5.6) has only two moments up to linear order in Pe: from (3.14)

σ0 = 2πC−1, σ1 = πPe a1(C−1 − 1). (5.7a,b)

With the low-Pe flux (5.6), (4.5)–(4.7) are

−2a−1ȧ−1 + 2a1ȧ1 = −2C−1(t)
Pe

, (5.8)

−a−1ȧ0 + a1ȧ0 = −a1(C−1(t)− 1), (5.9)

−a−1ȧ1 + a1ȧ−1 = 0. (5.10)

If the disk is initially circular, a−1 = 0 for all times (since ȧ−1 ∝ a−1); in fact, if we ignore
contributions to the flux from order Pe2 and above, all the Laurent coefficients other than a0
and a1 are zero. Taking m = −M in (3.15), we find from an equation similar to (5.10) that
a−M = 0. Working up through the hierarchy (3.15), with successively decreasing values of
m, it can be seen that all the coefficients up to a0 vanish.

In order to analyse the dissolution of complex shapes, Rycroft & Bazant (2016) argued
that the logarithmic term in C could be assumed constant, C(t) = C0 = −γ − ln(Pe/4).
In that case, the area and shift depend linearly on time (Rycroft & Bazant 2016), with a
collapse time and final shift in centre of mass

t0 = Pe
2

C0, Δx(t0) = Pe
2
(C0 − 1). (5.11a,b)

Taking into account the time scale defined in (2.8c), the dissolution time (in units of R2/D)
diverges as log Pe in the Smoluchowski (diffusion) limit, where the solution corresponds
to Laplacian growth.
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Taking the time dependence of C into account, and solving (5.8) with the initial
condition a1(0) = 1 (a−1 = 0), we obtain an implicit equation for a1,

t = Pe
4

[(
1 − 2γ − 2 ln

Pe
4

) (
1 − a2

1

)+ a2
1 ln a2

1

]
. (5.12)

Next, we solve for a0 with a1 as the independent variable, as in (4.10) and (4.11). Equation
(5.9) can then be rewritten as

a1
da0

da1

da1

dt
= −C−1(a1)

Pe
da0

da1
= −a1(C−1(a1)− 1). (5.13)

Integrating with respect to a1, and applying the boundary condition a0(1) = 0 (t = 0), we
have

a0 = Pe
4

[(
−1 − 2γ − 2 ln

Pe
4

) (
1 − a2

1

)+ a2
1 ln a2

1

]
. (5.14)

We then obtain exact asymptotic expressions for the collapse time and final shift at low Pe,

t0 = Pe
2

(
C0 + 1

2

)
, Δx(t0) = Pe

2

(
C0 − 1

2

)
. (5.15a,b)

The approximate collapse time (5.11a) is shorter than the exact result (5.15a) by Pe/4 and
the final shift by Pe/4 also ((5.11b) and (5.15b)).

5.3. Dependence of area, shift and shape on time and Péclet number
A log–log plot, shown in figure 10(a), indicates that the undissolved area is approximately
a power of the time remaining before collapse A/A0 = (1 − t/t0)

α. At high Péclet numbers
α ≈ 4/3 as indicated in (4.8); however, contributions from Laurent coefficients with
m < 0 modify the power, making it slightly less than 4/3. Results at Pe = 100 (solid
black line) are asymptotic and show no discernible change at larger Péclet numbers. At
lower Péclet numbers the exponents decrease towards a linear decay A/A0 = (1 − t/t0)
(dotted line), which was predicted (Rycroft & Bazant 2016) from a low Péclet asymptotic
expansion of the flux (§ 5.2). However, if the Péclet number is reduced below Pe = 0.01,
there is only a minimal change from the blue line, suggesting that the predicted asymptotic
limit, shown by the dotted line in figure 10(a), is never reached. Rycroft & Bazant
(2016) argued that the logarithmic term in C could be assumed to be constant, but this
approximation fails to capture the correct evolution of the area near the collapse point.
In § 5.2 we developed an exact asymptotic (low Pe) calculation for the dissolution of an
initially circular disk, which shows that there are logarithmic corrections to the linear
decay that occurs for constant C.

