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Abstract We consider a porous medium infiltrated by a reactive fluid which triggers coupled dissolution‐
precipitation reactions at pore surfaces. To study these processes, we model the medium as a system of
interconnected pipes with the diameter of each segment changing in proportion to the local reactant
consumption. With this model, we investigate different growth regimes in an evolving porous medium, allowing
for both erosion and precipitation of the dissolved material. The interplay of flow, transport and reaction in such
a system can give rise to a variety of patterns: from spontaneous channeling to nearly homogeneous
transformation of the entire rock matrix into the product phase. Interestingly, even if the product phase has a
larger molar volume than the parent phase, clogging in such a system can be avoided, due to the interplay of
dissolution and precipitation resulting in the continuous creation of new flow paths. These results can be
relevant for the analysis of carbonation reactions, in which an important goal is to avoid clogging of the pore
space that can lead to permeability reduction and the overall slowdown of the process.

Plain Language Summary In this study, we explore how fluids moving through rocks can dissolve
minerals and deposit new ones, changing the rock's structure. This process can either create pathways that allow
fluids to flow more easily or block these pathways, making the rock more compact. We use a numerical model to
simulate a network of pores within the rock, observing how different conditions affect the formation of new
channels or the blocking of existing ones. Our findings show that the outcome—whether the rock becomes more
open or more clogged—depends on the balance between the mineral being dissolved and the new mineral being
formed. Factors like the size of the mineral particles, how fast they dissolve or form, and the initial structure of
the rock all play a crucial role. Understanding and controlling these conditions can help in applications like
mineral carbonation, where maintaining fluid flow in rocks is essential.

1. Introduction
Dissolution, precipitation, and chemical reactions between solutes and solids may gradually alter the composition
and structure of the solid matrix, either creating or destroying permeable paths for fluid flow. Complex, dynamic
feedback thus arises where, on the one hand, the fluid flow affects the characteristics of the solid medium, and on
the other hand the changing medium influences the fluid flow. Such feedback between the flow of fluids and the
media in which they flow are important for understanding the slow processes, which—over geological timescales
—may transform the rock masses (Korzhinskii, 1968; P. J. Ortoleva, 1994). Among these reactive processes, it is
commonly encountered that a secondary mineral precipitates when a primary mineral dissolves, and the pre-
cipitation and dissolution reactions are closely coupled with each other (Korzhinskii, 1968; Putnis, 2021). A
classic example of this kind is dolomitization (Merino & Canals, 2011), in which vast rock masses of limestone
are transformed into dolomite by the dissolution of calcite followed by dolomite precipitation, silicification
(replacement of minerals by silica) (Bustillo, 2010), or serpentinization (replacement of Fe–Mg silicates by
serpentine minerals) (Barnes & O’Neil, 1978; Wicks & Whittaker, 1977). Understanding of the dissolution/
precipitation processes is also crucial for such applications as sustaining the fluid circulation in geothermal
systems (Wagner et al., 2005), the long‐term geochemical evolution of host rock in nuclear waste repositories (De
Windt et al., 2004) or the creation of subsurface barriers to mitigate the spread of contaminants in groundwater (A.
Cohen et al., 2021). Another important application is the mineral trapping of carbon dioxide (Matter & Kele-
men, 2009; Oelkers et al., 2008)—here the primary silicate mineral dissolves due to a decrease of pH caused by
the presence of aqueous CO2; meanwhile, CO2 reacts with cations released by the dissolution reaction to form a
secondary precipitate of carbonate mineral. Mineral carbonation provides a permanent and safe way for storing
carbon dioxide, which is compelling due to the need for large scale cost‐effective means to reduce the carbon
content in the atmosphere and oceans to mitigate global warming effects.
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If the system undergoes dissolution only, the reaction front is often destabilized. Even if the front is initially
planar, small perturbations emerge, which absorb more flow and amplify into finger‐like or funnel‐like structures,
such as wormholes or solution pipes (Daccord & Lenormand, 1987; Hoefner & Fogler, 1988; Lipar et al., 2021).
This mechanism is referred to in the literature as the reactive‐infiltration instability (Aharonov et al., 1995;
Chadam et al., 1986; Hinch & Bhatt, 1990). Networks of caves and sinkholes are formed by the dissolution of
limestone by CO2‐enriched water in karst areas (Palmer, 1991; Szymczak & Ladd, 2011), the ascending magma
dissolves the peridotite rocks, leading to formation of a network of high‐permeability channels (Aharonov
et al., 1995; Daines & Kohlstedt, 1994; Kelemen et al., 1995; Spiegelman et al., 2001), matrix acidizing is used by
petroleum engineers to enlarge the natural pores of the reservoirs (Rowan, 1959)—in all these processes, the
interplay of flow and reaction in an evolving geometry results in the spontaneous formation of intricate patterns.
Flow‐induced dissolution, characterized by strong, nonlinear coupling between transport and geometry evolution
have been investigated in numerous experimental (Al‐Khulaifi et al., 2019; Daccord, 1987; Daccord & Lenor-
mand, 1987; Hoefner & Fogler, 1988; Li et al., 2019; Luquot & Gouze, 2009; Menke et al., 2018; Ott &
Oedai, 2015; Snippe et al., 2020) and theoretical (C. Cohen et al., 2008; Golfier et al., 2002; Panga et al., 2005;
Steefel & Lasaga, 1990; Szymczak & Ladd, 2009; Soulaine et al., 2017) studies, the latter often combined with
numerical simulations.

On the other hand, precipitation reactions tend to stabilize the reaction front by decreasing the permeability of the
rock (Woods, 2014). In this paper, we are concerned with the case where dissolution and precipitation coexist,
linked by common ion(s). There are indications that such fronts can also become unstable, leading to fingering
structures. Natural examples include the fingering of dolomitization fronts (Centrella et al., 2021; Koe-
shidayatullah et al., 2020; Merino & Canals, 2011) or the formation of uranium rolls, where uraninite precipitates
at the redox front separating oxidized rock from reduced rock (Dewynne et al., 1993). Pattern formation in
dissolution‐precipitation systems has also been observed experimentally, such as in calcite dissolution coupled
with ferric hydroxide (Rege & Fogler, 1989) or gypsum precipitation (Garcia‐Rios et al., 2015; Singurindy &
Berkowitz, 2003a, 2003b), and in the replacement of strontium sulfate by barium sulfate (Poonoosamy
et al., 2015).

Although several theoretical studies of the instabilities in dissolution‐precipitation fronts have been conducted
(Banerjee & Merino, 2011; Beinlich et al., 2020; Kondratiuk et al., 2015, 2017; Korzhinskii, 1968), a thorough
characterization of these systems is still missing. The obvious reason for this is the presence of a large number of
controlling factors in such systems including infiltration rate, dissolution and precipitation reaction rates or molar
volume of the primary and secondary phases. This complexity is precisely what makes the problem challenging
and worthy of consideration.

2. Network Model
The main numerical tool used in this paper to investigate the chemical transformations in porous media will be a
pore network model. We will draw on our prior experience with network models for exploring dissolution in
evolving porous media (Budek & Szymczak, 2012; Roded et al., 2020, 2021; Sharma et al., 2023), extending this
approach to include coupled dissolution‐precipitation processes. Pore‐network models offer a computationally
efficient yet geometrically explicit framework that facilitates control over pore architecture—such as diameters,
lengths, and connectivity—allowing one to adjust the network to represent different rock types. A key advantage
of this approach is that it enables the resolution of pore‐scale gradients in concentration, which are often ho-
mogenized in continuum models. This fine‐scale resolution is essential for accurately modeling structure–flow–
reaction feedbacks, which govern the emergence of features like wormholing and are central to reactive infil-
tration instability. As dissolution and precipitation modify the pore space, the network structure can be
dynamically updated, allowing us to trace evolving permeability, transport properties, and effective reaction rates
during chemical transformation of rocks (Ameri et al., 2017; Budek & Szymczak, 2012; Raoof et al., 2012;
Varloteaux et al., 2013). This makes pore‐network models a particularly useful tool for investigating the interplay
between microstructure and macroscopic transport in reactive porous media.

In the network model, the medium is represented as a collection of connected capillaries with heterogeneous
diameters that evolve through the dissolution and precipitation of mineral material, as illustrated in Figure 1. To
obtain the volumetric flow in the network, a sparse system of linear equations needs to be solved to relate the
pressure at each node to the volumetric flux qij in an individual capillary element (pore) connecting two nodes
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indexed by i and j. Each of these elements will be described in one‐
dimensional manner, assuming that the diameter is constant along its
length. The link between the volumetric flow, qij, and the pressure drop along
the pore is then given by

qij = −
π

128μlij
d4
ij (pj − pi), (1)

where dij is the pore diameter and μ is the dynamic viscosity of the fluid. At
each node, we also have a continuity condition, ∑i qij = 0, where the sum is
over all the nodes i connected by a pore with node j. The resulting system of
sparse linear equations is then solved for the pressure values at the nodes by a
linear algebra solver. To this end, we use the multi‐frontal massively parallel
solver (MUMPS) (Amestoy et al., 2001, 2006).

The concentration of reactive species ck along each pore is found by solving
the convection‐reaction equation

∂(qck)
∂x

= − πdRk ( c1,… ,cN), (2)

where πd accounts for the reactive surface area (assumed to be equal to the lateral surface of the pore) and R is the
reaction term involving, in principle, the concentrations of all reactive species.

By integrating Equation 2 along the pore, we can find the link between the concentrations of the reactive species at
the inlet and outlet of each pore (Figure 2). This is supplemented by the solute balance equations at the pore
intersections, which assume full mixing (Park et al., 2001; Sharma et al., 2023) that is, solute from inlet branches
is assumed to mix instantaneously at the intersection, resulting in homogeneous concentrations in the outlet
branches. The concentration of species k at a given node j with incoming pores ij is then determined by equation:

ckj =
∑
i
qijckij

∑
i
qij

, (3)

where and ckij is the outlet concentration of pore ij. Other mixing rules, such as streamline routing, can be
considered (Sharma et al., 2023) and they might influence the dissolution patterns to some extent.

By combining mixing rules (Equation 3) with the integrated reaction‐convection solutions (Equation 2), we
obtain another sparse linear system, this time for the concentrations of reactive species at the lattice nodes. The
local expansion of each pore element then follows in proportion to the dissolution and/or precipitation rate at each
point. To keep the system mathematically tractable, an approximation is usually adopted in which the diameter of
each pore element is assumed to be constant along its length. Consequently, the reactive flux is integrated along
the pore, and the resulting dissolved/precipitated volume is uniformly distributed along its length (Budek &
Szymczak, 2012; Hoefner & Fogler, 1988). Importantly, flow and transport equations do not include time de-
rivatives, as we assume that the dissolution time‐scales are much longer than the flow and transport relaxation

Figure 1. Schematic of the pore network model for tracking flow and
geometry evolution in an evolving porous medium. The rock (a) is
represented as a network of elementary pores (b), each characterized by a
length, l, and diameter, d, which evolves in time due to the dissolution/
precipitation reactions (c).

Figure 2. Reactions within the pore: dissolution: A + B → C↑ and precipitation C + D → E↓.
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times. This assumption allows us to use the quasi‐static approach, treating the flow and concentration fields as
stationary at each time‐step (Lichtner, 1988).

The reactive fluid enters from the upper edge, where pressure pin is applied, and exits from the lower edge, where
the pressure is pout = 0. In our study, we consider a scenario with a constant total flow through the system, thus at
each time step, pin is scaled accordingly. Additionally, periodic boundary conditions are applied along the lateral
direction.

Additional details regarding the algorithm are provided in the following section, where we focus on implementing
the network algorithm for a specific dissolution‐precipitation system.

3. Dissolution‐Precipitation
To get a first insight into the interplay of flow, transport and reactions in dissolution‐precipitation systems, we
consider the simplest dissolution‐precipitation reaction, in which the dissolution of mineral A by reactant B

reaction 1: χAA + χBB → C↑

is coupled by a common ion C with precipitation of mineral E,

reaction 2: C + χDD → χEE↓

as depicted in Figure 2. Here χi are the stoichiometric coefficients for the reactions.

One example of such reactions is sandstone acidizing used to increase the permeability of sandstone oil reservoirs
(Economides & Nolte, 2000). In this process hydrofluoric acid dissolves silica, releasing silicon hexafluoride ions
into the solution. These ions react with sodium ions in the brine, forming sodium fluorosilicate that precipitates
out of the solution:

SiO2 + 6HF → SiF2−
6 + 2H2O + 2H+

2Na + + SiF2−
6 → Na2SiF6↓.

A similar dissolution‐precipitation coupling through a common ion is at the base of mineral carbonation processes
(Andreani et al., 2009; Matter & Kelemen, 2009; Sanna et al., 2014). As an example, let us take the dissolution of
forsterite coupled with precipitation of magnesite (Matter & Kelemen, 2009). To begin with, the carbon dioxide
dissolves in water

CO2(aq) + H2O → CO2−
3 + 2H+.

The hydrogen ions produced in this reaction are then dissolving forsterite

Mg2SiO4(s) + 4H+ + H2O → 2Mg2 + + H4SiO4.

In turn, magnesium ions released in this reaction are reacting with carbonate ions forming magnesite, which
precipitates

Mg2+ + CO2−
3 → MgCO3(s).

One of the challenges here is to assess how to prevent self‐clogging of this reaction under the conditions when the
precipitated product (E) has an equal or larger molar volume than the dissolved mineral (A), as is the case in most
of the mineral carbonation reactions.

The kinetics of water‐rock interactions can be very complex (Lasaga, 1984). However, here, we assume reaction
rates that are linear in concentrations of reactants to keep the model simple and focus more on the couplings
between flow and porosity evolution rather than on the intricacies of the reactions:
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Rdiss = k1cB, Rprec = k2cC, (4)

where we assumed that both reactions are irreversible, meaning that the corresponding back reactions can be
neglected. Additionally, we assume that there is a large supply of D ions in the fluid; hence, their concentration
does not limit the rate of the precipitation reaction.

The concentrations cB and cC in Equation 4 correspond to the ion concentration at the surface of the pores, where
the reactions take place. These are, in general, lower than the bulk concentration due to the hindering role of the
diffusion, particularly pronounced in wider pores. These effects can be taken into account by introducing the
effective reaction rates (Szymczak & Ladd, 2009)

keff
1 (d) =

k1

1 + k1d ⁄DBSh
keff

2 (d) =
k2

1 + k2d ⁄DCSh
. (5)

Here D is the diffusion coefficient of the reagent and Sh is the Sherwood number, which is the non‐dimensional
mass transfer coefficient (Bejan, 1984; Gupta & Balakotaiah, 2001) characterizing the magnitude of the diffusive
current to the reactive wall.

The mass balance equations for B and C components, corresponding to the coupled reactions 1–2 take then the
form:

qδcB = − χBπdRdiss = − χBπdkeff
1 cBδx, (6)

qδcC = πdRdiss − πdRprec = (πdkeff
1 cB)δx − (πdkeff

2 cC)δx, (7)

where δcB and δcC are the changes in B and C concentrations over the length δx (see Figure 2) and we assumed
advection‐dominated transport along the axial direction (x). Note that transverse diffusion effects are incorporated
into the effective reaction coefficient, keff (Equation 5).

We can get rid of the stoichiometric coefficient χB in the above equations by rescaling the concentrations and
reaction rates:

cB́ = χ− 1
B cB, keffʹ

1 = χBkeff
1 , (8)

which corresponds to tracking χB ions of B species instead of a single ion. With this rescaling, after dropping the
primes, Equation 6 takes the form

q
dcB
dx

= − (πdkeff
1 cB), (9)

while Equation 7 retains its previous form.

For a channel of a uniform diameter, these equations can be integrated to yield

cB (x) = cB0e− Da1x/l,

cC (x) = cB0
Da1

Da1 − Da2
( e− Da2x/l − e− Da1x/l) + cC0e− Da2x/l,

(10)

where ci0 denotes the concentration of reagent i at the inlet of a pore and we introduced a local, effective
Damköhler number for reaction 1 and 2 as

Dai (d,q) =
πkeff

i (d)ld
q

=
πkild

q(1 + kid ⁄DiSh)
, (11)
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which depends on the local flow rate and diameter of a given pore. The effective Damköhler number is related to
the reactant penetration length, which will be discussed in detail in Section 5.

Given the reaction rates, the change of radii of the pores can be calculated based on the mass conservation

∂t (d/2) = Rdiss χAνA − Rprec χEνE = keff
1 χAνAcB − keff

2 χEνEcC, (12)

with the first term accounting for dissolution of A and the second—precipitation of E. In the above, νA and νE are
the molar volumes of the dissolved and precipitated rock material A and E respectively. Integrating the above
along the pore, we can calculate the total change in the mineral volume per unit time due to dissolution and
precipitation in a single pore:

ΔV = ΔVA + ΔVE = πdΔt∫
l

0
(− keff

1 χAνAcB(x) + keff
2 χEνEcC(x)) dx, (13)

with the volume change of mineral A, ΔVA, and that of mineral E, ΔVE, given by

ΔVA = − qΔtχAνAcB0 (1 − e− Da1),

ΔVE = qΔtχEνE(cC0 (1 − e− Da2 ) − cB0
Da1 (1 − e− Da2) − Da2 (1 − e− Da1)

Da1 − Da2
).