The numerically determined collapse times t0(Pe) are shown in figure 10(b). The
collapse time is scaled by the high-Pe asymptotic value t0

0 = √
Pe π3/36. Since t0

0 is an
analytical approximation (4.9), it does not exactly capture the collapse time, even at large
Pe, but is slightly too large; nevertheless, the collapse time at Pe = 100 is within 1 %
of t0

0. At lower Péclet numbers the disk dissolves faster than predicted by the asymptotic
flux (4.2), as indicated in figures 9(b) and 9(c). When Pe < 1 the disk remains circular
(figure 9c), and all the Laurent coefficients apart from a1 (radius) and a0 (shift) are
vanishingly small; an initially circular disk simply shrinks and shifts downstream (Rycroft
& Bazant 2016). The exact low Pe asymptote (§ 5.2) is indicated by the dashed line; the
approximate asymptote assuming a constant C = C(0) is shown as the dotted line.
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FIGURE 10. Exact solutions for the time-dependent area (a) and collapse time (b). The x axis in
panel (a) indicates the time remaining before collapse; note that time is decreasing in the positive
direction. The areas are plotted logarithmically to show the approximate power-law scaling; the
dashed line is the linear decay at low Pe from Rycroft & Bazant (2016), while the dotted line
is the high Pe asymptote A(t)/A0 = (1 − t/t0)4/3. The numerically determined collapse times
are shown in panel (b) as a function of Péclet number. Asymptotic expressions for high and low
Péclet numbers, from (4.9) and (5.15a,b), are shown as solid and dashed lines; the approximate
low Pe asymptote (5.11a,b) is shown as the dotted line.
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FIGURE 11. Exact solutions for the shift in centre of mass (Δx). (a) The time-dependent shift
Δx(t) for different Péclet numbers. (b) The final shift Δx(t0) versus Péclet number. Asymptotic
expressions for high and low Péclet numbers, from (4.12a,b) and (5.14), are shown as solid and
dashed lines; the approximate low Pe asymptote from (5.11a,b) is shown as the dotted line.
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FIGURE 12. Exact solutions for the aspect ratio of the dissolving disk. (a) The time-dependent
aspect ratio AR(t) for different Péclet numbers. (b) The final aspect ratio AR(t0) versus Péclet
number.

The centre of mass of the dissolving disk Δx(t) is shown in figure 11 over a range of
Péclet numbers. At low Péclet numbers the shift is nearly linear in time, but there are small
logarithmic corrections (5.14), as discussed in § 5.2. At higher Péclet numbers the shift
increases more rapidly with time and undergoes a sharp increase in slope near the collapse
point. Nevertheless, there is a well-defined value for the shift at the collapse point Δx(t0),
which we have determined numerically as Δx(t0,Pe → ∞) = 0.769. The approximate
value from (4.12a,b) is 0.800, which is 4 % larger. The asymptotic approximations at high
and low Péclet number are shown by the dashed lines in figure 11(b) and the approximate
low Pe shift at the collapse point (Rycroft & Bazant 2016) by the dotted line.

The shape of the dissolving object can be characterized by the aspect ratio

AR(t) = 4A(t)
πL(t)2

(5.16)

where the area of the object A(t) is given in (3.19) and the length L is the distance between
the leading and trailing edges (4.14),

L(t) = S+
0 (t)− S−

0 (t) = 2
1∑′

m=−M

am(t), (5.17)

here the sum is restricted to the odd coefficients a1, a−1, a−3, . . .. For an elliptical object,
AR is equal to the ratio of minor to major axes. The aspect ratio varies from one at t =
0 (circular disk), to a smaller value at t0 (elliptical disk) resulting from the asymmetry
introduced by the flow (figure 12a). For small Péclet numbers (Pe < 0.1) the aspect ratio
remains constant, meaning that the disk is always circular. However, at Pe = 1 there is
a growing asymmetry, not easily visible in figure 9(c), with AR ≈ 0.9 near the collapse
point. At higher Péclet numbers the asymmetry becomes much larger, with a terminal
aspect ratio AR(t0) = 0.027 at Pe = 1000 (figure 12b).
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δt/t0 = 9.0 × 10–1, a1 = 9.33 × 10–1 δt/t0 = 7.0 × 10–1, a1 = 7.92 × 10–1 δt/t0 = 5.0 × 10–1, a1 = 6.37 × 10–1

δt/t0 = 3.0 × 10–1, a1 = 4.62 × 10–1 δt/t0 = 1.0 × 10–1, a1 = 2.38 × 10–1 δt/t0 = 1.0 × 10–2, a1 = 6.48 × 10–2

δt/t0 = 1.0 × 10–3, a1 = 1.85 × 10–2 δt/t0 = 1.0 × 10–4, a1 = 2.43 × 10–3 δt/t0 = 0.0 × 10–0, a1 = 1.94 × 10–8
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FIGURE 13. Dissolution at different times to collapse, δt = t0 − t, for a Péclet number Pe =
1000. Outlines of the shape of the undissolved solid (red lines) are scaled by the conformal
radius (a1), which is indicated in the legend. The blue lines show the region within 0.05 of the
tip on a scale expanded sixteen fold. The inset plots (blue) have been shifted a small distance
downstream to separate them from the main figures.