(14)

As previously mentioned, one of the underlying assumptions in pore‐network models for chemically transforming
porous media (Budek & Szymczak, 2012; Hoefner & Fogler, 1988) is that the pores widen uniformly while
maintaining their cylindrical shape. Consequently, the change in channel volume by ΔV corresponds to a change
in diameter during a time step Δt:

Δd
d 0 = −

2ΔV
πldd 0 =

Δtʹ
Da1 (1 +

k1d
DSh

)cinB
(cB0 (1 − e− Da1)

− cC0Γ(1 − e− Da2) − cB0Γ
Da1 (1 − e− Da2) − Da2 (1 − e− Da1)

Da1 − Da2
),

(15)

where the dimensionless time was introduced as

Δtʹ = 2k1χAνAcin
B

d0 Δt. (16)

Here, d0 represents the characteristic diameter of a pore, typically taken as the average diameter at the initial state
of the system and cin

B is the concentration of species B at the inlet of the system. Additionally, we have introduced
the ratio of molar volume of precipitating rock to dissolving one:

Γ =
χEνE
χAνA

. (17)

This ratio plays a crucial role in the geometry evolution; Γ < 1 corresponds to the reaction accompanied by
porosity creation, whereas Γ > 1 leads to reactions coupled with an increase in solid volume, potentially
resulting in self‐clogging. However, as this work will demonstrate, dissolution‐precipitation patterns depend not
only on Γ but also on the kinetics of the reactions.

Faithful representation of dissolution‐precipitation processes requires not only tracking of the evolving diameters
of the pores, but also of the total volume of A and E minerals in the grains in between the pores. The system
considered in this work is assumed to be quasi‐2D with a fixed thickness in the vertical direction (z)much smaller
than the size of the system along x and y. Such a system can, for example, be a model of a bedding plane where the
average pore size is comparable to the grain size of the confining rock (Dreybrodt, 1988; Ewers, 1982), or it can be
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representative of quasi‐2D experimental systems (Cochepin et al., 2008; Poonoosamy et al., 2015; Trotignon
et al., 2005) designed to study flow‐induced chemical transformations in porous media.

In our network model, triangular grains of rock material are located in between the pores (see Figure 3), consisting
of a primary (dissolving) mineral A (which we mark in blue) and a secondary (precipitating) mineral E (red). The
initial diameters of all the pores are set to d0, and all the grains consist initially of mineral A only. The initial
volumes of the grains are determined based on the distances between nodes and reduced by the volume occupied
by the pores. Based on this, the initial lengths of the channels are also determined. As the hydrochemical
transformation of the porous medium proceeds, the volumes of the grains change. In our model, we then rescale
the grains to either larger or smaller size, as illustrated in Figure 4.

Based on Equations 13–15, we can calculate new pore diameters, dʹ , and new
grain volumes, Vʹ . We assume that the volume increments ΔVA

ij and ΔVE
ij

calculated based on Equation 14 are equally distributed among all the grains
(ijk) adjacent to a given pore (ij). This allows us to determine the updated
diameters and lengths of individual pores, as well as the new volumes of the
grains:

díj = dij −
2(ΔVA

ij + ΔVE
ij)

πlijdij
, (18)

V íjk = Vijk +
1
2
(ΔVA

ij + ΔVE
ij + ΔVA

jk + ΔVE
jk + ΔVA

ki + ΔVE
ki), (19)

l íj =
1
2
((
V íjk

V0
ijk
)

1⁄3

+ (
V íjm

V0
ijm
)

1⁄3

) l0ij , (20)

where ΔVA
ij and ΔVE

ij are the mineral volume increments in pore ij. To
calculate the new pore lengths, we first assume the uniform scaling of grain
shapes and then calculate the final l íj as the average over all surrounding grain

Figure 3. Pores and grains: The model consists of a random assembly of triangular grains surrounded by pores. The size of
each grain changes in response to reactions occurring in the surrounding pores. During each time step, both pore diameters
and pore lengths are updated, and grain volumes are recalculated. The grains are comprised of either mineral A (depicted in
blue), mineral E (depicted in red), or a mixture of the two (various shades of purple).

Figure 4. Schematic of pore growth and associated grain shrinkage. The
network, consisting of nodes and edges, is shown in the upper panel, while
the evolution of volume and shape for both pores and grains is illustrated in
the lower panel. An edge ij corresponds to a pore shaded in red, with two
adjacent grains, mij and ijk, shaded in gray. The original size of the grain is
outlined with black lines, while the solid gray area represents the grain after
dissolution. Due to the pore widening, the lengths of the pores are decreasing.
The grain shapes are assumed to scale uniformly during dissolution.
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lengths. The maximal length of a pore, l 0
ij , is given by the distance between

spanning nodes (i, j). The average distance between connected nodes (over all
pores in the network), l 0 = 〈l 0

ij 〉, will be used as a unit of length in the
system. Additionally, we assume that the system has a certain thickness in the
third (vertical) dimension, which we take to be equal to l0 ⁄ 2. Thus, the
maximal volume of a grain spanned between nodes (i, j,k) will be given
by V0

ijk = S△ijk
l 0/2.

Note that, unlike in Budek and Szymczak (2012), in this model, the reaction
surface of a pore, represented by s(d) = πdl(d), is not a monotonic function
of its diameter or porosity, φ = V0 − V

V0 . For symmetrical, hexagonal network
of pores the relation between the reaction surface and porosity is as follows:

s(φ) =
33/4π1/2

2
(1 − (1 − φ)2/3)

1/2
(1 − φ)1/3, (21)

and attains its maximum at φ = 1 −
̅̅
2

√

4 (as shown in Figure 5). As porosity
increases, the reaction surface rapidly expands (mainly driven by changes in
diameter, d), reaching a plateau at approximately φ≃ 0.4. Beyond φ > 0.8, it

sharply decreases to zero primarily due to a decrease in l. This behavior mirrors realistic characteristics of the
reactive surface area, akin to what is observed in experiments and theoretically described, for instance, in terms of
the sugar‐lump model presented in Noiriel et al. (2009). In this model, the porous medium is assumed to comprise a
cluster of grains that progressively dissociate as each grain undergoes dissolution, resembling the process of sugar
dissolving in a cup of coffee. The sugar‐lump model offered the most accurate fit for the data on reactive surface
area obtained from laboratory flow‐through experiments.

A finite amount of mineral A and a finite amount of space for precipitation impose additional constraints on our
system. In channels that lack access to grains containing A, the dissolution reaction stops. If precipitation
dominates over dissolution, the significant decrease in pore diameters may cause numerical problems when
calculating the flow field through the system. Permeability depends on the channel diameter to the fourth power
(see Equation 1), making the solution of the continuity equations for flow numerically unstable if diameters (d)
differ by many orders of magnitude between different pores. To circumvent this technical issue, we remove all
pores with d < dmin = 0.0001l0. Note that this approach may eventually result in a lack of connection between
inlet and outlet nodes. In such a case, we terminate the simulation and interpret it as a total clogging of the system.

Due to the linear nature of governing equations, for a given initial geometry of the system and value of d0, the
parameters that determine the emerging patterns are Γ and the initial mean values of the effective Damköhler
number

Da0
i =

πd0l0keff
i (d0)

q0 , (22)

where d0, l0, and q0 denote the initial average values of diameters, lengths, and flows in all the channels,
respectively.

Instead of characterizing the results in terms of two Damköhler numbers, Da0
1 and Da0

2, we will find it more
convenient to introduce the ratio of dissolution and precipitation rate constant

κ =
keff

2 (d0)

keff
1 (d0)

, (23)

which unequivocally determines the ratio Da0
1/Da0

2. Thus, by changing Da0
1 and κ, we cover the same parameter

space as by varying Da0
1 and Da0

2. Later, for simplicity, we will omit the indices and write Da ≡ Da0
1.

Figure 5. Porosity versus reaction surface in a uniform system with triangular
grains and cylindrical pores (red line) compared to similar relation with
system in which pore length is constant (black dashed line).
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To a lesser extent, the dissolution patterns will also depend on the transport parameter

Gi =
kid0

DiSh
, (24)

characterizing the hindering effect of transverse diffusion across the pore on the reaction rate. The impact of G on
the dissolution patterns is known to be much weaker than that of Da (Budek & Szymczak, 2012), mostly affecting
the aspect ratio of the emerging dissolution channels. In this work, to limit the number of free parameters in the
system, we perform the simulations with a fixed value ofGi parameters, Gi = 1, which implies a mixed transport/
reaction control on the reaction rate, characteristic of acidization experiments. For example, dissolution of Indiana
limestone by hydrochloric acid with surface reaction rate k = 0.2 cm/s results in G ≈ 0.7.

The pore‐network models of porous media that track both dissolution and precipitation reactions were first
developed by Rege and Fogler (1989), building upon the earlier dissolution‐only models by Hoefner and Fogler
(1988). Inspired by these works, our model expands it in several ways. The most important new element is the
tracking of not only pores but also solid material grains and their composition. This allows us to monitor the
concentrations of reactants and products more effectively and to model the evolution of the reaction surface area
in a more realistic manner. Both pore diameter and length now change during the simulation. Additionally, this
approach enables us to determine if the soluble material is still present in a grain before performing dissolution.
On a technical level, we utilize a fast, parallel sparse matrix solver, which we find more efficient compared to the
stochastic concentration tracking method used in Rege and Fogler (1989).