5.4. The interplay of fluid velocity and conformal radius
The effective Péclet number Pe a1(t) decreases with time as the solid dissolves, and
eventually the dynamics is controlled by low Pe asymptotics (Rycroft & Bazant 2016).
Figure 13 shows the shapes of a dissolving cylinder at high initial Péclet number (Pe =
1000). The surface coordinates have been scaled by the conformal radius a1 so that the
shapes near the collapse point remain visible; the coordinates are shifted along the x-axis
to keep the centre of mass at the origin. The time δt = t0 − t indicates the time remaining
before the solid vanishes.

At high Péclet number (Pe = 1000) the disk develops a distinct cusp at the trailing edge,
with slightly concave regions near the tip. By contrast, at lower Péclet numbers (figure 9)
the trailing tip is always convex. However, although the tip looks sharp on the scale of the
plot, an expanded scale shows that it remains slightly rounded (blue inset figures).

Starting with a high Péclet number means that the undissolved solid must be very small
before the low-Pe limit is approached. The collapse to the finite-time singularity (δt → 0)
is then very abrupt, as illustrated by the logarithmic time scale in the last row of figure 13.
In high velocity erosion, an invariant triangular shape develops on the leading edge, which
shrinks and shifts downstream with time (Moore et al. 2013). Here, the shape of the solid
body is evolving all the way to the end; there is no invariant shape.

Once Pe a1 drops below unity, all Laurent coefficients other than a1, a0, and a−1 become
small. The undissolved solid then takes up a roughly elliptical shape, which persists until
collapse; the final shape can be seen in the last panel of figure 13. It may seem surprising
in view of § 5.2 and figure 9(c) that the final shape is elliptical not circular. However, when
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the initial Péclet number is large, the object enters into the low Pe asymptotic regime with
a non-circular shape, so that the higher-order Laurent coefficients are decaying in time,
but remain non-zero (Rycroft & Bazant 2016).

6. Conclusions

We have applied conformal-mapping methods to provide physical insight into the
dissolution of thin cylinders of soluble materials such as gypsum. The approximations of
potential flow and transport-limited dissolution, inherent in the application of conformal
mapping, reduce the time scale by approximately 20 % and exaggerate the motion of the
centre of mass. Nevertheless the predicted shapes are in remarkably good agreement with
experimental observations (figure 1). Analysis of the Laurent coefficients that define the
(time-dependent) map from the unit disk shows that the coefficients corresponding to the
conformal radius (a1) and centre (a0) largely separate from the negative indices (am<0)
that specify the shape. It seems that the approximations separating (3.1)–(3.5a–c) from
the experimental physics largely affect the conformal radius and centre, while leaving
the negative Laurent coefficients almost unaffected. As the constraints – potential flow,
diffusion-limited kinetics and an unbounded domain – are relaxed one by one, there are
changes in both the time scale and location of the centre of mass, eventually leading to a
very close match with experimental results.

We have solved the Polubarinova–Galin equation using different approximations for the
flux of ions leaving the unit disk. For an exact solution at any Péclet number, we have
implemented the integral equation formalism developed for frozen domains by Goldstein
& Reid (1978) and Kornev & Mukhamadullina (1994). This extends previous asymptotic
formulations (Bazant 2004; Rycroft & Bazant 2016) to the complete range of Pe. At low
Péclet numbers we have improved on previous work by including logarithmic corrections
to the first three Laurent coefficients. There is then an exact match between numerical
solutions and the low Péclet asymptotics, which compare well with the exact solutions
when Pe < 0.1. The high Péclet asymptotic region begins around Pe = 30, and once
again the area and shift in centre of mass can be found from simple analytical formulas
for the first three Laurent coefficients, (4.8) and (4.12a,b). However, the high Péclet
asymptotics is not entirely analytical because more coefficients are needed for a precise
result; nevertheless, approximate results from the first three coefficients are frequently
adequate.

The area of the dissolving body is linked to the evolution of the exterior harmonic
moments in the z plane (Richardson 1972; Mineev-Weinstein, Wiegmann & Zabrodin
2000; Gustafsson & Vasil’ev 2006; Leshchiner et al. 2010), which can be defined as

Bm =
∫∫

Aex t

z−m dx dy − πR2
ex tδm,0 = − 1

2i

∮
C

z−m
b z̄b dzb, (6.1)

where the exterior (fluid) domain Aex t is bounded by a large circle of radius Rex t,
m = 0, 1, 2, . . . and C is the boundary of the solid. The moments Bm remain finite as
Rex t → ∞ and can be expressed as integrals over the unit circle,

Bm = − 1
2

∫ π

−π

f −m(ωb)f (ωb)f ′(ωb)ωb dθ. (6.2)

The solid area A(t) = −B0(t) can be directly connected to (3.19) by the equivalence of
the two contour integrals (since A(t) is real). For classical Laplacian growth (the Pe → 0
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limit of our system), a surprising result found by Richardson (1972) is that Ḃm(t) = 0
for m > 0. In other words, all the harmonic moments are constant, except for the area itself.
The infinite number of conservation laws links the evolution of the growing contour with
the mathematics of integrable soliton systems (Mineev-Weinstein et al. 2000; Wiegmann
& Zabrodin 2000). The presence of the flow breaks the integrability, yet we observe a
somewhat similar phenomenon, with the dynamics of the contour largely controlled by
the first few terms.