4. One‐Dimensional Solutions
Before delving into the analysis of two‐dimensional dissolution‐precipitation patterns, it is worthwhile to examine
the behavior of the system in one dimension. In this scenario, we assume that the concentrations of reactants and
products, along with pore diameters, are only functions of the distance from the system inlet. Figure 6 shows the
emerging profiles of cB, cC, the total porosity of the system φ, as well as vA and vE–the volume fractions of
minerals A and E. The simulation was executed on a regular hexagonal network comprising 4 × 2,000 nodes, with
periodic boundary conditions on the lateral sides of the system.

Figure 6a illustrates the results for Da = 0.02, κ = 1.0, Γ = 1.0, and d0 = 0.3. Initially, the system was filled
with the primary mineral A, with an initial volume fraction vA (d0 = 0.3) ≈ 0.69, corresponding to an initial
porosity of φ0 = 0.31. This system was then infiltrated with a fluid containing B. All concentrations are scaled by
the inlet concentration of B, cin

B . At the reaction front, the concentration of cB decays exponentially due to the
dissolution reaction. The penetration length of B is given by LB = l0 ⁄ Da. As a result of dissolution, C ions are
produced, whose concentration initially increases but then decreases due to precipitation. The penetration length
of C, LC, depends on κ: LC ∼ LB/κ.

It is important to note that porosity decreases at the front. This is the consequence of precipitation occurring
further in the system than dissolution; thus, at the front mineral E has already been deposited, but A has not yet
fully dissolved. Since the molar volume ratio is set to one, Γ = 1, the final porosity of the system equals the initial
one for the simulation depicted in Figure 6a.

Results of the simulation for different parameters, Γ = 1.2 and κ = 5, are presented in Figure 6b. Note that even
though the volume ratio, Γ, is now larger than one, the system does not get clogged. As long as there is enough
void space in the system, a stationary solution exists with the front moving downstream, similarly to the previous
case. The condition for such a solution to exist is that the minimal porosity, attained by the system at the reaction
front, be larger than zero.

The parameter Γ, which determines the total volume gain or loss in the reaction, controls the final porosity of the
system. Behind the front, the primary species (A) is completely replaced by the secondary species (E) with the
volume fraction vfinal

E , which—due to mass conservation—is equal to Γv0
A (in the case of Figure 6b, vfinal

E = 0.83).
The value of the final porosity is then φfinal = 1 − Γ(1 − φ0) .

The role of the Damköhler number, Da, in a one‐dimensional system can be reduced to the change of length scale.
Indeed, by scaling xʹ = Da x, we can map systems with different Da onto each other (see Equation 10). On the
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other hand, the parameter κ influences the shapes of both cC(x) and vE(x), decreasing the penetration length of C
ions as κ increases. Finally, the initial pore diameter, d0, primarily impacts the front profile by altering the initial
and final porosity and the resultant volume of the secondary mineral, vE.

To determine the condition for clogging in terms of κ, Γ, in Appendix A we consider an effective, Darcy‐scale
description of our system. Under these conditions, the concentration and mineral volume profiles can be
explicitly determined, provided that we assume a constant reactive surface area, s(φ) = const. The detailed
solution is presented in Appendix A. Furthermore, a comparison between the analytical solution and our nu-
merical model is illustrated in Figure 6. The agreement between them is nearly perfect, provided that we operate
in a regime where the surface area does not undergo significant changes (see Figure 5).

Using the analytical solution for porosity, we can identify the conditions under which it remains positive (i.e., no
clogging occurs). This leads to the following condition for the initial porosity φ0 in terms of Γ and κ

Γ(
(Γ − 1)κ + 1

Γκ
)

κ
κ − 1

<
φ0

1 − φ0
. (25)

Figure 6. A one‐dimensional solution for a system with dissolution and precipitation for different Γ and κ values. Numerical
simulation results are shown as dashed lines, while solid lines represent the analytical solution of Equation A1 given by
Equation A2. The minimal porosity (see Equation A4) is indicated by a black dotted line. Note that all concentrations are
scaled by cin

B . Panel (a) corresponds to Γ = 1 (A and E species have the same molar volume) and κ = 1 (dissolution and
precipitation reaction rates are equal). In this case, the initial and final porosities are identical. Panel (b) corresponds to Γ = 1.2
and κ = 5 where the final porosity is smaller than the initial one. In both cases, the porosity reaches a minimum at the front,
which is deeper for lower values of κ.
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This condition ensures that the system remains permeable by preventing the
porosity from dropping to levels that could cause clogging.

The contour lines representing the above condition for different initial po-
rosities, φ0, are shown in Figure 7. The higher the initial porosity, the broader
the parameter space (κ, Γ) that avoids clogging. A slow precipitation rate,
characterized by a small κ, facilitates clogging. To elucidate this, consider a
point the distance of which from the dissolution front, L, is larger than the
dissolution penetration length (L > LB) yet smaller than the precipitation
penetration length (L ≪ LC). Such a condition can be easily fulfilled, since
LB/LC = κ ≪ 1. At such a point, mineral A is still intact, thus the volume
fraction left forE to precipitate is equal to the initial porosity,φ0. Clogging will
thus occur if vfinal

E ≥ φ0. Since vfinal
E = Γv0

A = Γ(1 − φ0), we finally obtain
the following limit for maximal non‐clogging volume ratio, Γ∗κ→0 =

φ0
1− φ0

.

Conversely, for rapid precipitation reactions, this threshold value, Γ∗, in-
creases. In the case of large κ, precipitation occurs in situ, with the dissolution
of mineral A followed immediately by the precipitation of E at the same place.

In such a case, E can fill the entire volume, that is, vfinal
E = Γv0

A ≤ 1. Thus, the maximal non‐clogging Γ is
then Γ∗κ→∞ = 1

1− φ0
.

Figure 7. The threshold volume ratio value, Γ∗ (Equation 25) above which
the medium gets clogged for a 1D system as a function of κ for four different
values of the initial porosity, φ0.

Figure 8. The evolution of dissolution patterns for different Γ values, with fixed Da = 0.5, d0 = 0.1, and κ = 1, alongside the respective permeability evolution curves.
Active channels are marked by red circles. Pores are color‐coded as follows: heavily overgrown pores (d ≤ d0 ⁄ 10) are red; intermediate pores (d0 ⁄ 10 < d ≤ d0)

are yellow; pores larger than d0 but smaller than 2d0 (d0 < d < 2d0) are gray; and pores forming the dissolution pattern (d ≥ 2d0) are black. In panel (a), the simulation
for Γ = 0 represents pure dissolution. Panel (b) corresponds to Γ = 0.3, where weak precipitation slows down the breakthrough. In panel (c), the simulation results for
Γ = 0.85 are presented, showing strong competition between dissolution and precipitation, accompanied by characteristic oscillations in permeability. In panel (d), with
Γ = 1.25, precipitation is stronger than dissolution, leading to clogging. Movies S2, S3, S4, S5 illustrate evolution of the patterns in time.
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5. Permeability Oscillations and Clogging
Let us now shift our focus to the two‐dimensional case to explore how the development of dissolution patterns in
the system and the evolution of its total permeability, K, are influenced by the precipitation reaction. Our
reference scenario uses Da = 0.5 and d0 = 0.1. The process of pure dissolution with these parameters (with
precipitation reaction switched off) on a random grid of 100 × 100 pores is shown in Figure 8a. The initial
network is generated from nodes uniformly distributed on a square, with pores defined by the edges of the
Delaunay triangulation. All pores have the same initial diameters, and the only source of randomness is the
placement of network nodes, which influences initial pore lengths and grain volumes. In this reaction regime,
relatively narrow (a few pores wide) and highly branched dissolution channels form. Initially, multiple channels
begin to grow, but intense competition for flow and reactant leads to a gradual reduction in the number of active
channels. Eventually, only one channel manages to reach the end of the system. Initially, the total permeability of
the system increases slowly as the dissolution channels develop. Then, it begins to rise much more rapidly once
the main channel breaks through to the end of the system.

Figure 8b presents results for the same system, but this time with precipitation characterized by κ = 1 and
Γ = 0.3, indicating a relatively small molar volume of the secondary mineral (E). The pattern displays disso-
lution channels that are similar to those in the previous case, yet slightly thicker and more branched. Upon closer
inspection, one can observe that the competition between channels is less intense: at any given moment, there are
more active channels than in the scenario without precipitation. This is attributed to the fact that the partially
cemented rock, which is of low porosity and rich in the secondary mineral, forms protective barriers around the
dissolution channels, hindering interactions between them. Notably, the permeability increases more slowly than
in the pure dissolution scenario, and the breakthrough occurs later.

Let us now consider the scenario where the molar volumes of minerals A and E are of similar order, κ = 1 and
Γ = 0.85 (Figure 8c). In the figure, areas with lower than initial porosity are marked in yellow, while intensely
overgrown areas are marked in red (d ≤ d0 ⁄ 10). In this case, one can observe intense competition between
dissolution and precipitation, resulting in intriguing, tortuous dissolution patterns. The emerging wormholes,
where dissolution initially concentrates, are also the regions of most intense precipitation. This leads to the
clogging of the flow path around an active dissolution channel and the subsequent formation of a new one
attempting to bypass the clogged regions. Sometimes, these channels grow in directions transverse to the main
pressure gradient or even backtrack. However, after some time, the growth of a new channel is again halted by
a decrease in porosity in front of its tip, prompting another channel to begin growing, only to eventually
become overgrown as well. Consequently, the permeability evolution over time experiences continuous os-
cillations, with each maximum in permeability corresponding to an attempt by one of the most active fingers to
break through (active fingers are highlighted by red circles in Figure 8). Ultimately, one of the channels
manages to break through to the end of the system, although it is challenging to predict which one will succeed.
Unlike in pure dissolution scenarios, where the longest channel almost always prevails, the outcome here
remains uncertain until the very end, with no clear indication of which channel will dominate and reach the
system's end. The resulting dissolution patterns can significantly deviate in morphology from those observed in
pure dissolution cases. Interestingly, similar oscillations in permeability have been experimentally observed by

Figure 9. (a) Permeability evolution in the experiments of Rege and Folger (Rege & Fogler, 1989) with dissolution of calcite
and precipitation of ferric hydroxide in limestone cores (Rege & Fogler, 1989) (b, c) Wood's metal castings of the dissolution
patterns in Rege & Fogler experiments: pure dissolution (b) and the interplay of dissolution and precipitation (c).
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Rege and Fogler (1989). In their experiments, limestone cores were infiltrated by a mixture of HCl and FeCl3,
resulting in the dissolution of calcite and precipitation of ferric hydroxide (see Figure 9). They observed
pronounced oscillations in permeability, which they attributed to the formation of cemented regions in the
medium. The frequency of these oscillations decreased with an increasing flow rate, since a larger flow tends to
spread the precipitate more evenly in the system, which slows down the clogging. Rege and Folger succeeded
in casting dissolution patterns of their samples by injecting Wood's metal in the pore space. Their results show
that the interplay of dissolution and precipitation results in much more ramified patterns which involve a
considerable larger portion of pore space than the pure dissolution patterns obtained at the same flow rate. We
will return to this point in Section 6.

Permeability oscillations were also observed in the studies of Singurindy and Berkowitz (2003b) who flooded
calcareous sandstone by a mixture of HCl/H2SO4 triggering calcite dissolution and gypsum precipitation. Post‐
mortem analysis of the samples revealed that gypsum precipitated around the wormholes effectively cementing it,
not unlike the patterns observed in Figure 8c.

Finally, let us consider the case of even more intense precipitation (Γ = 1.25 and κ = 1). As before, the
permeability oscillates over time, and channels intensely meander in search of an exit route (see Figure 8d).
However, the system eventually becomes completely clogged. Since in the code we remove all channels with
d ≤ dmin, at some point, the last connection between inlet and outlet is cut off, and the simulation stops.

Let us now systematically analyze the clogging of the system to identify the specific parameters Da,Γ,κ,d0 that
lead to complete cementation. This time, the simulations are conducted on a grid spanning 50 × 200 randomly
selected points. The simulation terminates either upon the breakthrough of a dissolution/precipitation channel or
when the connection between the inlet and outlet nodes is broken due to clogging. For each set of parameters, the
simulation is repeated 40 times with different random network node placements and the results are averaged over
these realizations.

For the purpose of data analysis, we define a dissolution channel as a set of interconnected pores, starting from the
inlet, whose diameters exceed 2d0. This definition is intuitive in the dissolution‐dominated regime. However,
under conditions of large Γ or high initial porosity, the areas of intense dissolution and precipitation may not
necessarily exhibit higher porosity than the initial state due to the substantial amount of precipitated secondary
mineral E. In such cases, we alternatively define a precipitation channel as being composed of grains where
vE > vA/2, and in contact with the inlet. We terminate the simulation when either the dissolution or precipitation
channel reaches the outlet. The breakthrough of a dissolution channel to the outlet of the system is always
associated with a significant increase in system permeability, a phenomenon not consistently observed with
precipitation channels, especially when Γ ≥ 1. Nonetheless, since dissolution and precipitation reactions pri-
marily concentrate around the tip of the active dissolution/precipitation channel, reaching the outlet is considered
a natural point to conclude the simulation.

The clogging behavior in a finite system also depends on its total length, L, due to potential leakage of reagents
from the system. Therefore, for a finite L, the ratio of the dissolution/precipitation penetration lengths to the
system size becomes important:

L̃B ≔
LB
L
=
l0

L
1

Da
and L̃C ≔

LC
L
=
l0

L
1

κDa
. (26)

If L̃B, L̃C ≪ 1, the leakage of reagents may be neglected. However, for L̃B, L̃C ∼ 1, the leakage of the coupling
ion becomes significant, reducing the likelihood of clogging.

Figure 10 presents the fraction of simulation runs resulting in dissolution/precipitation channel breakthrough for
different parameter values {Da,Γ,κ,d0} . Additionally the information about L̃C is provided. The upper left panel
shows results for low initial porosity (d0 = 0.1,φ0 = 0.04), and Da = 0.5. In one‐dimensional model, such
porosity values correspond to critical Γ∗κ→0 = 0.04 and Γ∗κ→∞ = 1.04. For Γ > Γ∗ we should get clogging, while
smaller Γ values should lead to the breakthrough. Analyzing the clogging probability in 2D, we recognize the
sigmoidal boundary between clogging and breakthrough regimes predicted by the one‐dimensional model (see
Figure 7). This is particularly evident for large κ (small L̃C), indicating the critical value of Γ∗κ→∞ to be around 1.
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For smaller κ ( L̃C > 0.01), the sigmoidal boundary becomes blurred, with some simulations resulting in clogging
while others do not.

The lower bound of the 1D model, Γ∗κ→0 = 0.04, does not seem to correlate with the 2D network simulations. For
κ = 1, the one‐dimensional case predicts a critical Γ of 0.42, whereas in 2D, the corresponding transition occurs
around Γ ≈ 0.8. These discrepancies are caused by the fact that the 1D theory was derived for an infinite system,
whereas for 2D simulations with small κ, the finite size of the system starts to matter—a significant amount of C
ions leave the system before they can precipitate as E. On the other hand, in the 2D system, non‐uniform
dissolution front and reaction channeling provide more opportunities to avoid complete clogging. Thus, the
one‐dimensional model establishes a lower bound for Γ∗, with actual values in 2D often being higher.

The fraction of breakthrough for a system with a higher initial porosity (d0 = 0.3,φ0 = 0.33) is shown in
Figure 10b. This initial pore diameter corresponds to 1D critical values Γ∗κ→0 = 0.48 and Γ∗κ→∞ = 1.48. For large
κ (small L̃C), once again, the agreement with the predictions of the one‐dimensional model is rather good. In this
regime, dissolution is almost immediately followed by precipitation so that C ions produced in a given pore
precipitate in the same pore. Additionally, it should be noted that for κ → ∞, the critical Γ∗ must satisfy
Γ∗κ→∞ = 1

1− φ0
> 1, resulting in a final porosity lower than the initial. Consequently, there is no mechanism

causing an instability of the reaction front, resulting in a flat front where substance A is replaced by E in both one
and two dimensions.

Figure 10. (a) Fraction of simulation runs resulting in breakthrough for Da= 0.1, d0 = 0.1, and varying Γ and κ. Red indicates
clogging, while blue represents breakthrough. A sigmoidal boundary separates parameter sets leading to breakthrough and
clogging (see Equation 7). (b) Fraction of simulation runs for Da = 0.1 and d0 = 0.3, showing no sigmoidal boundary due to
higher initial permeability. (c) Probability of clogging as a function of Da and Γ, with fixed κ = 1 and d0 = 0.1.
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For such a high value of initial porosity, the sigmoid characterizing 1D clogging condition is entirely absent:
smaller κ leads to a higher breakthrough probability for a given Γ, which is the opposite trend to that predicted by a
1D model. There are two reasons for this. First, large initial diameters imply that cementation processes take
considerable time. Second, the highly effective dissolution channeling observed at high porosities leads to
increased flow rates and intense leaching of the C ions due to the locally decreased Damköhler number, resulting
in an increase in both L̃B and L̃C.

The value of the Damköhler number itself does not influence clogging in an infinite one‐dimensional system (see
Appendix A). However, this behavior differs in a 2D system of finite length. The lower panel of Figure 10 shows
the breakthrough probability as a function of Da and Γ for fixed d 0 = 0.1 and κ = 1. Small Da values lead to an
increase of breakthrough probability by enhancing leaching (larger L̃C) and making it easier for dissolution
channels to bypass clogged areas, as the channels are wider at smaller Da. Summarizing, the 1D estimation for
clogging/breakthrough provides a lower bound for Γ∗ ( κ,d 0). In 2D finite systems, Γ∗ can be higher, particularly
for small κ (resulting in large L̃C) and large initial porosity.