Finally, we note that this work can be seen within the framework of a larger class of
erosion and dissolution physics, both at high and low Reynolds numbers. Each regime
gives rise to distinct shapes for the dissolving body.

(i) Erosion at large Re: pointed leading edge, flat trailing edge (Ristroph et al. 2012).
(ii) Erosion at small Re: pointed leading and trailing edges; symmetric shape (Quaife &

Moore 2018).
(iii) Dissolution at large Re: rounded leading edge, flat trailing edge (Huang et al. 2015).
(iv) Dissolution at small Re: rounded leading edge, pointed trailing edge (this work).

At high Reynolds number (cases i and iii), the boundary layer thickness scales as a1/2
1 .

The flux is proportional to 1/δ, which leads to the observed time dependence of the
conformal radius (or size), a1(t) = (1 − t/t0)

2/3. In case (iv) (this work), the concentration
boundary layer again scales as a1/2

1 because of the assumption of potential flow. However,
in low Re erosion (case ii), the area scaling is linear in time with logarithmic corrections
(Quaife & Moore 2018). This is the same scaling observed in low Péclet dissolution (5.12).
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Appendix A. Numerical solution for the flux around a disk

Here we outline a numerical solution of the integral equation from (5.5)

π =
∫ π

0
K
[
λ(cos θ − cos θ ′)

]
σ(θ ′) dθ ′, (A 1)

where the kernel is given by
K(x) = ex K0(|x |), (A 2)
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and K0 is a modified Bessel function. The primary difficulty in integrating (A 1) is that the
kernel has a logarithmic singularity in the region where θ ≈ θ ′. However, the (integrable)
singularity can be eliminated by subtracting the source at the receiver point,

π =
∫ π

0
K
[
λ(cos θ − cos θ ′)

] [
σ(θ ′)− σ(θ)

]
dθ ′ + σ(θ)

∫ π

0
K
[
λ(cos θ − cos θ ′)

]
dθ ′.

(A 3)
The first integral has a well-behaved integrand, vanishing as x ln |x | in the region θ ≈ θ ′

(x = θ − θ ′), and can be calculated by midpoint quadrature. We create a discrete set of
N points on the circle, θn = (n + 1

2)π/N, and calculate the off-diagonal matrix elements
(m /= n),

Kmn =
∫ θn+δ/2

θn−δ/2
K[λ(cos θm − cos θ ′)]dθ ′ = K [λ(cos θm − cos θn)] δ, (A 4)

with errors proportional to δ3, where δ = π/N.
We solve (A 3) for σm at each of the N receiver points, which in the discrete

representation becomes
N∑

n=1

Kmnσn = π, (A 5)

with Km /= n given by (A 4), and

Kmm = Im −
∑
n /= m

Kmn. (A 6)

The integral Im = ∫ π

0 K[λ(cos θm − cos θ ′)] dθ ′ cannot be calculated by quadrature because
of the singularity, so we must seek some kind of exact integration.

For a linear argument, K(a + bt), the kernel can be integrated exactly; in cases where
|a| > |bt|,∫

ea+btK0(|a + bt|) dt = a + bt
b

ea+bt (K0(|a + bt|)+ sgn(a)K1(|a + bt|)) . (A 7)

To make use of this result we subdivide the interval into 2Nm + 1 subregions

θ k
n = θn + kδ′, (A 8)

where k = −Nm,−Nm + 1, . . . ,Nm and δ′ = δ/(2Nm,+1)

Im =
N∑

n=1

Nm∑
k=−Nm

∫ δ′/2

−δ′/2
K
[
λ(cos θm − cos(θ k

n + θ ′))
]

dθ ′. (A 9)

If δ′ is sufficiently small, the argument of the kernel can be linearized about cos θm −
cos θ k

n ,

Im =
N∑

n=1

Nm∑
k=−Nm

∫ δ′/2

−δ′/2
K(ank

m + bnkt) dt, (A 10)

where ank
m = λ(cos θm − cos θ k

n ), and bnk = λ sin θ k
n . Typically, we set Nm = 8 giving 17

subintervals for each collocation point; increasing Nm to 16 gave indistinguishable results.
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The integral over each segment can be evaluated exactly, but the formulas depend on
the sign of ank

m , as in (A 7). Source codes to calculate these integrals are available in the
supplementary material available at https://doi.org/10.1017/jfm.2020.609.
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