6. Morphological Diagrams
Let us examine the morphology of dissolution‐precipitation patterns for different values of κ and Γ. Our reference
case will again be Da = 0.5 and d0 = 0.1. Simulations are conducted on a grid consisting of 200 × 200

Figure 11. Morphological phase diagram of dissolution‐precipitation patterns for various Γ and κ values, with Da = 0.5 and d0 = 0.1 (pore diameter maps). Pores are
color‐coded as follows: heavily overgrown pores (d ≤ d0 ⁄ 10) are red; intermediate pores (d0 ⁄ 10 < d ≤ d0) are yellow; pores larger than d0 but smaller than 2d 0

(d0 < d < 2d0) are gray; and pores forming the dissolution pattern (d ≥ 2d0) are black. The lower axis shows corresponding values of the precipitation penetration
length, L̃C.
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randomly placed nodes. The results are presented in Figure 11, illustrating the pattern variations across different
parameter combinations. As before, the simulations are terminated when the system becomes completely clogged
or when a breakthrough of a dissolution/precipitation channel occurs. In the former case, the final frame of the
simulation presented in Figure 11 is bordered in red (clogging), while in the latter, it is bordered in blue
(breakthrough). For a better insight into both the final porosity and the mineral composition of dissolution pat-
terns, two methods of data presentation have been used. Local porosity is presented in Figure 11 by color‐coding
the pores. The pores with diameters smaller than the initial ones (d0 ⁄ 10 < d < d0) are marked in yellow, while
the most overgrown pores (d < d0 ⁄ 10) are marked in red. On the other hand, Figure 12 depicts grains enclosed
between the pores. Those filled with mineral A are marked in blue, those filled with mineral E are marked in red,
while the mixtures of the minerals are marked by various shades of purple. For clarity, yellow is used to mark the
empty space in between the grains.

As expected, the ratio of molar volumes of the secondary and primary species, Γ, has a major impact on the
patterns by progressively introducing more volume into the system. This affects the overall shape of the channels,
which transition from patterns resembling dissolution wormholes at small Γ to tortuous structures with cemented
rims at larger Γ values. Eventually, large values of Γ lead to the clogging of the system. However, as discussed in
Section 5, even for Γ > 1, the system can remain permeable, particularly at larger flow rates (smaller Da) and
higher initial porosities.

Figure 12. Morphological phase diagram of dissolution‐precipitation patterns for different Γ and κ for Da = 0.5, d0 = 0.1 (mineral maps). Colors correspond to the
mineral concentrations in the grains: mineral A is marked in blue, mineral E—red while the mixtures of the minerals are marked by various shades of purple. Note that an
empty space, not occupied by grains, is marked in yellow. The lower axis shows corresponding values of the precipitation penetration length, L̃C .
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The impact of the reaction rate ratio (κ) on the growing patterns is less obvious. In the low precipitation rate
regime, κ = 0.01 and L̃C = 1, the system never clogs due to the intense leaching of the C ions from the system,
even if Γ > 1. When Γ is also low (small molar volume of the secondary mineral), the influence of the pre-
cipitation reaction becomes negligible, and we obtain dissolution patterns similar to those for pure dissolution
(Budek & Szymczak, 2012). However, as we increase Γ, we observe a progressively larger amount of precipitate
surrounding the dissolution channel. Since these partially cemented regions are less permeable, their presence
hinders side‐branching of the wormholes, which become more linear and less fractal. For slightly larger values of
the reaction rate ratio (κ = 0.1), the precipitation occurs closer to the active channel and influences its growth in a
more profound way. As shown in Figure 11, the red area of intense overgrowth forms a well‐defined conduit
inside which a dissolution channel grows. The shape of the conduit defines the subsequent shape of the channel. In
some cases (e.g., κ = 0.1, Γ = 0.5), the main channel may even grow backward, opposite to the global pressure
gradient, because the area ahead of it is clogged by the precipitate (see Movie S6).

In contrast, for a large precipitation rate, the secondary reaction occurs almost instantaneously, in the immediate
neighborhood of where the dissolution takes place. This makes clogging less probable and does not lead to
channel bending or branching. Note that as Γ becomes larger, such in situ precipitation results in a decrease in the
permeability ratio between dissolution channels and the medium. The reduced permeability ratio changes the way
the channels interact with each other. The competition between them becomes weaker, and their shape—less
branched but thicker. We can also observe an attraction between shorter channels and their longer neighbors,
leading to the formation of loops (Γ = 0.5 − 0.75, κ ≥ 10, see Movie S7), which is a characteristic feature of the
fingering process in a medium with relatively low mobility contrast between the invading and receding phases
(Budek et al., 2017). Note that when Γ ≥ 1, the permeability of the transformed parts becomes equal to or less
than that of the surrounding medium. In such cases, the reactive front becomes stable (P. Ortoleva et al., 1987;
Szymczak & Ladd, 2014), and the dissolution channels do not form (see e.g., the patterns at Γ = 1, κ = 100,
where almost all the primary mineral A is replaced by mineral E). Hence, such a system remains homogeneous,
and the 1D model of Section 4 is applicable. This means, among other things, that the system will clog beyond
Γ∗κ→∞ = 1

1− φ0
, as predicted in Section 4.

The most morphologically diverse dissolution patterns are observed for intermediate values of κ and Γ. At these
values, L̃C is small enough to neglect leakage through the outlet, while the competition between dissolution and
precipitation is at its most intense, resulting in numerous thin channels with very short lateral branches (see
Movie S8). A particularly intriguing pattern emerges at κ = 1 and Γ = 0.75 (see Movie S9), consisting of highly
ramified channels with bulbous branches. These branches form due to rapid dissolution, which creates an oval
body of the channel, concurrent with equally rapid rim formation that prevents further growth. Eventually, the
channel succeeds in dissolving an overpass through the rim and forms a new section of a branch. This process is
associated with intense oscillations in system permeability.

The shapes of these channels resemble the patterns that emerge during the slow drainage of a granular‐fluid
system (Sandnes et al., 2011). In such systems, invading fluid fingers move around the solid grains, building
walls around themselves that eventually limit their growth. Here, the mechanism seems to be similar, but with
cementation replacing the bulldozing effect.

Now let us examine the morphology of the patterns for a higher initial porosity of the system. Simulation results
for d0 = 0.3, Da = 0.5 and wide range of Γ and κ are presented in Figures 13 and 14. In this case dissolution
channels for pure dissolution are wider and more diffuse than those for d0 = 0.1. Since more space is available in
the system, the range of parameters that lead to the breakthrough is also appreciably wider.

As the initial porosity is larger this time, and the amount of material to be dissolved is smaller, the porosity (and
thus also permeability) contrast between dissolution channels and the surrounding medium is weaker than in the
previous case. For this reason it is easier to distinguish the channels on the mineral maps of Figure 14 than on the
pore diameter maps of Figure 13. A low permeability contrast results in a weaker competition between the
growing channels, with more channels remaining active over time. This tendency is additionally strengthened by
precipitation, especially for large κ, where it occurs concurrently with dissolution. As a consequence of such a low
mobility ratio, we observe loops forming for Γ = 0.1 and κ ≥ 0.1. For larger molar volumes of E (Γ = 0.5 and
Γ = 0.75) and κ ≥ 1, dissolution channels begin to merge as the reactive‐infiltration instability weakens. When
Γ ≥ 1 this process leads to the formation of a uniform front (see Movie S10) with the permeability of the pattern
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becoming smaller than that of the initial medium. This time, the uniform front is present for a wider range of
precipitation rates (κ ≥ 1) than before. One can also observe that the homogeneity of the system behind the front
increases with κ. For intermediate values of κ (e.g., κ = 0.1 − 1 and Γ = 1.25 − 1.5), although the front remains
flat, there is a dense network of thin, highly branched, and interconnected channels behind it (see Movie S11). For
larger κ, these channels merge and are no longer visible, but the porosity of the system remains nonuniform (see
Figure 13). At even larger Γ values (e.g., Γ = 2, κ = 0.1 − 2), we observe a plethora of branched channels with
cemented rims, growing in a tortuous manner as they attempt to bypass clogged regions.

Finally, let us examine dissolution patterns for smaller Da, which corresponds to larger total flow through the
system and increased penetration lengths, L̃B and L̃C. The results of the simulations conducted at d0 = 0.1 and
Da = 0.1 over a wide range of Γ and κ parameters are presented in Figures 15 and 16. In this case, the channels
formed in pure dissolution are wider but not branched (see κ = 0.01 and Γ = 0.25). However, the precipitation of
secondary species causes these channels to meander significantly in order to bypass overgrown areas (see

Figure 13. Morphological phase diagram of dissolution‐precipitation patterns for various Γ and κ values, with Da = 0.5 and d0 = 0.3 (pore diameter maps). Pores are
color‐coded as follows: heavily overgrown pores (d ≤ d0 ⁄ 10) are red; intermediate pores (d0 ⁄ 10 < d ≤ d0) are yellow; pores larger than d0 but smaller than 2d0

(d0 < d < 2d0) are gray; and pores forming the dissolution pattern (d ≥ 2d0) are black. The lower axis shows corresponding values of the precipitation penetration
length, L̃C.
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κ = 0.1). For Γ = 0.75 and κ = 2 (see Movie S12), the patterns are the most branched, consisting of nested
bulbous shapes. On the other hand, for Γ = 1 and κ = 10 (see Movie S13), the results show a lace‐like structure
of relatively thin and highly branched channels.

Even though the initial porosity is small (d0 = 0.1), the longer penetration length makes the system more
resistant to clogging, similar to the scenario with Da = 0.5 and d0 = 0.3. On the other hand, the permeability
ratio remains high, making the channel merging and a stable front formation possible only for the largest values
of κ ≥ 100.

7. Characterization of the Dissolution‐Precipitation Patterns
The morphology of dissolution‐precipitation patterns clearly changes with the parameters describing the pre-
cipitation reaction—κ and Γ, with the latter parameter appearing to have the strongest influence. To capture the
morphological diversity of the observed patterns, let us now attempt a quantitative description.

Figure 14. Morphological phase diagram of dissolution‐precipitation patterns for various Γ and κ values, with Da = 0.5 and d0 = 0.3 (mineral maps). Colors represent
the mineral concentrations within the grains: mineral A is shown in blue, mineral E in red, and mixtures of the two minerals are marked by various shades of purple.
Empty space not occupied by grains is marked in yellow. The lower axis shows corresponding values of the precipitation penetration length, L̃C.
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We will characterize the replacement efficiency by quantifying the amount of dissolved primary mineral and
precipitated secondary mineral. Additionally, we will calculate the geometric parameters of the emerging pat-
terns: their tortuosity and degree of branching (ramification). Figures 17a and 17b display the total change in A
and E species in the system as a function of Γ for three different values of κ = 0.2,0.5,1. The data are averaged
over 40 realizations on a grid of 100 × 100 random nodes for Da = 0.5 and d0 = 0.3. As before, the simulation
is terminated if the system becomes clogged or a breakthrough is achieved.

The total amount of dissolved primary mineral, ΔVA, and deposited secondary mineral, Vfinal
E , show a non‐

monotonic dependence on the dissolution‐precipitation volume ratio, Γ. For small Γ, ΔVA and Vfinal
E increase

with the molar volume of E. As emphasized earlier, the precipitating mineral reduces the contrast in permeability
between dissolution channels and the surrounding matrix, weakening the effect of mutual screening of channels.
Numerous, usually highly branched channels remain active for a longer period, contributing to a more efficient
removal of the primary mineral. In cases of pure dissolution, the total flow and solvent consumption quickly
concentrate in a single channel, leaving the majority of the system untouched, and thus not participating in
replacement.

On the other hand, for even larger molar volumes of the precipitant, clogging begins to impede the growth of
dissolution channels by increasingly cementing the areas around their tips. As a result, the system again reaches a
point where only one channel remains active, but it must meander between the overgrown areas.

Figure 15. Morphological phase diagram of dissolution‐precipitation patterns for various Γ and κ values, with Da = 0.1 and d0 = 0.1 (pore diameter maps). Pores are
color‐coded as follows: heavily overgrown pores (d ≤ d0 ⁄ 10) are red; intermediate pores (d0 ⁄ 10 < d ≤ d0) are yellow; pores larger than d0 but smaller than 2d0

(d0 < d < 2d0) are gray; and pores forming the dissolution pattern (d ≥ 2d0) are black. The lower axis shows corresponding values of the precipitation penetration
length, L̃C.
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Consequently, for each value of κ, we observe a maximum amount of dissolved material, the height of which, as
well as the Γ value at which it occurs, increases with the precipitation rate. Similarly, the total amount of sec-
ondary mineral deposited in the system exhibits a pronounced maximum as a function of Γ, with these maxima
slightly shifted to the right relative to the maxima of ΔVA.

In the context of practical applications, it is often important to find conditions which maximize the amount of the
secondary mineral precipitated in the system. Figures 18a and 18b show the total volume of E for a wide range of
Γ and κ for two different initial porosity values. For d0 = 0.1, the maximal values of Vfinal

E are observed for large κ
and Γ close to the critical Γ∗κ→∞ = 1.04. Note that for κ → ∞ and 1 < Γ < Γ∗ we expect a stable, uniform front
of replacement reaction A → E, which maximizes the amount of deposited secondary mineral. Above Γ∗, we
expect clogging; thus Vfinal

E decreases sharply with Γ.

For a higher initial porosity, d0 = 0.3, the volume of the secondary mineral increases due to the additional space
available in the system for deposition. In the figure, we scale Vfinal

E by the initial volume of the primary mineral,
V0
A, which is smaller at higher initial porosities. This scaling contributes to the higher values of Vfinal

E /V0
A observed

in the plot. Next, for d0 = 0.3 the critical Γ increases to Γ∗κ→∞ = 1.48, shifting the maximum of Vfinal
E to a region

of larger Γ compared to the case with d 0 = 0.1. Finally, because clogging is more difficult to achieve in a porous
system, Vfinal

E decreases less sharply above Γ∗.

Figure 16. Morphological phase diagram of dissolution‐precipitation patterns for various Γ and κ values, with Da = 0.1 and d0 = 0.1 (mineral maps). Colors represent
the mineral concentrations within the grains: mineral A is shown in blue, mineral E in red, and mixtures of the two minerals are marked by various shades of purple.
Empty space not occupied by grains is marked in yellow. The lower axis shows corresponding values of the precipitation penetration length, L̃C.
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The above results were obtained for a Damköhler number of Da = 0.5. Figure 18c explores the effects of varying
this value, as well as Γ, while keeping κ = 1 and d0 = 0.1 fixed. For large Da, wormholing concentrates flow
and, consequently, precipitation into relatively thin channels, whereas at small Da, most of the coupling ions, C,
are flushed out of the system as L̃C becomes large. As a result, we observe a non‐monotonic relationship between
Vfinal
E and Da, with a single maximum for a given Γ, and an overall maximum at Da = 0.2 and Γ = 0.8.

Let us now turn to the characterization of the geometry of the emergent dissolution channels. As we recall, such a
pattern is defined as a set of pores whose diameters have increased by at least a factor of two, d ≥ 2d0, and are
connected to the system's inlet through other pores that meet this condition. These pores, along with the corre-
sponding nodes where they connect, form a graph, G. We then find the minimum spanning tree of the graph G,
which is a subset of edges that connects all the nodes without any cycles and with the minimum possible total edge
length. In cases where multiple parallel dissolution channels develop in the system, we will focus on analyzing the
dominant one—the channel closest to the outlet—along with its corresponding minimum spanning tree.

The tortuosity of a dissolution channel is then defined as the shortest distance between the inlet and the tip of the
longest channel, measured along the minimum spanning tree, normalized by the length of the system. The tortuosity
of a dissolution channel as a function of κ for Γ = 0.5, Da = 0.5, and d0 = 0.1 is presented in Figure 17d. The
precipitation penetration length, L̃C ∼ 1/κ, has a strong impact on the channel shape. For large L̃C (small κ), the
majority of the precipitant is flushed out of the system, and the pattern resembles the pure dissolution one. When the
penetration length is smaller, L̃C ≃ 0.1, the precipitant forces dissolution channels to meander around overgrown
regions, making the tortuosity significantly larger. For the largest κ, when the penetration length is of the order of l0,
the channels become highly branched, although the tortuosity of the main flow path decreases.

Figure 17. (a) Volume change of mineral A due to dissolution, ΔVA, normalized by the initial volume, V0
A, as a function of Γ

for Da = 0.5 and d 0 = 0.3 and three values of κ (0.2, 0.5, 1). The corresponding values of the precipitation penetration
length, L̃C, are also marked. (b) Volume of the deposited secondary mineral, ΔVE , as a function of Γ for the same parameter
values as in (a). (c) Ramification rate as a function of Γ for Da = 0.5 and κ = 0.2. (d) Tortuosity of the dominant wormhole as a
function of κ (lower axis) or, alternatively, the precipitation penetration length, L̃C (upper axis) for Γ = 0.5.
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Finally, we measure the ramification rate by calculating the total circumference of a branched pattern normalized
by the length of the system, L. Results are depicted in Figure 17c, where the ramification is presented as a function
of Γ for κ = 0.2, Da = 0.5 and d0 = 0.3. When precipitation has little impact on the pattern (small Γ), thick,
diffusive channels form without side branches, characterized by a low ramification rate. For stronger precipi-
tation, highly branched channels appear that compete with each other, with ramification peaking at Γ ∼ 1. At the
largest Γ values, the massive amount of precipitate hinders channel growth, reducing the number of channels.
Although the channels tend to bend, their ramification rate declines.

8. Summary and Conclusions
This study has systematically explored the complex interactions between dissolution and precipitation processes
within porous media, using a pore network model. Our investigations reveal that the dynamic balance between
these processes can significantly influence the macroscopic properties of the media, such as permeability and
structural integrity.

We demonstrated that different regimes of dissolution and precipitation can lead to a variety of morphological
outcomes, from channel formation to complete system clogging. Key factors influencing these outcomes include
the molar volumes of reactants and products, the relative rates of dissolution and precipitation, and the initial
porosity of the medium. Particularly, our results show that the interplay between dissolution and precipitation
could lead to the continuous formation of new flow paths and spatial separation of dissolution‐dominated and
precipitation‐dominated regions. In such cases, the system can remain permeable even if the secondary phase has

Figure 18. (a) Total volume of the precipitated secondary mineral, V final
E , normalized by the initial volume of the primary

mineral (V0
A) as a function of the molar volume ratio (Γ) and the rate constant ratio (κ, lower axis) or, alternatively, the

precipitation penetration length, L̃C (upper axis) for Da = 0.5 and d0 = 0.1. (b) The same as in (a) but for d0 = 0.3. (c) Total
volume of the precipitated secondary mineral, Vfinal

E , normalized by the initial volume of the primary mineral (V0
A) as a function

of the molar volume ratio (Γ) and the Damköhler number (left axis) or the precipitate penetration length, L̃C (right axis).
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a larger volume than the primary one. Continuously generated flow paths are very efficient in distributing the
secondary phase almost uniformly throughout the system.

Several limitations of this study should be acknowledged. First, as mentioned previously, we employ simplified
geochemistry in our dissolution‐precipitation model. Both reactions were considered irreversible and linearly
dependent on reactant concentrations (cB for dissolution and cC for precipitation). While this assumption is
common in studies of reactive transport instabilities (Chadam et al., 1986; Steefel & Lasaga, 1990) and aligns
with our goal to isolate the interplay between flow, dissolution, and precipitation in a minimal model framework,
a more general treatment would consider the overall reaction rates as a balance between forward and backward
reactions. In natural systems, equilibrium thresholds and fluid composition changes (e.g., pH evolution) may lead
to dissolution of secondary phases, altering long‐term permeability. Such dynamics could produce cyclical pore
clogging and reopening—phenomena not captured by our current model.

Additionally, we have assumed a timescale separation between geometry evolution and flow/transport relaxation
times. This enables the quasi‐static approach, where flow and concentration fields are treated as stationary at each
timestep. However, this assumption breaks down when fluid consumption is substantial (e.g., in serpentinization)
requiring future model extensions that incorporate fluid sink terms.

Finally, to keep the model mathematically tractable, we assumed that the changes in the pore volume coming from
dissolution/precipitation are distributed uniformly along the pore diameter. While this simplification facilitates
calculations, it might overestimate the time required for clogging. In reality, clogging would begin at specific
locations within the pore where the precipitation rate is highest. There are also several other important processes
not captured by our current framework. The model is deliberately minimalistic, assuming that both primary and
secondary mineral reactive areas are simply proportional to the lateral surface of the pore. It neglects the processes
such as nucleation of the secondary phase on the primary one, but also the possible lamination of a dissolving
mineral by a precipitating one, which can substantially modify the effective reactive surface over time, especially
if a passivating layer forms and blocks further interaction between the aqueous phase and the mineral substrate. In
future work, incorporating these processes will be central to the development of a more realistic pore‐network
model. We plan to enrich the description of dissolution and precipitation kinetics by explicitly accounting for
nucleation barriers, the emergence of passivation layers, and their effects on the accessibility of pore surfaces.
These additions will help capture a broader range of geochemical scenarios and improve the predictive power of
the model for long‐term dynamics.

Building on these refinements, future work should also focus on extending the simulations to more complex and
heterogeneous systems, incorporating a broader range of chemical reactions and physical conditions. This should
provide a more detailed understanding of coupled chemical and physical changes in rock evolution and enhance
the model applicability to both natural and engineered porous media.

Appendix A: Clogging Conditions for the 1D Model
To determine the condition for clogging in terms of κ and Γ, we consider an effective, Darcy‐scale description of
our system. Let us consider medium of initial porosity φ0 infiltrated by a reactive fluid of Darcy velocity u0 and
reactant concentration cin

B . This one‐dimensional, continuous system can then be described by the following
equations

u0
∂cB (x, t)

∂x
= − θ(vA) k1scB u0

∂cC (x, t)
∂x

= θ(vA) k1scB − k2scC

∂vA (x, t)
∂t

= − k1χAνAcBθ(vA)
∂vE (x, t)

∂t
= k2χEνEcC

, (A1)

where s stands for the specific reactive surface area. The respective boundary conditions are
cB (x → − ∞) = cin

B ,cC (x → − ∞) = 0, while the initial conditions are vA(t = 0) = v0
A and vE(t = 0) = 0.

Although the full solution of these equations is complicated, even in one dimension, we can consider the long‐
time limit where all concentration profiles propagate steadily with a constant velocity U, and are thus depen-
dent only on the variable ξ = x − Ut.
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Under these conditions, the concentration and mineral volume profiles can be found analytically under certain
simplifying assumptions. First, we assume that the specific reaction area, s, remains constant during the reaction.
Note that, in our model, the surface area does not change significantly over a wide range of porosity values (see
Figure 5). Second, we neglect the effects of diffusive hindering (Equation 5). If we choose the origin of co-
ordinates such that for ξ ≤ 0, mineral A has been fully dissolved, we have cB(ξ ≤ 0) = cin

B , cC(ξ ≤ 0) = 0,
vA(ξ ≤ 0) = 0, and vE(ξ ≤ 0) = vfinal

E , where vfinal
E is the final volume fraction of the secondary mineral attained

after the reaction front has passed. On the other hand, for ξ > 0, the concentration and volume profiles are:

cB = cin
B e
−
sk1

u0
ξ

cC =
cin
B

1 − κ
(e
− κ

sk1

u0
ξ
− e

−
sk1

u0
ξ
)

vA = v0
A(1 − e

−
sk1

u0
ξ
) vE =

vfinal
E

1 − κ
(e
− κ

sk1

u0
ξ
− κe

−
sk1

u0
ξ
)

. (A2)

Additionally, from mass conservation we find the link between the final volume fraction of the secondary mineral
and initial volume fraction of the primary mineral, vfinal

E = Γv0
A as well as the formula for the front propagation

velocity, U = 1
vfinal
E
χAνAcin

B u0. The porosity in the system, φ = 1 − vA − vE, can then be calculated as

φ(ξ) =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Γφ0 + 1 − Γ for ξ ≤ 0

φ0 − (1 − φ0)

⎛

⎜
⎜
⎜
⎝
Γ
(e
− κ

sk1

u0
ξ
− κe

−
sk1

u0
ξ
)

1 − κ
− e

−
sk1

u0
ξ
⎞

⎟
⎟
⎟
⎠

for ξ > 0

,
(A3)

where φ0 = 1 − v0
A is the initial porosity. The porosity has a single minimum for ξ = u0

sk1
log((Γ − 1)κ+ 1

Γκ )/ (1 − κ)

with the corresponding minimum value

φ∗ = φ0 − (1 − φ0)(Γ(
(Γ − 1)κ + 1

Γκ
)

κ
κ − 1

). (A4)

The system avoids clogging if the minimum porosity, φ∗, remains greater than zero (φ∗ > 0). This requirement
imposes a condition on the initial porosity, φ0, expressed in terms of Γ and κ

Γ(
(Γ − 1)κ + 1

Γκ
)

κ
κ − 1

<
φ0

1 − φ0
. (A5)

which is Equation 25 in the main text.

This condition ensures that the system remains permeable, preventing the porosity from reaching critically low
values that could lead to clogging.

Notation
qij Flow rate through pore ij [L3T− 1]

μ Fluid viscosity [ML− 1T− 1]

lij Length of pore ij [L]

dij Diameter of pore ij [L]

pi Pressure at node i [ML− 1T− 2]

ci Concentration of species i [NL− 3]
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Δt Time step length [T]

χi Stoichiometric coefficient [dimensionless]

ki Reaction rate constant for species i [LT− 1]

Di Diffusion coefficient of species i [L2T− 1]

Sh Sherwood number [dimensionless]

keff Effective reaction rate [LT− 1]

Dai Effective Damköhler number for reaction i [dimensionless]

νi Molar volume of species i [L3N− 1]

ΔVk
ij Volume change of reactant k in pore ij [L3]

d0 Initial pore diameter [L]

l0 Mean pore length [L]

Γ Ratio of molar volume of precipitating to dissolving species [dimensionless]

κ Ratio of precipitation to dissolution reaction rates [dimensionless]

Vijk Volume of grain ijk [L3]

V0
ijk Maximum volume of grain ijk [L3]

s Reactive specific surface area [L− 1]

φ Porosity [dimensionless]

φ0 Initial porosity [dimensionless]

L System length [L]

LB Penetration length of species B [L]

LC Penetration length of species C [L]

τ Tortuosity [dimensionless]
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